73
Report Hydraulic Fracturing Environmental Assessment 1 June 2011 Prepared for Australia Pacific LNG GPO Box 148 Brisbane QLD 4001 42626654

42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Report Hydraulic Fracturing Environmental Assessment

1 June 2011

Prepared for

Australia Pacific LNG

GPO Box 148 Brisbane QLD 4001

42626654

Page 2: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic fracturing environmental assessment_derm comments update.doc

Project Manager:

Yvonne Knight Water Engineer

Principal-In-Charge:

Daymion Jenkins Principal Environmental Geologist

Authors:

Yvonne Knight Cindy Cheung Stephen Denner

URS Australia Pty Ltd Level 17, 240 Queen Street Brisbane, QLD 4000 GPO Box 302, QLD 4001 Australia T: 61 7 3243 2111 F: 61 7 3243 2199

Reviewer:

Thomas SIlverman Principal Hydrogeologist

Date: Reference: Status:

1 June 2011 42626654/01/5 FinalRev1

Document copyright of URS Australia Pty Limited.

This report is submitted on the basis that it remains commercial-in-confidence. The contents of this

report are and remain the intellectual property of URS and are not to be provided or disclosed to third parties without the prior written consent of URS. No use of the contents, concepts, designs, drawings, specifications, plans etc. included in this report is permitted unless and until they are the subject of a

written contract between URS Australia and the addressee of this report. URS Australia accepts no liability of any kind for any unauthorised use of the contents of this report and URS reserves the right to seek compensation for any such unauthorised use.

Document delivery

URS Australia provides this document in either printed format, electronic format or both. URS

considers the printed version to be binding. The electronic format is provided for the client’s convenience and URS requests that the client ensures the integrity of this electronic information is maintained. Storage of this electronic information should at a minimum comply with the requirements

of the Commonwealth Electronic Transactions Act (ETA) 2000.

Where an electronic only version is provided to the client, a signed hard copy of this document is held on file by URS and a copy will be provided if requested.

Page 3: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5 i

Table of Contents

Executive Summary .................................................................................................iv

1 Introduction .......................................................................................................1

1.1 Terms of Reference ...........................................................................................1

1.2 Scope of Works..................................................................................................1

1.3 Objectives...........................................................................................................2

2 Literature Review ..............................................................................................3

2.1 Hydraulic Fracturing..........................................................................................3

2.2 Environmental Risks of Hydraulic Fracturing.................................................3

2.2.1 Hydraulic Fluid Recovery Rates.....................................................................................4

2.2.2 Fate and Transport of Potentially Hazardous Additives..............................................4

2.3 Environmental Incidents due to Hydraulic Fracturing ...................................5

2.4 Best Practise Hydraulic Fracturing ..................................................................6

2.4.1 Best Practise Well Construction ....................................................................................7

2.4.2 Best Practise Water Management ..................................................................................8

3 Australia Pacific LNG Fracturing Process and Setting................................10

3.1 Process .............................................................................................................10

3.2 Geology of the Surat Basin.............................................................................15

3.2.1 Lithostratigraphy of the Non-CSG Producing Formations........................................19

3.2.2 Lithostratigraphy of the CSG Producing Walloon Subgroup....................................21

3.2.3 Permeability of Coals ....................................................................................................22

3.3 Areas for Hydraulic Fracturing .......................................................................23

3.4 Geomechanics of Hydraulic Fracturing.........................................................25

3.4.1 In-Situ Stress and Stress Contrasts ............................................................................26

3.4.2 Physical Characteristics of the Geologic Formation .................................................26

3.4.3 Hydraulic Fracturing Process Control.........................................................................27

3.5 Water Pressures within the Coals ..................................................................28

3.6 Location and Timing of Proposed Hydraulic Fracturing..............................31

3.7 Management Measures to avoid Potential Adverse Impacts on Environment .....................................................................................................31

4 Inventory of Additives and Laboratory Testing............................................32

4.1 Inventory of Additives .....................................................................................32

4.2 Verification of Fracturing Fluid Additives .....................................................36

Page 4: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5

4.3 Management of Change ..................................................................................36

5 Additive Toxicity Assessment .......................................................................37

5.1 General..............................................................................................................37

5.2 Selection of Toxicity Values ...........................................................................37

5.2.1 Approach ........................................................................................................................37

5.3 Toxicity of COPC..............................................................................................38

6 Mass Balance Estimate ..................................................................................50

6.1 Environmental Fate..........................................................................................52

7 Risk Assessment ............................................................................................53

7.1 Risk Assessment Methodology......................................................................53

7.2 Potential for Activities to Cause Harm to the Receiving Environment .....................................................................................................55

8 Water Quality Monitoring Programs..............................................................59

9 Conclusions.....................................................................................................62

10 References.......................................................................................................63

11 Limitations.......................................................................................................64

Tables

Table 3-1 Location and Timing Proposed Hydraulic Fracturing ………………………………………31

Table 5-1 Summary of Toxicity of COPCs used by Haliburton....................................................... 39

Table 5-2 Summary of Toxicity of COPCs used by Schlumberger................................................. 41

Table 5-3 Eco-Toxicity Data for Australia Pacific LNG Hydraulic Fracturing Fluids - Haliburton.... 44

Table 5-4 Eco-Toxicity Data for Australia Pacific LNG Hydraulic Fracturing Fluids - Schlumberger........................................................................................................................................ 45

Table 5-5 Risk Quotients Associated with Potential Exposures of COPCS-Haliburton.................. 46

Table 5-6 Risk Quotients Associated with Potential Exposures of COPCS- Schlumberger........... 47

Table 6-1 Approximate Volume/Mass of Hydraulic Fracturing Chemicals Remaining In-Situ after Fracturing 3025 Wells with Halliburton Gel Based Fracturing Fluid (Delta Frac 140) .... 51

Table 6-2 Approximate Volume/Mass of Hydraulic Fracturing Chemicals Remaining In-Situ after Fracturing 3025 Wells with Schlumberger Gel Based Fracturing Fluid (YF120LG)....... 51

Page 5: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5 iii

Figures

Figure 3-1 Location of Proposed Hydraulic Fracturing..................................................................... 11

Figure 3-2 Conceptual Representation of CSG Recovery Wells ..................................................... 12

Figure 3-3 Schematic of Hydraulic Fracturing Above Ground Plant ................................................ 14

Figure 3-4 Location and Structure of the Surat Basin ...................................................................... 17

Figure 3-5 Lithostratigraphy of the Surat Basin (Scott et. al., 2004 ................................................. 18

Figure 3-6 Lithostratigraphy of the Walloon Subgroup (modified after Scott et. al., 2004) .............. 22

Figure 3-7 Fracture Pattern as Displayed on Image Log for Well Carinya ...................................... 24

Figure 3-8 Potentiometric Surface.................................................................................................... 29

Figure 4-1 Halliburton Gel Based Fracturing Fluid (Delta Frac 140) Composition by Volume ........ 34

Figure 4-2 Water Based Fracturing Fluid Composition by Volume.................................................. 34

Figure 4-3 Schlumberger Gel Based Fracturing Fluid (YF120LG) Composition by Volume ........... 35

Figure 4-4 Schlumberger Water Based Fracturing Fluid Composition by Volume .......................... 35

Figure 7-1 Overall Current Risk Profile ............................................................................................ 56

Figure 7-2 Overall Current risk profile showing Contribution by Assets (Top 50 Events)................ 57

Figure 7-3 Overall Risk Profile - With Mitigation Actions.................................................................. 58

Appendix A Distribution of Fractured Wells

Page 6: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5 iv

Executive Summary

URS Pty Ltd (URS) has been appointed by Australia Pacific LNG to undertake an environmental assessment of fracture stimulation procedures used to enhance coal seam gas (CSG) extraction.

Origin as upstream operator for the Australia Pacific LNG Project proposes to use fracture stimulation, or fraccing as it is more commonly known, in approximately 3,000 coal seam gas exploration and production wells across the Surat and Bowen Basins. Fracture stimulation, hydraulic fracturing or

‘fraccing’ is a process used to stimulate or fracture underground coal seams in order to increase the flow of gas and water. Fraccing enables a more effective release of gas and water from underground gas reservoirs and also increases the drainage area of the well, with potentially increased gas

production from each well through the process. A fluid called ‘frac fluid’ or ‘fraccing fluid’, which primarily consists of water and sand, is pumped down the well bore into an isolated section of the well at high pressure to fracture the coal seam. The sand holds the fracture open to provide a pathway for

the gas and water to flow to the gas well for extraction.

Origin uses a combination of two types of fraccing, namely water fraccing and gel fraccing. Both methods of fraccing use treated water, sand and a small amount (<3.5%) of additives in the fraccing

fluids used during the process. In more recent operations, gel fraccing has been primarily used as the fluid is thicker and therefore carries more sand enabling fractures to be created and propped open using less water. Additives used in fracing fluids can include acids, biocides, breakers, crosslinkers,

gelling agents, iron control, surfactants, pH control, solvents and stabilisers.

Within the gas fields where the fraccing process is undertaken, there are currently a limited number of licensed groundwater extraction wells at the coal seam level. Australia Pacific LNG has proposed (as

part of the Environmental Impact Statement conditions) these extraction wells be decommissioned and plugged with cement to isolate any porous formations and to prevent further production. It is also proposed that the decommissioned wells be replaced with extraction wells within the upper and lower

formations or that an alternative water supply is provided. As such, during the period of hydraulic fracturing and operation, there are unlikely to be plausible receptors within the coals for potential impact associated with hydraulic fracturing fluids.

Springbok Sandstone and the Hutton Sandstone aquifers overlay and underlay the Walloon subgroup (the CSG bearing unit) respectively, and are typically separated from the coals by lower permeability mudstone and siltstone horizons, although there are localised exceptions to this. The Springbok

Sandstone is overlain and confined by the Westbourne Formation, a sequence of predominantly low permeability interbedded shales, siltstones and sandstones which is in turn overlain by the Gubberamunda Sandstone aquifer, with shallower Bungil and Mooga units present as aquifers in

some areas above this. Utilised water resources are typically from these upper aquifers, and to a lesser extent the Springbok due to variable permeability and water quality.

Based on the limited connectivity between the coals and the Springbok, it is considered unlikely that

hydraulic fracturing within the coals will extend up into the Springbok, with associated discharge of fracturing chemicals. This is qualified on the assumption that Australia Pacific LNG will leave an adequate barrier between the upper coal seam of the Macalister seams and the permeable section of

the Springbok. Where necessary the upper Macalister coal seam will not be perforated and thus not fractured as a precautionary measure until further study is completed to assess the potential impact of fracturing in proximity to this interface.

In relation to the overlying Guberramunda and near surface aquifers, there is typically several hundred metres or more of low permeability separating units, and there is not thought to be a plausible direct

Page 7: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5 v

linkage from the fracturing units to these horizons. Furthermore, based on groundwater modelling carried out by Australia Pacific LNG to date, there will be a net migration of groundwater from both the overlying and underlying aquifers into the coal measures. The production dewatering will create

vertical inter aquifer flow into the coals, limiting the potential for residual hydraulic fracturing fluid migration from the coals into the overlying and underlying aquifers.

The composition of fracturing fluids varies in order to meet the specific needs of each fracturing

operation. The fracturing fluid is typically around 98% water and proppants and around 2% chemical additives. The inventories of chemicals supplied by Australia Pacific LNG’s current fraccing contractor lists the additives used in the fraccing fluid or gel. In accordance with Australian Government

guidelines, Australia Pacific LNG has put in place procedures to ensure BTEX is not used in fraccing fluids above DERM agreed concentrations. Recent testing has confirmed proposed frac fluids contain concentrations below Australian Drinking Water Standards, and as such this has not been assessed

further. As very limited human health toxicity data is available for the chemicals of potential concern (COPC) used in the hydraulic fracturing fluid, eco-toxicity data have been utilised to developing screening criteria. A limited number of the utilised chemicals have potential toxicity assuming direct

exposure using these screening criteria (an extremely conservative assumption in the context in their isolation within the coals). However, these COPC are either acceptable as food grade at the concentrations used or are likely to be degraded and/or neutralised within very short time scales within

groundwater. As such, in the context of their short term persistence and isolation to the coal seams, these are unlikely to pose a plausible hazard. It is estimated that approximately 60-80% of the hydraulic fracturing chemicals will be recovered during well development, and not withstanding the

anticipated neutralisation and degradation, there will be several orders of magnitude dilution within the coals. A programme of monitoring is required to validate these assumptions, particularly in relation to the limited persistence of the COPCs.

In summary, Australia Pacific LNG is utilising a range of measures and controls which will ensure restriction of frac fluids and gas from entering surrounding aquifers. A comprehensive sampling, monitoring and validation program will be implemented to demonstrate the effectiveness of the

mitigation measures and controls.

As such, based on current information and adoption of the specified controls, there is no identified significant risk for the activities to cause environmental harm to the receiving environment.

Page 8: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5 1

1

1 Introduction

1.1 Terms of Reference Further to instruction from Australia Pacific LNG, URS Pty ltd (URS) has been commissioned to undertake an environmental assessment relating to the use of hydraulic fracturing for Coal Seam Gas

abstraction at leases in the Surat Basin.

The scope of works is based on the proposal submitted on 6th August 2010. In addition, the report has also taken into consideration the Coordinator General Condition 22 (Hydraulic Fracturing Chemicals)

issued to Australia Pacific LNG on 9th November 2010, the details of which are as follows;

Prior to making an application for an EA for the gas fields, the proponent must submit an independent scientific assessment of the possible impacts from hydraulic fracturing from the use of

chemical additives in hydraulic fracturing and drilling to the Coordinator-General to review, assess, and to provide written advice.

The assessment must address, but not be limited to:

A complete inventory of biocides, corrosion inhibitors and all other chemicals used in drilling, completions and stimulation operations (hydraulic fracturing).

Toxicity data for each chemical and any mixture of chemicals.

Details of where, when and how often drilling, completions and stimulation operations are to be undertaken.

A risk assessment of the potential for drilling, completions and stimulation operations to cause

environmental harm to the receiving environment. The risk assessment must include but not be limited to: a mass balance determining the

concentrations and absolute masses of chemicals that will be left in situ subsequent to drilling,

completions and stimulation operations, and the results of any fluid monitoring undertaken in the course of previous drilling, completions and stimulation operations.

The long term monitoring program of drilling, completions and stimulation operations fluid chemical

concentrations in water produced from wells that are to be implemented by the proponent. Management measures that will be taken to avoid and mitigate any potential adverse impact on

environmental values.

Initial comments on the proposed URS scope of works were issued by DERM to Australia Pacific LNG on the 6th October 2010, and these points have also been taken into account when completing the assessment.

1.2 Scope of Works The scope of works included the following aspects;

A literature review of the environmental impact of hydraulic fracturing processes internationally, and

an assessment of established best practice procedures. A review of Australia Pacific LNG fracturing activity, including an assessment of the process

implemented by Australia Pacific LNG appointed contractors, and consideration of the geological

setting of the works. Compilation of an inventory of additives. Compilation of available toxicity data for identified additives.

Completion of a risk assessment to qualify potential risks to utilised water resources. Design of a monitoring programme to verify assumptions and conclusions.

Page 9: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

1 Introduction

2 42626654/01/5

1.3 Objectives The objective of the works is to provide an independent assessment of the potential impacts to sensitive receptors (including use of groundwater for stock, amenity and groundwater) associated with Australia Pacific LNG’s use of hydraulic fracturing to enhance CSG recovery.

Page 10: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5 3

2

2 Literature Review

2.1 Hydraulic Fracturing Hydraulic fracturing is a technique used in the oil and gas industry to enhance the production efficiency of coal seam gas wells. The fracturing hydraulically creates or enlarges fractures in the coal

zones to form a highly conductive fracture system that allows the flow of coal seam gas from the hydrocarbon bearing formation into a production well. Proppants such as sand or ceramics are pumped with the fracturing fluid at high pressure down the well to prevent the fractures from closing

when the injection is stopped. Fracturing fluids can be based on acid, gel, water or oil and generally contain additives such as acids, biocides, breakers, crosslinkers, gelling agents, iron control, surfactants, pH control, solvents and stabilisers to improve the effectiveness of the fracturing. Water

alone is not always adequate for fracturing certain formations due to the low viscosity which limits its ability to transport proppant. A small number of potential fracturing fluid additives (such as benzene, ethylene glycol and naphthalene) have been linked to negative health affects at certain exposure

levels outside of fracturing operations (API, 2010). Australia Pacific LNG has recently taken steps to remove (as far as practically possible and in compliance with proposed legislation) benzene, toluene, ethylbenzene, xylene (BTEX), ethylene glycol and naphthalene from their hydraulic fracturing. This

has included the elimination of the use of mineral oil within gel mixtures, and removing identified sources of BTEX compounds from grease and cleaning fluids used within the process where practicable.

2.2 Environmental Risks of Hydraulic Fracturing Hydraulic fracturing of coal seam gas wells has been undertaken in the United States (US) for over 60 years and has evolved substantially over this time (Ely, 1985). In the US alone it is estimated that

35,000 wells are hydraulically fractured annually and over 1 million wells have been fractured since the first well in the 1940s (API, 2010). Hydraulic fracturing has also been undertaken in Australia for over 30 years.

Most available literature pertaining to fracturing fluids relates to the fluids’ operational efficiency rather than the potential environmental or human health impacts. There is very little documented research on the environmental impacts that result from the injection and migration of these fluids into subsurface

formations, soils, and underground sources of drinking water (EPA, 2004). In response, the US Environmental Protection Agency (EPA) released a study in 2004 on the impacts on underground sources of drinking water by hydraulic fracturing of coal bed methane reservoirs.

The study identified two potential mechanisms through which hydraulic fracturing could impact on underground sources of drinking water that included:

Direct injection of fracturing fluids into a drinking water aquifer in which the coal is located or

injection of fracturing fluids into a coal seam that is in hydraulic communication with a drinking water aquifer (natural fracture system); or

Creation of a hydraulic connection between the coal bed formation and an adjacent underground

source of drinking water.

Both mechanisms were reported as posing a low threat to drinking water aquifers due to the removal of large quantities of groundwater (containing the fracturing fluids) as part of the coal seam gas

production. Additionally, mined through (direct access to fractures for measurement) studies show that hydraulic fractures that penetrate into overlying coals can be attributed to the pre- of natural fractures. Factors that further reduce the potential threat to underground sources of drinking water include the

Page 11: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

2 Literature Review

4 42626654/01/5

recovery rates of the fracturing fluids and mitigating effects of fate and transport mechanisms such as

dispersion and biodegradation. These processes and how they influence the environmental risks associated with hydraulic fracturing are described in sections 2.2.1 and 2.2.2.

2.2.1 Hydraulic Fluid Recovery Rates

In any fracturing job, some fracturing fluids may not be recovered from the formation. Several studies

have been undertaken to evaluate the recovery rates of hydraulic fracturing fluids in coal and non-coal formations. The studies in non-coal formations were undertaken to augment the data set. A study in the US found that 61 percent of fracturing fluids were recovered based on samples collected from

coalbed methane wells over a 19-day period (Palmer et al. 1991). The study predicted total recovery of the fracturing fluid to be between 68 to 82 percent. Non-coal studies show that between 35 and 59 percent recovery could be achieved. Although limited studies have been undertaken, the general

method for determining the recovery of hydraulic fracturing fluid is a basic mass balance method. For example, flow back analysis conducted by Willberg et al (1997) looked at the flowback rate from the well by taking samples every 4 to 8 hours over a 4 to 5 day period and analysing the concentrations of

injected fluid in each sample over the period.

A variety of site-specific factors influence the recovery efficiency of fracturing fluids as observed in these studies (EPA, 2004). These factors are:

Fluids can “leakoff” (flow away) from the primary hydraulically induced fracture into smaller secondary fractures. The fluids then become trapped in the secondary fractures and/or pores of porous rock.

Fluids can become entrapped due to the “check-valve effect”, wherein fractures narrow again after the injection of fracturing fluid ceases, formation pressure decreases, and extraction of methane and groundwater begins.

Some fluid constituents can become adsorbed to coal or chemically react within the formation. Some volume of the fluids, moving along the hydraulically induced fracture, may move beyond

the drainage radius of the pumping well, and thus cannot be recovered during fluid recovery.

The drainage radius of the production well is that portion of the reservoir that contributes water to the well.

Some fluid constituents may not completely mix with groundwater and are therefore more difficult

to recover during production pumping.

Although full recovery of the fracturing fluid is not possible, there are several mitigating factors that influence the availability of the potentially unrecoverable hydraulic fluid. These are outlined in section

2.2.2 with particular focus on potentially hazardous additives that are unrecoverable.

2.2.2 Fate and Transport of Potentially Hazardous Additives

The US EPA has reported that the primary constituents of concern in hydraulic fracturing additives to be benzene, toluene, ethylbenzene and xylenes (BTEX) from the use of diesel in fracturing fluids

(EPA, 2004). A memorandum of agreement (MOA) was signed in 2003 by the US EPA and major hydraulic fracturing operators in the US agreeing to discontinue the use of diesel in fracturing fluids in zones that qualify as underground sources of drinking water. Australia Pacific LNG has specified that

diesel and/or mineral oil will not be used by appointed contractors, and as such going forward this is not anticipated to be a significant constituent of the hydraulic fracturing fluids. Recent testing of

Page 12: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

2 Literature Review

42626654/01/5 5

proposed frac fluids has confirmed that concentrations of BTEX (where present) are below Australian

Drinking Water Standards.

Although there is a risk that potentially hazardous chemicals can be introduced into underground sources of drinking water, the EPA study concluded that constituents potentially contained in fracturing

fluids are not introduced through coalbed methane fracturing in concentrations high enough to pose a significant threat (Ref 4). Further, hydrodynamic phenomena including flowback, dilution, dispersion, adsorption and potentially biodegradation, minimise the possibility that chemicals in hydraulic

fracturing would adversely affect drinking water aquifers. Finally, the voluntary elimination of diesel use in fracturing fluids by three major operators in the US further diminishes the risk posed by these chemicals.

2.3 Environmental Incidents due to Hydraulic Fracturing A comprehensive investigation of reported water quality incidents in the US was undertaken by the EPA in response to concerns raised by citizens in the states of Wyoming, Montana, Alabama, Virginia,

Colorado and New Mexico. The geographic locations of the reported concerns were within the coal basins of San Juan (Colorado and New Mexico), Black Warrior (Alabama), Central Appalachian (Virginia) and Powder River (Wyoming and Montana).

The US EPA study concluded the following in each basin:

Power River Basin

Hydraulic Fracturing is not widely practiced in the basin and water quality concerns were not specifically related to hydraulic fracturing. They concluded that there were general surface water and groundwater quality concerns not attributable to fracturing activities.

San Juan Basin

Groundwater quantity and quality issues in the San Juan Basin were suspected to be linked to natural fractures and poorly constructed, sealed, or cemented wells that may provide conduits for methane to move into shallow geologic strata and water wells or surface water. New Mexico initiated a plugging

and abandonment program to seal old, improperly abandoned production wells which appears to have mitigated the problem (EPA, 2004).

Central Appalachian Basin

Investigations did not produce evidence to show that hydraulic fracturing of coalbed methane wells in the Central Appalachian Basin has caused water quality impacts of drinking water wells (EPA, 2004).

There is evidence that methane seeps and methane in shallow geologic strata and water wells can occur because methane moves through a variety of conduits. These conduits include natural fractures and poorly constructed wells and can allow methane, fracturing fluid and water with naturally high

particulates to pass through. In some cases, improperly sealed gas wells have been remediated,

Black Warrior Basin

Incidents were investigated by the Alabama oil and Gas Board, the Alabama Department of Environmental Management and EPA Region IV. Samples from drinking water wells did not test

positive for constituents found in fracturing fluids.

Page 13: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

2 Literature Review

6 42626654/01/5

Based on these four basins, the EPA found that there was no conclusive evidence to show that water

quality degradation in underground sources of drinking water are a direct result of injection of hydraulic fracturing fluids into coal seams and subsequent underground movement of these fluids.

Pavilion Wyoming

Concerns have been raised in the town of Pavilion, Wyoming about groundwater contamination based

on resident complaints about smells, tastes and adverse changes in water quality in private water wells. In response, the EPA undertook a study of individual wells, municipal wells and surface water quality to evaluate the potential impacts to human health and the environment. The samples were

tested for 300 different constituents.

The US EPA found a widespread incidence of low levels of organic compounds in drinking water wells (EPA 2010). Overall, 17 of 19 drinking water wells sampled in January 2010 show detections of total

petroleum hydrocarbons. Additional compounds detected include naphthalene, phenols and methane. Levels of petroleum compounds were detected including benzene, xylene, methylcyclohexane, naphthalene, and phenol. This shallow groundwater is hydrologically connected to the drinking water

aquifer.

Methane detected in 7 drinking water wells was found to be thermogenic, originating within the natural gas reservoir and in one drinking well from biogenic methane. Eleven wells were confirmed to have

tris 2-butoxythanol phosphate, also known as 2 BE-P or TBEP, at concentrations less than 5 parts per billion. TBEP is used as a plasticizer and in other commercial products. Adamantane compounds were also confirmed in 4 wells at low concentrations. Adamantane compounds are commonly associated

with hydrocarbon production fluids, and can be found in other products.

EPA has not reached any conclusions about how constituents of concern are occurring in domestic wells since the study commenced in 2009. Potential sources could include oil and natural gas

production activities, agricultural sources, industrial chemicals, landowner/well owner management of wells, and well components.

Further monitoring and analysis are being undertaken by the EPA to build upon the results from past

sampling events, to understand the groundwater hydrology and how the compounds of concern may be occurring in the aquifer. The results of these additional investigations are expected in 2011.

US EPA’s Current Hydraulic Fracturing Study (2010-2012)

EPA’s Office of Research and Development (ORD) will be conducting a scientific study to investigate the possible relationships between hydraulic fracturing and drinking water. EPA will use information

from the study to identify potential risks associated with Hydraulic Fracturing.

US EPA will consult with experts in the field through peer review, and technical workshops and will engage stakeholders in a dialogue about this study through facilitated meetings. EPA plans to

complete the draft study design by October 2010. EPA expects to initiate the study in early 2011 and to have the initial study results available by late 2012.

2.4 Best Practise Hydraulic Fracturing The American Petroleum Institute (API) has prepared two guidance documents describing the current industry best practises used to minimise environmental impacts associated with the acquisition, use,

Page 14: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

2 Literature Review

42626654/01/5 7

management, treatment and disposal of water and other fluids associated with hydraulic fracturing.

The first guideline Hydraulic Fracturing Operations – Well Construction and Integrity Guidelines focuses on groundwater protection related to drilling and hydraulic fracturing operations which specifically highlights recommended practices for well construction and integrity of hydraulically

fractured wells (API, 2009). The second Water Management Associated with Hydraulic Fracturing focuses on issues associated with the water used for purposes of hydraulic fracturing (API, 2010). A third guideline is under development which will address the Surface Environmental Considerations

Associated with Hydraulic Fracturing.

2.4.1 Best Practise Well Construction

The API Hydraulic Fracturing Operations – Well Construction and Integrity Guideline outlines the key components of well construction to ensure that shallow groundwater aquifers and the environment are

protected, while also enabling economically viable development of oil and natural gas resources. The general principles of the guideline are provided in this section.

Generally, the groundwater is protected from the contents of the well during drilling, hydraulic

fracturing, and production operations by a combination of steel casing and cement sheaths, and other mechanical isolation devices installed as a part of the well construction process. Correct construction of the well is integral in preventing the migration of fluids between subsurface layers.

The API guideline outlines specific considerations for each of the following steps to ensure correct well construction:

drilling the hole

logging the hole (running electrical and other instruments in the well) running the steel casing cementing the casing

logging through the casing to evaluate the cement quality perforating the casing (depending on completion type) hydraulic fracturing or stimulating the well

monitoring well performance and integrity

The primary method used for protecting groundwater during drilling operations consists of drilling the well through the groundwater aquifers, immediately installing the casing, and cementing the steel pipe

into place.

US drilling regulations specifically address groundwater protection, including requirements for the surface casing to be set below the lowest groundwater aquifer. The steel casing protects the zones

from material inside the wellbore during subsequent drilling operations and, in combination with other steel casing and cement sheaths that are subsequently installed, protects the groundwater with multiple layers of protection for the life of the well. Asia Pacific LNG currently run surface casing to

typically 100 m below ground surface, which screens out the near surface aquifers, prior to drilling the well to total depth and placement of internal casing to the base of the well.

The ultimate goal of the well design is to ensure the environmentally sound, safe production of

hydrocarbons by containing them inside the well, protecting groundwater resources, isolating the productive formations from other formations, and by proper execution of hydraulic fractures and other stimulation operations. The well design and construction must ensure no leaks occur through or

Page 15: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

2 Literature Review

8 42626654/01/5

between any casing strings. The fluids produced from the well (oil, water, or gas) must travel directly

from the producing zone to the surface inside the well conduit.

The design basis for well construction emphasises barrier performance and zonal isolation using the fundamentals of wellbore preparation, mud removal, casing running, and cement placement to provide

barriers that prevent fluid migration. The selection of the materials for cementing and casing are important, but are secondary to the process of cement placement. The performance of the barrier system to protect groundwater and isolate the hydrocarbon bearing zones is of utmost importance.

All well designs and well plans include contingency planning to mitigate and eliminate the risk of failure due to unplanned events, and most importantly, to ensure the protection of people and the environment.

Regular monitoring of the well is required during drilling and production operations to ensure that well construction is in accordance with the well design, well plan, and permit requirements. The integrity of well construction should be periodically tested to ensure its integrity is maintained. The specific

construction and monitoring activities that should be conducted prior to and during well construction and over the life of the well are described fully in the API guideline.

2.4.2 Best Practise Water Management

The key considerations outlined in the API Guideline for Water Management Associated with

Hydraulic Fracturing to minimise the environmental impacts and water management issues associated with the hydraulic fracturing process are outlined below. Included are the points considered pertinent to coal seam gas operations within Australia.

Basin-wide planning should be employed to consider a broad spectrum of competing water requirements and constraints such as water source, water transport, fluid handling and storage requirements, flow back water treatment and disposal options and potential for water recycling.

Upon initial development of a new resource, operators should review the available information describing surface and groundwater water quality characteristics in the area and if necessary work with regulators to assess the baseline characteristics of local water bodies. On a site specific basis

pre-drilling surface and groundwater sampling and analysis should be considered as a means to provide a better understanding of onsite water quality before drilling and hydraulic fracturing operations are initiated.

On a regional basis, operators should typically consider the evaluation of waste management and disposal practices for fluids within their hydraulic fracturing program. This documented evaluation should include information about flow back water characterisation and options for treatment,

disposal, reuse, or storage including consideration of the preferred transport method from the well pad (i.e. truck or piping).

When considering preferred transport options, operators should assess requirements and

constraints associated with fluid transport. Alternative strategies should be considered to minimise potential environmental or social impacts, working closely with the regulator and community.

Operators should strive to minimise the use of additives and where they are necessary assess the

feasibility of using more environmentally benign additives. This action could help with addressing concerns associated with fracture fluid management, treatment, and disposal. It is recognised that while desirable, elimination or substitution of an alternative additive is not always feasible as the

performance may not provide the same effectiveness as more traditional constituents.

Page 16: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

2 Literature Review

42626654/01/5 9

Operators should make it a priority to evaluate potential opportunities for beneficial reuse of flow

back and produced fluids from hydraulic fracturing, prior to treating for surface discharge or reinjection. Water reuse and/or recycling can be a key enabler to large scale future development. Pursuing this option, however, requires planning and knowledge of chemical additives likely to be

used in hydraulic fracturing operations and the general composition of flow back and produced water. Reuse and/or recycling practices require the selection of compatible additives, with focused efforts on the use of environmentally benign constituents that do not impede water treatment

initiatives. Appropriate selection of additives may enhance the quantity of fluids available and provide more options for ultimate use and/or disposal.

Page 17: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5 10

3

3 Australia Pacific LNG Fracturing Process and Setting

3.1 Process A regional map showing the proposed area of Australia Pacific LNG hydraulic fracturing activities is shown on Figure 3.1. Fracturing is to be undertaken in the lower permeability coals within the permit

areas, which are in part a function of lower structural disturbance within the central area of the basin. The objective of the hydraulic fracturing is to increase the flow capacity around production wells to facilitate coal seam gas recovery rates and volumes. The distribution and nature of the proposed

hydraulic fracturing activities take into account consideration of the type of geologic formation, reservoir depth, formation rock properties, and the type of fracture fluid to be utilised.

It is our understanding that Australia Pacific LNG propose to use hydraulic fracturing in approximately

30% of the proposed production wells across their Surat Basin permit areas, which will equate to approximately 3000 hydraulic fractured wells. The precise number and distribution of hydraulically fractured wells is yet to be finalised, and will be subject to completion of the pilot trials and production

design programme.

Figure 3.2 below shows a conceptual representation of the coal seam gas abstraction wells with stock and monitoring wells illustrated. The stratigraphy of the proposed areas of hydraulic fracturing is

discussed in more detail in Section 3.2. In essence the aquifers typically targeted for water supply (largely for stock use) in the Surat Basin comprises Bungil, Mooga and Gubberamunda aquifers. These units are relatively shallow and are separated by low permeability siltstones from the deeper CSG

producing Walloon coal measures. Below the coal measures, again separated by low permeability confining siltstones are the aquifers Hutton Sandstone and the Precipice Sandstone forming the base of the stratigraphic unit.

Between these units, there are generally lower permeability horizons consisting of siltstones and mudstones, which act to reduce the flow of groundwater between the water bearing units. Recharge of the aquifers is generally via surface recharge at the margins of the basin, where the various units

outcrop at surface, and to a lesser extent inter aquifer flow.

One of the key issues in assessing the potential risks associated with the fracturing process is the proximity of the upper coals to adjacent aquifers, particularly the overlying Springbok Sandstone

aquifer. Although of variable quality, storativity and permeability, it is still a (poorly) utilised water resource in some parts of the Surat Basin.

In general terms there is a thickness (30-60m) of low permeability siltstone between the top coal and

the Springbok sandstone and several hundred meters or more to the Gubberamunda sandstone.

To allow the pressure in the coal measures to be reduced to a level where CSG can be abstracted the water level head within the coals will need to be reduced to approximately 35m above the top of the

Coal measures. Australia Pacific LNG has undertaken extensive hydrogeological modelling to quantify likely abstraction volumes and impacts on associated aquifers during this dewatering. This model (considered a worst case) suggests that there will be a reduction of groundwater levels in the overlying

Springbok aquifer (and to a lesser extent overlying Gubberamunda aquifer) and the underlying Hutton. The result is that throughout the production phase, there will be a net migration of groundwater from the over and underlying aquifers into the Coal Measures, and no feasible pathway for migration from the

coals.

Page 18: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

WEIR RI V ER

MOONIE RIVER

CONDAMIN E RIVERBALONNE RIVER

BOYN

E RIVER

CONDAMINE RIVER

BALO

NNE R

IVER

MOONIE R IVER

CONDAMINE RIVERBA LONNE RIVER

MOON IE RIVER

Moonie Hwy

Gore Hwy

Mean

darra

Ta

lwoo

d Rd

Warrego Hwy

Tara Kogan Rd

Jackson Wandoan Rd

Roma Condamine Rd

Dalby Kogan Rd

Buny

a Hwy

Dalby Jandowae Rd

Chin c

hilla

Won

dai Rd

Kogan Condamine Rd

Cond

amine

Me

anda

rra Rd

Millmerran Cecil Plains Rd

Surat Developmental Rd (Surat Tara Rd)

K ingaroy Jandowae Rd

Mund

ubbe

ra Du

rong R

d

Warra K

ogan RdDaandine Nandi Rd

Roma Condamine Rd (Condamine Hwy)

Surat Developmental Rd (Tara Dalby Rd)

Jandowae

Connection Rd

Surat Developmental Rd

Warrego Hwy

(Yaralla Rd)

Dalby

Cec

il Pla

ins R

d

Leichhardt H wyWarrego Hwy

Moonie

Hwy

Surat Developmental Rd

Chinchilla Wondai Rd

Warrego Hwy

Warrego Hwy

Warrego Hwy

Warrego Hwy

Gore Hwy

Kogan Condamine Rd

Warrego Hwy

Leichhardt Hwy

Leich

hard

t Hwy

DALBY

CHINCHILLA

TARA

WARRA

KOGAN

MILES

YULEBA

MOONIE

JACKSON DULACCA

FLINTON

JANDOWAE

YUMBORRA

BRIGALOW

TURALLIN

DRILLHAM

WOLEEBEE

BROADMEAD

CONDAMINE

MEANDARRA

SOUTHWOODBEARDMORE

MILLMERRAN

MACALISTER

COLUMBOOLA

GLENMORGAN

WALLUMBILLA

CECIL PLAINS

ATP 746

ATP 747

ATP 676

ATP 687

ATP 632

ATP 847

ATP 648

ATP 606

ATP 663

ATP 645

ATP 973

ATP 754

ATP 631

ATP 788

ATP 785

ATP 972

ATP 971ATP 970

ATP 969

ATP 968ATP 626

ATP 901

ATP 702

ATP 651

ATP 746

ATP 471

ATP 893

ATP 891

ATP 837

ATP 837

ATP 896

ATP 470ATP 683

ATP 746

ATP 574

ATP 645

ATP 810

ATP 810

ATP 807

ATP 336

ATP 647

ATP 785

ATP 632

ATP 754

ATP 692

ATP 709

ATP 689

ATP 810

ATP 620

ATP 810

ATP 971

ATP 631

ATP 645

ATP 810

ATP 891

ATP 702

ATP 785

149.5

149.5

150.0

150.0

150.5

150.5

151.0

151.0

-28.0

-27.5

-27.0

-26.5

Client

Project

Title

APLNG HYDRAULIC FRACTURINGRISK ASSESSMENT

APLNG

INDICATIVE LOCATIONS OFPROPOSED HYDRAULIC FRACTURING

Source:

Figure: 3.1 Rev. AA3

This d

rawing

is sub

ject to

COPY

RIGHT

. It re

mains

the pr

operty

of URS

Austra

lia Pty

Ltd.

Drawn:Job No.:

Approved:File No.:

Date:CA DJ 19-11-201042626654-g-001.mxd4262 6654

Towns

Locality

Highways

Railways

Rivers

Investigation areas (Digitised Oct 2010)

Exploration Permits Petroleum (Oct 2010)

0 10 20 30 405Km

Scale : 1:750,000 (A3)Datum GDA94

ROMADALBYMILES

TAROOM

BRISBANE

GLADSTONE

0 300 600150

Km

Q u e e n s l a n d

Page 19: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

12 42626654/01/5

Figure 3-2 Conceptual Representation of CSG Recovery Wells

The hydraulic fracturing involves pumping a mixture of water, proppant and additives at high pressure into the targeted CSG formation (Figure 3.2). At present the proppant is sand, but other essentially inert

materials could be used. A schematic of the fracturing equipment and plant is shown in figure 3.3. It is noted this relates to near surface fracturing activities and is not reflective of the fracturing horizon within

Page 20: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

42626654/01/5 13

the CSG units which are a minimum of 400 m below ground level in the study area. Plant includes fluid

storage tanks, blenders, proppant stores, pumping units, control centres and slurry lines.

Prior to fraccing, production wells are drilled and logged to confirm geology, using both physical and wireline logging methods. On completion of drilling a detailed bore log is generated. This gives a more

detailed understanding of the coal distribution and stratigraphic units, and allows the horizons for fracturing to be delineated. Following the drilling, the wells are cased and cement grouted. Both well casing and cement bonding is subject to detailed integrity testing, in line with Australia Pacific LNG

QA/QC procedures.

When the well integrity has been validated, fracture horizons are isolated and pressure tested, before the casing and cement is perforated to allow injection of the fracture fluids. The number of fracture

horizons will vary, but is typically around 5 per well, with each horizon approximately 30m.

Each zone is pressure tested individually where bridge plugs are used for isolation.

Australia Pacific LNG is trialling two fracturing mechanisms, water, and a water gel solution. These are

discussed in greater detail in the next section, but are still in appraisal phase as to which is likely to be the most effective in terms of production enhancement.

At present Australia Pacific LNG are working with two hydraulic fracturing companies, however the

process and operations are very similar. The zone of influence around the fractures is typically 200m, with a vertical influence of around 60m. Australia Pacific LNG have undertaken a programme of micro seismic testing, tilt meter/ micro deformation monitoring and sonic anisotpropy logging to track the zone

of influence of the trial fracs and this is discussed in Section 3.4

Notwithstanding environmental issues, the fracturing program is designed not to fracture into the Springbok, as this may result in a loss of productivity from the coals and a resultant increase in the

volume of water requiring removal where the Springbok is water bearing. From discussion with operators and site visits, it appears that the best practice operations specified in Section 2 are being applied by Australia Pacific LNG during the pilot fracturing programme.

Page 21: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

14 42626654/01/5

Figure 3-3 Schematic of Hydraulic Fracturing Above Ground Plant

Source: U.S. Department of Energy (http://www.netl.doe.gov/technologies/oil-gas/publications/eordrawings/Color/colhf.pdf

During the process, narrow cracks (fractures) expand outward from the perforations that serve as flowing channels for natural gas trapped in the formation to move to the wellbore. The main “frac” can

have small branches connected to it. The placement of proppant keeps the newly created fractures from closing. Hydraulic fracturing begins with a transport fluid pumped into the production casing through the perforations and into the targeted formation at a sufficient rate and pressure to initiate a

fracture; i.e. to crack the rock. This is known as “breaking down” the formation and is followed by a fluid “pad” that widens and extends the defined fracture within the target formation up to several hundred feet from the wellbore. The expansion of the fractures depends on the reservoir and rock properties,

boundaries above and below the target zone, the rate at which the fluid is pumped, the total volume of fluid pumped, and the viscosity of the fluid (but the induced fractures are typically 5-20mm in width).

An inventory of chemicals to be use by Australia Pacific LNG is listed in Section 4. Water is the primary

component for most hydraulic fracture treatments (for both water and gel systems), representing the vast majority of the total volume of fluid injected during fracturing operations, which is typically circa 150 kL per fracturing event (up to 7 per well). The proppant is the next largest constituent. Proppant is a

granular material, usually sand, which is mixed with the fracture fluids to hold or prop open the fractures that allow gas and water to flow to the well. Proppant materials are selected based on the strength needed to hold the fracture open after the job is completed while maintaining the desired fracture

conductivity.

Page 22: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

42626654/01/5 15

In addition to water and proppant, other additives are essential to successful fracture stimulation.

Chemical additives may consist of acids, surfactants, biocides, bactericides, pH stabilizers, gel breakers, in addition to both clay and iron inhibitors along with corrosion and scale inhibitors. A number of these ingredients are essential to maintain well integrity over the production lifetime

The fracturing fluid is a carefully formulated product. Service providers vary the design of the fluid based on the characteristics of the reservoir formation and specified operator objectives. The composition of the fracturing fluid will vary by basin, contractor, and well. Situation-specific challenges

that must be addressed include scale build-up, bacteria growth, proppant transport, iron content, along with fluid stability and breakdown requirements. Addressing each of these criteria may require specific additives to achieve the desired well performance; however, not all wells require each category of

additives. Furthermore, while there are many different formulas for each type of additive, usually only one or a few of each category is required at any particular time.

There will be site specific requirements for water management, but general methodologies are

summarised below The hydraulic fracturing operations require the temporary installation and use of surface water storage equipment, chemical storage, mixers, pumps, and other equipment at the well site. Additives are normally delivered in a concentrated (solid or liquid) form, in sealed sacks, tanks, or

other containers. Water is delivered in tanker trucks or via dedicated waterlines. The water may arrive over a period of days or weeks and may be stored on site in tanks or lined pits. Blending of the fracture fluid generally occurs as pumping of the fracture stimulation is underway, so that there is no lengthy on

site storage of pre-mixed fracturing fluid. Finally, upon completion of the fracturing operation, recovered fracture fluids in the flow back water must be separated, contained, treated, disposed of, and/or reused.

During the pilot phase, clean water is stored in turkeys nest dams and pumped into the well as needed

during the hydraulic fracturing process. After fracturing the well, the produced water is typically pumped into a 2 ML holding tank located at the well lease. The fluid contained in the tanks is then periodically pumped out with vacuum trucks and taken offsite for disposal or treatment.

Produced water during operations is managed using the same approach as the pilot phase except for the disposal method. Instead the produced water is piped from the 2 ML holding tank located at the well lease to a regional water storage pond for management. The consolidated fluid is then treated through

a reverse osmosis plant for beneficial use.

Chemicals are stored in bunded containers, with mix quality control monitored regularly throughout each frac job to ensure consistency with the objectives. As in the case of the well integrity testing there

is significant process control for commercial and operational perspectives as, if the frac mix is incorrectly implemented, it has the potential to have an impact on the viability and potentially compromise the future use of the well.

3.2 Geology of the Surat Basin The geology of the Australia Pacific LNG tenements is discussed in detail in the Australia Pacific LNG EIS (2010). A summary of the geology is presented below.

The Australia Pacific LNG tenements overlie the Surat Basin in southern Queensland. The location and structure of the Surat Basin in the area of the tenements is shown in Figure 3-4. The Surat Basin is a large intracratonic basin of Mesozoic age overlying an irregular erosional surface of the Bowen Basin.

The Surat Basin forms part of the larger Great Australian Basin (Green et al, 1997), and interfingers westward across the Nebine Ridge with the Eromanga Basin, and eastward across the Kumbarilla

Page 23: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

16 42626654/01/5

Ridge with the Clarence-Moreton Basin (Exon, 1976). Basement blocks consisting of the Central West

Fold Belt and the New England Fold Belt limit the basin to the south, while in the north the basin has been eroded and unconformably overlies Triassic and Permian sediments of the Bowen Basin.

The Surat Basin contains up to 2,500m of sedimentary rocks deposited during the Latest Triassic to

Early Cretaceous periods. The sedimentary succession in the basin consists of five fining-upwards cycles dominated by fluvio-lacustrine deposits (Exon, 1976; Exon and Burger, 1981; Day et al, 1983). The lower part of each cycle typically comprises coarse-grained mature sandstone, grading up into

more labile sandstone and siltstone, with mostly siltstone, mudstone and coal in the upper part. In the Cretaceous, inundation of the land through an increase in sea level led to deposition of predominantly coastal plain and shallow marine sediments in two cycles. Formations outcrop along the northern

erosional boundary and dip gently to the south and towards the depocentre of the basin, the Mimosa Syncline.

The lithostratigraphy of the Surat Basin is shown below in Figure 3-5, with the geology of the basin

shown on Figure 3-6. The units drilled through by Australia Pacific LNG to intersect the CSG bearing units (coal seams) of the Walloon Subgroup extend from the Wallumbilla Formation or lower depending on location within the basin.

The Surat Basin is a multi-layered mainly confined hydrogeological system consisting of alternating layers of water-bearing (permeable) sandstones and non-water-bearing (impermeable) siltstones and mudstones. The sandstone units store and transmit groundwater and are defined as aquifers. These

rocks are sufficiently permeable to conduct groundwater and to yield economically significant quantities of groundwater to water bores and springs. The siltstone and mudstones within these systems are low permeability rocks (commonly termed impermeable) that do not qualify as aquifers. They hinder, but do

not totally prevent groundwater flow or leakage between aquifers, thus they are considered to be aquitards. These aquifers and confining units are highlighted in the discussion of the lithostratigraphy below.

Page 24: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

42626654/01/5 17

Figure 3-4 Location and Structure of the Surat Basin

Page 25: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

18 42626654/01/5

Figure 3-5 Lithostratigraphy of the Surat Basin (Scott et. al., 2004

Page 26: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

42626654/01/5 19

3.2.1 Lithostratigraphy of the Non-CSG Producing Formations

Precipice Sandstone

For the purposes of this study, the Precipice Sandstone is taken as the base of the Surat Basin. The

Precipice Sandstone consists of quartzose sandstone with minor lithic sublabile sandstone, siltstone and argillite with some clay matrix. It is an aquifer of the GAB, it is not ubiquitous across the Surat Basin.

Evergreen Formation

The Evergreen Formation conformably overlies the Precipice Sandstone, and in places unconformably

overlies the sedimentary rocks of the Bowen Basin. The lower Evergreen Formation comprises labile and sublabile sandstone, carbonaceous mudstone and argillite with minor carbonaceous siltstone, shale and coal. The Westgrove Ironstone Member is a persistent marker horizon across most of the

basin, and contains a sideritic cement. The Boxvale Sandstone Member occurs in the west of the basin and consists of quartzose sandstone with some argillaceous clay matrix. The upper Evergreen Formation mainly comprises mudstone laminated with sublabile to labile sandstone, siltstone and shale.

The Evergreen Formation forms an extensive confining unit for the Precipice Sandstone.

Hutton Sandstone

The Hutton Sandstone outcrops to the north and east of the tenements and extends in the subsurface under all tenements. The Hutton Sandstone conformably overlies the Evergreen Formation and is an

extensive aquifer of the GAB. The Hutton Sandstone consists mainly of sublabile to quartzose sandstone with interbedded siltstone and shale and minor mudstone and coal. The siltstones and shales are micaceous and carbonaceous.

Injune Creek Group

The grouping of the Eurombah Formation, Walloon Subgroup, Springbok Sandstone and Westbourne

Formation is often referred to as the Injune Creek Group. These units outcrop within northern and eastern parts of the tenements. The Walloon Subgroup is the CSG bearing formation, and is discussed further in Section 3.2.2.

Eurombah Formation

The Eurombah Formation lies conformably in contact with the Hutton Sandstone and the overlying Walloon Subgroup. It is thickest in the north of the basin and thins to the west, south and east until it

diminishes completely. The Eurombah Formation is interpreted to be a transition between the quartzose sandstones of the underlying Hutton Sandstone and the more labile sandstones of the Walloon Subgroup. The Eurombah Formation is considered a confining unit, however does contain

some permeable sandstones.

Page 27: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

20 42626654/01/5

Springbok Sandstone

The Springbok Sandstone outcrops on the northern and eastern sides of the Surat Basin and unconformably overlies the Walloon Subgroup. The Springbok Sandstone contains feldspathic sublabile to lithic sandstones, commonly with a calcareous cement. Minor interbedded siltstones and mudstones

and thin coal seams are also present, mainly in the upper part of the unit. It is an aquifer of the GAB. As the Springbok Sandstone is unconformable on the Walloon Subgroup, small channel structures erode into the uppermost layers of the Walloon Subgroup, including some coal seams, creating

hydraulic connection between the Springbok Sandstone and Walloon Subgroup in limited locations.

Westbourne Formation

The Springbok Sandstone is conformably overlain and confined by the Westbourne Formation, a

sequence of interbedded shales and siltstones and very fine labile to quartzose sandstones. The sandstones have an argillaceous, in part chloritic matrix with minor calcite cement.

Gubberamunda Sandstone

The Gubberamunda Sandstone consists of virtually uncemented quartzose sandstones and sublabile

sandstone with lesser conglomerate, siltstone, mudstone and claystone. The sandstones have a high quartz content, with abundant plagioclase and potash feldspar. The lithic content is dominantly volcanic, with any mica extremely altered. Any matrix is essentially kaolinitic, with negligible secondary

carbonate. The Gubberamunda Sandstone is an aquifer of the GAB.

Orallo Formation

The Orallo Formation overlies the Gubberamunda Sandstone and consists of friable sublabile to labile sandstones, in part calcareous or clayey, and lesser interbedded carbonaceous siltstone, silty mudstone, bentonite and coal. The sandstones have a kaolin and/or micaceous argillaceous matrix.

The Orallo Formation is a minor aquifer of the GAB.

Mooga Sandstone

The Mooga Sandstone overlies the Orallo Formation and consists of sublabile to quartzose sandstone, in part calcareous, with minor clayey sandstone, siltstone and mudstone. It is an aquifer of the GAB.

Bungil Formation

The Bungil Formation consists of lithic sandstones, siltstones and mudstones, which are commonly

carbonaceous, with minor sublabile and quartzose sandstone. Calcareous and glauconite-rich beds, some with marine fossils, are common in the upper part. The Bungil Formation is an aquifer of the GAB

Wallumbilla Formation

The Wallumbilla Formation is the youngest unit of the Surat Basin encountered in Australia Pacific

LNG’s tenements. It is divided into the Coreena Member in the upper part and the Doncaster Member and is a confining unit of the GAB. The Coreena Member consists of coaly, micaceous siltstone, sandstone and mudstone, and feldspathic labile sandstone which are in part calcareous and coaly. The

Doncaster Member consists of micaceous, carbonaceous siltstone with feldspathic, labile (in part glauconitic) sandstone and carbonaceous mudstone with fossil shells.

Page 28: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

42626654/01/5 21

Cainozoic Formations

The final sequence of sediments comprises the units of Cainozoic age. Lithologies include variable

amounts of consolidated sandstone, conglomerate, siltstone and mudstone, as well as unconsolidated deposits of sand, silt and clay associated with present day creeks and rivers.

3.2.2 Lithostratigraphy of the CSG Producing Walloon Subgroup

The Walloon Subgroup is a thick sequence of sediments deposited in a low energy environment and

extends across the Clarence-Moreton and Surat basins, and almost to the Nebine Ridge. It comprises very-fine to medium grained, labile, argillaceous sandstone, siltstone, mudstone and coal with minor calcareous sandstone, impure limestone and ironstone. The sandstones and coal act as minor aquifers,

while the siltstones and mudstones act as confining units. It is subdivided into (from bottom up) the Taroom Coal Measures, Tangalooma Sandstone and Juandah Coal Measures as shown in Figure 3-6.

Taroom Coal Measures

The Taroom Coal Measures consist of an informally identified upper and lower unit. The upper unit comprises mudstone, siltstone, sandstone and coal. Three coal seams have been identified in this unit

(from the base up: Condamine, Bulwer and Auburn). In a number of areas the Auburn Seam is not developed and is represented by an argillaceous interval.

The lower unit (informally identified as the Durabilla Formation by Scott et al, 2004) consists of

interbedded labile to sublabile sandstones, siltstones and mudstones with rare thin coal bands. This unit is very similar to the upper unit of the Taroom Coal Measures with the lack of significant coal development being the main difference.

Tangalooma Sandstone

The lithology of the Tangalooma Sandstone comprises fine- to medium-grained, labile sandstones, with an argillaceous matrix in fining upwards sequences culminating in siltstone, mudstone and rarely coal. It is very similar to the underlying Taroom Coal Measures, but lacks the coal volume present in the

underlying coal measures.

Juandah Coal Measures

The lithology of the Juandah Coal Measures is very similar to the Taroom Coal Measures and comprises mudstone (carbonaceous in part), siltstone (partly micaceous), fine to medium grained lithic labile sandstone and coal. Six coal intervals have been identified in the Juandah Coal Measures (from

the base up: Argyle, Iona, Wambo, Nangram, Macalister and Kogan).

Australia Pacific LNG has subdivided the Juandah Coal Measures into three parts, the Lower Juandah Coal Measures, Juandah Sandstone, and Upper Juandah Coal Measures. The Junadah Sandstone is

similar to the Tangalooma Sandstone.

In parts of the north eastern portion of the Surat Basin (including Australia Pacific LNG’s proposed area of fraccing), the Kogan seam was completely eroded prior to the deposition of the Springbok

Sandstone, with the sandstone lying immediately above and in connection with the Macalister Seam (Scott et al. 2007).

Page 29: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

22 42626654/01/5

Figure 3-6 Lithostratigraphy of the Walloon Subgroup (modified after Scott et. al., 2004)

3.2.3 Permeability of Coals

Permeability is a physical property of porous materials, which determines the flow of fluid through the

material by an applied pressure gradient. The usual unit of measuring the permeability is the Darcy. Due to the high organic matter content of coal and the process of coal formation, the primary (or natural) permeability of coal is very low, typically ranging from 0.1 to 30 milli-Darcies (mD) (USEPA,

2004).

Joints are fractures in a rock mass across which no displacement has occurred. They are commonly planar, occur in groups of sub parallel to parallel fractures called sets, and may extend both vertically

and laterally for distances from as little as a few millimetres up to many tens of metres or more. These joints and cleats are typically more developed in areas that have undergone more intense structural deformation, and provide a significant proportion of the overall permeability.

Common understanding is that cleats are formed due to the effects of the intrinsic tensile force, fluid pressure, and tectonic stress. The intrinsic tensile force arises from matrix shrinkage of coal, and the fluid pressure arises from hydrocarbons and other fluids within the coal and are endogenetic in origin.

On the other hand, the tectonic stress is regarded as extrinsic to cleat formation and is the major factor

Page 30: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

42626654/01/5 23

that controls the geometric pattern of cleats. Face cleats extend in the direction of maximum in situ

stress, and butt cleats extend in the direction of minimum in situ stress which existed at the time of their formation.

Larger joints are found to extend over the whole or part of the coal seam and are much less frequent

than cleats. These are related to the tectonic movement. The frequency of joints increases rapidly when approaching shear structures and faults. Joints can cut across the lithological boundaries in the seam, but are in general limited to the seam thickness.

Structures Affecting Permeability of the Walloon Subgroup

Structural features in the Surat Basin include a number of folds (anticlinal and synclinal features), faults and fracture zones and are known or are inferred to have important ramifications in regard to hydrogeological behaviour and groundwater flow in the basin. These features are shown in Figure 3-4,

and include:

The Mimosa Syncline, which comprises the sedimentary sequence of the Surat and Bowen Basins overlying the Taroom Trough (a half graben structure), is a broad open and extensive synclinal fold

structure. By the start of the deposition of the Surat Basin over the Bowen Basin, the structural features of the trough are generally reflected but subdued in the basin. It is not believed to cause significant faulting and fracturing of the Surat Basin stratigraphy, and is inferred to be largely the

cause of low groundwater yields noted from the Walloons Subgroup in its axis (low density fracturing being the primary reason for this phenomenon).

The Kumbarilla Ridge, an anticlinal structure considered to mark the eastern boundary of the Surat

Basin, over which the basin connects to the Ipswich-Moreton Basin. The Goondiwindi-Moonie and Burunga-Leichardt Faults; fault structures east of and associated with

the development of the Taroom Trough. Displacement on these major faults within the basin is

generally less than 200m at the start of deposition of the Surat Basin sequence, and less than 100m by the end of deposition.

The Chinchilla-Goondiwindi Slope, a fault-fold structure between the Kumbarilla Ridge and

Goondiwindi-Moonie and Burunga-Leichardt Faults. The Undulla Nose, a south westerly plunging basement high between the Burunga-Leichardt and a

smaller fault known as the Undulla Fault. The total thickness of the Walloon Subgroup and coal

seams thin across the Undulla Nose, suggesting that this feature was still a structural high at the time of deposition. There is an increased intensity of fracturing across the Undulla Nose.

3.3 Areas for Hydraulic Fracturing The natural permeability of the coal seams in the Walloon Subgroup is variable across the Surat Basin.

For the production of coal seam gas, coal with a permeability less than ~20 mD is considered to be ‘tight’. These ‘tight’ coal seams are candidates for hydraulic fracturing to enhance gas production.

Australia Pacific LNG has undertaken studies of natural fracture patterns and permeability of the coal

seams to develop an understanding of the occurrence of these ‘tight’ coal seams in the Walloon Subgroup of the Surat Basin. These studies include:

Page 31: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

24 42626654/01/5

analysing the existing fractures in well bores by using image logs;

conducting seismic studies; determining permeability by undertaking drill stem tests; and developing conceptual tectonic models.

Image logs have been collected to analyse the existing fracture pattern in the coal seams. These image logs collect a 360o view of the wall of the bore, enabling fractures to be identified under ground as shown in Figure 3-7.

Figure 3-7 Fracture Pattern as Displayed on Image Log for Well Carinya

The fractures identified on image logs are plotted on a radial diagram to indicate fracture orientation and fracture density as shown in Figure 3-8. Some areas have only one (or very few) predominant

fracture trend(s) usually with few fractures and poor fracture connectivity. Other areas have multiple fracture orientations with many fractures and good fracture connectivity.

The permeability results from the drill stem tests and results of the fracture analysis have been

overlayed in Figure 3.8 and indicate that permeability variations correlate broadly with fracture style. This shows that areas of ‘tight’ coal are aligned with the axis of the Mimosa Syncline and on the Chinchilla-Goondiwindi Slope between the Undulla Nose and the Kumbarilla Ridge.

Page 32: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

42626654/01/5 25

Figure 3-8 Permeability Distribution

3.4 Geomechanics of Hydraulic Fracturing The following section focuses on the geomechanics of the hydraulic fracturing of the coal seam (fracture initiation and growth), as it has a bearing on the potential migration of fracturing chemicals.

In the areas of ‘tight’ coal, a production well is drilled through rock layers to intersect the coal seam that

contains the coal seam gas. Next, fractures are created or enlarged in the targeted coal seam to enhance the connection of the production well to the coal seam joint/cleat system. These fractures are created by pumping a fluid specifically into the targeted coal seam at a gradually increasing rate until

the coal seam is no longer able to accommodate the fracturing fluid as quickly as it is being injected.

Page 33: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

26 42626654/01/5

When this occurs the resultant pressure that has built up fractures the coal seam. Continued pumping

then forces fluid into the fracture, which pressurizes it, causing it to open and extend deeper into the coal. To hold the fractures open a “proppant” (propping agent such as sand) is pumped into the fractures so that when the pumping is stopped, the fractures do not close completely. A hydraulically

created fracture will always take the path of least resistance through the coal seam (and potentially surrounding formations). This process sometimes can create new fractures, or can opportunistically enlarge existing fractures.

The development (height, length and width) of the fracture created in a coal seam is controlled by:

the in-situ stresses underground the physical characteristics of the geologic formation; and

The hydraulic fracturing process control.

3.4.1 In-Situ Stress and Stress Contrasts

In-situ stress and the relative stress difference between geologic strata are important influences on fracture development. A formation underground has the weight of overlying strata and the constriction

of lateral movement to create stress in the formation. These stresses occur in three dimensions, defining a maximum stress direction, intermediate stress direction, and minimum stress direction. These stresses are normally compressive and vary in magnitude throughout the Walloon Subgroup,

particularly in the vertical direction (from layer to layer).

The magnitude and direction of the stresses are important because they control the pressure required to create and propagate a fracture, the shape and vertical extent of the fracture, and the direction of the

fracture. To initiate and propagate a fracture, the minimum stress must be overcome by the pressure of the fracturing fluid. In a uniform medium, the plane of a fracture is perpendicular to the direction of the minimum stress. Thus if the minimum stress is in a horizontal direction, a vertical fracture will be

produced, and if the minimum stress is in a vertical direction a horizontal fracture will be produced. At depths of less than approximately 350 to 450m in the Surat Basin, the weight of the overburden is less than the horizontal stresses (i.e. the least stress is in the vertical direction) and so a horizontal

fracture is likely to be created. At greater depths than these the direction of minimum stress is in a horizontal direction and so a vertical fracture is likely to be created. It is possible that a vertical fracture created at greater depth could propagate vertically to a shallower depth and become horizontal.

3.4.2 Physical Characteristics of the Geologic Formation

The rock types in the coal measures also influence the size, shape and orientation of the fractures.

A primary mechanism that controls the growth of a fracture is the contrast in the physical properties of the coal and surrounding strata within the formation. Contrast in the stresses within the strata, the

Poisson’s Ratio and Young’s Modulus of the rock affect the fracture growth. Coal is generally very weak with low modulus and fractures. Siltstones, sandstones and shales tend to have higher modulus, greater strength and fracture less easily.

The contrast in stress or physical properties between two rock types is important in determining whether a fracture will continue to propagate in the same direction when it hits a geologic contact. Often, a high stress contrast, or significant and sudden change in physical rock properties, results in a

barrier to fracture propagation. For example, a vertical fracture propagating through a coal seam may

Page 34: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

42626654/01/5 27

terminate against an overlying shale or may turn and develop horizontally at the contact between the

coal seam and the overlying unit.

Natural fractures also play a role in fracture propagation. Hydraulic fracturing may opportunistically widen naturally occurring fractures (cleats and joints) and/or create new fractures depending on the

orientation of the existing fractures, infill in the existing fractures, and the direction of minimum stress.

3.4.3 Hydraulic Fracturing Process Control

The procedures and fracturing fluids used to stimulate the coal seam gas wells can differ across the Surat Basin due to local characteristics of geology and depth, effectiveness, production characteristics,

or other factors.

The fracturing approach affects the development (height, length, and width) of hydraulically induced fractures. Generally, the larger the volume of fracturing fluids injected at a particular well, the larger the

potential fracture dimensions.

The choice of fracturing fluid (e.g. water or gel based) can also affect fracture dimensions. Australia Pacific LNG has undertaken comparative tests of water and gel based fracturing fluid on fracture

propagation and geometry. An example of this is where monitoring of fracturing (micro-seismic events) of the coal measures was undertaken on three wells within 500m of each other... The propagation of the fractures are tracked by using multiple geophones (essentially special high sensitivity microphones)

to detect the sound of the coal cracking and triangulating the location of the fracture. Each point on the figure represents the location of a fracture that opened up during the fracturing that was large enough to be detected by the instrumentation. The gel based fracturing program (well Dalwogan 16) produced a

more linear fracture pattern (almost north-south); while the water based fracturing programs (wells Dalwogan 13 and 14) produced a more distributed fracture pattern (although still with a slight alignment perpendicular to the minimum stress direction).

Page 35: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

28 42626654/01/5

Figure 3-9 Micro-Seismic Monitoring of Fracture Locations uring Hydraulic Fracturing of Wells

The effects of these operator-controlled actions interact with and are influenced by the physical

properties, depths, and in-situ stress of the geologic formations being fractured (as listed above). For example, if a hydraulically induced fracture has a relatively constant height due to a geologic layer acting as a barrier to fracture propagation, and the fracture is forced to grow and increase in volume

(through an increased volume of fracturing fluid), the fracture will mainly grow in length.

The horizontal fracture geology is dependent on the range of factors discussed above, but current fracture analysis by Australia Pacific LNG indicates horizontal fracture geometry of up to 200m.

In summary, based on a review of the Australia Pacific LNG proposed fracturing activities, and in the context of the geology of the Surat Basin where hydraulic fracturing is proposed, there appears to be a very low risk of hydraulic fracturing resulting in discharge of hydraulic fracturing chemicals to utilised

water resources. This will be further assessed as part of the risk assessment in Section 7.

3.5 Water Pressures within the Coals Water Pressures within the Coals are shown on the appended CSIRO Pressure Plot. This establishes Basin wide trends with information from external sources. Trend line indicates general pressure

gradient of 0.433 psi/ft with 300mSL datum across the Surat Basin. The basin is under hydrostatic pressure except in areas where there has been CSG activities.

2-20mD

<0.4-mD, (one 6.5mD)

2-20-mD

Dalwogan 16, gel frac

Dalwogan 14, water frac

Dalwogan 13, water frac

Page 36: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Figure 3-8 Potentiometric Surface

Page 37: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

3 Australia Pacific LNG Fracturing Process and Setting

42626654/01/5 31

3.6 Location and Timing of Proposed Hydraulic Fracturing The following table summarises the geographic and temporal distribution of proposed hydraulic fracturing activities over the 30 year project life. The distribution is also illustrated in Appendix A.

Table 3-1 Location and Timing Proposed Hydraulic Fracturing

ATP  Name  % Fracture Stimulated Wells 

ATP606  Combabula  10% ‐ 30% 

ATP692  Talinga/Orana  0% 

ATP702  Condabri   0% ‐ 20% 

ATP663 Zig Zag / Gilbert Gully  40% ‐ 60% 

ATP972  Horse Creek  100% 

ATP973  Carinya  100% 

PL209  Woleebee East  40% ‐ 60% 

PL216   Dalwogan  90% ‐ 100% 

PL225/ATP692a  Kainama  40% ‐ 60% 

3.7 Management Measures to avoid Potential Adverse Impacts on Environment

As part of their standard operating procedures, Australia Pacific LNG adopt the following operational guidelines to minimise potential risks associated with adverse impacts on the environment;

Well construction & design procedures/guidelines. Australia Pacific LNG abides by the QLD CSG Industry Code of Practise – Origin prepared this on behalf of industry. It reflects Govt regulations, API standards and best industry practise.

Fracture containment within the Coal Measures. Australia Pacific LNG has developed a “Springbok Strategy”, a guideline to avoid fraccing into the Springbok. This ensures that a safe distance is maintained from the Springbok (supported by historical MS data) and includes a

monitoring program comprising of Micro Seismic/Sonic Scanner and Temp logs for validation purposes

Operational procedures/guidelines (including annulus management & leak criteria) . Australia

Pacific LNG abide by the recently approved COP Leak Detection Code of Practise

Page 38: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5 32

4

4 Inventory of Additives and Laboratory Testing

4.1 Inventory of Additives The composition of fracturing fluids varies in order to meet the specific needs of each fracturing operation based on local geology, but there is range of commonly used additives. The fracturing fluid

is typically around 97% water and proppants and approximately 3% chemical additives introduced to improve the process of hydraulic fracturing. Chemical additives may consist of acids, surfactants, biocides, bactericides, pH stabilisers, gel breakers and iron, clay, corrosion and scale inhibitors,

however not all additives types are used in every fracturing job. The typical concentrations in which each type of additive is used by APLNG’s two hydraulic fracturing contractors is detailed in this section.

Australia Pacific LNG has engaged Halliburton and Schlumberger for the current phase of the hydraulic fracturing program. The types, purposes and specific products declared by Halliburton and Schlumberger for addition in hydraulic fracturing are summarised in Table 4-1 and Table 4-2.

Table 4-1 Constituents of Fracturing Fluids Used by Halliburton Australia

Additive Purpose Product Chemical Name

BE-7 Sodium Hypochlorite Bacteriacide/ Biocide

Inhibits growth of organisms that could produce gases (particularly hydrogen sulphide) that could contaminate methane gas. Also prevents the growth of bacteria which can reduce the ability of the fluid to carry proppant into the fractures

BE-7 Sodium Hydroxide

Breaker Reduces the viscosity of the fluid in order to release proppant into fractures and enhance the recovery of the fracturing fluid

HPH Breaker Sodium chloride and carbohydrate breaking enzymes

Crosslinker The fluid viscosity is increased using phosphate esters combined with metals. The metals are referred to as crosslinking agents. The increased fracturing fluid viscosity allows the fluid to carry more proppant into the fractures.

BC-140C Monoethanolamine Borate

Flocculant Flocculent used to treat source water Ferric chloride (Origin supplied)

Ferric chloride

Gelling agent Increases fracturing fluid viscosity, allowing the fluid to carry more proppant into the fractures

WG-36 Guar gum

Ethanol Non-ionic surfactant

Reduces fracturing fluid surface tension thereby aiding fluid recovery

GasPerm1100

Terpenes and Terpenoids, sweet orange-oil

pH control Increases the stability of fluid Caustic Soda 50%

Sodium Hydroxide

Solvent Assists in dissolving minerals and initiate fissure in rock (pre-fracture)

Acetic Acid Acetic Acid

Maintains the effectiveness of other components such as crosslinkers

GEL-STA L Sodium thiosulfate Stabiliser

Prevents swelling and migration of formation clays which could block pore spaces thereby reducing permeability

Potassium Chloride

Potassium Chloride

Page 39: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

4 Inventory of Additives and Laboratory Testing

42626654/01/5 33

Table 4-2 Constituents of Fracturing Fluids Used by Schlumberger Australia

Additive Purpose Product Chemical Name

5-chloro-2-methyl-4-isothiazolin-3-one

2-Methyl-4-isothiazolin-3-one

Magnesium nitrate

Magneisum chloride

Diatomaceous earth (calcined)

Non crystalline silica

Crystalline silica (cristobalite)

Bacteriacide/ Biocide

Inhibits growth of organisms that could produce gases (particularly hydrogen sulphide) that could contaminate methane gas. Also prevents the growth of bacteria which can reduce the ability of the fluid to carry proppant into the fractures

M275

Crystalline silica (quartz, SiO2))

J134 Hemicellulase Enzyme

J218 Diammonium Peroxidisulphate

Breaker Reduces the viscosity of the fluid in order to release proppant into fractures and enhance the recovery of the fracturing fluid J479 Diammonium Peroxidisulphate

L010 Boric Acid Crosslinker The fluid viscosity is increased using phosphate esters combined with metals. The metals are referred to as crosslinking agents. The increased fracturing fluid viscosity allows the fluid to carry more proppant into the fractures.

M003 Soda ash

Flocculant Flocculent used to treat source water Ferric chloride (Origin supplied)

Ferric chloride

Guar gum Gelling agent Increases fracturing fluid viscosity, allowing the fluid to carry more proppant into the fractures

J580

Carbohydrate polymer derivative

2-butoxyethanol

Propan-2-ol (isopropyl alchol)

Ethoxylated alchol linear (x3)

Linear C11 alcohol ethoxylate (7eo)

Linear C11 alcohol ethoxylate (3eo)

Surfactant Reduces fracturing fluid surface tension thereby aiding fluid recovery

F103

Alcohols c12-c15 linear ethoxylated

Carbonic acid

Sodium carbonate

pH control Increases the stability of fluid J494

Inorganic salt

Solvent Assists in dissolving minerals and initiate fissure in rock (pre-fracture)

L401 Acetic Acid

Stabiliser Maintains the effectiveness of other components such as crosslinkers & prevents swelling and migration of formation clays which could block pore spaces thereby reducing permeability

M117 Potassium Chloride

Page 40: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

4 Inventory of Additives and Laboratory Testing

34 42626654/01/5

Based on information provided by Halliburton, additives in the gel fracturing fluid (Delta Frac 140)

typically make up approximately 2.8% by volume of the total fluid injected into a well during hydraulic fracturing. The typical composition of the fracturing fluid used by Halliburton is illustrated in Figure 4-1-for a gel-based fracture.

Figure 4-1 Halliburton Gel Based Fracturing Fluid (Delta Frac 140) Composition by Volume

For a water based fracture, additives make up 2.1% by volume of the total fracturing fluid. Figure 4-2 illustrates the composition of the Halliburton water based fracturing fluid.

Figure 4-2 Water Based Fracturing Fluid Composition by Volume

Based on information provided by Schlumberger, additives in the gel fracturing fluid (YF120LG)

typically make up approximately 3.5% by volume of the total fluid injected. The typical composition of the gel fracturing fluid used by Schlumberger is illustrated in Figure 4-3.

Page 41: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

4 Inventory of Additives and Laboratory Testing

42626654/01/5 35

Figure 4-3 Schlumberger Gel Based Fracturing Fluid (YF120LG) Composition by Volume

For a Schlumberger water based fracture, additives make up 0.66% by volume of the total fracturing

as illustrated in Figure 4-4.

Figure 4-4 Schlumberger Water Based Fracturing Fluid Composition by Volume

Page 42: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

4 Inventory of Additives and Laboratory Testing

36 42626654/01/5

4.2 Verification of Fracturing Fluid Additives Based on the timeframe of this study, a comprehensive sampling program of the fracturing fluids and flow back water could not be undertaken. A recommended monitoring program is provided in Section 8 to allow quality control of fracture fluid composition and to determine potential persistence of

chemicals introduced through the hydraulic fracturing process. The monitoring program is designed to encompass both the source water used in the fracturing fluid, pre fraccing chemical mix batch testing and operational fraccing testing. This will enable the source of any detected chemicals to be

determined and enable effective management to eliminate chemicals of concern.

It is recognised that the chemical mix used for hydraulic fracturing may evolve further over time. New chemicals introduced should be assessed for their potential toxicity and any reactivity with the existing

mix that may alter the current risk profile of hydraulic fracturing fluids. As a minimum any new chemicals introduced to the process may affect the current risk profile if they can be linked to the causing health effects.

4.3 Management of Change As part of the ongoing hydraulic fracturing programme it is likely that there will be an evolution of the chemicals used in the process, as process understanding evolves and additional contractors are utilised.

When this occurs Australia Pacific LNG will instigate a management of change process, where any new chemicals are assessed in terms of the concentrations used and their potential toxicity.

An addendum technical assessment will be provided by an appropriate independent party as to

whether the modification in operations has any material impact on the results of the risk assessment.

In addition, a review will be undertaken if there is any change in published information on toxicity of utilised chemicals. This will allow Australia Pacific LNG to update the risk assessment on an iterative

basis, and use updated toxicity data as it may become available.

A positive example of effective management of change has occurred further to the recent pilot study investigation.

During the pilot hydraulic fracturing programme completed to date, concentrations of benzene, toluene, ethylbenze and xylene (BTEX) were measured in samples from a number of the hydraulically fractured wells. These concentrations were typically below Australian drinking water standards for

TEX, with Benzene up to 20 µg/L. An investigation was undertaken which identified diesel, mineral oil and grease as minor potential contributing factors. As far as practically possible these have been removed from the fracturing process. Subsequent testing have confirmed that concentrations of BTEX

in frac fluids are below Australian Drinking Water Standards. The principal source of the measured BTEX within the produced water was identified as being the coal measures, as verified by Carbon Isotope testing.

The exercise has shown that the monitoring programme being implemented by Australia Pacific LNG has been effective in identifying issues, and the changes specified to date are an example of how continuous assessment and action can have a positive benefit on operations.

Page 43: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5 37

5

5 Additive Toxicity Assessment

5.1 General

A requirement of Coordinator General Condition 22 is to undertake a toxicity assessment of the

proposed fracturing chemicals. As these chemicals will be retained within the coals, which are not utilised, there is no plausible receptor upon which to base a toxicity assessment. However, as a conservation approach a toxicity assessment has been undertaken assuming direct contact of a

‘surrogate’ receptor, as a screening exercise. In the absence of toxicity data for human health or stock use for the majority of proposed fracturing chemicals, available aquatic life toxicity data has been utilised.

The objective of the toxicity assessment is to identify toxicity values for the chemicals of potential concern (COPC) that can be used to quantify risks to human health and other environmental receptors associated with the calculated intake. The quantification of risk requires identification of toxicity values

for the COPC identified as well as quantification of potential exposure.

Toxicity can be defined as “the quality or degree of being poisonous or harmful to plant, animal or human life” (NEPC 1999).

The steps involved in this process include the following:

Obtain relevant qualitative and quantitative toxicity information on the COPC relevant to the significant exposure pathways being assessed.

Identify the appropriate toxicity values for assessing both threshold1 effects and non-threshold carcinogenic2 effects.

5.2 Selection of Toxicity Values

5.2.1 Approach

The identification of toxicity values undertaken in this risk assessment has followed ANZECC (1992) guidance, which is in accordance with the NEPC (1999) policy. enHealth (2004) provides a list of

toxicological data sources. These are classified as Level 1 or 2 data, with Level 1 sources recommended. In order of preference, the Level 1 sources are:

1) National Health and Medical Research Council documents and documents from other joint

Commonwealth, State and Territory organisations.

2) ADI List from the Therapeutic Goods Administration.

3) World Health Organisation (WHO) documents.

4) enHealth Council documents.

5) National Environmental Health Forum documents.

6) International Agency for Research on Cancer (IARC) monographs.

7) WHO/FAO Joint Meeting on Pesticides (JMPR) monographs.

1 Threshold toxicity effects are assessed on the basis that there is a dose of the chemical below which toxic effects will not

occur (i.e., the threshold). 2 Non-threshold carcinogenic effects assume that, for some chemicals classified as carcinogenic, there is no threshold below

which there will be no increased risk of a toxic effect. Hence, assessment of these chemicals is based on the use of a slope factor, which assumes that any exposure to the chemicals will result in an increased incremental risk or probability of developing cancer over a lifetime.

Page 44: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

5 Additive Toxicity Assessment

38 42626654/01/5

8) NICNAS Priority Existing Chemical (PEC) reports.

9) US Agency for Toxic Substances and Disease Registry (ATSDR) documents.

10) National Toxicology Program (NTP) carcinogenicity appraisals.

11) OECD Standard Information Data Sets (SIDS) and SID Initial Assessment Reports (SIAR).

12) USEPA Reference Doses.

Level 2 sources include peer-reviewed journals and industry publications and reference to Level 2 sources is considered warranted where Level 1 sources do not provide applicable criteria.

The following types of toxicity values may therefore be applicable:

ADIs or TDIs, for assessment of non cancer effects (ANZECC, NHMRC and WHO);

Benchmark doses, for assessment of cancer effects (ANZECC);

Reference Concentrations (RfC), for inhalation assessment of non-cancer effects (USEPA);

Reference Doses (RfD), for oral assessment of non cancer effects (USEPA); and

Cancer slope factors, for assessment of cancer effects (WHO and USEPA).

Potential threshold effects are characterised by comparing the estimated chemical intakes with the ADIs, TDIs or RfDs, that represent the threshold intake for adverse health effects. Threshold toxicity effects are assessed on the basis that there is a dose of the chemical below which toxic effects will not

occur (i.e., the threshold).

Potential non-threshold carcinogenic effects are the estimated incremental probabilities that an individual will develop cancer over a lifetime as a result of the estimated exposure to the COPC.

When a carcinogenic slope factor is used to evaluate health risk, it is assumed that any exposure to the chemical will, in theory, result in an increased risk or probability of developing cancer. The higher the carcinogenic slope factor, the more potent the chemical, and the greater the calculated cancer risk

for a given exposure.

5.3 Toxicity of COPC The following table presents a short summary of key toxicological features of the COPC evaluated.

Tables 5-1 and 5-2 presents the qualitative toxicity data selected. The COPCs have also been classified into food grade and non-food grade chemicals. Non-food grade chemicals are used to describe chemicals which have acute toxicity (i.e. used in biocides). Food grade chemicals are

COPCs which are typically used in food stuffs, with limited or low toxicity.

Page 45: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

5 Additive Toxicity Assessment

42626654/01/5 39

Table 5-1 Summary of Toxicity of COPCs used by Haliburton

2-Bromo2-Nitro-1, 3-Propanediol (Bronopol)

Bronopol is a component of the biocide used in the fraccing fluid, and is classified as non-carcinogenic to humans (Group E) by the USEPA. As such, Bronopol exposures are evaluated on the basis of potential threshold effects. The primary effects associated with Bronopol exposure are skin disorders, eye ailments and gastrointestinal disorders. 3 Bronopol decomposes to formaldehyde under aqueous alkaline conditions. When mixed with water, the half-life of bronopol decomposition to formaldehyde is 18 years at pH4; 1.5 years at pH6; and 2 months at pH8 at 20 degrees Celsius. If released into water, bronopol is not expected to adsorb to suspended solids and sediments based on the Koc of 5. 3,4

Sodium Hypochlorite Sodium Hypoclorite is a component of the biocide used in the fraccing fluid. Inadequate information is available with regard to the carcinogenicity of sodium hypochlorite. Hypochlorite salts are not classifiable as to their carcinogenicity to humans. As such, sodium hypochlorite exposures are evaluated on the basis of potential threshold effects. Risks from chronic and subchronic exposure to low levels are minimal and without consequence to human health. Acute exposure to high concentrations to sodium hypochlorite can cause severe eye and skin injury. If released into water, Sodium Hypochlorite is not expected to adsorb to suspended solids and sediments based on the Koc of 0.115. 3,56

Sodium Hydroxide Sodium Hydroxide is a component of the biocide used in the fraccing fluid. The USEPA have reported that sodium hydroxide is not carcinogenic or mutagenic, as studies in mice and rates showed no cancer effect. As such sodium hydroxide exposures are evaluated on the basis of potential threshold effects. Sodium hydroxide is corrosive and irritating to the skin, eyes and mucous membranes. Human poisoning cases indicate less than 10 grams taken orally is fatal. 3,7, Sodium Hydroxide rapidly dissolves and dissociates in water. Biodegradation is negligible. Studies show that if sodium hydroxide is emitted to wastewater that is to be treated in a biological sewage treatment plant, virtually the total amount will end up in the effluent, as sorption to the sewerage treatment plant sludge will be negligible. 3 If released into the water, sodium hydroxide is not expected to adsorb to suspended solids and sediments based on the Koc range of 0 to 50. 8,9,10

No

n-F

oo

d G

rad

e

Ferric Chloride Ferric chloride is a flocculent which is used to treat the source water in the fraccing process. Inadequate data is available to classify ferric chloride with regard to its carcinogenicity to humans. As such, exposures are evaluated on the basis of potential threshold effects. Primary effects associated with ferric chloride exposure include irritation of the upper respiratory tract, burns to the throat, mouth and stomach, nausea, vomiting, gastrointestinal irritation, abnormal liver function, dehydration and hypertension.3 Ferric chloride is readily soluble in water and undergoes hydrolysis to form an acidic and corrosive solution which is then typically used as a coagulant in sewage treatment and drinking water production.3

3 Hazardous Substances Data Bank, Toxnet, Toxicology Data Network, National Library of Medicine 4 United States Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Case 2770 Bronopol 5 United States Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Sodium and Calcium Hypochlorite Salts 6 European Union Risk Assessment Report for Sodium Hypochlorite, November 2007 7 United States Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Sodium Hydroxide 8 European Commission Targeted Risk Assessment Report on Sodium Hydrroxide, Human Health Part, November 2006 9 Office of Environmental Health Hazard Assessment (OEHHA) Technical Support Document, Sodium Hydroxide, September 2003 10 FMC Material Safety Data Sheet, Sodium Hydroxide, May 2009

Page 46: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

5 Additive Toxicity Assessment

40 42626654/01/5

Acetic Acid Acetic acid is used for the pH adjustment in the fraccing fluid. Inadequate data is available to classify acetic acid with regard to its carcinogenicity to humans. As such acetic acid exposures are evaluated on the basis of potential threshold effects. Primary effects associated with acetic acid exposure include irritation to the eyes, skin and respiratory system. Chronic exposure to acetic acid mist can result in dermatitis and ulcerations. 3 Acetic acid readily biodegrades and was found to degrade >90% after 3 days using an activated sludge test. Based on a Koc range of 6.8 to 228, Acetic acid is not expected to adsorb to suspended solids and sediment while in water. 3

Monoethanolamine Borate

Inadequate toxicity data is available for monoethanolamine borate, hence boric acid will be used as the surrogate chemical.

Boric Acid Boric acid is used as a crosslinker/buffer in the fraccing fluid. According to the USEPA, boric acid is classed as Group E Non-Carginogenicity for Humans. Available genotoxicity studies also do not indicate mutagenic potential. Boron is a ubiquitous element that occurs naturally in plants and water. Humans ingest naturally occurring boron in the diet, and there is some data to suggest that trace levels are required in the human diet.

Boric acid is very soluble in water and adheres poorly to soil. Boric acid is considered to have very high mobility. 3, 11, 12, 13, 14, 15 The Australian Drinking Water guideline level for Boron is 4mg/L.

Ethanol Ethanol is used as a surfactant in the fraccing fluid. Ethanol is not classifiable as a human carcinogen by the USEPA (group A4). As such ethanol exposures are evaluated on the basis of potential threshold effects Primary effects associated with exposure include respiratory, skin, gastrointestinal irritation. Chronic effects may cause liver and kidney damage. 3 A Koc value of 1 indicates that ethanol is not expected to adsorb to suspended solids and sediment. Ethanol was degraded with half-lives on the order of a few days in aquatic studies with low organic sandy soil and groundwater, indicating it is unlikely to be persistent in aquatic environments. 3

The Australian and New Zealand Guideline for Freshwater Ecosystems – 95% protection level of species is 1400 ug/L.

Fo

od

Gra

de

Ch

emic

als

Sweet Orange Oil/ Terpenes/Terpenoids

Sweet orange oil is used as a surfactant in fraccing fluid. Sweet orange oil (as D-Limonene) is not classifiable as to it’s carcinogenicity to humans (Group 3) by the USEPA. As such exposures are evaluated on the basis of potential threshold effects. Sweet orange oil is of low acute toxicity. D-limonene is a naturally occurring chemical which is the major component in oil of orange. Currently, D-limonene is widely used as a flavour and fragrance and is listed to be generally recognized as safe in food by the US Food and Drug Administration (US FDA). The primary effects associated with exposure are skin and gastrointestinal irritation. D-Limonene is reported to undergo biodegradation under aerobic conditions, but is resistant to biodegradation under anaerobic conditions. 3,16

11 United States Department of Agriculture (USDA) Human Health and Ecological Risk Assessment for Borax, Final Report, February 2006. 12 Directive 98/8/EC Concerning the Placing of Biocidal Products on the Market, Assessment Report, Boric Acid, February 2009 13 Thurston County Health Department, Boric Acid Review Summary, July 2007 14 United States Protection Agency, Report of the Food Quality Protection Act, Tolerance Reassessment Eligibility Decision for Boric Acid/Sodium Borate Salts, June 2006 15 Ang Swi See et al, Risk And Health Effect of Boric Acid, American Journal of Applied Sciences, 2010 16 PDM, Inc, Material Safety Data Sheet, Orange Terpenes, January 2003

Page 47: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

5 Additive Toxicity Assessment

42626654/01/5 41

Sodium thiosulfate Sodium thiosulfate is used as a dechlorinator in the fraccing fluid. Sodium thiosulfate is a compound with low toxicity. As such exposures are evaluated on the basis of potential threshold effects. Sodium thiosulfate may be an irritant in the solid form. The primary effects associated with exposure to sodium thiosulfate are gastrointestinal disturbances and allergic dermatitis. 3

Potassium Chloride Potassium chloride is used to prevent clays from swelling in the fraccing process. Inadequate data is available to classify potassium chloride with regard to its carcinogenicity to humans and hence exposures are evaluated on the basis of potential threshold effects. Primary effects associated with potassium chloride exposure include vomiting, diarrhoea, listlessness, numbness of extremities, pallor, muscular cramps and hypertension.

Potassium chloride is ubiquitous in the environment, occurring in minerals soil and sediments, oceans, lakes and rivers. In water, potassium chloride is very soluble, and readily undergoes dissociation. Potassium ion in general is less mobile than the chloride ion. The chloride ion binds weakly to soil particles and hence tends to be very mobile. 3, 17

Sodium chloride Sodium chloride is used as a HPH breaker in the fraccing fluid. Sodium Chloride is an essential nutrient for the normal functioning of the body. However estimated fatal dose of sodium chloride is approximately 0.75 to 3.00g/kg. Primary effects associated with exposure include hypertension and hypertrophy. 3, 18

Guar gum Guar gum is used as a gelling agent in the fraccing fluid. Guar gum is a low toxicity compound. Allergic rhinitis following repeated inhalation exposure to guar gum dust has been reported. Currently, guar gum is widely used as a food additive and is listed to be generally recognized as safe in food by the US Food and Drug administration. In water, guar gum is non-ionic and hyrocolloidal and will degrade at pH extremes at temperature (i.e. pH3 at 50 degrees Celsius). 3, 19, 20, 21

Table 5-2 Summary of Toxicity of COPCs used by Schlumberger

No

n-F

oo

d G

rad

e

5-chloro-2-methyl-4-isothiazolin-3-one

and

2-Methyl-4-isothiazolin-3-one

5-chloro-2-methyl-4-isothiazolin-3-one is a component of the biocide used in the fraccing fluid. Inadequate information is available with regard to the carcinogenicity of 5-chloro-2-methyl-4-isothiazolin-3-one. As such exposures are evaluated on the basis of potential threshold effects. The primary effects associated with 5-chloro-2-methyl-4-isothiazolin-3-one exposures are caustic burns, corrosion of the respiratory system and gastro-intestinal tract and skin sensitisation. Isothiazonlines readily biodegrades and was found to degrade >90% after 24 hours in an aerobic experimental river sediment water system. The biodegradability has also been examined under anoxic conditions in a river sediment water system, giving a half life of 4.6 hours. 3,22

17 Organisation for Economic Co-operation and Development (OECD), Screening Information Dataset (SID), Potassium Chloride, November 2001 18 World Health Organisation, Chloride in Drinking Water, Geneva, 1996 19 Australia New Zealand Food Standards, Final Assessment Report, Tara Gum as a Food Additive, May 2006 20 Stan Chem International Limited, Product Data Sheet, Guar Gum 21 K. Nandhini Venugopal et al, Study of Hydration Kinetics and Rheological Behaviour of Guar Gum, 2010 22 Accepta Material Safety Data Sheet, 5-chloro-2-methyl-4-isothiazolin-3-one, June 2004

Page 48: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

5 Additive Toxicity Assessment

42 42626654/01/5

magnesium nitrate Magnesium nitrate is a component of the biocide used in the fraccing fluid. Inadequate information is available with regard to the carcinogenicity of magnesium nitrate and exposures are evaluated on the basis of potential threshold effects. The primary effects associated with magnesium nitrate exposure are severe irritation to the eyes, skins and mucous membranes. The probably oral lethal does in humans is 0.5-5.0 g/kg. Magnesium nitrate occurs in nature as nitromagnesite, and are water soluble inorganic salts that readily dissociate into the corresponding cation (magnesium) and the nitrate anion. Nitrate and nitrite are naturally occurring inorganic ions which are part of the nitrogen cycle. Nitrate is a natural constituent of soil and vegetation.3, 23

diatomaceous earth (calcined)

non crystalline silica

Diatomaceous earth (amorphous silica) is a component of the biocide used in the fraccing fluid. Diatomaceous earth is not classifiable as a human carcinogen by the IARC (group 3) and exposures are evaluated on the basis of potential threshold effects. The primary effects associated with diatomaceous earth exposure are irritation to the respiratory tract, eyes and skin. Amorphous silica is incorporated in a variety of food products as anti-caking agent and as an excipient in pharmaceuticals. Diatomaceous earth is a naturally occurring, soft, siliceous sedimentary rock. Its primary component, silica, is found in common materials like quartz, sand and agate. The materials are ubiquitous and unlikely to react chemically with any other substance in the environment. 3, 7

crystalline silica (cristobalite)

crystalline silica (quartz, SiO2))

Crystalline Silica is used as a gel breaker in the fraccing fluid. The USEPA has classified Crystalline Silica as a suspected human carcinogen A2, as there is sufficient evidence in humans for the carcinogenicity of inhaled crystalline silica in the form of quartz from occupational sources. Within the context of use within the saturated reservoir there is no risk of this exposure pathway. Crystalline Silica consists of diatomaceous earth, a naturally occurring material. Its primary component, silica, is found in common materials like quartz, sand and agate. The materials are ubiquitous and unlikely to react chemically with any other substance in the environment. 3, 7

Diammonium Peroxidisulphate

Diammonium Peroxidisulphate (assessed as ammonium persulfate) is used as a breaker in the fraccing fluid. Inadequate information is available with regard to the carcinogenicity of ammonium persulfate and exposures are evaluated on the basis of potential threshold effects. The primary effects associated with ammonium persulfate are irritation of the mucous membranes, skin, eye or respiratory system. Persulfates remain in solution and readily hydrolyze (decompose) into innocuous sulphate ions. Aqueous persulfates are expected to degrade in the environment via several mechanisms, e.g., hydrolysis, metal catalysed decomposition, and reactions with organic chemicals in the soil or water. Thus, any persulfate released into the environment is distributed into the water compartment in the ionic form of the cation, (NH4, Na or K) and persulfate ion. Persulfates are not expected to sorb to soil due to their dissociation properties, instability (hydrolysis) and high water solubility. They should behave as free ions or decompose into sulfate ions. In soils, upon decomposition, the cation could form more stable sulfate or bisulfate salts. These compounds should not present any environmental hazards.3,24

23 USEPA, Office of Prevention, Pesticides and Toxic Substances, Inert Ingredient Tolerance Reassessment – Magnesium Nitrate, January 2005 24 Organisation for Economic Co-operation and Development (OECD), Screening Information Dataset (SID), Persulfates, April 2005

Page 49: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

5 Additive Toxicity Assessment

42626654/01/5 43

2-butoxyethanol 2-butoxyethanol is used as a surfactant in the fraccing fluid. 2-butoxyethanol is not classifiable as a human carcinogen by the IARC (group 3). However 2-butoxyethanol has a group C classification (possible human carcinogen) by the USEPA, due suggestive evidence of carcinogentiy from rodent studies. Exposures will be evaluated on the basis of potential threshold effects. The primary effects associated with 2-butoxyethanol exposure are irritation to the respiratory system, gastrointestinal tract, eyes and skin. Based on a KOC of 67, 2-butoxyethanol is not expected to adsorb to suspended solids and sediment while in water. 2-butoxyethanol readily biodegrades and was found to degrade >90% after 14 days using an activated sludge test.3, 25

Propan-2-ol Propan-2-ol (assessed as isopropyl alcohol) is used as a surfactant in the fraccing fluid and is not classifiable as a human carcinogen by the IARC (group 3). Hence exposures are evaluated on the basis of potential threshold effects. The primary effects associated with Propan-2-ol exposures are irritation to the respiratory system, gastrointestinal tract, eyes and skin. The probable lethal oral dose for an adult is 240 mL. Based on a KOC of 25, Propan-2-ol is not expected to adsorb to suspended solids and sediment while in water. Propan-2-ol is readily degraded in aerobic systems; the range of half-lives for aerobic degradation using a sewage sludge inoculum are <1 day to 48 days. Isopropanol has also been shown to be readily degraded under anaerobic conditions.3

Alcohol ethoxylates

Linear C11 alcohol ethoxylate (7eo)

Linear C11 alcohol ethoxylate (3eo)

alcohols c12-c15 linear ethoxylated

Alcohol ethoxylates are used as surfactants in the fraccing fluid. There is no evidence to date that suggests Alcohol ethoxylates are probable carcinogens and exposures are evaluated on the basis of potential threshold effects. The primary effects associcated with Alcohol ethoxylates are minimal, with low oral, dermal, and inhalational toxicity. Alcohol ethoxylates can potentially be transferred from the aqueous phase to suspended solids, or soil solids by adsorption. Alcohol ethoxylates undergo rapid primary biodegradation under both laboratory and field conditions and was found to degrade >80% after 4 weeks using an anaerobic digester.3,26,27

Acetic Acid Refer to Table 5-1.

carbonic acid Carbonic acid is used for pH control in the fraccing fluid and is not classifiable as a human carcinogen by the IARC (group 3). Hence exposures are evaluated on the basis of potential threshold effects. Carbonic acid is a very weak acid (consists of carbon dioxide and water), and is not expected to have adverse toxicological effects on humans. Carbon dioxide is a naturally occurring gas and carbonic acid is a product of animal metabolism.3

Hemicellulase Enzyme Hemicellulose (assessed as polysaccharide) is used as a breaker in the fraccing fluid. No toxicity data is available for polysaccharide. Polysaccharide is a carbohydrate and is found in food such as potatoes, rice, wheat and maize. 28

Boric Acid Refer to Table 5-1.

Fo

od

Gra

de

Ch

emic

als

Potassium Chloride Refer to Table 5-1.

25 National Industrial Chemicals Notification and Assessment Scheme (NICNAS), Priority Existing Chemical Number 6, 2-butoxyehtanol, October 1996 26 Human and Environmental Risk Assessment on Ingredients of European Household Cleaning Products, Alcohol Ethoxylates, September 2009 27 Madsen Torben et al, Biodegradability and Aquatic Toxicity of Glycolside Surfactants and a Nonionic Alcohol Ethoxylate 28 http://en.wikipedia.org/wiki/Polysaccharide

Page 50: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

5 Additive Toxicity Assessment

44 42626654/01/5

Sodium Carbonate Sodium carbonate is used as a buffer and neutralising agent in the fraccing fluid. Inadequate data is available to classify sodium carbonate with regard to its carcinogenicity to humans. As such exposures are evaluated on the basis of potential threshold effects. Primary effects associated with sodium carbonate exposure include irritation of skin and respiratory tract. If released into water, Sodium carbonate is not expected to adsorb to suspended solids and sediments based on the Koc of 1.

Magnesium Chloride Magnesium chloride is a component of the biocide used in the fraccing fluid. No studies have been found on the potential of carcinogenic activity of magnesium in humans or experimental animals. Hence exposures are evaluated on the basis of potential threshold effects. The primary effects associated with magnesium chloride exposure are irritation of the mucous membranes, abdominal pain, vomiting and diarrhea. Magnesium chloride is an important coagulant used in the preparation of tofu from soy milk. It is also an ingredient in baby formula milk. Magnesium is approx 2% of the earth's crust, eighth in elemental abundance, and widely distributed in the environment as a variety of compounds. Magnesium chloride, with makes up 17% of sea salt is released to the atmosphere as sea spray. The chloride ion is highly mobile.

Sodium chloride/inorganic salt

Sodium chloride is used as a HPH breaker in the fraccing fluid. Sodium Chloride is an essential nutrient for the normal functioning of the body. However estimated fatal dose of sodium chloride is approximately 0.75 to 3.00g/kg. Primary effects associated with exposure include hypertension and hypertrophy.

Guar gum Refer to Table 5-1.

As very limited human health toxicity data/values and established human health (i.e. ADWG) or ecological screening (i.e. ANZECC) guidelines are available for the COPCs used in the hydraulic fracturing fluid, eco-toxicity data have been utilised. The chemical toxicity studies on fish have been

used to obtain the Median Lowest Observed Effect Level (LOEL) or the No Observed Effect Level (NOEL). If LOEL or NOEL were unavailable then Lethal Concentration (LC50) for the COPCs were used.

Tables 5-3 and 5-4 presents the eco-toxicity data selected for the COPCs.

Table 5-3 Eco-Toxicity Data for Australia Pacific LNG Hydraulic Fracturing Fluids - Haliburton

COPC Number of Studies Utilised* Toxicity Value –

(ug/L)

Toxicity Value Endpoint

2-Bromo2-Nitro-1, 3-Propanediol (Bronopol)

4 36,548 LC50

Sodium Hypochlorite 5 110 LOEL

Sodium Hydroxide 1 100,000 LOEL

Acetic Acid 1 1,260 LOEL

Monoethanolamine Borate

1 1,221,600 NOEL

Ethanol 6 3,809,279 LC50

Sweet Orange Oil/ Terpenes/Terpenoids

1 5,000,000 LC50

Sodium thiosulfate 1 24,000,000 LC50

Page 51: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

5 Additive Toxicity Assessment

42626654/01/5 45

COPC Number of Studies Utilised* Toxicity Value –

(ug/L)

Toxicity Value Endpoint

Sodium chloride 3 226,848 LOEL

Guar gum 1 218,000 LC50

Potassium Chloride 7 1,414,214 LOEL

Ferric Chloride 1 1,010 LOEL

*Sources: Pesticide Action Network (PAN) Pesticide Database and USEPA ECOTOX Database

Table 5-4 Eco-Toxicity Data for Australia Pacific LNG Hydraulic Fracturing Fluids - Schlumberger

COPC Number of Studies Utilised* Toxicity Value – (ug/L)

Toxicity Endpoint

Acetic acid Refer to Table 5-3

5-chloro-2-methyl-4-isothiazolin-3-one

8 435 LC50

2-Methyl-4-isothiazolin-3-one

3 159 LC50

Magnesium nitrate 1 240,000 NOEL **

Magnesium chloride 12 6,339,618 LC50

Diatomaceous earth (calcined)

No data available – assessed as silica

-- --

Silica Toxicity for inhalation pathway only and therefore not assessed.

-- --

Hemicellulase enzyme

No toxicity data for polysaccharide –food grade compound.

-- --

Diammonium peroxidisulphate

No eco- tox data available -- --

Boric acid 1 568,836 LOEL

Guar gum Refer to Table 5-3

Carbonic acid (carbon dioxide)

4 24,658 LOEL

Sodium carbonate 7 464880 LC50

Inorganic salt 3 2,513,333 LOEL

Potassium chloride Refer to Table 5-3

2-butoxyethanol 2 1,364,734 LC50

Propan-2-ol (isopropyl alcohol)

6 1,000,000 NOEL

Ethoxylated alcohol linear (x3)

1 10,270 LOEL

Ferric chloride 5 1,010 LOEL

*Sources: Pesticide Action Network (PAN) Pesticide Database and USEPA ECOTOX Database **Data for Magnesium Nitrate on Mulluscs used as no data for fish was available

In the absence of human health data, eco-toxicity values have been utilised to obtain an initial risk screening assessment for the COPCs used in the hydrofraccing fluid. A deterministic approach or the

Page 52: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

5 Additive Toxicity Assessment

46 42626654/01/5

quotient method established by the USEPA was utilised to compare toxicity to environmental

exposure. In the deterministic approach, a risk quotient (RQ) is calculated by dividing a point estimate of exposure by a point estimate of effects. This ratio is a simple, semi-qualitative, screening-level estimate that identifies high- or low-risk situations.

Calculation of risk quotients were based upon ecological effects data, pesticide use data, fate and transport data, and estimates of exposure to the COPCs. In this method, the estimated environmental concentration is compared to an effect level, such as an LOEL (lowest tested dose of a COPC that

has been reported to cause harmful health effects in fish).

RISK QUOTIENT = EXPOSURE / TOXICITY

Where the exposure is the peak water concentration for the chemical, and the toxicity is the LOEL for

the organism (fish). If the RQ exceeds one, then this would indicate potentially unacceptable chemical intakes for the organism. However if the RQ is less than one, then the chemical is considered non hazardous to fish; as such, it can be assumed to potentially pose a low risk with regards to human

health (note: no safety factors were applied to the risk quotients). Furthermore, assessment to human health was solely based on qualitative assumptions and any COPCs identified with an RQ>1 will be discussed in further detail below with respect to their effects on human health.

The following Tables 5-5 and 5-6 presents the risk quotients associated with the potential exposures of fish to the COPCs.

Table 5-5 Risk Quotients Associated with Potential Exposures of COPCS-Haliburton

COPC Maximum Concentration of COPC in Injection Water

(mg/L)

Risk Quotient/Eco-Hazard

2-Bromo2-Nitro-1, 3-Propanediol (Bronopol)

18 0.49

Sodium Hypochlorite 48 1360

Sodium Hydroxide 200 4

Acetic Acid 500 397

Ethanol 780 0.2

Citric Acid 65 0.01

Sodium thiosulfate 600 0.025

Monoethanolamine Borate 60 0.05

Sodium chloride 4.5 0.07

Potassium Chloride 20000 14

Ferric Chloride 200 198

Guar gum 4000 18.35

Shaded rows indicate the COPC that exceed the relevant screening criteria

Page 53: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

5 Additive Toxicity Assessment

42626654/01/5 47

Table 5-6 Risk Quotients Associated with Potential Exposures of COPCS- Schlumberger

COPC Maximum Concentration of COPC in Injection Water

(mg/L)

Risk Quotient/Eco-Hazard

Acetic Acid 84 67

5-chloro-2-methyl-4-isothiazolin-3-one

4 9

2-Methyl-4-isothiazolin-3-one 1 6

magnesium nitrate 8 0.033

magneisum chloride 4 0.0006

Boric Acid 240 0.01

guar gum 2,397 11

sodium carbonate 130 0.28

inorganic salt 785 0.31

Potassium Chloride 29,957 21

2-butoxyethanol 22 0.016

Propan-2-ol (isopropyl alchol) 38 0.038

Alcohol ethoxylates 11 1

The above Tables 5-5 and 5-6 indicate that sodium hyperchlorite, sodium hydroxide, acetic acid, monoethanolamine borate, guar gum, ferric chloride, potassium chloride, 5-chloro-2-methyl-4-isothiazolin-

3-one, 2-methyl-4-isothiazolin-3-one, guar gum and alcohol ethoxylates exceeds the Eco-hazard

screening criteria of 1, indicating potentially unacceptable chemical intakes for the fish (used as screening values in the absence of ecotoxicity data for humans or livestock). It is to be noted that this screening assessment is extremely conservative, utilising the maximum concentration of COPCs in

the injection water, which does not account for dilution and biodegradation of the COPCs in groundwater (or potential receiving surface water in the event of a spill).

Acetic acid has been classified as “food grade” which is generally recognized as safe for use in foods

by the US FDA. 29 Acetates are common constituents of plant and animal tissues. They are normal metabolic intermediates produced in relatively large quantities during the digestion and metabolism of foods. 3 As acetic acid biodegrades typically within 3 days in groundwater3, it is not considered

hazardous to the environment and will be discounted as a COPC in the remainder of this assessment.

Guar gum is widely used as an emulsifier and firming agent food stuffs such as cheese, milk products, baked goods and baking mixes. Guar gum is classified as “food grade” by the US FDA and hence is

recognized as safe for use in foods.30 Guar gum is the natural substance obtained from the maceration of the seed of the guar plant. Guar has relatively little effect when added to the diets of animals in amounts considerably greater than those present in the human diet.3 Guar gum is

considered safe for human consumption and hence will be no longer considered as a COPC in the remainder of this assessment.

29 U.S Food and Drug Administration (FDA), CPG Sec. 562.100 Acetic Acid – Use in Foods, February 1989 30 U.S FDA Code of Federal Regulations Title 21 Sec. 184.1339 Guar Gum, April 2010

Page 54: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

5 Additive Toxicity Assessment

48 42626654/01/5

Sodium hypochlorite is typically used in household products as a disinfectant and bleaching agent.

The water treatment plants also use sodium hypochlorite in water purification processes. Sodium hypochlorite reacts in saline waters under aerobic conditions to create chlorinated compounds. 3,31,32 In order to counteract this process, Australia Pacific LNG has used sodium thiosulfate as a stabiliser to

dechlorinate the fraccing water, which effectively neutralises sodium hyperchlorite and eliminates the toxicity typically associated with the chemical. If sodium hypochlorite is neutralised effectively within the fraccing fluid, it will no longer be considered hazardous to the environment and hence can be

discounted as a COPC.

Sodium hydroxide is also known as lye and caustic soda. It is used in the home as a drain cleaning agent, and in the industry as a key component to neutralise acidic materials. In water, sodium

hydroxide rapidly dissolves and dissociates and biodegradation is negligible. Studies show that if sodium hydroxide is emitted to wastewater that is to be treated in a biological sewage treatment plant, virtually the total amount will end up in the effluent, as sorption to the sewerage treatment plant sludge

will be negligible 3,7. Neutralisation of sodium chloride occurs when using an acid (i.e. acetic acid), and hence if neutralised effectively, sodium chloride will no longer be considered hazardous to the environment and can be discounted as a COPC.

Ferric chloride is routinely used in the Australian drinking water treatment process, and was endorsed by the National Health and Medical Research Council (NHMRC) as a drinking water treatment chemical in 1983. It is used as a primary coagulant to remove turbidity, natural organic matter

including colour, microorganisms and many inorganic chemicals during the treatment of drinking water. Conventional water treatment processes remove most of the ferric ions produced when ferric chloride is used for coagulation. Residual chloride is usually at low levels, and does not adversely

affect drinking water quality. 33 If ferric chloride is to be used in the Australia Pacific LNG fraccing process to only treat the source water, effectively removing the ferric and chloride irons before injection, it will no longer be considered as a COPC.

Potassium chloride is typically used for fertilizer production. Other non-fertiliser uses of potassium chloride include usage as a food stuff additive, nutrient or dietary supplement, flame retardant, water treatment and as dyes. Potassium chloride is ubiquitous in the environment, occurring in minerals,

soil and sediments and natural waters. Potassium and chloride are necessary nutrients and two of the most abundant ions in humans and animal species, and is an essential constituent for the acid-base balance, muscle contraction and nerve function of the human body. Potassium chloride is generally

recognised as safe by the US FDA to be used as a nutrient and/or dietary supplement in animal drugs, feeds, and related products 3, 17and hence will no longer be considered as a COPC.

Isothiazonlines (5-chloro-2-methyl-4-isothiazolin-3-one and 2-Methyl-4-isothiazolin-3-one) are used as

preservatives that have been specifically approved for use as a biocide by the US EPA, by Japan, and by the European Commission for use in cosmetics including shampoos and other products. Isothiazonlines were also found safe for use by the US FDA in cosmetic products. As Isothiazonlines

readily biodegrades under aerobic and anoxic conditions (half life of 4.6 hours in anoxic conditions), 3,

22 they will be discounted a COPCs for the remainder of this assessment, subject to further validation by monitoring of produced water.

31 United States Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Sodium and Calcium Hypochlorite Salts 32 European Union Risk Assessment Report for Sodium Hypochlorite, November 2007 33 National Water Quality Management Strategy, Australian Drinking Water Guidelines, 2004

Page 55: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

5 Additive Toxicity Assessment

42626654/01/5 49

Alcohol ethoxylates are non-ionic surfactants, which are widely used in laundry detergents and to a

lesser extent in household cleaners and in cosmetics. Alcohol ethoxylates are readily biodegradable under aerobic and anaerobic conditions (was found to degrade >80% after 4 weeks using an anaerobic digester) 3, 27 and hence will be discounted as a COPC.

In summary, the toxicity analysis has indicated that identified chemicals generally have low toxicity, and those with identified toxicity (based on ecotox data and the specified assumptions) are unlikely to be persistent in the groundwater environment, and as such pose low risk to groundwater receptors.

However, a programme of monitoring is necessary to validate these assumptions.

As part of Australia Pacific LNG’s routine monitoring, concentrations of BTEX were identified in pilot wells. An investigation has been undertaken to assess the sources of the BTEX, and changes have

been implemented to remove identified BTEX from the fracture stimulation chemicals. A monitoring programme has been proposed to quantify that these measures have been effective, and as such BTEX has not been included within this toxicity assessment

.

Page 56: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5 50

6

6 Mass Balance Estimate

Condition 30 of the CG Reports specifies a risk assessment be undertaken which as a minimum comprises a mass balance of chemicals utilised in the process. The mass of chemicals used is a

relatively minor aspect of the total risk assessment, as the environmental setting, proximity to receptors and a range of engineering controls are the principal drivers for the overall risk associated with the activities.

The residual mass of fracturing chemicals remaining in the receiving environment is a function of the volume/mass injected, the percentage of injected waters recovered (and chemicals in relation to their chemical characteristics and sorption capacity of the coals), and the attenuation of the chemicals

within the coal formation due to degradation, neutralisation and dissolution processes.

Due to the time available for issue of the report, and due to weather conditions limiting pilot scale fracturing activities, it has not been possible to collect Australia Pacific LNG specific data in terms of

recovery rates and mass. This work is scheduled and summarised in Section 8.

URS undertook a mass balance to determine the volume of fracturing fluid remaining in the Walloon Subgroup after fracture stimulation assuming no attenuation of injected chemicals. The USEPA

(2004), based on a study by Palmer et al. al. (1991), determined that between 68 and 82 % of the fracture fluids are removed during production of a CSG well (with 18 to 32 % remaining) as discussed in Section 2.2.2. The worst case (in terms of maximum concentration of injected chemicals) occurs if

the fracture fluids do not migrate into and be diluted by groundwater in other formations but remain in the coal seams. This is the case assumed for this mass balance, with a conservative 40% of the hydraulic fracturing fluid volume remaining in the coal seams.

Data Input

3025 APLNG CSG wells spaced at 750m (average well spacing) 5 fracturing events of the Walloon Subgroup within in each CSG well with 150 kL fracture fluid per

event (total 0.75 ML of fracture fluid in each well – comprising water, sand and additives) 40% of fracturing fluid remains in coal seams Thickness of Walloon Subgroup = 200 m

Porosity of coal of 1%

Coal Aquifer Volume = length width thickness porosity

= [55 (wells) 750 (m between wells)] [55 750 (m)] [200 (m)] [0.01]

= 3.40 109 m3

Injected Fluid Remaining = number of wells volume injected proportion remaining

= [3025] [150 (m3 per fracture event) 5 (fracture events per well)]

[0.40]

= 9.07 105 m3

Thus the volume of injected fluid remaining in the coal seams is approximately 0.03% of the coal seam

aquifer volume. Completion of the produced water monitoring programme as indicated in Section 8 is required to validate the recovery rate is commensurate with published studies.

The mass of chemicals remaining in the coal seams after fracturing 3025 wells, based on the

proportions present in gel based fracturing fluids (Halliburton Delta Frac 140) as shown in Figure 4-1, is shown below in Table 6.1.

Page 57: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

6 Mass Balance Estimate

42626654/01/5 51

Table 6-1 Approximate Volume/Mass of Hydraulic Fracturing Chemicals Remaining In-Situ after Fracturing 3025 Wells with Halliburton Gel Based Fracturing Fluid (Delta Frac 140)

Additive Type Chemical Name Proportion of Fracturing Fluid by Volume (% Used in

Gel Fraccing)

Volume/Mass a), b) of Remaining Chemical (m3,

tonnes)

pH Control Caustic soda (50%) (sodium hydroxide)

0.05 454

Biocide Sodium hypochlorite, Sodium hydroxide

0.05 454

Breaker Sodium chloride and carbohydrate breaking enzymes

0.003 27

Flocculent Ferric chloride 0.02 182

Stabiliser Potassium chloride, sodium thiosulphate

2.03 18422

Crosslinker Monoethanolamine borate 0.20 1815

Non-ionic surfactant Ethanol, terpenes/ terpenoids/ sweet orange oil

0.20 1815

Gelling agent Guar gum 0.24 2178

Total 25347

a) Assuming 9.07 × 105 m3 of fracturing fluid remains in-situ

b) Assuming density of fracturing fluid of 1 g/cm3, volume of fracturing fluid fluids remaining is equivalent to the mass of

fracturing fluids remaining

Table 6-2 Approximate Volume/Mass of Hydraulic Fracturing Chemicals Remaining In-Situ after Fracturing 3025 Wells with Schlumberger Gel Based Fracturing Fluid (YF120LG)

Additive Type Chemical Name Proportion of Fracturing Fluid by Volume (% Used in

Gel Fraccing)

Volume/Mass a), b) of Remaining Chemical (m3,

tonnes)

pH Control Carbonic acid, sodium carbonate, inorganic salt

0.144 1307

Biocide 5-chloro-2-methyl-4-isothiazolin-3-one, 2-methyl-4-isothiazolin-3-one, magnesium nitrate, magneisum chloride, diatomaceous earth (calcined), non crystalline silica, crystalline silica (cristobalite and quartz)

0.006 54

Breaker Hemicellulase enzyme, diammonium peroxidisulphate

0.216 1960

Stabiliser Potassium chloride 2.652 24067

Crosslinker Boric acid, soda ash 0.084 762

Surfactant 2-butoxyethanol, propan-2-ol (isopropyl alcohol),

0.200 1815

Page 58: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

6 Mass Balance Estimate

52 42626654/01/5

ethoxylated alcohol linear (x3), linear C11 alcohol ethoxylate (7eo), linear C11 alcohol ethoxylate (3eo), alcohols c12-c15 linear ethoxylated

Gelling agent Guar gum, carbohydrate polymer derivative

0.240 2178

Total 32143

a) Assuming 9.07 × 105 m3 of fracturing fluid remains in-situ

b) Assuming density of fracturing fluid of 1 g/cm3, volume of fracturing fluid fluids remaining is equivalent to the mass of

fracturing fluids remaining

The mass of fracturing chemicals remaining (assuming a percentage is recovered in produced water) is calculated at up to 10626 kg per fractured well. While this mass may appear significant, this is

diluted in a large water reservoir.

In addition, in reality the degradation and dissolution process discussed below will result in the majority of the mass of residual injected fluids being rapidly attenuated, resulting in the actual residual

mass not being present at the volumetric estimates.

The proposed post fracturing monitoring will provide data to verify residual concentrations of frac chemicals within formation water, to support the anticipated attenuation processes.

6.1 Environmental Fate Fate and transport modelling was not performed on the COPC as insufficient information regarding their environmental behaviour (reaction stochiometry, etc) is available for modelling. This lack of information would mean that only un retarded dispersion modelling could be carried out, which would

be unreasonably conservative, as over time it would suggest concentrations similar to the source concentration would reach the down gradient assessment point (given the conservative assumption that the source remains constant over time). Data indicates that other than the Guar Gum, the majority

of COPC will be largely neutralised or degraded rapidly within aquifer conditions, based on likely geochemical processes within the coals. A discussion on the likely attenuation properties of the COPCs (with references) is included in Tables 5.1 and 5.2, and is discussed in the context of risk

significance in Section 5.3. Completion of monitoring of groundwater quality to verify this has not been possible in the study period, and a programme of ‘Produced Water’ monitoring will be implemented to verify these assumptions.

Page 59: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5 53

7

7 Risk Assessment

7.1 Risk Assessment Methodology A review of the stratigraphy of the proposed hydraulic fracturing works, Australia Pacific LNG processes, hydraulic fracturing chemicals utilised, and their likely toxicity to groundwater receptors has

been completed. Based on a qualitative assessment, this suggests that due to the controls implemented by Australia Pacific LNG, the limited hydraulic connectivity between the CSG bearing units and utilised aquifers, and the limited toxicity and persistence of the potentially hazardous

fracturing chemicals, there is unlikely to be a plausible risk to utilised groundwater resources associated with the hydraulic fracturing activities.

However, a number of assumptions have been made (including implementation of control measures,

consistency of fracture chemical composition, integrity of above ground storage facilities, operator error, etc), which could have a bearing on these conclusions. In order to assess in greater detail the significance of a number of risk drivers, a quantitative assessment has been undertaken to further

understand the significance of potential variables on the risk profile. As part of this assessment it has been assumed that the fracture chemicals have a significant toxicity (which is conservative based on the anticipated rapid attenuation and limited toxicity of the chemicals of concern at concentrations

utilised).

This has been completed using RISQUE(ref) methodology which allows for the documentation and comparison of risk issues across the proposed project, development of mitigation measures that can

be used to manage risks, and for the nature of risks to be understood in terms of when, where and to what asset the risks exist. A more detailed account of the RISQUE process is included in a separate Annex report for completeness, and key issues are summarised here.

The method is a cyclical process based on the ISO/Australia and New Zealand Standard for Risk Management (ISO 31000:2009) framework. A preliminary list of risk events (the risk register) was completed, and is included in Appendix B. This includes a range of factors which may have an impact

on the overall risk of fracturing such as the presence of faults, chemical variability, mechanical failure, etc.

The risk analysis involved quantifying and modelling the probabilities and consequences for each

substantive risk event. The risk profiles are generated by the risk model and show all risk events ranked (prioritised) in order of decreasing risk. The risk for each risk event is stated as a “risk quotient” and is the likelihood of the event occurring (total frequency over the specific period) multiplied by the

consequence level if the event were to occur.

The outcome of the risk analysis was a series of graphs showing the highest risks in order of the risk quotient, the target level of risk as a guide considered acceptable, and the consequences of the risks,

(i.e. whether the risk was posed to the environment, public health and safety, etc).

Figure 7-1 shows the overall risk profile for the Project. The height of the column represents the risk quotient (likelihood x consequence) for that risk event and shows that 2 risks are above or within one

half order of magnitude of the guidance risk target. These risks are:

Hydraulic Fracturing of the upper Macalister coal where it is in direct contact with the Springbok Hydraulic Fracturing of the Macalister coal where there is separation from the Springbok by an

aquitard

The profile shows that the majority of risk events pose well below the target risk level (orders of magnitude). This verifies the assumption that a range of process controls can be successfully

Page 60: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

7 Risk Assessment

54 42626654/01/5

implemented to mitigate potential risks. In the next risk profile (Figure 7.2), the same risk events are

shown in the same order, but with the key contributors to the total risk for each event proportioned within the columns. The colours within each column show the proportion of risk posed to the identified assets (public health and safety, reputation/obligations, social, environment, and finance/property and

infrastructure).

The figure shows that for the highest risk event roughly 85% of the risk would be posed to reputation/obligation assets, and around 15% of the risk would be posed to social, public H&S and

Finance/Property and Infrastructure assets. This reflects the likely limited persistence of the COPCs within the fracturing fluids, and variable permeability and utilisation within the Springbok

For the third highest risk event (storage of produced water in flare pits), the impact would largely be

reputational and regulatory obligation, however there is also a potential environmental impact associated with direct leakage to near surface groundwater or surface waters.

The figure indicates that risk to Public Health and Safety does not show a marked appearance until

well down the risk profile (Spillage of Chemicals), and these in large part can be mitigated by established health and safety procedures.

The key risk mitigation actions for the top 2 risks are as follows;

No fracture of the shallowest Macalister coal seam where it is in direct contact with the Springbok and there are high interconnecting permeabilities, and;

Implement greater engineering controls when fracturing the shallowest Macalister coal seam where

it is separated from the Springbok by an aquitard (controls may include reducing the job size, pumping at a lower rate, strategic design of perforations, and strategic consideration of frac fluid design, etc):

Figure 7.3 shows that implementation of these 2 key actions could potentially reduce the overall total Project risk by approximately 99.8%.

The following conclusions have been derived from the assessment of risk to the wider environment:

Based on the available information, it is highly unlikely that hydraulic fracturing within the coals will result in discharge of chemicals into adjacent aquifers. This is qualified on the assumption that Australia Pacific LNG will leave an adequate barrier between the upper coal seam of the Macalister

seams and the permeable section of the Springbok. Where necessary the upper Macalister will not be perforated and thus not fractured as a precautionary measure until further study is completed to assess the potential impact of fracturing in proximity to this interface.

A range of potential factors within the risk register (such as delays in production, fracturing of faults, homogeneity of fracture chemicals, pressure controls) have no overall bearing of the risk profile and are not major contributing factors to the risk profile of proposed activities

Based on the active depressurisation of the coals, and the creation of vertical gradients from the adjacent aquifers into the coal measures, there is unlikely to be vertical migration of residual fracturing chemicals into the Springbok and Hutton aquifers.

There is significant separation of the near surface and Gubberamunda aquifers from CSG bearing formations, and as such there is not thought likely to be a plausible risk to the use of these aquifers for irrigation, livestock and drinking water use, assuming best practice engineering protocols are

implemented.

Page 61: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

7 Risk Assessment

42626654/01/5 55

Based on the limited toxicity of the majority of the COPCs, and likely limited persistence of

potentially hazardous chemicals it is suggested the overall risks to utilised water resources due to the proposed hydraulic fracturing is low.

7.2 Potential for Activities to Cause Harm to the Receiving Environment

The only significant groundwater receiving environment identified is the extraction and use of groundwater from within the coal seam itself or from an aquifer adjacent to the coal seams where

there is the potential for inter aquifer transfer. As Australia Pacific LNG have elected to decommission and replace (within shallow aquifers) the limited number of abstraction wells within the coals (as specified in the EIS), there are no identified receptors for the potential impact of frac chemicals.

Potential risks associated with the fraccing of the upper coals seam in proximity to utilised water resources in the Springbok (which has limited utilisation), have been mitigated by the development of guidance in relation to managing fraccing activities in these environments.

Based on the available data a significant potential for activities to cause harm to the receiving environment has not been identified.

Page 62: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

7 Risk Assessment

56 42626654/01/5

Overall Current Risk Profile

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

18 F

ract

ure

McC

allis

ter

19 F

ract

ure

McC

allis

ter

with

se

pera

tion

22

Fla

re P

it

10 F

ract

urin

g -

perm

eabi

litie

s

14 A

ssoc

iate

d w

ater

tan

k le

ak

11 M

igra

tion

to a

quife

rs

12 D

elay

s in

pro

duct

ion

13 M

ass

rem

ova

l con

stra

ints

8 S

hear

ing

pote

ntia

l ove

rbur

den

stre

ss

3 A

bove

gro

und

chem

ical

spi

lls

16 B

enef

icia

l use

9 F

ract

urin

g of

maj

or

faul

ts

17 U

nkow

n w

ater

bor

e

20 F

ract

ure

McC

allis

ter

with

sep

and

low

k

21 F

ract

ure

into

Adj

acen

t A

quif

4 S

pilla

ges

of c

hem

ical

s

15 R

ecov

ered

res

idue

man

agem

ent

1 H

omog

enei

ty o

f ch

emic

al c

ompo

sitio

n

5 W

ell c

onst

ruct

ion

inte

grity

6 F

ract

urin

g h

oriz

on is

olat

ion

2 C

hem

ical

qua

lity

cont

rol a

nd v

aria

bilit

y

7 P

roce

ss p

ress

ure

con

tro

l

23 0

24 0

25 0

26 0

27 0

28 0

29 0

30 0

31 0

32 0 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

To

tal R

isk

Current Risk

Risk target

COLUMN HEIGHT SHOWS RISK QUOTIENT

Risk Target

Explanatory Note:A total risk value of 1 (which is a target value) means that there is a around a 1 in 10 chance of a Moderate (Level = 10) consequence, or similarly, around a 1 in 100 chance of a Major (Level = 100) consequence.

Figure 7-1 Overall Current Risk Profile

Page 63: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

7 Risk Assessment

42626654/01/5 57

Overall Current risk profile showing contribution by Assets (Top 50 events)

0.00001

0.0001

0.001

0.01

0.1

1

10

100

18 F

ract

ure

McC

alli

ste

r

19 F

ract

ure

McC

alli

ste

r w

ith s

eper

atio

n

22 F

lare

Pit

10 F

ract

urin

g -

perm

eabi

litie

s

14 A

ssoc

iate

d w

ater

tan

k le

ak

11

Mig

ratio

n t

o aq

uife

rs

12 D

elay

s in

pro

duct

ion

13 M

ass

rem

oval

con

stra

ints

8 S

hear

ing

pote

ntia

l ove

rbur

den

stre

ss

3 A

bove

gro

und

chem

ical

spi

lls

16 B

enef

icia

l use

9 F

ract

urin

g o

f m

ajo

r fa

ults

17 U

nkow

n w

ater

bor

e

20 F

ract

ure

McC

allis

ter

with

sep

and

low

k

21 F

ract

ure

into

Adj

ace

nt A

quif

4 S

pilla

ges

of c

hem

ical

s

15 R

ecov

ered

res

idue

man

agem

ent

1 H

omog

enei

ty o

f ch

em

ical

com

posi

tion

5 W

ell c

onst

ruct

ion

inte

grity

6 F

ract

urin

g h

oriz

on

isol

atio

n

2 C

hem

ical

qua

lity

cont

rol a

nd v

aria

bilit

y

7 P

roce

ss p

ress

ure

cont

rol

23 0

24 0

25 0

26 0

27 0

28 0

29 0

30 0

31 0

32 0 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Ris

k Q

uo

tie

nt

Public H&S Risk

Reputation / ObligationsRiskSocial Risk

Environment Risk

Financial / Property /Infrastructure Risk

COLUMN HEIGHT SHOWS RISK QUOTIENTCOLOURS WITHIN COLUMNS SHOW PROPORTION CONTRIBUTION TO THE RISK

Figure 7-2 Overall Current risk profile showing Contribution by Assets (Top 50 Events)

Page 64: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

7 Risk Assessment

58 42626654/01/5

Overall Risk Profile - With Mitigation Actions

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

18 F

ract

ure

McC

allis

ter

19 F

ract

ure

McC

allis

ter

with

sep

erat

ion

22 F

lare

Pit

10 F

ract

urin

g -

perm

eabi

litie

s

14

Ass

ocia

ted

wat

er t

ank

leak

11 M

igra

tion

to a

quife

rs

12 D

elay

s in

pro

duct

ion

13 M

ass

rem

oval

con

stra

ints

8 S

hear

ing

pote

ntia

l ove

rbur

den

stre

ss

3 A

bove

gro

und

chem

ical

spi

lls

16 B

enef

icia

l use

9 F

ract

urin

g of

maj

or f

aults

17 U

nko

wn

wat

er b

ore

20 F

ract

ure

McC

allis

ter

with

sep

and

low

k

21 F

ract

ure

into

Adj

acen

t A

quif

4 S

pilla

ges

of c

hem

ical

s

15 R

ecov

ered

res

idue

man

agem

ent

1 H

omog

enei

ty o

f ch

emic

al c

ompo

sitio

n

5 W

ell c

onst

ruct

ion

inte

grity

6 F

ract

urin

g ho

rizon

iso

latio

n

2 C

hem

ical

qua

lity

cont

rol a

nd v

aria

bilit

y

7 P

roce

ss p

ress

ure

cont

rol

23 0

24 0

25 0

26 0

27 0

28 0

29 0

30 0

31 0

32 0 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

To

tal R

isk

Current Risk

Risk After Strategy Implementation

Risk target

COLUMN HEIGHT SHOWS RISK QUOTIENT

Risk Target

Explanatory Note:A total risk value of 1 (which is a target value) means that there is a around a 1 in 10 chance of a Moderate (Level = 10) consequence, or similarly, around a 1 in 100 chance of a Major (Level = 100) consequence.

Figure 7-3 Overall Risk Profile - With Mitigation Actions

Page 65: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5 59

8

8 Water Quality Monitoring Programs

The monitoring programs have been developed to provide further assurance in relation to frac fluid composition quality control, and to verify assumptions made in relation to the persistence and recovery

of fracturing fluids in the receiving environment. The sampling schedule for each phase of monitoring and analysis parameters are outlined herein and have been revised based on recent guidance from DERM regarding testing parameters for hydraulic fracturing.

1. Input Fluid Sampling Program

The Input Fluid Program schedule will involve the analysis of the total mixture of fraccing fluid (with source water) being pumped down hole from 6 hydraulically fractured wells in the first instance. Three

gel based fracturing fluid wells and 3 water based fracturing fluid wells will be sampled. A summary of the proposed sampling schedule is provided in Table 1 and the parameters for testing are outlined in Table 2.

Table 1 Input Fluid Program Sampling Schedule

Sample Frequency TOTAL

Site 1 - 20# Delta 140 frac fluid

Site 2 - 20# Delta 140 frac fluid

Site 3 - 20# Delta 140 frac fluid

Site 4 – Water frac fluid

Site 5 – Water frac fluid

Site 6 – Water frac fluid

1 sample during frac

6

Table 2 Parameters for to be tested for all monitoring phases

Parameters for Testing Justification

pH, TDS, Ca, Mg, Na, K, Cl, SO4, HCO3, Sb, As, Ba, B, Cd, Cr, Cu, Total CN, F, Pb, Mn, Hg, Mo, Ni, NO3-N, NO2-N, Se, Ag, Hardness, Colour, Turbidity, Al, NH3-N, S2-, Fe, Zn

Adherence to Australian Drinking Water Standards

Benzene, toluene, ethylbenzene, ortho-xylene, para-xylene, meta-xylene, total xylene, naphthanlene, phenanthrene, benzo[a]pyrene Formaldehyde, EC, Temperature, DO, residual alkali, SAR, ethanol

DERM Fraccing Requirements

• Acetic Acid • Monoethanolamine Borate • Sodium (included in ADWG suite) • Potassium (included in ADWG suite) • Total alkalinity, bicarbonate, carbonate, CO2 • Chloride (included in ADWG suite) • Hydroxide • Dissolved Fe, total Fe (included in ADWG suite), Ferrous Fe • Sulfite

Chemicals of potential concern (COPCs) within Frac Fluid, i.e. • Sodium Hypochlorite* • Acetic Acid • Potassium Carbonate • Potassium Chloride • Ferric Chloride • Monoethanolamine Borate • 1,2 Benzisothiazolin-4-one* • Sodium sulfite

* 1,2 Benzisothiazolin-4-one, hypochlorite and guar gum (additional COPCs) are unable to be analysed using conventional techniques

2. Initial Flow back Sampling Program

The flow back sampling program will attempt to further qualify the concentrations of recovered fracturing fluid and to verify the assumptions of degradation of potential COPCs assumed (from

Page 66: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

8 Water Quality Monitoring Programs

60 42626654/01/5

literature studies) in the Hydraulic Fracturing Risk Assessment. Sampling will commence immediately

when the wells start to produce flow back water (containing fraccing fluid) and will be sampled at a regular interval thereafter (dependent on flow rates) as part of the Long Term Produced Water sampling. The flow back water from these wells will be analysed for parameters listed in Table 2 as

per the schedule outlined in Table 3.

Table 3 Initial Flow back Sampling Schedule

Sample Frequency

Site 1 - 20# Delta 140 frac fluid

Site 2 - 20# Delta 140 frac fluid

Site 3 - 20# Delta 140 frac fluid

Site 4 – Water frac fluid

Site 5 – Water frac fluid

Site 6 – Water frac fluid

To be advised based on flow back rates, provisionally one week after initial

production.

Ecotox testing will also be undertaken on the flow back water to assess its toxicity to receiving environments in comparison to non-fracced offset wells in close proximity to the fracced wells. Due to

the high salinity of the produced water, laboratory analyses will be undertaken on diluted samples. The conductivity will be reduced through dilution to a level that test organisms can tolerate (in the order of 3000µS) so that any toxicity in the sample could be attributed to effects other than salinity. A similar

dilution factor will be applied to account for heavy metals that are naturally occurring in the produced water. This is a requirement of DERM within the EA conditions for Hydraulic Fracturing, and is required to

finalise the current eco toxicity assessment.

Table 4 Sampling Frequency for Ecotox Analysis of Flow back water & Offset Wells

Sample Type Number of Samples

Flow back water from Gel Fracture 1 site

Flow back water from Water Fracture 1 site

Offset well (in proximity to gel fracced well) 1 site

Offset well (in proximity to water fracced well) 1 site

Total 4

3. Longer Term Produced Water Sampling Program

The produced water sampling program is designed to qualify the long term risk of hydraulic fraccing fluid additives being present in the produced water several months after the well has been fractured.

These results will be used to verify whether it is likely that fracturing fluids are present in produced water despite the significant dilution and geochemical processes that occur in groundwater.

This phase of monitoring will involve sampling hydraulically fractured wells that have been producing return water for at least 1 month and analysing for the parameters outlined in Table 2. The two offset

Page 67: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

8 Water Quality Monitoring Programs

42626654/01/5 61

wells used for Ecotox testing will also be analysed to identify any variations between the quality of

produced water from fracced and non-fracced wells. The sampling schedule is outlined in Table 5.

Table 5 Produced Water Sampling Program

* The frequency of sampling events will be assessed throughout the program based on flow back rates and the consistency of the water quality results.

Sample Frequency Sampling Events

Site 1 - 20# Delta 140 frac fluid

Site 2 - 20# Delta 140 frac fluid

Site 3 - 20# Delta 140 frac fluid

Site 4 – Water frac fluid

Site 5 – Water frac fluid

Site 6 – Water frac fluid

Offset well (in proximity to gel fracced well tested for Ecotox)

Offset well (in proximity to water fracced well tested for Ecotox)

Monthly 3

Page 68: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5 62

9

9 Conclusions

From a conceptual model perspective the identified plausible risks associated with the proposed hydraulic fracturing activities relate to the injection of hydraulic fracturing chemicals into the coals, with

inadvertent migration into the overlying springbok aquifer, and associated potential impact to proximal groundwater wells utilised for amenity or stock purposes. The potential mechanism for this is uncontrolled fracturing in upper coals seams where these are in direct contact with the Springbok, or

in areas where the confining layer is limited in thickness.

Based on the limited connectivity between the coals and the Springbok, it is considered unlikely that hydraulic fracturing within the coals will extend up into the Springbok, with associated discharge of

fracturing chemicals. Australia Pacific LNG has elected to apply additional risk controls measures between the upper coals in the Walloons and the permeable section of the Springbok. Australia Pacific LNG’s policy will include an assessment of the barrier between the upper coal seam of the Macalister

seams and the permeable section of the Springbok. If this barrier is assessed to be inadequate the upper Macalister coal seam will not be perforated and thus not fractured as a precautionary measure until further study is completed to assess the potential impact of fracturing in proximity to this interface.

Additional assessment and design work is required before this policy is changed, which may be possible with completion of detailed pilot trials with a range of risk management issues.

Not withstanding the above, it is anticipated that 60-80% of fracture fluids injected will be removed on

development of the CSG production wells, and rapid attenuation of residual chemicals is anticipated based on their physio chemical properties. A programme of pilot fracture monitoring has been proposed to validate this. In relation to the toxicity of fracturing fluids as they are injected into the

coals, a limited number of these chemicals have potential environmental toxicity based on available toxicity data. Of these ‘potentially’ hazardous chemicals, several are classed as food grade at the concentrations being used, and for the remainder these are likely to be either neutralised or degraded

within days. As such the risks associated with hydraulic fracturing chemical injected into the coals is assessed to be low.

The identified risks associated with process relate to either direct injection of the chemicals into near

surface aquifers (through casing failure, etc), or near surface spills. These operational risks can be appropriately managed by the implementation of a range of engineering procedures in line with published best practice.

In general terms, with implementation of appropriate risk mitigation and engineering procedures, the risks to the use of groundwater for irrigation, stock or drinking water are low.

As such, based on current information and adoption of the specified controls, there is no identified

significant risk for the activities to cause environmental harm to the receiving environment.

Page 69: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5 63

10

10 References

American Petroleum Institute (API). 2009. Hydraulic Fracturing Operations – Well Construction and Integrity Guidelines - API Guidance Document HF1. First Edition. API Publishing Services.

Washington

American Petroleum Institute (API). 2010. Water Management Associated with Hydraulic Fracturing - API Guidance Document HF2. First Edition. API Publishing Services. Washington

Australia Pacific LNG, 2010. Australia Pacific LNG Project Environmental Impact Statement.

Day, R.W., Whitaker, W.G., Murray, C.G., Wilson, I.H., and Grimes, K.G., 1983. Queensland Geology. Geological Survey of Queensland Publication 383.

Ely, John W. 1985. Secondary recovery of oil, oil wells, hydraulic fracturing. Stimulation Engineering Handbook, ix, 357 p.

Exon, N.F., 1976. Geology of the Surat Basin in Queensland. Bulletin of the Bureau of Mineral

Resources and Geophysics, Australia, 166p.

Exon, N.F., and Burger, D., 1981. Sedimentary cycles in the Surat Basin and global changes in sea level. BMR Journal of Australian Geology and Geophysics. Volume 6, pp 153-159.

Green, P.M., Carmichael, D.C., Brain, T.J., Murray, C.G., McKellar, J.L., Beeston, J.W., and Gray, A.R.G., 1997. Lithostratigraphic Units in the Bowen and Surat Basins, Queensland. In: The Surat and Bowen Basins, South-East Queensland. Editor Green, PM. Queensland Minerals and Energy

Review Series. Queensland Department of Mines and Energy.

Palmer, I.D., Fryar, R.T., Tumino, K.A., and Puri, R. 1991. Comparison between gel-fracture and water-fracture stimulations in the Black Warrior basin; Proceedings 1991 Coalbed Methane

Symposium, University of Alabama (Tuscaloosa), pp. 233-242.

Scott, S., Anderson, B., Crosdale, P., Dingwall, J., and Leblang, G., 2004. Revised geology and coal seam gas characteristics of the Walloon Subgroup – Surat Basin, Queensland. Proceedings PESA

Eastern Australasian Basins Symposium II, Adelaide, 19–22 September, 2004. pp 345-355.

Scott, S., Anderson, B., Crosdale, P., Dingwall, J., and Leblang, G., 2007. Coal petrology and coal seam gas contents of the Walloon Subgroup – Surat Basin, Queensland, Australia. International

Journal of Coal Geology. Volume 70, pp 209-222.

URS Corporation. 2009. Water-related issue associated with gas production in the Marcellus Shale. URS Fort Washington, Chapter 2.

US EPA. 2004. Evaluation of impacts to Underground Sources of Drinking Water by Hydraulic Fracturing of Coalbed Methane Reservoirs. Office of Water, Office of Water & Office of Ground Water and Drinking Water. Washington.

Willberg, D.M., R.J. Card, L.K. Britt, M. Samuel, K.W. England, K.E. Cawiezel, H. Krus. 1997. Determination of the Effect of Formation Water of Fracture Fluid Cleanup Through Field Testing in the East Texas Cotton Valley. SPE #38620. Proceedings-SPE Annual Technical Conference and

Exhibition, October 5-8, 1997. Publication by Society of Petroleum Engineers, pp. 531-543.

Page 70: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5 64

11

11 Limitations

URS Australia Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Australia Pacific LNG and only those third

parties who have been authorised in writing by URS to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with

the scope of work and for the purpose outlined in the Proposal dated 6 August 2010.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS

assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared between 9 August 2010 to 17th November 2010 and is based on the

conditions encountered and information reviewed at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any

other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

Page 71: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

Hydraulic Fracturing Environmental Assessment

42626654/01/5

A

Appendix A Distribution of Fracs

Page 72: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

782 834 892 951 1012 1082 1153 1240 1318 1392 1468 1542

834 901 953 1007 1071 1156 1226 1313 1394 1474 1543 1643 935 871 824 770 701 645 600 551 375 328 297 264

890 958 1012 1058 1128 1224 1298 1378 1459 1535 1601 1698 995 925 881 823 753 692 642 585 398 351 320 286

943 1007 1060 1117 1194 1286 1371 1454 1531 1599 1664 1747 ### ### 947 872 796 737 678 622 566 389 347 310

997 1055 1125 1194 1268 1357 1455 1536 1593 1662 1739 1815 ### ### ### 913 835 776 719 665 607 552 375 336

1047 1117 1197 1269 1341 1424 1518 1596 1659 1734 1812 1876 ### ### ### 989 876 807 751 699 641 580 534 362

1111 1185 1271 1344 1410 1493 1582 1672 1737 1813 1880 1944 ### ### ### ### 919 835 771 720 660 603 558 398

1176 1247 1336 1415 1483 1560 1660 1756 1825 1882 1937 1999 ### ### ### ### 946 849 782 733 684 628 580 546

1235 1309 1402 1488 1562 1641 1749 1840 1893 1945 1999 2058 ### ### ### ### 949 852 791 747 701 646 600 566

1298 1389 1477 1567 1652 1729 1817 1896 1963 2017 2072 2151 ### ### ### ### 957 862 795 752 708 653 608 579

1343 1451 1553 1639 1727 1790 1852 1928 2013 2076 2150 2243 ### ### ### ### 978 892 817 756 706 655 601 580

1387 1521 1633 1721 1799 1855 1892 1957 2038 2110 2182 2277 ### ### ### ### ### 925 853 783 710 645 579 574

534 610 701 768 835 865 884 894 906 926 947 940 940 932 930 944 970 877 946 1000 1041 1056 1062 1041 1028 1016 1004 1003 1030 1112 1207 1282 1370 1472 1609 1730 1811 1885 1937 1970 2016 2069 2138 2202 2269 2342 2402 2461 2498 2483 2436 2388 2328 2266 2187 2130 ### ### ### ### ### 964 904 831 736 631 543 576

639 718 829 952 1013 1020 1022 1028 1012 1012 1004 994 989 1002 1014 1030 1052 975 1048 1111 1152 1161 1155 1137 1115 1099 1073 1070 1091 1157 1268 1355 1445 1566 1712 1821 1911 2004 2051 2058 2078 2106 2170 2227 2273 2304 2352 2392 2429 2457 2457 2433 2386 2302 2229 2156 ### ### ### ### ### ### 968 894 807 706 621 632

748 837 948 1059 1116 1109 1101 1093 1076 1063 1050 1046 1050 1064 1079 1095 1119 1044 1147 1241 1304 1318 1285 1237 1203 1169 1123 1116 1149 1211 1322 1431 1525 1641 1784 1914 2021 2131 2183 2175 2169 2195 2237 2296 2320 2265 2341 2393 2424 2447 2430 2438 2420 2331 2233 2146 ### ### ### ### ###

840 923 1022 1099 1151 1155 1153 1144 1124 1103 1092 1098 1107 1114 1129 1149 1172 1101 1210 1358 1446 1452 1391 1309 1250 1206 1169 1174 1208 1279 1367 1471 1574 1689 1835 1968 2081 2181 2240 2272 2307 2336 2356 2378 2386 2309 2364 2399 2399 2387 2329 2351 2383 2308 2223 2134 ### ### ### ### ###

908 983 1057 1109 1153 1176 1192 1184 1157 1133 1135 1144 1155 1156 1169 1190 1105 1155 1240 1358 1426 1447 1400 1317 1260 1227 1219 1235 1266 1316 1391 1489 1610 1736 1879 2021 2144 2238 2302 2381 2447 2463 2486 2459 2455 2424 2397 2370 2323 2256 2213 2229 2251 2204 2177 2119 ### ### ### ### ###

945 1010 1072 1120 1167 1200 1222 1215 1190 1176 1181 1190 1198 1202 1212 1227 1143 1189 1244 1318 1361 1376 1350 1301 1252 1236 1238 1251 1287 1339 1405 1508 1636 1772 1915 2074 2199 2280 2331 2418 2515 2571 2595 2552 2514 2468 2392 2317 2226 2167 2149 2157 2159 2137 2105 2048 ### ### ### ### ###

966 1023 1075 1132 1190 1224 1241 1242 1231 1231 1233 1238 1234 1234 1238 1249 1163 1191 1234 1284 1304 1306 1301 1278 1249 1239 1237 1252 1303 1362 1427 1531 1658 1791 1933 2081 2190 2235 2285 2379 2516 2633 2671 2655 2618 2541 2415 2272 2152 2105 2084 2087 2097 2085 2039 1983 ### ### ### ### ###

983 1027 1080 1138 1204 1247 1266 1274 1279 1279 1274 1267 1254 1251 1256 1266 1178 1206 1231 1255 1252 1248 1255 1260 1243 1233 1238 1260 1320 1395 1465 1559 1684 1820 1943 2050 2153 2202 2261 2350 2498 2632 2698 2725 2710 2599 2410 2244 2058 1978 1982 2023 2046 2029 1990 1936 ### ### ### ### ###

990 1030 1080 1144 1216 1257 1282 1296 1301 1296 1288 1280 1269 1263 1261 1262 1185 1210 1226 1232 1223 1220 1222 1229 1219 1215 1240 1270 1328 1402 1481 1574 1706 1839 1926 2010 2113 2205 2262 2327 2450 2598 2699 2767 2779 2672 2464 2214 1953 1856 1889 1946 1996 1966 1930 1887 ### ### ### ### ###

1002 1042 1090 1151 1215 1260 1289 1302 1308 1303 1292 1283 1273 1267 1261 1172 1191 1214 1227 1229 1217 1206 1203 1207 1200 1200 1225 1267 1323 1401 1485 1581 1704 1815 1891 1967 2041 2109 2172 2266 2372 2569 2715 2803 2863 2810 2545 2152 1843 1762 1803 1874 1927 1904 1875 1856 ### ### ### ### ###

921 953 1115 1160 1215 1260 1286 1294 1303 1296 1282 1273 1267 1263 1171 1179 1191 1212 1231 1231 1221 1216 1210 1203 1192 1182 1199 1247 1320 1399 1495 1585 1671 1767 1852 1928 1999 1996 2006 2087 2231 2470 2720 2831 2940 3006 2639 2047 1662 1651 1737 1819 1869 1865 1837 1812 ### ### ### ### ###

978 1002 1021 1049 1215 1260 1280 1283 1283 1271 1258 1250 1149 1156 1166 1178 1191 1200 1218 1225 1226 1225 1226 1214 1196 1171 1182 1228 1301 1386 1480 1560 1634 1750 1841 1911 1974 1898 1704 1701 1920 2333 2643 2793 2893 2937 2577 1940 1548 1575 1666 1753 1816 1824 1798 1755 ### ### ### ### ### ###

1020 1034 1049 1075 1107 1134 1152 1150 1148 1140 1135 1133 1133 1141 1153 1162 1166 1175 1196 1217 1229 1236 1246 1230 1202 1177 1175 1214 1279 1360 1450 1540 1633 1755 1859 1930 1987 1941 1744 1731 1923 2296 2563 2743 2781 2684 2327 1769 1505 1564 1654 1723 1762 1758 1740 1700 ### ### ### ### ### ### ###

1055 1064 1074 1096 1121 1140 1151 1141 1137 1124 1117 1111 1103 1112 1129 1144 1138 1156 1185 1214 1230 1249 1258 1243 1209 1175 1163 1201 1252 1332 1426 1533 1649 1760 1893 2007 2062 2096 2065 2098 2223 2357 2547 2710 2686 2544 2207 1822 1606 1599 1661 1725 1746 1744 1703 1797 ### ### ### ### ### ### ###

1093 1101 1110 1126 1142 1152 1149 1124 1114 1098 1081 1067 1053 1065 1083 1109 1122 1143 1174 1210 1234 1256 1266 1244 1196 1159 1149 1174 1220 1294 1422 1556 1689 1826 1987 2117 2173 2218 2251 2278 2324 2407 2606 2740 2670 2529 2262 1943 1766 1684 1702 1754 1777 1773 1892 1806 ### ### ### ### ### ### ###

1119 1132 1137 1145 1158 1161 1150 1115 1089 1060 1042 1021 995 1004 1017 1051 1100 1128 1159 1210 1236 1261 1282 1267 1225 1191 1168 1163 1198 1289 1443 1606 1771 1945 2098 2213 2294 2357 2369 2374 2408 2513 2663 2746 2656 2522 2327 2103 1923 1838 1846 1841 1991 1977 1925 1818 ### ### ### ### ### ### ###

1131 1142 1151 1158 1163 1157 1143 1111 1070 1024 1004 980 950 943 938 970 1049 1090 1133 1197 1225 1272 1306 1313 1287 1214 1156 1133 1177 1309 1480 1664 1851 2032 2188 2324 2412 2441 2431 2418 2457 2556 2682 2753 2705 2568 2425 2245 2089 1988 2129 2105 2102 2080 1982 1865 ### ### ### ### ### ### ###

1140 1150 1160 1168 1166 1150 1128 1099 1060 1001 966 932 881 831 797 835 955 1048 1107 1159 1207 1279 1318 1322 1308 1229 1163 1124 1173 1358 1539 1713 1901 2098 2269 2441 2462 2391 2371 2362 2425 2532 2625 2686 2685 2594 2497 2369 2394 2262 2193 2212 2222 2179 2077 1963 ### ### ### ### ### ### ###

1159 1161 1162 1165 1170 1156 1123 1082 1041 978 921 854 756 648 571 641 825 959 1027 1050 1116 1251 1302 1274 1253 1220 1183 1156 1215 1377 1538 1712 1897 2113 2332 2595 2528 2274 2172 2196 2292 2406 2503 2565 2580 2552 2677 2595 2448 2311 2237 2261 2340 2321 2218 2038 ### ### ### ### ### ### ###

1180 1180 1167 1161 1167 1155 1115 1070 1026 959 868 785 660 570 446 475 727 906 931 944 997 1089 1138 1183 1172 1184 1183 1172 1220 1380 1559 1694 1840 2043 2271 2543 2446 2046 1807 1930 2082 2240 2373 2616 2652 2649 2620 2548 2533 2510 2447 2399 2420 2440 2309 2065 ### ### ### ### ### ### ###

1189 1199 1193 1181 1175 1154 1112 1064 1008 931 824 733 642 590 396 430 765 995 900 888 906 964 1007 1081 1131 1151 1148 1170 1266 1418 1550 1664 1791 1977 2159 2341 2225 1883 1662 1916 2077 2248 2415 2497 2538 2553 2515 2515 2573 2644 2607 2539 2471 2415 2256 1992 ### ### ### ### ### ### ###

1193 1204 1216 1217 1196 1157 1114 1064 996 913 806 740 687 604 637 572 800 959 879 866 880 936 972 1009 1072 1138 1167 1211 1302 1424 1540 1637 1756 1906 2013 2200 2132 1977 1883 1929 2004 2129 2271 2360 2399 2428 2407 2427 2450 2532 2603 2601 2509 2363 2137 1710 ### ### ### ### ### ### ###

1178 1194 1210 1230 1201 1164 1109 1038 981 921 847 764 716 695 668 730 823 863 872 884 892 928 974 1000 1024 1091 1190 1241 1324 1416 1512 1610 1848 1950 2031 2053 2031 1956 1888 1896 1937 2007 2107 2169 2241 2257 2247 2263 2330 2426 2525 2514 2446 2267 1829 1578 ### ### ### ### ### ### ###

1170 1191 1197 1191 1157 1130 1083 1024 972 933 884 796 776 767 729 793 847 846 889 924 921 951 1001 1026 1055 1098 1168 1229 1303 1371 1457 1705 1836 1887 1919 1938 1937 1902 1853 1860 1884 1911 1963 1977 2001 2028 2036 2053 2131 2223 2273 2256 2156 1888 1735 1621 ### ### ### ### ### ### 818 776 747 728 720 842

1187 1195 1197 1177 1152 1108 1058 1022 972 932 895 823 771 761 777 840 875 869 917 970 983 1001 1047 1074 1112 1139 1186 1230 1276 1312 1467 1649 1747 1805 1837 1841 1817 1804 1796 1794 1804 1819 1814 1762 1707 1649 1572 1658 1772 1877 1906 1891 1863 1805 1735 1641 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 836 769 718 701 685 677 677

1188 1196 1200 1178 1123 1068 1043 1030 979 931 890 848 822 818 837 887 923 944 985 1034 1062 1086 1124 1145 1168 1200 1232 1264 1287 1302 1442 1590 1689 1728 1747 1747 1729 1722 1728 1717 1687 1673 1553 1310 1302 1328 1433 1586 1680 1745 1768 1785 1760 1728 1652 1557 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 868 779 682 633 629 629 634 630

1163 1172 1164 1132 1071 1045 1042 1022 980 937 908 911 927 938 953 974 997 1039 1085 1148 1191 1184 1185 1191 1206 1223 1250 1287 1316 1315 1446 1557 1641 1669 1674 1672 1668 1660 1661 1652 1559 1356 1231 1215 1208 1231 1310 1457 1546 1593 1637 1672 1656 1616 1525 1571 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 813 713 592 ### ### 585 ### ###

1126 1112 1100 1076 1040 1036 1032 1008 984 975 972 1003 1020 1040 1061 1068 1086 1150 1218 1305 1335 1315 1272 1231 1240 1251 1270 1287 1298 1297 1439 1522 1599 1623 1634 1622 1612 1595 1591 1586 1495 1138 1106 1147 1192 1158 1188 1292 1396 1457 1501 1529 1532 1510 1435 1483 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 837 747 657 ### ### ### ### ###

1049 1003 970 944 922 921 924 921 932 952 975 1004 1031 1040 1076 1096 1137 1208 1278 1338 1352 1345 1342 1306 1284 1274 1292 1284 1257 1256 1292 1437 1498 1533 1538 1521 1489 1471 1465 1457 1395 1062 1038 1133 1227 1134 1089 1129 1232 1304 1351 1394 1406 1379 1457 1418 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 784 697 616 ### ### ### ### ### ###

990 943 902 892 884 896 920 945 979 1012 1043 1059 1105 1145 1173 1197 1279 1364 1390 1409 1387 1372 1377 1394 1353 1319 1303 1269 1239 1234 1255 1302 1434 1480 1502 1482 1459 1454 1447 1440 1385 1223 1014 1066 1154 1259 1213 1067 1102 1158 1206 1265 1264 1244 1369 1376 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 744 661 600 ### ### ### ### ### ###

917 856 824 831 857 886 916 939 976 1025 1046 1046 1118 1211 1245 1283 1382 1477 1478 1462 1427 1411 1416 1431 1421 1367 1292 1246 1212 1186 1205 1224 1235 1367 1398 1396 1427 1445 1441 1432 1399 1346 1229 1037 1217 1232 1222 1215 1064 1073 1125 1158 1162 1304 1480 1507 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 689 619 ### ### ### ### ### ### ###

893 802 785 800 827 871 905 931 972 1031 1025 1001 1082 1232 1331 1382 1464 1553 1526 1473 1446 1454 1479 1486 1435 1356 1303 1258 1196 1137 1124 1113 1111 1142 1179 1310 1357 1401 1421 1428 1418 1402 1368 1473 1421 1387 1284 1222 1216 1202 1079 1270 1286 1434 1432 1458 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 640 ### ### ### ### ### ### ### ###

858 779 761 767 793 846 899 937 994 1042 1037 1040 1112 1280 1424 1493 1556 1600 1561 1516 1486 1486 1504 1483 1422 1362 1333 1298 1200 1113 1081 1065 1046 1041 1058 1098 1262 1327 1385 1435 1451 1444 1425 1565 1573 1571 1564 1539 1489 1372 1226 1260 1275 1420 1418 1425 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 599 ### ### ### ### ### ### ### ###

786 732 718 739 767 817 874 935 1006 1047 1068 1072 1151 1313 1469 1547 1600 1633 1612 1597 1579 1554 1541 1494 1446 1418 1394 1332 1219 1135 1078 1043 1010 974 960 1001 1067 1294 1388 1448 1478 1476 1476 1631 1631 1630 1634 1642 1636 1577 1462 1246 1260 1414 1417 1411 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 891 ### ### ### ### ### ### ### ### ###

696 668 681 718 755 799 859 939 1003 1039 1080 1120 1204 1332 1474 1578 1643 1662 1670 1695 1690 1663 1625 1560 1526 1519 1480 1385 1235 1151 1073 1006 962 956 969 1003 1055 1169 1388 1460 1511 1521 1526 1681 1671 1661 1679 1699 1711 1683 1602 1458 1414 1416 1416 1412 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 770 ### ### ### ### ### ### ### ### ###

654 637 663 707 756 807 870 945 1000 1039 1095 1176 1245 1357 1464 1593 1680 1703 1734 1775 1791 1774 1725 1630 1609 1602 1574 1460 1267 1172 1079 971 929 956 978 1042 1088 1161 1360 1446 1522 1550 1564 1715 1712 1719 1734 1750 1765 1739 1677 1588 1621 1423 1420 1426 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 922 865 860 902 ### ### ### ### ### ### ### ### ### ### ### ### 589 ### ### ### ### ### ### ### ### ###

632 626 656 700 755 810 880 948 1006 1059 1130 1201 1265 1350 1452 1577 1685 1745 1780 1812 1837 1836 1799 1701 1661 1660 1663 1559 1333 1206 1113 959 951 997 1008 1056 1081 1128 1215 1412 1498 1551 1577 1752 1756 1764 1786 1798 1779 1765 1740 1677 1698 1429 1434 1430 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 932 856 833 845 894 947 989 ### ### ### ### ### ### ### ### ### ### 975 600 ### ### ### ### ### ### ### ### ###

### 3135 3042 2953 2998 3096 3186 3306 3446 3545 3490 3205 2816 2592 2477 2628 1024 1050 1079 1087 1125 1204 1400 1494 1554 1595 1789 1812 1813 1804 1801 1763 1742 1729 1679 1665 1396 1413 1405 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 954 909 850 822 821 845 887 933 981 ### ### ### ### ### ### ### ### ### ### 876 615 ### ### ### ### ### ### ### ###

### 3364 3323 3212 3331 3443 3524 3591 3681 3751 3720 3430 2817 2629 2709 2753 1065 1087 1111 1113 1139 1217 1296 1494 1570 1779 1838 1867 1866 1823 1808 1770 1719 1674 1598 1482 1320 1326 1328 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 872 847 814 795 794 812 845 880 913 962 ### ### 948 ### ### ### ### ### ### 923 711 656 604 ### ### ### ### ### ### ### ###

### 3626 3607 3407 3594 3720 3789 3811 3823 3831 3793 3680 3067 3243 2918 2886 1116 1119 1134 1142 1176 1243 1318 1507 1580 1817 1884 1906 1900 1866 1824 1772 1677 1554 1335 1220 1190 1199 1215 ### ### ### ### ### ### ### ### ### ### ### ### ### ### 898 865 810 792 788 804 833 859 875 893 941 962 953 911 873 928 994 942 831 762 754 731 691 636 ### ### ### ### ### ### ### ###

### 3786 3714 3490 3703 3876 3966 3968 3908 3799 3617 3328 2873 3294 3020 2869 1151 1132 1142 1160 1208 1274 1340 1506 1583 1844 1907 1927 1921 1888 1834 1752 1594 1326 1016 1076 1019 1003 1042 929 ### ### ### ### ### ### ### ### ### ### ### ### 906 932 976 917 866 851 851 854 860 867 890 918 891 865 853 843 826 803 778 754 746 740 719 676 616 ### ### ### ### ### ### ### ###

### 3534 3258 3297 3666 3936 4084 4084 3996 3816 3537 3196 2982 3197 3176 2865 1169 1146 1153 1161 1211 1279 1343 1507 1585 1837 1899 1940 1936 1891 1821 1716 1442 994 981 741 619 1779 618 ### 621 817 965 ### ### ### ### ### ### ### ### 920 892 885 952 980 948 910 881 860 852 857 872 845 763 734 750 759 762 762 744 723 721 694 669 639 ### ### ### ### ### ### ### ###

### 3134 3120 3333 3724 4035 4205 4205 4103 3915 3642 3342 3159 3141 3102 2931 1187 1161 1167 1169 1206 1272 1333 1505 1721 1805 1871 1919 1908 1863 1772 1586 1115 615 718 648 1701 1698 1704 ### ### ### 737 911 ### ### ### ### ### ### 926 876 841 826 829 859 858 830 806 794 778 748 743 668 ### ### ### ### 619 653 690 691 660 624 610 ### ### ### ### ### ### ### ### ### ###

### 2680 2954 3419 3906 4208 4373 4343 4220 4035 3792 3520 3291 3133 2988 2895 1207 1161 1174 1168 1178 1235 1422 1505 1704 1775 1843 1889 1870 1795 1633 1271 703 802 730 655 1685 1663 1647 ### ### ### ### 700 906 956 929 876 829 964 942 851 781 773 781 787 730 693 655 626 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### 2209 2713 3479 4217 4548 4639 4508 4330 4126 3877 3594 3318 3057 2848 2742 1214 1167 1176 1173 1174 1209 1395 1471 1678 1749 1812 1846 1823 1693 1351 957 720 830 761 704 1717 1686 1647 ### ### ### ### ### ### ### ### 665 820 ### 996 876 751 719 746 755 677 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### 1951 2558 3604 4779 5074 4934 4649 4374 4117 3847 3530 3220 2925 2718 2614 1195 1165 1171 1164 1171 1204 1378 1586 1655 1720 1776 1797 1758 1555 1182 818 932 861 787 724 654 1750 1713 ### ### ### ### ### ### ### ### ### 621 793 828 767 706 643 649 659 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### 1963 2476 3478 5245 5475 5105 4663 4290 3984 3690 3382 3065 2780 2584 2475 1182 1167 1160 1155 1169 1300 1365 1563 1622 1677 1729 1724 1629 1424 891 1024 960 887 811 733 653 1827 1815 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### 2169 2721 3568 5180 5431 5021 4522 4092 3752 3449 3142 2840 2599 2426 2335 1176 1175 1156 1160 1171 1295 1351 1539 1582 1626 1668 1625 1487 1304 1074 1033 976 888 799 709 622 1874 1868 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### 2443 3229 4184 5004 5115 4703 4230 3802 3453 3147 2832 2580 2383 2244 2164 1150 1164 1167 1167 1263 1292 1467 1511 1546 1575 1590 1481 1363 1272 1052 1009 945 848 754 629 1862 1881 1886 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## ### ### ### ### ### ## ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 926 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### 983 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### 983 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 645 ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### 938 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## 877 ### ### ### ### ## ### ### ### ###

### ### ### ### ### ### ### ### ### 969 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 822 ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 914 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## ### ### ### ### ### ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### 900 875 861 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### 987 942 909 888 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### 979 942 916 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### 971 943 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 883 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### 997 971 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 823 ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## ### ### ### ### ### ## ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 789 ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 902 ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 646 624 600 577 550 542 529 423 392 372

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 946 ### ### ### ### ### ### ### ### ### ### ### ### 0 0 0 0 0 0 0 0 0 0 0 753 724 695 672 648 615 599 589 567 533 430

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 999 992 995 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## ### ### ### ### ### ## ### ### ### 924 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 849 805 773 750 722 699 677 655 639 619 578

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 999 982 976 980 983 985 993 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 505 636 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 953 913 869 844 814 791 762 738 702 683 646

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 994 984 971 964 964 964 970 980 989 996 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 919 611 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 980 943 911 870 846 821 778 743 711

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 999 988 976 970 963 954 949 952 957 967 979 986 999 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 957 931 909 878 833 786

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 996 984 967 959 956 951 949 942 942 947 957 967 980 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 993 944 881

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 999 998 998 ### ### ### ### 996 993 988 981 959 949 945 943 939 939 940 935 936 945 958 983 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 974

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 981 980 980 984 986 985 983 980 977 973 958 942 935 932 930 928 928 931 932 928 937 955 985 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## ### ### ### ### ### ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 888 964 964 963 965 965 965 964 959 952 938 927 922 919 917 915 916 918 923 928 937 952 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### 869 873 874 947 947 948 950 943 931 928 920 911 903 901 899 898 900 905 912 923 938 960 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### 854 855 858 863 936 933 929 918 912 908 903 896 891 890 889 887 888 893 901 914 939 972 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### 842 843 843 847 848 839 901 897 894 891 888 884 881 881 881 881 882 885 891 911 941 964 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 973 874 764 658 561 429 348 263 194

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 906 806 703 605 470 396 313 245

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 952 845 749 651 561 432 365 294

### ### ### ### ### ### ### ### 742 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 992 884 788 689 598 524 404 336

### ### ### ### ### ### ### ### 960 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 925 826 724 643 569 447 395

### ### ### ### ### ### ### ### ### 826 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 973 879 783 704 628 548 452

### ### ### ### ### ### ### ### ### 788 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 946 857 774 700 626 555

### ### ### ### ### ### ### ### 914 823 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 916 836 764 685 612

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 950 880 816 747 674

### ### ### ### ### ### ### ### 994 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 928 855 787 724

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 992 895 818 746

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 937 842 771

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 908 826

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 991 918

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### 994 992 991 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 954 853 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 752 769 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

775 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

898 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 880 ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 994

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 971 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 944 893 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 988 914 855 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 982 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 914 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### 829 ### ### ### ### ### ### ### ### ### ### ### 931 828 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

923 665 684 787 926 ### ### ### ### ### ### ### 843 802 731 649 567 879 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 794

### ### ### ### 634 826 983 ### ### ### 920 807 772 726 664 572 ### 668 823 956 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### 747 982 ### 904 928 729 710 671 604 ### ### ### 632 761 895 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### 624 676 773 693 694 682 645 573 ### ### ### ### ### 689 809 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### 597 629 654 682 695 667 620 557 ### ### ### ### ### 600 711 860 991 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### 529 569 606 661 711 707 667 619 563 ### ### ### ### ### ### 655 751 815 909 899 810 786 760 818 893 ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### 568 642 722 761 722 678 632 592 550 ### ### ### ### ### 631 670 746 812 880 605 618 672 781 865 951 ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### 580 675 763 813 816 751 697 653 620 597 578 576 586 598 604 815 923 914 921 954 530 615 748 856 959 ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### 530 735 834 883 909 888 835 745 672 645 634 655 706 936 901 ### ### ### ### ### ### 527 639 935 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### 665 864 937 977 997 959 910 840 724 669 672 735 836 ### ### ### ### ### ### ### 814 766 784 964 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

574 ### ### ### 580 789 950 ### ### ### ### 942 873 804 715 911 816 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

796 542 ### 531 696 868 ### ### ### ### ### 972 883 826 772 762 992 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

926 932 ### 627 783 960 ### ### ### ### ### 996 877 803 783 783 958 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### 800 912 ### ### ### ### ### ### ### 837 749 723 767 820 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### 786 672 647 670 823 889 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### 971 711 614 591 606 733 992 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### 884 621 541 663 544 758 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### 715 ### ### ### ### 734 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### 710 ### ### ### ### ### 688 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### 951 587 ### ### ### ### ### ### 701 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### 697 ### ### ### ### ### ### ### 707 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### 547 ### ### ### ### ### ### ### 695 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 703 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

919 ### ### ### ### ### ### ### 583 ### ### ### ### ### ### ### 713 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### 893 ### ### ### ### ### ### 539 ### ### ### ### ### ### ### 680 989 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### 925 963 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### 887 858 822 959 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### 932 853 815 807 806 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### 928 843 799 786 780 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### 923 842 787 763 757 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### 904 827 772 745 777 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### 945 865 793 748 722 857 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### 979 899 820 753 705 874 905 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### 999 907 848 784 718 664 632 943 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

970 902 847 790 741 683 627 763 983 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

816 795 774 732 686 631 815 845 999 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

669 685 682 671 622 573 ### 847 988 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

557 599 600 577 543 725 646 831 948 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### 670 823 943 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### 683 830 945 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### 724 842 938 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### 648 739 821 909 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 748 864 867 944 ### ### ### ### ### ### ### ### ### ### ### 983 958 931

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 720 829 827 907 967 ### ### ### ### ### ### ### ### ### 989 967 959 953

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 694 796 884 860 916 981 ### ### ### ### ### ### ### 984 968 962 969 974

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 757 831 806 859 915 978 ### ### ### ### ### ### 966 956 980 990 982

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 687 766 829 792 844 917 ### ### ### ### ### 963 956 966 ### ### 991

### ### ### ### ### ### ### ### ### 986 980 ### ### ### ### ### ### ### 754 726 780 884 977 ### ### ### ### 944 948 986 ### ### ###

### ### ### ### ### ### ### ### ### 962 968 ### ### ### ### ### ### ### 703 ### 727 829 923 976 ### 980 ### 928 956 ### ### ### ###

### ### ### ### ### ### ### ### 969 960 995 ### ### ### ### ### ### ### 708 767 744 824 893 951 991 942 991 936 979 ### ### ### ###

### ### ### ### ### ### ### ### 969 971 ### ### ### ### ### ### ### ### 723 785 773 834 889 933 971 ### 992 946 986 ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 709 774 844 819 862 896 929 963 998 876 940 980 ### ### ### ###

### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 741 795 840 913 872 898 923 937 958 982 841 895 944 988 ### ### 976

### ### ### ### ### ### ### ### ### ### ### ### ### ### 706 776 830 870 918 987 924 936 944 951 956 965 819 854 896 939 960 960 925

### ### ### ### ### ### ### ### ### ### ### 731 768 793 854 909 942 966 ### ### 975 977 974 967 959 781 795 823 853 884 913 914 890

### ### ### ### ### ### ### ### 716 783 826 870 902 918 978 ### ### ### ### ### ### ### ### 985 963 782 781 794 816 839 873 878 854

### ### ### ### ### ### ### 727 968 ### 994 ### ### ### ### ### ### ### ### ### ### ### ### 995 888 781 777 780 788 813 839 843 825

### ### ### ### ### ### ### 793 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 898 782 768 772 773 795 810 809 799

### ### ### ### ### ### ### 809 939 ### ### ### ### ### ### ### ### ### ### ### ### ### ### 956 826 791 768 769 773 784 787 785 775

### ### ### ### ### ### 693 811 920 992 ### ### ### ### ### ### ### ### ### ### ### ### 958 967 863 813 788 781 786 787 776 767 759

### ### ### ### ### ### 695 798 881 921 926 942 940 961 ### ### ### ### ### ### ### ### 950 959 881 854 818 807 807 793 772 746 737

### ### ### ### ### ### ### 716 757 790 820 832 836 867 911 936 973 ### ### ### ### 930 935 853 869 867 846 845 834 811 786 753 721

### ### ### ### ### ### ### ### 711 736 753 755 756 776 791 801 833 899 960 ### 972 892 903 825 851 866 871 884 870 853 832 799 760

### ### ### ### ### ### ### ### ### ### ### ### ### 686 711 731 753 807 883 889 928 861 785 802 831 863 886 907 910 894 877 840 800

### ### ### ### ### ### ### ### ### ### ### ### ### 984 958 701 735 804 812 859 899 832 767 787 810 847 882 912 926 915 892 857 817

### ### ### ### ### ### ### ### ### ### ### ### ### 998 971 686 752 767 821 860 884 908 753 778 800 834 870 903 924 926 903 871 833

965 995 ### ### ### ### ### ### ### ### ### ### ### ### 683 720 707 778 829 861 884 904 741 765 789 826 854 889 917 925 911 877 837

915 963 ### ### ### ### ### ### ### ### ### ### ### 690 719 757 730 781 835 866 889 905 737 752 774 811 842 871 895 909 908 881 846

890 951 995 ### ### ### ### ### ### ### ### 686 697 720 746 780 748 794 839 872 894 814 735 748 769 801 827 851 871 890 895 872 841

882 941 986 ### ### ### ### ### ### ### ### 689 713 746 770 801 765 805 840 873 897 817 737 750 771 793 812 833 852 863 871 846 818

882 927 972 ### ### ### ### ### ### ### ### 693 731 767 797 749 791 824 852 879 905 828 747 760 779 798 809 824 838 839 835 807 777

878 921 965 ### ### ### ### ### ### ### 689 713 759 796 826 774 819 849 876 903 922 845 765 777 793 811 819 823 831 821 804 764 732

872 915 959 ### ### ### ### ### ### 687 713 741 792 826 856 800 848 885 904 924 939 778 791 799 813 823 823 818 815 799 761 720 690

862 906 945 984 ### ### ### ### ### 707 743 781 833 863 889 827 871 905 925 943 958 803 815 822 833 830 818 803 790 769 734 699 666

850 894 931 968 ### ### ### ### ### 721 769 829 881 908 929 855 892 924 946 967 983 829 837 841 849 836 813 788 765 743 715 682 640

840 881 923 963 ### ### ### ### ### 729 795 861 909 935 958 882 921 955 983 ### ### 863 865 864 863 835 800 769 746 724 701 677 636

834 874 922 968 ### ### ### ### ### 751 841 908 946 967 ### 951 ### ### ### ### 988 899 886 881 866 824 782 750 733 714 693 678 641

825 873 924 974 ### ### ### ### 696 812 910 982 ### ### ### ### ### ### ### ### 914 902 879 879 859 809 769 738 722 707 686 671 647

816 872 928 976 ### ### ### ### 761 906 ### ### ### ### ### ### ### ### ### 994 909 895 868 861 837 792 756 727 713 697 678 665 641

812 865 924 973 ### ### ### 686 838 960 ### ### ### ### ### ### ### ### ### 984 901 884 860 838 818 782 743 710 701 687 673 659 624

802 855 917 967 ### ### ### 738 883 980 ### ### ### ### ### ### ### ### 976 973 889 881 850 813 808 776 733 703 695 687 673 647 605

788 841 904 956 993 ### ### 761 894 988 ### ### ### ### ### ### ### ### 965 959 873 866 835 788 787 763 727 703 695 687 669 637 598

768 818 872 916 953 998 ### 748 884 992 ### ### ### ### ### ### ### 961 950 938 858 845 807 767 754 732 712 696 689 676 661 628 592

756 794 829 870 925 971 ### 696 854 965 ### ### ### ### ### ### 955 949 940 930 840 817 779 759 742 718 702 692 678 666 647 612 581

735 755 787 836 888 936 989 ### 782 906 988 ### ### ### ### 943 944 937 933 931 819 781 760 748 734 716 700 687 673 659 631 597 574

706 732 766 807 852 896 948 ### 716 826 922 991 ### ### ### 932 933 927 929 927 789 758 751 738 727 716 697 682 666 646 615 586 566

687 722 755 788 826 866 915 970 ### 783 861 856 906 943 980 903 917 919 930 908 772 754 744 731 728 711 692 680 656 630 600 574 550

682 716 747 776 811 851 890 932 981 ### 750 806 855 898 826 868 898 916 927 889 771 751 737 737 729 702 687 672 644 612 585 563 536

677 708 737 766 798 828 856 890 931 973 704 760 810 855 793 842 878 908 911 880 771 749 741 735 722 698 681 659 630 600 574 548 607

670 701 728 753 783 811 834 856 891 929 960 724 784 837 773 819 861 893 897 875 771 752 739 729 714 690 671 644 615 589 560 533 591

664 690 717 742 766 793 818 839 861 897 925 702 762 816 761 804 850 886 812 797 775 755 740 729 706 681 658 632 605 574 542 614 575

902 688 737 794 752 793 758 801 809 797 780 759 741 722 699 669 640 619 596 565 535 599 563

882 681 726 778 665 706 754 792 807 801 782 761 739 717 693 656 625 603 580 549 617 577 539

869 678 924 612 664 704 754 788 801 800 779 755 733 711 680 642 615 592 566 535 599 561 527

864 893 922 622 669 715 756 785 799 789 765 746 726 698 664 628 601 572 538 613 571 533 509

860 893 594 635 683 736 766 781 790 779 757 743 719 682 646 613 578 529 611 575 540 508 484

860 892 616 652 713 762 790 802 803 784 758 739 714 674 632 610 536 625 578 544 512 481 456

864 590 645 701 767 798 815 827 823 790 761 738 705 664 599 554 657 596 550 516 483 451 419

871 626 690 762 811 826 833 836 827 796 765 734 697 647 581 539 628 570 518 481 445 413 362

687 676 762 810 837 845 845 839 825 798 764 731 701 646 576 661 599 543 489 445 407 364 323

666 754 810 836 856 863 858 845 827 797 767 750 715 660 590 634 574 516 463 406 356 320 281

735 807 849 867 878 882 878 867 843 809 782 762 725 670 604 538 553 485 412 354 313 286 246

803 854 890 906 911 916 912 896 864 830 800 761 722 671 601 536 536 452 373 308 280 257 217

770 789 804 821 835 850 873 688 717 817 870 911 940 949 953 953 941 915 887 854 815 767 727 671 606 531 501 428 344 285 263 239 192

775 796 813 832 847 866 893 684 802 885 931 968 989 988 989 980 961 932 902 868 821 776 735 667 598 533 489 406 331 283 263 230 157

779 801 819 840 858 884 657 775 873 936 977 ### ### ### ### ### 978 944 908 872 830 777 729 669 602 538 482 399 327 292 263 213 153

784 805 827 847 866 615 756 848 917 976 ### ### ### ### ### ### 976 943 902 861 826 778 723 666 605 535 465 387 336 298 247 190 153

786 807 828 847 563 697 813 887 947 ### ### ### ### ### ### 997 971 938 899 858 824 778 726 670 610 535 458 392 342 296 242 194 149

788 808 827 847 606 749 848 912 968 ### ### ### ### ### ### 990 961 926 895 856 724 779 727 669 605 532 473 410 348 293 247 204 143

788 805 824 566 664 780 862 921 972 ### ### ### ### ### ### 977 945 914 882 850 819 774 722 659 595 531 479 420 350 295 252 216 140

785 802 820 610 717 793 865 923 967 ### ### ### ### 999 983 950 923 899 870 841 812 771 718 640 581 533 485 423 353 302 254 214 134

779 795 551 642 733 799 859 909 952 979 987 986 982 975 954 927 901 882 856 829 800 758 692 621 570 526 481 435 362 308 254 211 126

772 785 562 663 736 790 842 888 919 938 956 956 952 946 926 899 878 861 839 812 782 738 664 604 557 515 474 434 369 310 257 206 118

765 777 571 672 732 777 818 856 884 912 927 925 917 910 896 874 853 836 814 787 751 699 636 583 542 502 463 426 362 307 252 203 115

755 765 584 668 721 757 794 828 860 884 891 888 880 870 855 837 821 805 784 752 712 656 609 561 511 480 448 411 340 285 241 199 110

744 753 593 661 706 739 770 800 828 844 846 844 838 828 815 798 781 769 748 719 671 623 580 535 487 454 424 381 312 268 232 193 104

ATP606 (Combabula)

10%-30% Frac

ATP972(Horse Creek)

100% Frac

ATP973(Carinya)

100% Frac

PL209(Woleebee East)

40%-60% Frac

PL216(Dalwogan)

90%-100% Frac

ATP702(Condabri)

0%-20% Frac

ATP692(Talinga/Orana)

0% Frac

PL225/ATP692a(Kainama)

40%-60% Frac

ATP663(Zig Zag/Gilbert Gully)

40%-60% Frac

Page 73: 42626654 01 2 APLNG Hydraulic Fracturing Environmental ... · Hydraulic Fracturing Environmental Assessment j:\jobs\42626654\6 deliv\frac enviro assess\final\42626654_01_2_aplng hydraulic

URS Australia Pty Ltd

Level 17, 240 Queen Street

Brisbane, QLD 4000

GPO Box 302, QLD 4001

Australia

T: 61 7 3243 2111

F: 61 7 3243 2199

www.ap.urscorp.com