42-101 Report

Embed Size (px)

Citation preview

  • 8/8/2019 42-101 Report

    1/124

    INFERREDRESOURCEESTIMATIONOFLITHIUMAND

    POTASSIUMATTHECAUCHARIANDOLAROZSALARS,JUJUY

    PROVINCE,ARGENTINA

    PREPAREDFOR:

    TORONTO,CANADA

    PREPAREDBY:

    MARKKING,PH.D.,P.GEO

    CANADIANPROFESSIONALGEOSCIENTISTREGISTEREDWITH

    THEASSOCIATION

    OF

    PROFESSIONAL

    GEOSCIENTISTS

    OF

    NOVA

    SCOTIA

    GROUNDWATERINSIGHT,INC.30OCEANVIEWDRIVE,HALIFAX,NOVASCOTIA,B3P2H3

    FEBRUARY15th

    2010

  • 8/8/2019 42-101 Report

    2/124

    i

    TABLEOFCONTENTS

    ABBREVIATIONS ..............................................................................................................................ix

    SUMMARY......................................................................................................................................xii

    S.1TermsofReference ..............................................................................................................xii

    S.2PropertyLocation,DescriptionandOwnership ................................................................... xii

    S.3Geology.................................................................................................................................xii

    S.4Mineralization..xiii

    S.5ExplorationConceptandStatus .......................................................................................... xiii

    S.6Conclusions..........................................................................................................................xiv

    S.7Recommendations...............................................................................................................xiv

    1 INTRODUCTION........................................................................................................................... 1

    1.1AuthorizationandPurpose.................................................................................................... 1

    1.2SourcesofInformation.......................................................................................................... 1

    1.3ScopeofPersonalInspection ................................................................................................ 2

    2 RELIANCEONOTHEREXPERTS ................................................................................................... 5

    3 PROPERTYDESCRIPTIONANDLOCATION................................................................................... 7

    3.1Location ....................................................................................................................... .......... 7

    3.2PropertyArea ........................................................................................................................ 9

    3.3TypeofMineralTenure....................................................................................................... 12

    3.4Title...................................................................................................................................... 12

    3.5PropertyBoundaries............................................................................................................ 12

    3.6EnvironmentalLiabilities ..................................................................................................... 13

    3.7Permits................................................................................................................................. 13

    4ACCESSIBILITY,CLIMATE,LOCALRESOURCES,INFRASTRUCTUREANDPHYSIOGRAPHY.......... 14

    4.1Topography.......................................................................................................................... 14

    4.2Access .................................................................................................................................. 16

    4.3PopulationCentres.............................................................................................................. 16

    4.4Climate................................................................................................................................. 16

    4.5Infrastructure ...................................................................................................................... 18

  • 8/8/2019 42-101 Report

    3/124

    ii

    5 HISTORY .................................................................................................................................... 19

    6 GEOLOGICALANDHYDROLOGICALSETTING............................................................................ 20

    6.1RegionalStructuralFeatures ............................................................................................... 20

    6.2Regional

    Geology................................................................................................................. 20

    6.3LocalGeology ...................................................................................................................... 22

    6.3.1CarbonateFacies......................................................................................................... 23

    6.3.2BoraxFacies ................................................................................................................ 23

    6.3.3SulphateFacies ........................................................................................................... 24

    6.3.4ClayFacies................................................................................................................... 26

    6.3.5SodiumChlorideFacies............................................................................................... 26

    6.4Vertical

    Geological

    Section.................................................................................................. 27

    6.4.1UpperMixedSequence............................................................................................... 29

    6.4.2ThinBeddedSequence ............................................................................................... 29

    6.4.3CoarseBeddedSequence ........................................................................................... 30

    6.5Hydrogeology ...................................................................................................................... 32

    6.5.1SurfaceWater ............................................................................................................. 32

    6.5.2Groundwater............................................................................................................... 35

    6.5.3Water

    Balance............................................................................................................. 36

    7 DEPOSITTYPES.......................................................................................................................... 37

    8 MINERALIZATION...................................................................................................................... 39

    9 EXPLORATION ........................................................................................................................... 40

    9.1Overview.............................................................................................................................. 40

    9.2SurfaceSamplingProgram .................................................................................................. 41

    9.3SeismicGeophysicalProgram.............................................................................................. 44

    10

    DRILLING ................................................................................................................................. 47

    10.1ReverseCirculationDrillingProgram ................................................................................ 47

    10.2DiamondDrillingProgram................................................................................................. 59

    11SAMPLINGMETHODANDAPPROACH..................................................................................... 60

    11.1Background........................................................................................................................ 60

    11.2SurfaceBrineSamplingMethods ...................................................................................... 60

  • 8/8/2019 42-101 Report

    4/124

    iii

    11.3RCBoreholeSamplingMethods........................................................................................ 60

    11.4DDBoreholeSamplingMethods ....................................................................................... 61

    12SAMPLEPREPARATION,ANALYSESANDSECURITY................................................................. 62

    12.1Overview............................................................................................................................ 62

    12.2SamplePreparation........................................................................................................... 62

    12.2.1SurfaceBrineSamplePreparation............................................................................. 62

    12.2.2RCBoreholeBrineSamplePreparation..................................................................... 62

    12.2.3DDBoreholeCoreSamplePreparation ..................................................................... 62

    12.3BrineAnalysis .................................................................................................................... 63

    12.3.1AnalyticalMethods ................................................................................................... 63

    12.3.2Analytical

    Quality

    Assurance

    and

    Quality

    Control

    (QA/QC) ..................................... 63

    12.4GeotechnicalAnalyses....................................................................................................... 68

    12.4.1Overview ................................................................................................................... 68

    12.4.2 AnalyticalMethods .................................................................................................. 68

    12.5SampleSecurity ................................................................................................................. 69

    13 DATAVERIFICATION................................................................................................................ 70

    13.1Overview............................................................................................................................ 70

    13.2Site

    Visit .......................................................................................................................... ... 70

    13.3LaboratoryQA/QCResults ................................................................................................ 71

    13.4BrineCompositionTrends................................................................................................. 72

    13.5TechnicalCompetence ...................................................................................................... 72

    14 ADJACENTPROPERTIES........................................................................................................... 73

    15 MINERALPROCESSINGANDMETALLURGICALTESTING ........................................................ 75

    15.1Overview ............................................................................................................................ 75

    15.2Simulated

    Solar

    Evaporation

    Solubility

    Testing................................................................. 75

    15.2.1ExperimentalMethods .............................................................................................. 75

    15.2.2TestResults ................................................................................................................ 77

    15.2.3PhaseDiagrams.......................................................................................................... 81

    15.2.4DiscussionandConclusions ....................................................................................... 82

    16 MINERALRESOURCEESTIMATE............................................................................................. 84

  • 8/8/2019 42-101 Report

    5/124

    iv

    16.1Overview............................................................................................................................ 84

    16.2ConceptualGeologicModel .............................................................................................. 84

    16.3BlockModelConstruction ................................................................................................. 84

    16.4Resource

    Estimate

    Boundaries.......................................................................................... 87

    16.5DrainablePorosity ............................................................................................................. 89

    16.6LithiumDistribution........................................................................................................... 90

    16.7InferredinsituResourceEstimation ................................................................................. 94

    16.8CutoffAnalysis.................................................................................................................. 95

    17 OTHERRELEVANTDATAANDINFORMATION ........................................................................ 96

    18 INTERPRETATIONANDCONCLUSIONS ................................................................................... 97

    19

    RECOMMENDATIONS ............................................................................................................. 98

    19.1Objectives.......................................................................................................................... 98

    19.2HydrogeologicalInvestigations ......................................................................................... 98

    19.2.1ResourceDefinitionDrilling ....................................................................................... 98

    19.2.2PumpingTests............................................................................................................ 98

    19.2.3GeophysicalSurveys ................................................................................................ 100

    19.2.4MonitoringPrograms............................................................................................... 100

    19.2.5Revised

    Resource

    Estimate...................................................................................... 100

    19.2.6LongtermAquiferResponse ................................................................................... 100

    19.3BrineProcessDevelopment ............................................................................................ 100

    19.4EstimatedBudget ............................................................................................................ 101

    20 REFERENCES.......................................................................................................................... 103

    21 DATEANDSIGNATUREPAGE................................................................................................ 105

    22 ADDITIONALREQUIREMENTSFORTECHNICALREPORTSONDEVELOPMENT

    PROPERTIESANDPRODUCTIONPROPERTIES....................................................................... 107

    23 ILLUSTRATIONS ..................................................................................................................... 108

  • 8/8/2019 42-101 Report

    6/124

    v

    LISTOFTABLES

    3.1StatusofMineraExarS.A.mineralclaimsontheCauchariandOlarozSalars ................... 10

    8.1Comparative

    chemical

    composition

    of

    natural

    brines

    (wt

    %)............................................. 39

    10.1Brineconcentration(mg/L)anddensity(g/cm3)resultsfromRCBoreholeProgram ...... 48

    10.2Averageconcentrations(g/L)andassociatedratiosfrombrinesamplesfromtheRC

    BoreholeProgram............................................................................................................. 48

    10.3Resultsofdrainableporositytesting................................................................................. 59

    12.1CheckAssays(ASLvsUniv.Salta):RMAregressionstatistics ........................................... 66

    12.2Summaryofgeotechnicalpropertyanalyses.................................................................... 68

    15.1Concentration(wt%)anddensity(g/cm3)forthebrinefromboreholePE4 .................. 75

    15.2Massbalanceintermsofsalts,solutionandevaporatedwater ...................................... 77

    15.3Compositioninwt%andpropertiesoftheevaporatingbrine ......................................... 78

    15.4Chemicalcompositioninwt%andmoistureofharvestedsalts ....................................... 79

    15.5MineralizationofSaltsfromEvaporationTestat30C(4thStage) .................................. 80

    15.6MineralizationofSaltsfromSolubilityTestat15C(4thStage) ....................................... 80

    16.1Modellayerporosityestimates......................................................................................... 89

    16.2Inferredinsitulithiumresource........................................................................................ 94

    16.3Inferredinsitupotassiumresource .................................................................................. 95

    17.1Comparisonofselectedlithiumbrineresources .............................................................. 96

    19.1EstimatedBudget ............................................................................................................. 102

  • 8/8/2019 42-101 Report

    7/124

    vi

    LISTOFFIGURES

    3.1Locationmap ......................................................................................................................... 8

    3.2LAC

    property

    claims

    for

    the

    Cauchari

    Olaroz

    Project........................................................ 11

    4.1Topographymap ................................................................................................................. 15

    4.2MonthlyaverageprecipitationforSusques ....................................................................... 17

    4.3 MonthlyaverageprecipitationforOlacapato.................................................................... 17

    6.1 RegionalgeologyinthevicinityoftheLACProject............................................................ 21

    6.2 LocalgeologyoftheCauchariandOlarozSalars................................................................ 25

    6.3 ConceptualsectionoftheCauchariandOlarozSalars...................................................... 27

    6.4Conceptual

    stratigraphical

    column

    of

    the

    Cauchari

    and

    Olaroz

    Salars............................... 28

    6.5CauchariOlarozWatershed.............................................................................................. 33

    9.1Distributionoflithiumconcentrationinsurfacebrinesamples ......................................... 42

    9.2Distributionofpotassiumconcentrationinsurfacebrinesamples.................................... 43

    9.3Seismictomographylinescompletedduring2009............................................................. 45

    9.4Exampleseismictomographyresults(Line1)..................................................................... 46

    10.1PE1summarygeologiclogandbrineanalyses ................................................................ 50

    10.2PE

    2summary

    geologic

    log

    and

    brine

    analyses ................................................................ 51

    10.3PE3summarygeologiclogandbrineanalyses ................................................................ 52

    10.4PE4summarygeologiclogandbrineanalyses ................................................................ 53

    10.5PE5summarygeologiclogandbrineanalyses ................................................................ 54

    10.6PE6summarygeologiclogandbrineanalyses ................................................................ 55

    10.7PE7summarygeologiclogandbrineanalyses ................................................................ 56

    10.8PE8summarygeologiclogandbrineanalyses ................................................................ 57

    10.9PE

    9summary

    geologic

    log

    and

    brine

    analyses ................................................................ 58

    12.1RMAplotforthefittedmultipleregressionmodelforpotassium ................................... 66

    12.2RMAplotforthefittedmultipleregressionmodelforlithium......................................... 67

    12.3RMAplotforthefittedmultipleregressionmodelformagnesium ................................. 67

    14.1LocationmapofOrocobreclaims ..................................................................................... 74

    15.1EvaporationpathofbrinefromCauchariSalar................................................................. 81

  • 8/8/2019 42-101 Report

    8/124

    vii

    15.2EvaporationpathofbrinefromCauchariSalar................................................................. 82

    16.1Planviewoftheblockmodelextent................................................................................. 86

    16.2Sectionshowingstratigraphywithintheblockmodel ..................................................... 87

    16.3Lateral

    extent

    of

    the

    inferred

    resource

    estimation

    zone.................................................. 88

    16.4Laterallithiumdistributionintheinferredresourceestimationzone. ............................ 91

    16.5Verticallithiumdistributionsintheresourceestimationzoneoftheblockmodel. ..... 92

    16.6Driftanalysisoftheblockmodelalongthexaxis............................................................. 93

    16.7Driftanalysisoftheblockmodelalongtheyaxis. ........................................................... 93

    16.8Driftanalysisoftheblockmodelalongthezaxis.......................................................... 94

    16.9Lithiumreservetonnageandgrade,asdeterminedbycutoffconcentration............... 95

    19.1The

    2010

    drill

    hole

    program.............................................................................................. 99

  • 8/8/2019 42-101 Report

    9/124

    viii

    LISTOFPHOTOS

    6.1BoundarybetweenCaucharyandOlarozSalars ................................................................. 22

    6.2Carbonate

    facies

    (sinter)

    in

    the

    western

    margin

    of

    Cauchari

    Salar .................................... 23

    6.3BoraxfaciesinwesternCauchari ........................................................................................ 24

    6.4ClayfaciesintheCauchariSalar ......................................................................................... 26

    6.5SodiumChloridefaciesintheOlarozSalar ......................................................................... 27

    6.6UpperMixedSequenceclaywithboraxmineralization ..................................................... 29

    6.7ThinBeddedSequenceshowingalternatingsandandhalitelayers................................... 30

    6.8SanddominantUnit ............................................................................................................ 31

    6.9Porous

    Halite

    in

    the

    Coarse

    Bedded

    Sequence................................................................... 31

    6.10RioRosariojustabovetheHighway74bridgecrossing................................................... 34

    6.11RioOlaatAchibarca .......................................................................................................... 34

    6.12RioTocomar8kmbelowAltoTocomar............................................................................ 35

    9.1BrinesamplingfromashallowpitinCauchari.................................................................... 41

    9.2Brinecollectionfromabandonedboraxproductionpit ..................................................... 41

    11.1Cyclonewithplasticbag.................................................................................................... 61

    11.2Rock

    chip

    tray

    with

    dry

    and

    wet

    samples.......................................................................... 61

    11.3Collectingtheundisturbedsamplefromsandcore.......................................................... 61

    11.4Collectingundisturbedsamplefromclaycore.................................................................. 61

    12.1Filtrationofbrineandclaymixture................................................................................... 63

    12.2Brineafterfiltration........................................................................................................... 63

    15.1Fiberglassevaporationpanandassociatedapparatus..................................................... 76

  • 8/8/2019 42-101 Report

    10/124

    ix

    LISTOFABREVIATIONS

    %: percentage

    C: temperatureindegreesCelcius

    AAS: atomicabsorptionspectometry

    ASTM: AmericanSocietyforTestingandMaterials

    B: boron

    b: width

    B2O3 : boronoxide

    B5O:borate

    C:carbon

    Ca: calcium

    CaCO3: calciumcarbonate

    CBS: coarsebeddedsequence

    Cc: coefficientofcurvature

    CCP:containercapacitypackage

    Cl: chloride

    Cl: chlorideion

    cm: centimetre

    CO3 :carbonate

    Cu: uniformitycoefficient

    d50 :mediandiameter

    DD: diamonddrilling

    DTRC:dualtubereversecirculation

    g/cm3: gramspercubiccentimetre

    g/L:gramsperlitre

    GPS: globalpositioningsystem

    H3BO3: boricacid

    ha: hectare

    HCO3 :bicarbonate

  • 8/8/2019 42-101 Report

    11/124

    x

    HQ:diamonddrillingdiameter

    Hz: hertz

    ICP: InductivelyCoupledPlasma

    JORC:Joint

    Ore

    Reserve

    Committee

    K: potassium

    K/Li:potassiumtolithiumratio

    K+: potassiumion

    kg: kilogram

    km:kilometre

    km2 :squarekilometre

    L:litre

    L/s: litrepersecond

    Li: lithium

    Li2CO3:lithiumcarbonate

    m: metre

    m/s:metrepersecond

    masl:metresabovesealevel

    mg:milligram

    Mg(OH)2 :magnesiumhydroxide

    mg/L: milligramsperlitre

    Mg/Li: magnesiumtolithiumratio

    Mg++:magnesiumion

    mm: millimetre

    mol%: molarpercentage

    Na+

    :sodium

    ion

    NCH: Chileanstandard

    ODEX: drillingmethod

    pH:measureofacidityoralkalinity

    PQ: drillingdiameterindiamonddrilling

    PVC: polyvinylchloride

  • 8/8/2019 42-101 Report

    12/124

    xi

    QA/QC: qualityassurance/qualitycontrol

    RC: reversecirculation

    RMA:reductiontomajoraxis

    rpm:

    rotationsper

    minute

    RWRC: relativewaterreleasecapacity

    SO4 : sulphate

    SO4/(Mg+Ca):molarratio

    SO4/K: sulphatetopotassiumratio

    SO4/Li: sulphatetolithiumratio

    SO4/Mg:sulphatetomagnesiumratio

    SO4=

    :

    sulphateion

    TBS:ThinBeddedSequence

    TDS:totaldissolvedsolids

    UMS: UpperMixedSequence

    USD:UnitedStatesdollar

    USDA:UnitedStatesDepartmentofAgriculture

    UTM: UniversalTransverseMercatorcoordinatesystem

    WGS:

    WorldGeodetic

    System

    wt%: weightpercent

    XRD:xraydiffraction

  • 8/8/2019 42-101 Report

    13/124

    xii

    SUMMARY

    S.1TermsofReference

    Thisreport(theReport)waspreparedforLithiumAmericasCorp.(theCompanyorLAC)to

    document

    the

    basis

    for,

    and

    results

    of,

    an

    inferred

    resource

    estimate

    on

    mineral

    claims

    held

    by

    the

    Company. Theestimateappliestolithium andpotassiumcontainedinbrineunderlyingtheOlarozandCauchariSalars,twosaltlakesinJujuyProvinceinnorthwesternArgentina.

    TheformatandcontentofthisreportisintendedtofulfilltherequirementsofNationalInstrument43101StandardsofDisclosureforMineralProjects,includingForm43101F1 TechnicalReportand Companion Policy 43101 CP ToNational Instrument 43101 Standards of DisclosureforMineralProjectsoftheCanadianSecuritiesAdministrators(NI43101).ReportpreparationwassupervisedbyMarkKingPh.D.,P.Geo.,aqualifiedperson (theQP)who isindependentofLAC,assuchtermsaredefinedbyNI43101.

    It

    is

    the

    intention

    of

    LAC

    to

    file

    this

    document

    with

    the

    Canadian

    securities

    regulatory

    authorities

    asanNI43101compliantTechnicalReport.

    S2.PropertyLocation,DescriptionandOwnership

    TheCauchariandOlarozSalarsarelocatedintheDepartmentofSusquesoftheProvinceofJujuyin northwestern Argentina, approximately 250 km northwest of San Salvador de Jujuy, theprovincial capital, and 100 km east of the international border with Chile. Average groundelevationofthesalarsis3950masl.

    LAC, through its Argentinian subsidiary Minera Exar S.A., has obtained legal title to mining andexploration permits covering a total of 36 974 ha over the Cauchari and Olaroz Salars (the

    CauchariOlaroz

    Project

    or

    the

    Project).

    The

    Provincial

    Government

    of

    Jujuy

    approved

    the

    LAC

    EnvironmentalImpactsReportfortheCauchariOlarozProjectexplorationworkbyResolutionNo.25/09onAugust26,2009.

    S.3Geology

    TheCauchariandOlarozSalarsareSilverPeak,Nevadatypeterrigenoussalars. Thesedepositsoccurinstructuralbasinsinfilledwithsedimentsdifferentiatedasinterbeddedunitsofclays,salt(halite), sands and gravels. They host a lithiumbearing aquifer that has developed during aridclimaticperiods. TheconceptualgeologicmodelfortheOlarozandCauchariSalarsincludes:

    AnUpper

    Mixed

    Sequence

    (UMS)

    This

    is

    the

    surface

    unit

    in

    the

    salars.

    It

    includes

    clays,

    thin

    evaporitefacies(sodiumchloride,mirabilite,sodaash,etc.),carbonatefacies,ulexitefaciesandthecoarseclasticsedimentsfromthealluvialconesencroachingonthesalars.

    AThinBeddedSequence(TBS) Thisunitisatintermediatedepthandiscomposedofthinlybeddedclay,silt,sandandevaporitefacies(mostlyhaliteandgypsum).ThissequenceiscoarsergrainedthantheUMSwhichisdominatedbyclay.

  • 8/8/2019 42-101 Report

    14/124

    xiii

    ACoarseBeddedSequence (CBS)This isthebottomsalarunitandconsistsofthick interlayeredsandandevaporite(mostlyhalite)beds.

    These sediment sequences are underlain by bedrock composed mostly of Lower Ordovicianturbidites(shaleandsandstone)intrudedbyLateOrdoviciangranitoids. Alluvialfansextendonto

    thesalars

    from

    surrounding

    higher

    ground.

    S.4Mineralization

    The brines of the Cauchari and Olaroz Salars have relatively high sulphate content and can beclassified as sulphate type brine deposits. The brines of Cauchari are saturated in sodiumchloride with total dissolved solids (TDS) on the order of 27% (324335 g/L) and an averagedensity of approximately 1.215 g/cm3. The other components present in these brines, whichconstitute a complex aqueous system, are: K, Li, Mg, Ca, SO4, HCO3, and B as borates and freeH3BO3.

    S.5

    Exploration

    Concept

    and

    Status

    The followingexplorationprogramswere initiated in2009,toevaluate the lithiumdevelopmentpotentialoftheProjectarea:

    SurfaceBrineProgram Brinesampleswerecollectedfromshallowpitsthroughoutthesalarstoobtain a preliminary indication of lithium occurrence and distribution. A total of 55 sampleswerecollectedforlaboratoryanalyses.

    SeismicGeophysicalProgramAseismicsurveywasconductedtosupportdelineationofbasingeometry,mappingofbasinfillsequences,and locating futureboreholesites. Atotalof24.7kmofseismicdatahavebeenacquiredalongsevenlines.

    Reverse Circulation (RC) Borehole Program Dual tube reverse circulation drilling is beingconductedtodevelopverticalprofilesofbrinechemistryatdepth inthesalarsandtoprovidegeologicalandhydrogeologicaldata. NineRCboreholeshavebeendrilledforatotalof1333m.760brinesampleswerecollectedforlaboratorychemicalanalyses.

    Diamond Drilling (DD) Borehole Program This program is being conducted to collectcontinuous cores for geotechnical testing (porosity, grain size and density) and geologicalcharacterization. Five DD boreholes have been drilled to date for a total of 1 280 m. 113undisturbed samples have been collected for geotechnical analyses. The boreholes werecompletedasobservationwellsforfuturebrinesamplingandmonitoring.

    An inferred in situ resource estimate was prepared, based on the integration, analyses andinterpretationofresultsfromtheaboveoutlinedexplorationprograms. Thefollowingresourcetonnagesareindicated:

    o 926000tonnesoflithiummetalor4.9milliontonnesoflithiumcarbonate;and

    o 7.7milliontonnesofpotassium.

  • 8/8/2019 42-101 Report

    15/124

    xiv

    This inferredresourceestimate is limited totheLACclaimareas inthenorthcentralpartoftheCauchariSalar.

    S.6Conclusions

    The

    key

    conclusions

    from

    this

    work

    are

    as

    follows:

    Thelithiumandpotassiumresourcedescribedinthisreportoccursinasubsurfacebrine. Thebrineiscontainedwithintheporespaceofsalardepositsthathaveaccumulatedinastructuralbasin.

    Aconceptualgeologicmodelhasbeendevelopedforthebasinwhich includesthreeprimary

    salarunits:theUMS,theTBS,andtheCBS. TheCBS isthemostverticallyextensiveunitandhas the highest porosity. Consequently, it contains the majority of the resource. The salardeposits are constrained on the sides of the basin by alluvium and pedimenttype deposits,knowninthisreportastheBorderFacies.

    Thebottom

    boundary

    of

    the

    resource

    estimate

    has

    been

    constrained

    to

    the

    depth

    of

    drilling

    conducted to date by LAC. Theexistingboreholes havenot encountered the bottom of thebasin. Estimatesfrom individualseismic lines indicatethatthebasinbottom isbetween300and600m,dependingonlocation. Thedepthsoftheboreholesusedintheinferredresourceestimaterangefrom176to249m. Consequently,theresourceremainsopenatdepth.

    Thenorthandsouth lateral boundaries of the resourceestimate (i.e.,along the longitudinalaxisofthebasin)havebeenconstrainedtothecentralclusterofboreholesdrilledtodate,withrelativelyhighconcentrationsateitherendofthiszone. Consequently,someextensionoftheresourceinthesedirectionsispossible,basedonfuturedrilling.

    Thehigh

    dissolved

    solids

    content

    of

    the

    brines

    is

    asource

    of

    variability

    in

    the

    existing

    analytical

    results. AdditionalanalyticalQA/QCrefinementshouldbeconducted inadvanceofthenextlevel of estimation. On balance, however, it is the opinion of the independent QP that theexistingbrinedatasetisacceptableforuseinaninferredresourceestimate.

    Extensivesamplingindicatesthatthebrinehasarelativelylowmagnesium/lithiumratio(lowerthanthree,onaverage),suggestingthatitwouldbeamenabletoconventionallithiumrecoveryprocessing. The brine is relatively high in sulphate which is also advantageous for brineprocessingbecausetheamountsofsodiumsulphateorsodaashrequiredforcalciumremovalwouldberelativelylow.

    S.7Recommendations

    Basedontheresultsofthecurrentinferredresourceestimateitisrecommendedtocontinuetheinvestigation of the lithium development potential of the CauchariOlaroz Project. It should benotedthatthecurrentinferredresourceestimateislimitedtoanareathatcoverslessthanhalfoftheLACminingandexplorationclaimsand isopenatdepth.Adetailedworkprogramhasbeenproposedandconsistsoftwomaincomponents:

  • 8/8/2019 42-101 Report

    16/124

    xv

    Hydrogeologicalinvestigationstofurtherrefinelithiumandpotassiumresourceestimatesandtoevaluatebrineextractabilityandlongtermaquiferhydraulics.

    A metallurgical program to develop a lithium extraction process and to carry out pilot scaleprocessinvestigations.

    ThisworkwouldsupportthecompletionofaprefeasibilitystudyfortheProjectduring2011,atanestimatedcostofapproximatelyUSD29.6million.

  • 8/8/2019 42-101 Report

    17/124

    1

    1INTRODUCTION

    1.1AuthorizationandPurpose

    Thisreport(theReport)waspreparedforLithiumAmericasCorp.(theCompanyorLAC)todocumentthebasisfor,andresultsof,aninferredresourceestimateonmineralclaimsheldbytheCompany. Theestimateappliesto lithiumcontained inbrinewithinthebasinoftheOlarozandCauchariSalars,twodrysaltlakesinJujuyProvinceofnorthwesternArgentina.

    TheformatandcontentofthisreportisintendedtofulfilltherequirementsofNationalInstrument43101StandardsofDisclosureforMineralProjectsincluding,Form43101F1 TechnicalReportand Companion Policy 43101CP To National Instrument 43101 Standards of DisclosureforMineralProjects,oftheCanadianSecuritiesAdministrators(NI43101). ReportpreparationwassupervisedbyMarkKingPh.D.,P.Geo.,aqualifiedperson(aQP)whoisindependentofLAC,assuchtermsaredefinedbyNI43101.

    ItistheintentionofLACtofilethisdocumentwithCanadiansecuritiesregulatoryauthoritiesasanNI43101compliantTechnicalReport.

    1.2SourcesofInformation

    The inferred resourceestimatedocumented inthis report isbasedon the following informationsources:

    Aconceptualgeologicmodelforthesalarbasins,whichinturnisbasedon:

    o ExpertiseinsalargeologyheldbymembersoftheLACtechnicalteam;

    o GeologicloggingoffivediamonddrillboreholesdrilledbyLAC;

    o GeologicloggingofninereversecirculationboreholesdrilledbyLAC;

    o AseismicsurveyconductedbyLAC;

    Subsurface distributions of lithium and other dissolved constituents, delineated through

    collectionand

    analysis

    of

    more

    than

    750

    brine

    samples

    from

    reverse

    circulation

    boreholes;

    Nearsurface distributions of lithium and other dissolved constituents, delineated throughcollectionandanalysisof55brinesamplesfromshallow,handdugpits;and

    Formation porosity measurements, obtained through the collection and analysis of 113undisturbedcoresamplesfromdiamonddrillboreholes.

  • 8/8/2019 42-101 Report

    18/124

    2

    Preliminary evaluation of lithium brine processing considerations is also reported herein.Processingwasevaluatedthrougha laboratorystudyofbrineevaporationandsaltssolubilitybytheUniversityofAntofagastainChile.

    Sourcesofqualitativeinformationwerealsoimportantasabackgroundforpreparingthisreport,

    andincluded

    the

    following:

    Varioustechnicalpapersonsalargeologyandsalarbrinechemistry;

    EvaluationoftheExplorationPotentialattheSalaresdeCauchariandOlaroz,ProvinceofJujuy,Argentina. InternalreportbyTRUGroupforLithiumAmericasCorp.(2009);

    VariousmapsoftheServicioGeolgicoMineroArgentino;

    Various discussions with LAC personnel familiar with the property and the LAC explorationprograms;

    DetaileddiscussionswiththeblockmodelspecialistfortheProject,regardingthedevelopmentandstructureofthemodel;and

    Personal inspection visits by the independent QP (Mark King) to the site, the field office inSusques,thelogisticsofficeinJujuy,andthecorporateofficeinMendoza(allinArgentina).

    TheQPacknowledgesthefullandcompletecooperationofallLACpersonnelandLACcontractors,in assisting in the preparation of this report. All site information and data were made readilyavailable and all topicswereopen for critical examinationand discussion. Site information and

    datawere

    stored

    in

    an

    orderly

    manner

    that

    facilitated

    retrieval.

    1.3ScopeofPersonalInspection

    TheQPvisitedtheProjectsiteandfieldofficeonDecember10and11,2009. Featuresthatwereinspectedandreviewedduringadrivingandwalkingtourofthesiteincludedthefollowing:

    Overallsitelayout,salarfeatures,andsurroundingtopography;

    Anoperatingdrillconductingtheongoingdrillingprogram;

    Mostprevious

    drilling

    sites,

    including

    cuttings,

    well

    completions,

    brine

    ponds,

    and

    new

    gravel

    roadsconstructedtothesites;

    Oneoftheshallowpitsusedforthenearsurfacebrinesamplingprogram;

    Perimeterareasandalluvialfans;

    Surfaceminingoperationsconductedbyothers;and

  • 8/8/2019 42-101 Report

    19/124

    3

    The general location of lithium brine exploration work conducted by others, on adjacentpropertiesintheOlarozSalar.

    ExplorationprogramcomponentsinspectedandreviewedattheSusquesfieldofficeincludedthe

    following:

    Samplingproceduresforbrine,rockchipsandcore;

    Sampleandcorestoragefacilities;

    Samplehandling,preparationandsecuritysystems;

    Examplecoresandrockchips;

    Fielddataentryandlogproductionprocedures;

    InteractionwiththecentraldatastoragetechnicianattheMendozacorporateoffice;

    Allplottedlogsandmappingavailableuptothetimeofthevisit;and

    Staffoperations,responsibilitiesandmentoring.

    The

    QP

    visited,

    and

    worked

    from,

    the

    corporate

    office

    in

    Mendoza

    from

    January

    22

    to

    January

    30,

    2010. RelevantProjectfeaturesinspectedandreviewedatthattimeincludedthefollowing:

    Hardcopiesofallanalyticaldataavailableuptothattime;

    Projecttechnicalpapers;

    Projectenvironmentalandpropertydocumentation;

    Draftingandadministrativesupport;

    Plottedborehole

    logs

    and

    maps;

    and

    Blockmodelconstructionanddevelopment.

    Throughthesepersonal inspectionsandadditionaloffsite interactionwiththeLACProjectteamand Project dataset, the independent QP has gained a clear understanding of the explorationprogram methods and results. Furthermore, the QP understands the manner in which theseresults support the inferred resource estimate, and the potential sources of uncertainty in the

  • 8/8/2019 42-101 Report

    20/124

    4

    estimate. Inconsiderationofthesesources,itistheopinionoftheQPthattheinferredresourceestimate is appropriate and reasonable for this stage of the Project. The rationale for thisconclusion is provided in appropriate locations throughout this document, and particularly inSection13.

  • 8/8/2019 42-101 Report

    21/124

    5

    2RELIANCEONOTHEREXPERTS

    ThepreparationofthisReportwassupervisedbytheindependentQP,MarkKing,Ph.D.,P.Geo.,

    at

    the

    request

    of

    LAC.

    Dr.

    King

    is

    a

    hydrogeologist

    with

    25

    years

    experience.

    He

    has

    provided

    senior technical direction and handson project management on large groundwater projectsthroughout Canada and the US. One of his areas of expertise is groundwater modelling, whichrelatescloselytothedevelopmentoftheblockmodelusedfortheinferredresourceestimate. Healso specializes in field delineation and characterization of solute distributions in groundwater,whichisaprimaryobjectiveoftheLACProject.

    A wide range of technical disciplines were required to address the objective of estimating andcharacterizingthelithiumresource. InpreparingtheReport,thesedisciplineswereledbyexpertsin each area. Overall review and verification of materials prepared by these experts wasconductedbyDr.King. ItisacknowledgedthatDr.Kingisnotanexpertinallthesedisparatefields

    (e.g.,

    salar

    geology,

    lithium

    processing).

    However,

    his

    expertise

    in

    quantitative

    aspects

    of

    hydrogeology and in the delineation of solutes in groundwater is an appropriate foundation forevaluationoftheinferredresourceestimate,andinformationusedinitsdevelopment. Membersofthepanelofexperts,andtheirvariousrolesinpreparingReportmaterialsareasfollows:

    EduardoPeralta,Ph.D.,GeologistExpertinsalargeology;

    PedroPavlovic,M.Sc.,ChemicalEngineerExpertinmineralandbrineprocessing;Section15(Mineral Processing) is presented largely as prepared by Mr. Pavlovic since he is a world

    renownedexpertinthissubjectarea;

    Frits Reidel, B. Sc., Hydrogeologist with 23 years of experience Expert in groundwaterresource evaluations, aquifer characterization, and mining hydrology; background includesexperienceonotherbrineprojectsinNorthandSouthAmerica;

    JohnKieley,P.Geo.(Canada) ProjectManagerandLACQPfortheProject;geophysicistwithmorethan35yearsexperienceinmineralexploration;

    Waldo Perez Ph.D., P. Geo. CEO and President of Lithium Americas Corp.; explorationgeologist.

    DaniloCastillo

    Specialist

    in

    block

    model

    construction

    for

    resource

    estimation,

    with

    Maptek

    in

    Chile.

    The methods, results and interpretations provided in this Report have been developed by theabove noted experts. Subsequent review and evaluation is provided by the independent QP,basedonbackgroundexpertiseandobservationsfromtheProjectsiteanddataset. Inevaluatingthisinformation,thekeyissueconsideredbytheindependentQPiswhetherthemethods,results

  • 8/8/2019 42-101 Report

    22/124

    6

    and interpretationsareappropriateandacceptabletosupportan inferredresourceestimate forthelithiumbrinedeposit.

    For the purpose of thisReport, the independent QP has relied on an ownership and claim TitleOpinionprovidedbythelawfirmofDePablos&Associates. Thisopinionstatesthatagreements

    withthird

    parties

    are

    valid,

    enforceable

    and

    comply

    with

    local

    laws.

    The

    QP

    has

    not

    researched

    titleormineralrightsoftheProjectandexpressesnolegalopinionastotheownershipstatusoftheCauchariOlarozProject.

  • 8/8/2019 42-101 Report

    23/124

    7

    3PROPERTYDESCRIPTIONANDLOCATION

    3.1Location

    TheCauchariandOlarozSalarsarelocatedintheDepartmentofSusquesintheProvinceofJujuyinnorthwesternArgentina. ThesalarsextendinanorthsouthdirectionfromS23o18toS24o05andinandeastwestdirectionfromW66o34toW66 o51.Theaverageelevationofbothsalarsis3950m.

    Figure3.1showsthelocationofbothsalars,approximately250kmnorthwestofSanSalvadordeJujuy, the provincial capital. The midpoint between the Olaroz and Cauchari Salars is locateddirectlyonHighway52,55kmwestoftheTownofSusqueswheretheLACfieldofficesarelocated.ThenearestportisAntofagasta(Chile),located530kmwestoftheProject.

  • 8/8/2019 42-101 Report

    24/124

    8

    Figure3.1:Locationmap.

  • 8/8/2019 42-101 Report

    25/124

    9

    3.2PropertyArea

    LAC has negotiated, through its Argentinian subsidiary Minera Exar S.A., mining and explorationpermits,andhasrequestedfromminingauthoritiesexplorationpermitscoveringatotalof48950haintheDepartmentofSusques,ofwhich36974hahavebeengrantedtodate.

    Figure 3.2 shows the location of the LAC claims in the OlarozCauchari Project. The claims arecontiguousandcovermostoftheCauchariSalarandtheeasternportionoftheOlarozSalar. Table3.1 provides a summary overview of the 70 properties acquired for the Project. The aggregateproperty payments required by LAC under the agreements references in Figure 3.2 is USD5,785,000.

    Under LACs usufruct agreement with Grupo Minero Los Boros S.A., LAC agreed to pay GrupoMineroLosBorosS.A.aroyaltyofUSD300,000atthebeginningofthecommercialproductionandathreepercentnetprofitinterestoncommercialproductionfromtheProject.LAChastheoption

    to

    purchase

    such

    royalty

    by

    a

    one

    time

    payment

    of

    USD

    7,000,000.

    Under

    LACs

    usufuctagreementwithBoraxArgentinaS.A.,LACisrequiredtopayBoraxArgentinaS.A.anannualroyalty

    ofUSD200,000commencingonceLACexercisesitsusufructoption. TherearenootherroyaltiesrelatedtotheCauchariOlarozProperties.

  • 8/8/2019 42-101 Report

    26/124

    10

    Table3.1:StatusofMineraEXARS.AmineralclaimsatCauchariandOlarozSalars.MINERAEXARS.A.

    CLAIM FILE CLAIM REQUESTED RECEIVED ABORIGINAL CONTRACT

    NAME NUMBEROWNER

    TYPE HA HA COMMUNITY TYPE

    1 ZOILA 341C44 BoraxArgentinaS.A. MP 100 101 OLAROZCHICO UsufructAgreement

    2 MASCOTA 394B44 BoraxArgentinaS.A. MP 300 302 MANANTIALES UsufructAgreement

    3 UNION 336C44 BoraxArgentinaS.A. MP 300 100 MANANTIALES UsufructAgreement

    4 JULIA 347C44 BoraxArgentinaS.A. MP 300 100 PUESTOSEY UsufructAgreement

    5

    SAENZPEA

    354

    C44

    Borax

    Argentina

    S.A.

    MP

    300

    100

    PUESTO

    SEY

    Usufruct

    Agreement

    6 DEMASIASAENZPEA 354C44 BoraxArgentinaS.A. MP 100 59 PUESTOSEY UsufructAgreement

    7 MONTESDEOCA 340C44 BoraxArgentinaS.A. MP 100 99 PUESTOSEY UsufructAgreement

    8 JULIOA.ROCA 444P44 BoraxArgentinaS.A. MP 100 100 PUESTOSEY UsufructAgreement

    9 ELENA 353C44 BoraxArgentinaS.A. MP 300 301 PUESTOSEY UsufructAgreement

    10 EMMA 350C44 BoraxArgentinaS.A. MP 100 100 PUESTOSEY UsufructAgreement

    11 URUGUAY 89N44 BoraxArgentinaS.A. MP 100 100 PUESTOSEY UsufructAgreement

    12 UNO 345C44 BoraxArgentinaS.A. MP 100 100 MANANTIALES UsufructAgreement

    13 TRES 343C44 BoraxArgentinaS.A. MP 100 100 MANANTIALES UsufructAgreement

    14 DOS 344C44 BoraxArgentinaS.A. MP 100 100 MANANTIALES UsufructAgreement

    15 CUATRO 352C44 BoraxArgentinaS.A. MP 100 100 MANANTIALES UsufructAgreement

    16 CINCO 351C44 BoraxArgentinaS.A. MP 100 100 MANANTIALES UsufructAgreement

    17 AVELLANEDA 365V44 BoraxArgentinaS.A. MP 100 100 PUESTOSEY UsufructAgreement

    18 BUENOSAIRES 122D44 BoraxArgentinaS.A. MP 100 100 PUESTOSEY UsufructAgreement

    19 MORENO 221S44 BoraxArgentinaS.A. MP 100 100 PUESTOSEY UsufructAgreement

    20 SARMIENTO 190R44 BoraxArgentinaS.A. MP 100 100 PUESTOSEY UsufructAgreement

    21 PORVENIR 116D44 BoraxArgentinaS.A. MP 100 100 PUESTOSEY UsufructAgreement

    22 SAHARA 117D44 BoraxArgentinaS.A. MP 300 300 PUESTOSEY UsufructAgreement

    23 ALICIA 389B45 BoraxArgentinaS.A. MP 100 99 PUESTOSEY UsufructAgreement

    24 SIBERIA 306B44 BoraxArgentinaS.A. MP 24 24 PUESTOSEY UsufructAgreement

    25

    CLARISA

    402B

    44

    Borax

    Argentina

    S.A.

    MP

    100

    100

    PUESTO

    SEY

    Usufruct

    Agreement

    26 DEMASIACLARISA 402B44 BoraxArgentinaS.A. MP 19 19 PUESTOSEY UsufructAgreement

    27 PAULINA 195S44 BoraxArgentinaS.A. MP 100 98 PUESTOSEVICATUA UsufructAgreement

    28 INES 220S44 BoraxArgentinaS.A. MP 100 102 PUESTOSEVICATUA UsufructAgreement

    29 MARIAESTHER 259M44 BoraxArgentinaS.A. MP 100 100 PUESTOSEY UsufructAgreement

    30 MARIACENTRAL 43E44 BoraxArgentinaS.A. MP 100 100 PUESTOSEVICATUA UsufructAgreement

    31 DELIA 42D44 BoraxArgentinaS.A. MP 100 101 MANANTIALES UsufructAgreement

    32 GRAZIELLA 438G44 BoraxArgentinaS.A. MP 100 100 MANANTIALES UsufructAgreement

    33 LINDA 160T44 BoraxArgentinaS.A. MP 100 100 MANANTIALES UsufructAgreement

    34 MARIATERESA 378C44 BoraxArgentinaS.A. MP 100 100 MANANTIALES UsufructAgreement

    35 JUANCITO 339C44 BoraxArgentinaS.A. MP 100 100 MANANTIALES UsufructAgreement

    36 ARCHIBALD 377C44 BoraxArgentinaS.A. MP 100 100 MANANTIALES UsufructAgreement

    37 SANNICOLAS 91R94 BoraxArgentinaS.A. MP 100 100 HUANCAR UsufructAgreement

    38 NELIDA 56C95 ElectroquimicaElCarmenS.A. MP 100 100 OLAROZCHICO UsufructAgreement

    39 MARIAANGELA 177Z03 ElectroquimicaElCarmenS.A. MP 100 100 OLAROZCHICO UsufructAgreement

    40 HEKATON 150M92 ElectroquimicaElCarmenS.A. MP 200 200 HUANCAR/OLAROZCHICO UsufructAgreement

    41 VICTORIAI 65E92 ElectroquimicaElCarmenS.A. MP 200 200 HUANCAR/OLAROZCHICO UsufructAgreement

    42 EDUARDO 183D90 ElectroquimicaElCarmenS.A. MP 100 100 OLAROZCHICO UsufructAgreement

    43 CAUCHARIESTE 1149L09 MINERAEXARS.A. MP 5900 980 HUANCAR Staked

    44

    CAUCHARISUR

    (1)

    1072

    L08

    MINERA

    EXAR

    S.A.

    EP

    1501

    PUESTO

    SEY

    Staked

    45 EDUARDODANIEL 120M44 Fundacion MisindelaPaz MP 100 100 OLAROZCHICO OptiontoPurchase

    46 JORGE 62L98 LuisLosiS.A MP 2352 2352 PUESTOSEY UsufructAgreement

    47 VERANOI 299M04LuisAustinCekadaandCamiloAlbertoMorales

    MP 2488 2488 PUESTOSEY OptiontoPurchase

    48 SANANTONIO 72M99 GrupoMineroSantaRitaS.R.L MP 2500 2500 PUESTOSEY OptiontoPurchase

    49 TITO 48P98 GrupoMineroSantaRitaS.R.L MP 200 100 PUESTOSEY OptiontoPurchase

    50 MARIAVICTORIA(2) 121M03 GrupoMineroSantaRitaS.R.L MP 1800 OLAROZCHICO OptiontoPurchase

    51 LUISA 61L08 GrupoMineroLosBorosS.A MP 4706 4705 HUANCAR/OLAROZCHICO UsufructAgreement

    52 ARTURO 60L98 GrupoMineroLosBorosS.A MP 5100 5061 HUANCAR/OLAROZCHICO UsufructAgreement

    53 ANGELINA 59L98 GrupoMineroLosBorosS.A MP 2346 2252 HUANCAR/OLAROZCHICO UsufructAgreement

    54 MIGUEL 381M05 MarioMoncholi MP 100 100 PUESTOSEY OptiontoPurchase

    55 CHICO 1231M09 MarioMoncholi MP 300 300 OLAROZCHICO OptiontoPurchase

    56 CHICO3(1) 1251M09 MarioMoncholi MP 1100 OLAROZCHICO OptiontoPurchase

    57 CHICO4(1) 1252M09 MarioMoncholi MP 1500 OLAROZCHICO OptiontoPurchase

    58 LAYAVEA 27R00 SilviaRojo MP 1117 1116 MANANTIALES OptiontoPurchase

    59 SULFA6 70R98 SilviaRojo MP 1759 1683 PUESTOSEY OptiontoPurchase

    60 SULFA7 71R98 SilviaRojo MP 1824 1824 PUESTOSEY OptiontoPurchase

    61 SULFA8 72R98 SilviaRojo MP 1946 1842 PUESTOSEY OptiontoPurchase

    62 SULFA9 67R98 SilviaRojo MP 1570 1570 PUESTOSEY OptiontoPurchase

    63

    CAUCHARINORTE

    349

    R

    06

    Silvia

    Rojo

    EP

    998

    998

    MANANTIALES

    Option

    to

    Purchase

    64 BECERRODEORO 264M44 SilviaSchapiro MP 100 100 PUESTOSEY OptiontoPurchase

    65 OSIRIS 263M44 SilviaSchapiro MP 100 100 PUESTOSEY OptiontoPurchase

    66 ALSINA 48H44 SilviaSchapiro MP 100 100 PUESTOSEY OptiontoPurchase

    67 MINERVA 37V02 SylviaValente MP 250 230 OLAROZCHICO OptiontoPurchase

    68 IRENE 140N92 TriboroS.A. MP 200 200 HUANCAR/OLAROZCHICO OptiontoPurchase

    69 CHINCHINCHULIII 202E04 VicenteCosta MP 1000 931 HUANCAR/OLAROZCHICO UsufructAgreement

    70 GRUPO LAINUNDADA 101C90 MINERAEXARS.A. MP 550 537 PUESTOSEY Purchase

    TOTAL 48950 36974

    MP:Miningpermit;EP:ExplorationpermitNotes:(1)Finalpermitpending.(2)ThispropertyisunderlegaldisputewithPropertyowner.

  • 8/8/2019 42-101 Report

    27/124

    11

    Figure3.2:LACpropertyclaimsattheCauchariOlarozProject.

  • 8/8/2019 42-101 Report

    28/124

    12

    3.3TypeofMineralTenure

    There are two types of mineral tenure in Argentina: Mining Permits and Exploration Permits.Mining Permits are licenses that allow the property holder to exploit the property, providingenvironmental approval is obtained. Exploration Permits are licenses that allow the property

    holderto

    explore

    the

    property

    for

    aperiod

    of

    time

    that

    is

    proportional

    to

    the

    size

    of

    the

    property

    (5yearsper10000ha). AnExplorationPermitcanbetransformedintoaMiningPermitanytimebeforetheexpirydateoftheExplorationPermit,bypresentingareportandpayingcanonrent.

    LAC acquired its interests in the Cauchari and Olaroz Salars through either direct staking orconcludingstraightforwardexplorationcontractswiththirdpartypropertyowners,givingLACtheoptiontomakegraduatedpaymentsoveraperiodoftimethatvariesfrom12monthstofiveyears

    dependingonthecontract. Afinalpaymentwouldresultinoneofthefollowing,dependingonthearrangementwiththeowner:

    Fullownership

    by

    LAC;

    LACacquiresanoptiontopurchasetheproperty;or

    LACacquirestherighttominethebrinesfromdepththroughpumpingbutthevendorretainstherighttomineboraxfromthesurface(UsufructContracts).

    LACcanabandonacontractonanymineralpropertyatanytime,dependingontheresultsoftheexploration.

    3.4Title

    TheLACclaimsarerecorded intheProvincialCatastroattheJuzgadoAdministrativodeMinasintheprovincialcapitalofSanSalvadorofJujuy. LAChasprovidedaTitleOpinionfromthelawfirmofDePablos&Associatesthathasbeenreviewedforthepreparationofthisreport. Thisopinionstatesthatagreementswiththirdpartiesarevalid,enforceableandcomplywithlocallaws.Miningconcessionshavebeenproperlyregisteredandareingoodstanding.

    3.5PropertyBoundaries

    The LAC claims follow the northnortheast trend of the Cauchari and Olaroz Salars. Figure 3.2

    showsthat

    the

    boundaries

    of

    the

    claims

    are

    irregular

    in

    shape

    (a

    reflection

    of

    the

    mineral

    claim

    law of the Province of Jujuy). While most countries use UTM coordinates, Argentina hasdeveloped its own grid system in Gauss Krueger Coordinates with the WGS 84 datum. Thecoordinates (GaussKrueger)oftheboundariesofeachclaimarerecorded inanexpediente intheclaimsdepartmentoftheJujuyProvincialMinistryofMines.

  • 8/8/2019 42-101 Report

    29/124

    13

    3.6EnvironmentalLiabilities

    LACcomplieswithlocalandnationalregulationsandadherestohighinternationalenvironmentalguidelines including the Equator Principles. Apreliminary review of the CauchariOlarozProjectsuggeststhatthepossibilityofsignificantenvironmentalliabilitiesislow. Lowpopulationdensity

    inthe

    region

    and

    distance

    from

    major

    urban

    centres

    places

    the

    attention

    of

    potential

    negative

    impactofabrineoperationonlocalfloraandfauna.

    The vegetation in the vicinity of the Cauchari and Olaroz Salars is typical of the high desertenvironment,consistingmainlyofxerophyteandhalophytebushes. Othervegetationincludestheyareta,copacopaandtolabushesaswellassomegrasses. Thereisnovegetationonthesurfacesofthesalars. ItthereforeappearsthatthepotentialdevelopmentoftheCauchariOlarozProject

    intoabrineoperationwillnothaveanysignificantimpactsonthelocalflora.

    Llamas,guanacosandvicunasarecommonintheregion.Thevicunawastraditionallyexploitedby

    localinhabitants

    for

    its

    meat

    and

    wool

    and

    also

    used

    in

    special

    rituals.

    Past

    un

    restricted

    hunting

    resulted in nearextinction of the vicuna, which is now protected under a 1972 internationalagreement signed between Argentina, Chile, Peru and Ecuador. It appears that the potentialdevelopment of the CauchariOlaroz Project into a brineoperation willnot have any significantimpactsonthelocalfauna.

    LAChaspreparedan inventoryofknownarcheologicalsites intheDepartmentofSusques. ThisinventoryshowsthattheCauchariOlarozProjectisremotefromthesesitesandthatthereforeanyimpactsareunlikely.

    Five local indigenouscommunitiesare located in thevicinityof theCauchariOlarozProjectareaand

    include:

    Olaroz

    Chico,

    Huancar,

    Pastos

    Chicos,

    Susques

    and

    Puesto

    Sey.

    LAC

    has

    designed

    and

    implementedaspecialcommunitiesrelationsprogramfor longtermcooperation. Inturnthesecommunities have provided required approvals on the LAC Environmental Impact Report (seeSection3.7below).

    3.7Permits

    The Provincial Government of Jujuy (Direccion Provincial de Mineria y Recursos Energeticos)approved the LAC Environmental Impacts Report (the EIA) for the CauchariOlaroz ProjectexplorationworkbyResolutionNo.25/09onAugust26,2009. SubsequentEIAupdateshavebeen

    presentedto

    accurately

    reflect

    the

    ongoing

    exploration

    program;

    these

    updates

    do

    not

    require

    Governmentapprovals. Additionalpermitsarenotrequired. LAChasalsoobtaineda licensefortheabstractionofgroundwatertomeetwatersupplyrequirementsfortheexplorationprogram.This license was granted by the provincial water authority (Direccion Provincial de RecursosHidricos)inJujuyandisingoodstanding,withallapplicabletariffspaidtodate.

  • 8/8/2019 42-101 Report

    30/124

    14

    4ACCESSIBILITY,CLIMATE,LOCALRESOURCES,INFRASTRUCTUREANDPHYSIOGRAPHY

    4.1Topography

    Figure4.1showsatopographymapoftheCauchariandOlarozSalars. Thesesalarsarebounded

    onthe

    west

    side

    by

    mountains

    that

    range

    in

    elevation

    from

    4600

    m

    to

    4900

    m

    and

    on

    the

    east

    sidebymountainsthatalsorisetoanelevationof4900m. TheCauchariSalarformsanelongatednortheastsouthwest trending depression extending 55 km in a northsouth direction andapproximately6to10kminaneastwestdirection. TheOlarozSalarcoversanareaof30kmby10to15km. Theelevationofthefloorofthesalarsrangesfrom3910mto3950m.

    ThevegetationofthesalarsistypicalforthealtiplanoandisdescribedinSection3.6.

  • 8/8/2019 42-101 Report

    31/124

    15

    Figure4.1:Topography.

  • 8/8/2019 42-101 Report

    32/124

    16

    4.2Access

    The main access to the Olaroz and Cauchari Salars from San Salvador de Jujuy is via pavedNationalHighways9and52,asshown inFigure3.1. Themidpointbetweenthetwosalars islocated directly on Highway 52 (Marker KM 192). Paso Jama, a national border crossing

    between

    Chile

    and

    Argentina

    (also

    on

    Highway

    52)

    is

    100

    km

    west

    of

    the

    Project.

    These

    highways carry significant truck traffic, transporting borate products from various salars innorthernArgentina. AccesstotheinterioroftheOlarozandCauchariSalarsispossiblethrougha gravel road, Highway 70, which skirts the west side of the salars and is used by borateproducers.

    4.3PopulationCentres

    Figure4.1showsthepopulationcentresaroundtheProjectarea. TheTownofSusques,45km

    east of the Olaroz Salar, is the nearest population centre (Figure 4.1). Further east lies the

    provincial

    capital

    of

    San

    Salvador

    de

    Jujuy

    (not

    shown)

    and

    the

    settlement

    of

    Catua

    to

    thesouthwest. All three centres could provide labour for a brine operation. At the Salar de

    Atacama, in Chile, the SociedaddeLitioused the local populationofPeine for the pondandpotassiumoperationsandbroughtinmoreexperiencedoperatorsfromAntofagasta.Aparallelsituation for a future operation at the Cauchari and Olaroz Salars would have local peopletrainedtoworkonthepondsystemandmorequalifiedpersonnelbroughtinfromSanSalvadorde Jujuy and Salta. Buses would provide transport to and from the camps for operationspersonnel.

    4.4Climate

    TheCauchari

    and

    Olaroz

    Salars

    are

    within

    aHigh

    Altitude

    Desert

    Belt

    which

    is

    characterized

    by

    extremesoftemperaturevaryingfrom 250Cto 300Cinthewinterandfrom150Cto200Cinthe summer (average: 50 C). Temperatures also vary widely between day and night.PrecipitationcomesmainlyintheformofrainduringthewetseasonfromDecemberthroughMarch. Figures 4.2 and 4.3 show monthly average precipitation records for Susques andOlacapato(locatedonthesouthsideofCauchariSalar).

    Significant winds are encountered throughout the year that can occasionally result in sandstorms,asiscommoninmanydesertregionsoftheworld. Highwindsareapositivefactorfor

    concentrating brines in evaporation ponds since evaporation rates are improved not only by

    hightemperature,

    but

    also

    by

    wind

    currents

    that

    remove

    humidity

    above

    the

    water

    surface.

  • 8/8/2019 42-101 Report

    33/124

    17

    Figure4.2: MonthlyaverageprecipitationforSusques. (From:Bianchi,etal.1992.)

    Figure4.3: MonthlyaverageprecipitationforOlacapato (From:Bianchi,etal.1992.)

  • 8/8/2019 42-101 Report

    34/124

    18

    4.5Infrastructure

    The Cauchari and Olaroz Salars are situated favourably to the north of the InterAndesTransmission Line that links the Argentina power grid to Chile's northern electric grid. Thistransmission line should provide the necessary power to the operating wells, pond transfer

    pumpsand

    achemical

    plant.

    The

    location

    of

    apond

    system

    and

    apotential

    chemical

    plant

    will

    dictatethecapitalcostsofapowerlinetotheoperationalcentre.

    Drillingconductedtodateinthesalarsindicatesthatsufficientfreshgroundwaterresourcesareavailabletomeetwatersupplyrequirementsforpotentialfuturebrineprocessingfacilities.

    Demandforsurfacerightsintheregionislow. Acquisitionofsurfacerightsfortheconstructionof lithium processing facilities on the Cauchari or Olaroz Salars is expected to bestraightforward.

  • 8/8/2019 42-101 Report

    35/124

    19

    5HISTORY

    Historically, Rio Tinto has mined borates on the western side of Cauchari, at Yacimiento de

    Borato

    El

    Porvenir.

    Grupo

    Minero

    Los

    Boros

    S.A.

    mines

    a

    few

    thousand

    tonnes

    per

    year

    of

    ulexite on the east side of the Olaroz Salar. No other mining activity (including lithiumexploration and production) has been recorded at the properties comprising the CauchariOlarozProject.

    LACacquiredMiningandExplorationPermitsacrosstheCauchariandOlarozSalarsduring2009(seeSection3)and initiated lithiumexplorationactivitiesovertheseclaimsduring2009. LAChasnotpreparedpriormineralresourceorreservesestimatesfortheCauchariOlarozProject.

    Orocobre Limited (Orocobre) owns mining claims in the Olaroz Salar adjacent to the LACOlaroz properties. Orocobre has prepared and published an inferred lithium and potassium

    resourceestimate

    for

    its

    project

    area

    during

    2009

    (see

    Section

    14

    for

    further

    information).

  • 8/8/2019 42-101 Report

    36/124

    20

    6GEOLOGICALANDHYDROLOGICALSETTING

    6.1RegionalStructuralFeatures

    Figure6.1showsthattherearetwoprimarystructuralfeaturesintheregion. Thefirstfeature

    consists

    of

    sets

    of

    high

    angle

    north

    south

    trending

    faults

    causing

    narrow

    and

    deep

    horst

    and

    grabenbasins.ThesetectonicbasinshaveformedinthePunaplateauthroughnoncollisional,compressional, Mioceneage orogeny (Helvaci and Alonso, 2000). The basins occurpredominantly in the eastern andcentral sector of the Puna. They have been accumulationsitesfornumeroussalars,includingOlarozandCauchari.

    The basin system is crossed and displaced by the second primary structural feature in theregion:northwestsoutheasttrending lineaments (Figure6.1).TheElToroLineamentand theAchibarca Lineament occur in the vicinity of the LAC Project. The Cauchari Basin (whichcontainstheOlarozandCauchariSalars) is locatednorthoftheElToroLineament. BetweentheElToroandAchibarcaLineaments,thebasinisdisplacedtothesoutheastandisknownas

    the

    Centenario

    Basin.

    South

    of

    the

    Achibarca

    Lineament,

    the

    basin

    is

    displacement

    to

    thenorthwest and is known as the Antofalla Basin. Collectively, these three displaced basin

    segmentscontainalithiumbrinemine(HombreMuerto)andseverallithiumbrineexplorationprojects (Figure 6.2). Two lithium brine mines are also located between the same majorlineaments, within the Atacama Basin located approximately 150 km west of the CauchariBasin.

    6.2RegionalGeology

    TheregionalgeologyinthevicinityoftheOlarozandCauchariSalarsisshowninFigure6.1. Thebasementrock inthisarea iscomposedofLowerOrdovicianturbidites (shaleandsandstone)

    intrudedby

    Late

    Ordovician

    granitoids.

    It

    is

    exposed

    to

    the

    east,

    west

    and

    south

    of

    the

    two

    salars,andgenerallyalongtheeasternboundaryofthePunaRegion.

    ElsewhereinthePunaRegion,awiderangeofrocktypesuncomformablyoverliethebasementrock. Throughout most of the Chilean and ArgentinaChile border area of the region, thebasementrock isoverlainbyTertiaryQuaternaryvolcanics, including ignimbritictuffscoveredbyandesites(6to3millonyears)andrecentbasalticflows(0.8 0.1millonyears)ranginguptoseveraltensofmetresinthickness. Insomeareas,includingtothesouthandeastofthetwosalars, the basement rock is overlain by CretaceousTertiary continental and marinesedimentaryrockssuchasconglomerates,sandstonesandsiltstones,aswellastuffsandooliticlimestones.

  • 8/8/2019 42-101 Report

    37/124

    21

    Thetectonicbasins inthe localarea includetheAtacama,Cauchari,CentenarioandAntofallaBasins, as shown in Figure 6.1. They are infilled with unconsolidated Miocene sedimentsequencesandintercalatedtuffs,andalsowithevaporitesincludinghalite,boratesandgypsum(Figures 6.1 and 6.2). Quaternary alluvial deposits, pediment sediments, mudflows andoccasionalsalinedepositsencroachintothebasinsfromthesides.

    Figure6.1:RegionalgeologyinthevicinityoftheLACProject.(From:Peralta,E;2009)

  • 8/8/2019 42-101 Report

    38/124

    22

    6.3LocalGeology

    LocalgeologyinthevicinityoftheCauchariandOlarozSalarsisshowninFigure6.2. Subsurfacedepositsare laterallycontiguousbetween the twosalars and include interbeddedclasticandevaporiticrocksofthefollowingfivemainfacies:

    Carbonate;

    Borax;

    Sulphate;

    Clay;and

    Sodiumchloride.

    Eachofthesearedescribed inthesubsectionsbelow. Onthesurface,thesalarsarepartiallyseparatedbyanalluvialfanformedbytheOlaRiver.Thepavedroadthat linksArgentinaandChile also crosses the salars along this boundary (Photo 6.1). Two alluvial fans are alsoencroachingonthesouthendoftheCauchariSalar. Theencroachmentofthesecoarseclasticsedimentsindicatesthattherecentperiodiswetrelativetomuchoftheprevioushistoryofthesalars.

    Photo6.1:BoundarybetweenCauchariandOlarozSalars.

    Cauchari Salar

    Olaroz Salar

  • 8/8/2019 42-101 Report

    39/124

    23

    6.3.1CarbonateFacies

    This unit outcrops intermittently along the west side of the Cauchari Salar, and is relativelyscarce in Olaroz (Figure 6.2). It comprises brown and buff clays interlayered with dirtytravertines or sands with calcareous cement produced by hydrothermal activity (calcareous

    sinters").

    This

    unit

    tends

    to

    be

    exposed

    in

    high

    relief

    areas

    (Photo

    6.2).

    Ulexite

    (NaCaB5O6(OH)6.5H2O) concretions, with or without gypsum (CaSO4

    .2H2O) and mirabilite(S2O4

    .10H2O),aresometimesassociatedwiththecarbonatefacies.

    Photo6.2:Carbonatefacies(sinter)inthewesternmarginofCauchariSalar.

    6.3.2BoraxFacies

    These facies consist of black and brown clays with borax mineralization (Photo 6.3). In theCauchariSalar,thisunitisexposedinadiscontinuousstripalongthewesternedgeofthesalar,stratigraphicallybelowthecarbonatefacies.InOlaroz,theboraxfaciesoccuralongtheeasternborder of the salar and in the central and north area (Figure 6.2). When evaporitic minerals(predominantlyulexite,withlocaltransitiontoboraxatdepth)occurinthisunit,theproportionofclayandsilttendstodecrease,toanestimatedminimumof30%to40%. Theboraxmineralswithinthisunithavebeenheavilyexploitedformanyyears.

  • 8/8/2019 42-101 Report

    40/124

    24

    Photo6.3:BoraxfaciesinwesternCauchari,AngelinaBoraxMine.

    6.3.3SulphateFacies

    Thesulphate

    facies

    are

    composed

    of

    fine

    clastic

    sediments,

    usually

    brown

    clays

    inter

    layered

    withmirabilite(S2O4.10H2O),gypsum(CaSO4

    .2H2O)andsodaash(Na2CO3). Thisunitgenerallyoccurs below the borax facies. The sulphate facies are exposed in the centralsouth area ofCauchari and in the northernareaofOlaroz. The sulphate facies in Cauchari are significantlyricher in soda ash than those in Olaroz, while the latter tends to be relatively enriched inmirabilite.

  • 8/8/2019 42-101 Report

    41/124

    25

    Figure6.2:LocalGeologyoftheCauchariandOlarozSalars(From:Peralta,E;2009)

  • 8/8/2019 42-101 Report

    42/124

    26

    6.3.4ClayFacies

    These faciesoccuracrossmostof thesurfaceof theCauchariSalarand isolatedzones in thesouthernareaoftheOlarozSalar(Photo6.4). Theyarecomposedofpredominantlybrowntoreddishclays(dominantlyillite;Cravero2009aand2009b)interlayeredandsometimesmixed

    withthin

    sand

    or

    silt

    layers.

    This

    unit

    is

    always

    impregnated

    with

    various

    evaporites,

    including

    thefollowing:

    InsouthernCauchari gypsum(CaSO4.2H2O)withsomeglaserite(K3Na(SO4)2);

    InsouthcentralCauchari halite(NaCl)andgypsum(CaSO4.2H2O);

    InnorthcentralCauchari halite(NaCl);and

    In the boundary area between Cauchari and Olaroz ulexite, sulphates (predominantlymirabilite)andalkalinecarbonates(predominantlysodaash).

    Despite the large surface outcrop of the clay facies, drilling data indicate that they have amaximumthicknessof30mandatypicalthicknessof10morless.

    Photo6.4:ClayfaciesintheCauchariSalar.

    6.3.5SodiumChlorideFacies

    Thesefacies(Photo6.5)typicallyoccuratthesurfaceofmanysalars,andarecharacterizedbyapolygonalcracked hard crust, with a composition dominated by halite (NaCl). They are thedominantfaciesonthesurfaceoftheOlarozSalar,butarealmostnonexistentonthesurfaceoftheCauchari.ThesurfaceoccurrenceofthesodiumchloridefaciesontheOlarozSalar isthin

    (between

    5

    cm

    and

    25

    cm).

    Drilling

    data

    indicate

    that

    this

    unit

    also

    occurs

    at

    depth

    in

    the

    CauchariSalarandrangesuptoseveraltensofmetresinthickness. Thesubstantialoccurrenceofthisunitatdepth intheCauchari indicatesthatthissalarhascompletedageologicalcycleandisintheprocessofbeingburiedbyaccumulationofclayfacies.

  • 8/8/2019 42-101 Report

    43/124

    27

    Photo6.5:SodiumChloridefaciesintheOlarozSalar.6.4VerticalGeologicalSectionA

    conceptual

    stratigraphic

    section

    and

    column

    were

    developed

    for

    the

    salars,

    based

    on

    all

    Project borehole results available to date. The available borehole logs, which extend from

    southernOlaroztocentralCauchari, indicatesomevariability instratigraphicdetailsbetween

    locations.Theyalsoindicate,however,thatsomevalidandusefulstratigraphicgeneralizations

    canbemade.TheconceptualsectionisshowninFigure6.3andthecolumnisshowninFigure

    6.4.TheverticalzonationoftheCauchariandOlarozSalarscanbesimplified intothreemain

    sequences,whicharedescribedinthefollowingsections.

    Figure6.3: Conceptualsection of the Cauchariand OlarozSalars showing threemain sequences: the Upper Mixed Sequence, the Thin Bedded

    Se uenceandtheCoarseBeddedSe uence.

  • 8/8/2019 42-101 Report

    44/124

    28

    Figure6.4: ConceptualstratigraphiccolumnoftheCauchariandOlarozSalars

  • 8/8/2019 42-101 Report

    45/124

    29

    6.4.1UpperMixedSequence

    This sequence (Photo 6.6) occurs at the surface and includes relatively thin layers of all thefaciesdescribed insection6.3,andalluvium.Thisunittypicallyranges inthicknessfrom20to40macrossthesalars,however,geophysicalanddrillingdataindicatethatitcanrangeasthick

    as80

    m

    (in

    Olaroz)

    and

    as

    thin

    as

    10

    m

    (in

    northern

    Cauchari).

    XRD

    analysis

    of

    the

    clays

    in

    this

    sequence (Cravero, 2009a and 2009b) shows that they are predominantly illite with minorkaolinite, smectite and chlorite. Glass shards and magnetite are also present, indicating thevolcanicnatureofthesourcerock.

    Photo6.6:UpperMixedSequenceclaywithboraxmineralization.

    DrillingandshallowtestpitdatashowthatsomelayersoccurintheUMSwhicharesufficientlypermeabletobeconsideredaquifers. However,these layersarerelativelythin,ranginguptofourmetres inthicknessbuttypically lessthanonemetre. These layersareconsideredtobecoarsercomponentsoftheclayfaciesmixedwithsandorsilt.

    6.4.2ThinBeddedSequence

    This sequence (Photo 6.7) encompasses thinly bedded clay facies, evaporite facies (mostlyhaliteandgypsum),silt,andsand.Theindividualbedsvaryinthicknessfromafewcentimetrestoafewmetres.ThissequencehasalargercomponentofcoarsegrainsizedmaterialthantheUMS,whichismostlyclay.Theevaporitefaciesarecomposedmainlyofhaliteand,occasionallyhalite with gypsum, in layers ranging from of a few centimetres to few metres in thickness.Drilling and geophysical data show that the TBS is typically between 50 and 60 m thick. Itrangesup tomore than250m thick inOlaroz; themaximum thicknessobserved inCauchariwas50m,inthenorthareaofthesalar.

  • 8/8/2019 42-101 Report

    46/124

    30

    Photo6.7:ThinBeddedSequenceshowingalternatingsandandhalitelayers.

    Drilling data show that the TBS hosts permeable brinesaturated units that are continuous(severalmetresthick)separatedonlybynarrowclayunits(afewmetresthick).

    6.4.3CoarseBeddedSequence

    Todate,theCBShasbeenobservedonlyintheCauchariSalar.Itconsistsofinterlayeredsandand evaporite (mostly halite) layers, several tens of metres thick. The upper level of thesequence ischaracterizedbyathick,compact,dry layerofhaliteranging from10to30m inthickness,followedbyacoarsesandstonelayer. Belowthesetwolayers,thesequenceincludessandysedimentsandporous,crackledhaliteintercalations(Photo6.8).Thetwodominantunitsinthissequencehavethefollowingcharacteristics:

    SanddominantUnit: Containssignificantlayersfrom50to100mthickofslightlycemented

    aeolian(perfectly

    rounded)

    sand,

    alternating

    with

    thin

    layers

    of

    halite

    (Photo

    6.8).

    This

    unit

    includes occasional thin clay lenses (0.2 to 2 m thick). The sandy material showshomogeneous grain size andmineralogical composition with wellrounded particles 1 to 3mm in diameter, which are dominated by silica glass, quartz, feldspar, mafic minerals(pyroxene,biotite and amphibole) and a striking abundance of magnetite. Invariably, thisunitcontainsabundanthalitecrystals,gypsumand occasionalborates (ulexite andnarrowbeds of tinkal). This unit can be considered an aquifer because of the predominance ofcoarseparticlesizesandassociatedhighpermeability.

    Sand

    Halite

    Halite

  • 8/8/2019 42-101 Report

    47/124

    31

    Photo6.8: SanddominantUnit.Grainsizeanalysisshowsthatthismaterial ispredominantlysandwith d50 around 0.21mm; inspection under microscope and hand lens shows that thegrainsareverywellroundedquartz,magnetiteandmaficminerals.

    Evaporitedominant

    Unit:

    This

    unit

    is

    composed

    of

    halite,

    sometimes

    massive,

    but

    generally

    formingasinteredspongeofhalitecrystals,withhighpermeabilityandfrequentcavitiesduetocrystalcorrosion (Photo6.9).Theevaporite layersalternatewiththesandy layers,bothranging from 15 m to 30m in thickness,althoughacontinuous 100 m layerofhalitewasobservedatoneboreholelocation(DD3).Thisunitoccasionallyincludesthinlensesofclays(between 0.25 m and 4 m). In southern and central Cauchari, carbonate facies were alsoobservedinthisunit,ranginguptosixmetresinthicknessandwithkarsticsolutioncavernsandholesfilledwithloosesand.

    Photo

    6.9:

    Porous

    Halite

    in

    the

    Coarse

    Bedded

    Sequence.

    ThebottomoftheCBSwasnotreachedintheboreholesadvancedtodate. Geophysicaldatasuggestthatthissequencecontinuestothebottomofthesalar,estimatedtobebetween300and600mdepth,dependingonthebasinsector.

  • 8/8/2019 42-101 Report

    48/124

    32

    6.5Hydrogeology

    6.5.1Surfacewater

    The OlarozCauchari hydrographic basin is an elongated depression with a length of

    approximately

    150

    km

    in

    a

    north

    south

    direction

    and

    a

    width

    of

    30

    to

    40

    km

    in

    an

    east

    west

    direction. Thebasincoversapproximately4500km2asshowninFigure6.5.

    SurfacewaterinflowalongtheperimeterofthehydrographicbasinoccursprimarilyfromRiosElRosario,OlaandTocomar.RioRosario,which is locallycalledRioElToro,originates in theverynorthernpartoftheOlarozCauchariwatershedatanelevationof4500m. Theriverflowssouthsoutheastfor55kmpastthevillageofElTorobeforeitentersintotheOlarozSalar.Flowwasmeasuredatapproximately200L/sjustabovetheHighway74bridgecrossing(some5kmsoutheastofthevillageofElToro)atanelevationof4010monNovember7,2009attheendofthedryseason(Photo6.10). RioRosariowasdryonthatsamedate,atalocationsome15kmfurthersouthintoSalardeOlaroz,atanelevationofaround3940m.

    RioOla,whichislocallycalledRioLama,originatesatanelevationofaround4500mjustsouthofCerroBayoAchibarcaandflowseastfor20km.ItentersthesalarsontopofthelargealluvialfanthatseparatesOlarozfromCaucharionthewesternflankofthebasin. InAchibarcawhereRioOlaflowsimmediatelyadjacenttoHighway52,flowwasestimatedatapproximately5L/sonNovember7,2009(Photo6.11).

  • 8/8/2019 42-101 Report

    49/124

    33

    Figure6.5:CauchariOlarozwatershed.

  • 8/8/2019 42-101 Report

    50/124

    34

    Photo6.10: RioRosariojustabovetheHighway74bridgecrossing.

    Photo6.11: RioOlaatAchibarca.

    RioTocomar,whichislocallycalledRioOlapacato,originatessome10kmwestofAltoChorilloat an elevation of around 4 360 m. The river flows west for approximately 30 km before itenterstheCauchariSalarfromthesoutheast. Flowwasmeasuredat30L/satalocationeightkilometreswestofAltoTocomaratanelevationof4210monNovember6,2009(Photo6.12).RioTocomarwasdryinthevillagesofOlacapatoandCaucharionthatsamedate.

  • 8/8/2019 42-101 Report

    51/124

    35

    Photo6.12: RioTocomareightkilometresbelowAltoTocomar.

    No other surface water features were observed along the perimeter of the OlarozCauchari

    watershedduring

    November

    2009,

    at

    the

    end

    of

    the

    dry

    season.

    SurfacewateralsooccursinthecentralsouthernpartoftheCauchariSalarsome15kmnorthof the village of Cauchari, where a number of springs discharge on the surface of the salar.Discharge from these springs is naturally channeled into a single stream and flows north forseveralkilometres. Flowwasmeasuredatapproximately10L/sonNovember8,2009.

    ThereisnosurfacewateroutflowfromtheOlarozCauchariSalars.

    6.5.2 Groundwater

    Groundwater flow occurs primarily in the unconsolidated and semiconsolidated basin fillsediments

    of

    the

    Olaroz

    Cauchari

    basin.

    Groundwater

    flow

    is

    generally

    towards

    the

    central

    axis

    ofeachsalar. ThelargealluvialfanoftheRioOlacreatesagroundwaterdivide(freshwater)betweenthetwosalars.

    Groundwater elevation measurements were carried out in November and December 2009across Olaroz and Cauchari in a number of observation wells and open boreholes that wereinstalledaspartofthe2009LACdrillingprogram.Thesemeasurementsindicatethatconfiningconditionsoccuroverlargepartsofbothsalars. ArtesianflowconditionsareencounteredinatleastoneholeinOlaroz. Depthtogroundwaterrangesfromzero(groundsurface)toabout10macrossthetwosalars.

    Groundwater

    along

    the

    edges

    of

    the

    OlarozCauchari

    basin

    is

    relatively

    fresh

    as

    a

    result

    of

    recent recharge. Salinity of the groundwater increases rapidly towards the central areas ineachsalar. The locationof the freshwater/brine interfacewillbedefinedduring the2010programthroughacombinationofdrillingandgeophysicalmethods.

  • 8/8/2019 42-101 Report

    52/124

    36

    6.5.3 Waterbalance

    Recharge

    Groundwaterrechargetakesplaceasaresultof infiltrationofprecipitationalongthemargins

    of

    the

    salar

    during

    the

    wet

    season

    from

    December

    through

    March

    each

    year.

    Precipitation

    records for Olacapata in the southern part of Cauchari between 1950 and 1990 (Figure 4.3)showthatthetotal rainfall isapproximatelysevencentimetresperyear. It isestimatedthatbetween5%and20%ofthisrainfallultimatelybecomesrechargetogroundwater.

    SurfacewaterflowlossesobservedinRiosRosario,OlaandTocomararepartlyduetorechargetothegroundwatersystem.

    Discharge

    Groundwater discharge takes place through evaporation, evapotranspiration and dischargefrom springs. Evaporation takes place from the central and marginal areas of the salar and

    evapotranspirationalong

    the

    margins

    of

    salars

    where

    vegetation

    occurs.

    Spring discharge is observed in southern Cauchari and was estimated at around 10 L/s inNovember2009attheendofthedryseason.

    TherearenoknowngroundwateroutflowsfromtheOlarozCaucharibasinandtodatethereisnoknowndischargethroughgroundwaterpumping.

  • 8/8/2019 42-101 Report

    53/124

    37

    7DEPOSITTYPES

    TheCauchariandOlarozSalarsareclassifiedasSilverPeak,Nevadatypeterrigenoussalars.

    Silver

    Peak,

    Nevada

    in

    the

    USA

    was

    the

    first

    lithium

    bearing

    brine

    deposit

    in

    the

    world

    to

    be

    exploited. These deposits are characterized by restricted basins within deep structuraldepressions infilledwithsedimentsdifferentiatedas interbeddedunitsofclays,salt (halite),sandsandgravels. Withinthesesedimentsalithiumbearingaquiferhasdevelopedduringaridclimaticperiods.Onthesurface,theyarepresentlycoveredbycarbonate,borax,sulphate,clay,andsodiumchloridefacies. Section6hereinprovidesadetaileddescriptionofthegeologyoftheOlarozandCauchariSalars.

    Cauchari and Olaroz have relatively high sulphate contents and therefore both salars can befurtherclassifiedassulphatetypebrinedeposits. Sections8and12providedetailedfurtherdiscussionofthechemistryofCauchariandOlaroz.

  • 8/8/2019 42-101 Report

    54/124

    38

    8MINERALIZATION

    ThebrinesfromCauchariaresolutionssaturatedinsodiumchloridewithtotaldissolvedsolids(TDS)ontheorderof27%(324to335g/L)andanaveragedensityofabout1.215g/cm3.Theother components present in these brines, which constitute a complex aqueous system and

    existalso

    in

    brines

    of

    other

    salars

    in

    Argentina,

    Bolivia

    and

    Chile,

    are

    the

    following:

    K,

    Li,

    Mg,

    Ca,

    SO4,HCO3,andBasboratesandfreeH3BO3.

    As inothernaturalbrines in the region,suchas thoseof theSalardeAtacamaandSalardelHombreMuerto,thehighercontentoftheionsCl,SO4

    =,K+,Mg++,Na+atCauchari,compared

    withtheotherprimary ions(Ca,Li,B)allowsasimplificationforthestudyofcrystallizationofsalts during evaporation. The known phase diagram (Janecke projection) of the aqueousquinarysystem(Na+,K+,Mg++,SO4

    =,Cl)at25Candsaturatedinsodiumchloride(equilibriumdatafromthetechnicalliterature)canbeused.However,inordertofitthisphasediagramwiththeimportantpresenceoflithiuminthebrines,theJaneckeprojectionofMgLiSO4K2inmol%is used. The Cauchari brine composition is represented in this diagram in Section 15, where

    thereis

    also

    adiscussion

    of

    results

    from

    simulated

    evaporation

    performed

    by

    the

    University

    of

    Antofagasta.

    Table 8.1 shows a comparison of the average Cauchari brine composition with other naturalbrinesfromSilverPeak(USA),SalardeAtacama(Chile),SalardelHombreMuerto(Argentina),SalardeRincon(Argentina),ZhabuyeSaltLake(Tibet)andSalardeUyuni(Bolivia).

  • 8/8/2019 42-101 Report