1150
3GPP W-CDMA Design Library September 2004

3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPP W-CDMA Design Library

September 2004

Page 2: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notice

The information contained in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material,including, but not limited to, the implied warranties of merchantability and fitnessfor a particular purpose. Agilent Technologies shall not be liable for errors containedherein or for incidental or consequential damages in connection with the furnishing,performance, or use of this material.

Warranty

A copy of the specific warranty terms that apply to this software product is availableupon request from your Agilent Technologies representative.

Restricted Rights Legend

Use, duplication or disclosure by the U. S. Government is subject to restrictions as setforth in subparagraph (c) (1) (ii) of the Rights in Technical Data and ComputerSoftware clause at DFARS 252.227-7013 for DoD agencies, and subparagraphs (c) (1)and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR52.227-19 for other agencies.

Agilent Technologies395 Page Mill RoadPalo Alto, CA 94304 U.S.A.

Copyright © 1998-2004, Agilent Technologies. All Rights Reserved.

Acknowledgments

Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. andother countries.

Microsoft®, Windows®, MS Windows®, Windows NT®, and MS-DOS® are U.S.registered trademarks of Microsoft Corporation.

Pentium® is a U.S. registered trademark of Intel Corporation.

PostScript® and Acrobat® are trademarks of Adobe Systems Incorporated.

UNIX® is a registered trademark of the Open Group.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

ii

Page 3: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Contents1 3GPP W-CDMA Design Library

Introduction............................................................................................................... 1-13GPP Technical Specifications Supported ............................................................... 1-2Agilent Instrument Compatibility ............................................................................... 1-2Physical Layer Transmitter and Receiver Structures ................................................ 1-3General Signal Processing ....................................................................................... 1-7Overview of Component Libraries ............................................................................ 1-8

Channel Coding Components ............................................................................ 1-8Channel Model Components.............................................................................. 1-9Common Physical Channels Components ......................................................... 1-10Measurement Components ................................................................................ 1-10Physical Channel Multiplex Components ........................................................... 1-10Rake Receiver Components............................................................................... 1-10Spreading and Modulation Components ............................................................ 1-11Transmit Diversity Components.......................................................................... 1-11Transport Channel Multiplex Components.......................................................... 1-11Base Station and User Equipment Components................................................ 1-11FDD Components............................................................................................... 1-12Design Examples ............................................................................................... 1-12

References ............................................................................................................... 1-16Release 5 Specifications .................................................................................... 1-16Release 1999 Specifications .............................................................................. 1-16

2 3GPPFDD Base Station Components3GPPFDD_CPICH ................................................................................................... 2-23GPPFDD_DL_12_2 ................................................................................................ 2-43GPPFDD_DL_144 .................................................................................................. 2-93GPPFDD_DL_384 .................................................................................................. 2-143GPPFDD_DL_64 .................................................................................................... 2-193GPPFDD_DL_BCH ................................................................................................ 2-243GPPFDD_DL_BTFD............................................................................................... 2-273GPPFDD_DL_PCH_FACH..................................................................................... 2-343GPPFDD_DL_RefCh.............................................................................................. 2-393GPPFDD_DL_Source............................................................................................. 2-423GPPFDD_DnLinkRF............................................................................................... 2-493GPPFDD_DPCH .................................................................................................... 2-573GPPFDD_DPCHs................................................................................................... 2-603GPPFDD_HS_Uplink_Rx ....................................................................................... 2-653GPPFDD_OCNS .................................................................................................... 2-683GPPFDD_PCCPCH ............................................................................................... 2-71

iii

Page 4: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_PICH...................................................................................................... 2-733GPPFDD_RF_Downlink ......................................................................................... 2-763GPPFDD_RF_Uplink_Receiver.............................................................................. 2-813GPPFDD_SCH....................................................................................................... 2-843GPPFDD_StdOCNS............................................................................................... 2-863GPPFDD_TestModel1 ............................................................................................ 2-883GPPFDD_TestModel2 ............................................................................................ 2-913GPPFDD_TestModel3 ............................................................................................ 2-943GPPFDD_TestModel4 ............................................................................................ 2-973GPPFDD_TestModel5 ............................................................................................ 2-993GPPFDD_UL_Rx_RefCH....................................................................................... 2-102

3 3GPPFDD Measurement Components3GPPFDD_CodeDomainErr..................................................................................... 3-23GPPFDD_CodeDomainErr_NonSyn ...................................................................... 3-63GPPFDD_Distort .................................................................................................... 3-93GPPFDD_EVM....................................................................................................... 3-113GPPFDD_EVM_NonSyn ........................................................................................ 3-163GPPFDD_Interpolator ............................................................................................ 3-203GPPFDD_RF_ACLR .............................................................................................. 3-213GPPFDD_RF_ACLR_SwitchingTransients............................................................. 3-253GPPFDD_RF_CCDF.............................................................................................. 3-273GPPFDD_RF_CDP ................................................................................................ 3-293GPPFDD_RF_Downlink_BER................................................................................ 3-313GPPFDD_RF_EVM................................................................................................ 3-343GPPFDD_RF_OccupiedBW................................................................................... 3-373GPPFDD_RF_OutputPower ................................................................................... 3-403GPPFDD_RF_PCDE.............................................................................................. 3-433GPPFDD_RF_SpecEmission ................................................................................. 3-463GPPFDD_RF_Uplink_BER .................................................................................... 3-493GPPFDD_Synch..................................................................................................... 3-523GPPFDD_TrCHBER ............................................................................................... 3-56WCDMA3G_CodeDomainPwr.................................................................................. 3-58WCDMA3G_MeanSquare ........................................................................................ 3-62WCDMA3G_RF_CCDF............................................................................................ 3-64WCDMA3G_RF_PowMeas ...................................................................................... 3-67

4 3GPPFDD Physical Channel Demultiplexers and Decoders3GPPFDD_DPCCHDeMux ...................................................................................... 4-23GPPFDD_DPCHDeMux ......................................................................................... 4-43GPPFDD_HS_DPCCH_DeMux ............................................................................. 4-63GPPFDD_PCCPCHDeMux .................................................................................... 4-83GPPFDD_PRACHDeMux....................................................................................... 4-10

iv

Page 5: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_SCCPCHDeMux .................................................................................... 4-12

5 3GPPFDD Physical Channel Multiplexers and Coders3GPPFDD_DLScrmb ............................................................................................... 5-23GPPFDD_DPCCHMux ........................................................................................... 5-43GPPFDD_DPCHMux.............................................................................................. 5-63GPPFDD_DataPattern ........................................................................................... 5-83GPPFDD_HS_DPCCH_Mux .................................................................................. 5-103GPPFDD_HS_ULSpread ....................................................................................... 5-123GPPFDD_OVSF..................................................................................................... 5-143GPPFDD_PCCPCHMux......................................................................................... 5-163GPPFDD_PCPCHMux ........................................................................................... 5-183GPPFDD_PCPCHPrmbl......................................................................................... 5-203GPPFDD_PCPCHSprd .......................................................................................... 5-223GPPFDD_PRACHMux ........................................................................................... 5-243GPPFDD_PRACHPrmbl......................................................................................... 5-263GPPFDD_PRACHScrmb........................................................................................ 5-283GPPFDD_PRACHSprd .......................................................................................... 5-293GPPFDD_SCCPCHMux......................................................................................... 5-313GPPFDD_ULLongScrmb ....................................................................................... 5-333GPPFDD_ULShortScrmb....................................................................................... 5-343GPPFDD_ULSpread .............................................................................................. 5-35

6 3GPPFDD Receivers3GPPFDD_DL_Rake................................................................................................ 6-23GPPFDD_HS_UL_Rake......................................................................................... 6-83GPPFDD_UL_Rake................................................................................................ 6-11

7 3GPPFDD Transport Channel Demultiplexers and Decoders3GPPFDD_ChannelDecoding .................................................................................. 7-23GPPFDD_CodeBlkDeSeg ...................................................................................... 7-43GPPFDD_CRCDecoder ......................................................................................... 7-63GPPFDD_DLDeFirDTXInser .................................................................................. 7-83GPPFDD_DLDeFirInterLv ...................................................................................... 7-123GPPFDD_DLDePhyCHMap ................................................................................... 7-163GPPFDD_DLDePhyCHSeg.................................................................................... 7-183GPPFDD_DLDeRadioSeg...................................................................................... 7-203GPPFDD_DLDeRateMatch .................................................................................... 7-243GPPFDD_DLDeSecDTXInser ................................................................................ 7-283GPPFDD_DLDeSecInterLv .................................................................................... 7-323GPPFDD_DLDeTrCHMulti...................................................................................... 7-343GPPFDD_HS_CQI_Decoder.................................................................................. 7-383GPPFDD_HS_DPCCH_Decoder ........................................................................... 7-41

v

Page 6: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_TFCIDecoder ......................................................................................... 7-433GPPFDD_ULDeFirInterLv ...................................................................................... 7-453GPPFDD_ULDePhyCHMap ................................................................................... 7-473GPPFDD_ULDePhyCHSeg.................................................................................... 7-513GPPFDD_ULDeRadioEqual................................................................................... 7-553GPPFDD_ULDeRadioSeg...................................................................................... 7-573GPPFDD_ULDeRateMatch .................................................................................... 7-593GPPFDD_ULDeSecInterLv .................................................................................... 7-633GPPFDD_ULDeTrCHMulti...................................................................................... 7-67

8 3GPPFDD Transport Channel Multiplexers and Coders3GPPFDD_CRCEncoder ......................................................................................... 8-23GPPFDD_ChannelCoding...................................................................................... 8-43GPPFDD_CodeBlkSeg........................................................................................... 8-63GPPFDD_DLFirDTXInser....................................................................................... 8-83GPPFDD_DLFirInterLv........................................................................................... 8-123GPPFDD_DLPhCHMap ......................................................................................... 8-163GPPFDD_DLPhCHSeg .......................................................................................... 8-183GPPFDD_DLRadioSeg .......................................................................................... 8-203GPPFDD_DLRateMatch......................................................................................... 8-243GPPFDD_DLSecDTXInser..................................................................................... 8-303GPPFDD_DLSecInterLv......................................................................................... 8-333GPPFDD_DLTrCHMulti........................................................................................... 8-353GPPFDD_HS_CQI_Encoder.................................................................................. 8-393GPPFDD_HS_DPCCH_Encoder ........................................................................... 8-423GPPFDD_TFCIComb............................................................................................. 8-443GPPFDD_TFCIDeComb ........................................................................................ 8-463GPPFDD_TFCIEncoder ......................................................................................... 8-483GPPFDD_TFIGenerator ......................................................................................... 8-503GPPFDD_TrCHSrc ................................................................................................. 8-523GPPFDD_TrCH_Cal ............................................................................................... 8-543GPPFDD_TrCHSrcWithTFIin.................................................................................. 8-573GPPFDD_ULFirInterLv........................................................................................... 8-593GPPFDD_ULGainFactor ........................................................................................ 8-613GPPFDD_ULPhyCHMap........................................................................................ 8-653GPPFDD_ULPhyCHSeg ........................................................................................ 8-673GPPFDD_ULRadioEqual ....................................................................................... 8-723GPPFDD_ULRadioSeg .......................................................................................... 8-743GPPFDD_ULRateMatch......................................................................................... 8-773GPPFDD_ULSecInterLv......................................................................................... 8-823GPPFDD_ULTrCHMulti........................................................................................... 8-84

9 3GPPFDD User Equipment

vi

Page 7: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_DL_Rx_RefCH....................................................................................... 9-23GPPFDD_DPCCH.................................................................................................. 9-63GPPFDD_DPDCH.................................................................................................. 9-93GPPFDD_HS_Uplink.............................................................................................. 9-123GPPFDD_RF_Downlink_Receiver ......................................................................... 9-143GPPFDD_RF_Uplink.............................................................................................. 9-183GPPFDD_UL_12_2 ................................................................................................ 9-213GPPFDD_UL_144 .................................................................................................. 9-263GPPFDD_UL_2M................................................................................................... 9-313GPPFDD_UL_384_TTI10....................................................................................... 9-363GPPFDD_UL_384_TTI20....................................................................................... 9-413GPPFDD_UL_64 .................................................................................................... 9-463GPPFDD_UL_768 .................................................................................................. 9-513GPPFDD_UL_RACH.............................................................................................. 9-553GPPFDD_UL_RefCh.............................................................................................. 9-583GPPFDD_UL_Source............................................................................................. 9-613GPPFDD_UpLinkRF............................................................................................... 9-653GPPFDD_UpLk ...................................................................................................... 9-73

10 3GPPFDD 10-99 Base Station ComponentsWCDMA3G_BS_FixedRateDemod .......................................................................... 10-2WCDMA3G_BS_FixedRateReceiver........................................................................ 10-5WCDMA3G_BS_FixedRateReceiver_2M................................................................. 10-8WCDMA3G_BS_FixedRateSrc ................................................................................ 10-11WCDMA3G_BS_VariableRateDemod...................................................................... 10-14WCDMA3G_BS_VariableRateReceiver ................................................................... 10-17WCDMA3G_BS_VariableRateSrc ............................................................................ 10-20WCDMA3G_DnLkCPICH ......................................................................................... 10-24WCDMA3G_DnLkDPCH .......................................................................................... 10-26WCDMA3G_DnLkDPCHMux ................................................................................... 10-28WCDMA3G_DnLkOCNS.......................................................................................... 10-32WCDMA3G_DnLkPCCPCH_SCH............................................................................ 10-35WCDMA3G_DnLkSpreading .................................................................................... 10-37WCDMA3G_DnLkTrCHCoding................................................................................. 10-40WCDMA3G_ESG_DnLkDPCH................................................................................. 10-44WCDMA3G_UpLkTrCHDecoding ............................................................................. 10-46

11 3GPPFDD 10-99 Channel Coding ComponentsWCDMA3G_CC........................................................................................................ 11-2WCDMA3G_ChannelCoding .................................................................................... 11-6WCDMA3G_ChannelDecoding ................................................................................ 11-9WCDMA3G_CodeBlkDeSeg .................................................................................... 11-12WCDMA3G_CodeBlkSeg......................................................................................... 11-16

vii

Page 8: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_CRCDecoder ....................................................................................... 11-21WCDMA3G_CRCEncoder........................................................................................ 11-23WCDMA3G_FirstDeintlvr.......................................................................................... 11-25WCDMA3G_FirstIntlvr .............................................................................................. 11-30WCDMA3G_SecondDeintlvr .................................................................................... 11-36WCDMA3G_SecondIntlvr......................................................................................... 11-41WCDMA3G_TCDecoder .......................................................................................... 11-47WCDMA3G_TCDecoder_Base ................................................................................ 11-50WCDMA3G_TCEncoder........................................................................................... 11-53WCDMA3G_TC_Adjust ............................................................................................ 11-57WCDMA3G_TC_Deintlvr.......................................................................................... 11-60WCDMA3G_TC_Intlvr .............................................................................................. 11-64WCDMA3G_TC_Intlvr_f ........................................................................................... 11-72WCDMA3G_TC_Map ............................................................................................... 11-79WCDMA3G_TC_MAPDecoder1............................................................................... 11-82WCDMA3G_TC_MAPDecoder2............................................................................... 11-85WCDMA3G_TC_PadTail .......................................................................................... 11-88WCDMA3G_TC_PunctureTail .................................................................................. 11-91WCDMA3G_TC_RSCEncoder ................................................................................. 11-94WCDMA3G_TC_SigDecision ................................................................................... 11-97WCDMA3G_TFCIDecoder ....................................................................................... 11-98WCDMA3G_TFCIDemap ......................................................................................... 11-101WCDMA3G_TFCIEncoder ....................................................................................... 11-103WCDMA3G_TFCIMap.............................................................................................. 11-107WCDMA3G_ViterbiDCC........................................................................................... 11-109

12 3GPPFDD 10-99 Channel Model ComponentsWCDMA3G_CHDelay............................................................................................... 12-2WCDMA3G_CHInterpolate ...................................................................................... 12-4WCDMA3G_CHModel.............................................................................................. 12-5WCDMA3G_ClassicalChannel ................................................................................. 12-9WCDMA3G_UserDefinedCH.................................................................................... 12-12

13 3GPPFDD 10-99 Common Physical Channels ComponentsWCDMA3G_AllSSCode ........................................................................................... 13-2WCDMA3G_DnLkCPICHGen .................................................................................. 13-6WCDMA3G_IdentifySCG ......................................................................................... 13-7WCDMA3G_IdScrambler.......................................................................................... 13-10WCDMA3G_PCCPCHDeMux .................................................................................. 13-13WCDMA3G_PCCPCHMux....................................................................................... 13-15WCDMA3G_PSCode ............................................................................................... 13-17WCDMA3G_SCGtoScrmb........................................................................................ 13-19WCDMA3G_SSCode ............................................................................................... 13-21

viii

Page 9: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_SlotTiming............................................................................................ 13-25WCDMA3G_TimeSwitch .......................................................................................... 13-27

14 3GPPFDD 10-99 Measurement ComponentsWCDMA3G_BFER ................................................................................................... 14-2WCDMA3G_BroadcastCHSrc .................................................................................. 14-4WCDMA3G_CCDF................................................................................................... 14-6WCDMA3G_CodeDomainErr ................................................................................... 14-9WCDMA3G_ErrorVector........................................................................................... 14-11WCDMA3G_EVM_WithRef ...................................................................................... 14-13WCDMA3G_MeasureSrc ......................................................................................... 14-17WCDMA3G_PhyCHBER .......................................................................................... 14-20WCDMA3G_PhyCHBERWithDelay .......................................................................... 14-24WCDMA3G_PowCtrlCmd......................................................................................... 14-26WCDMA3G_PowerMeasure..................................................................................... 14-28WCDMA3G_TrCHBER ............................................................................................. 14-30WCDMA3G_TrCHBLER ........................................................................................... 14-35WCDMA3G_TrCHMeasure....................................................................................... 14-37WCDMA3G_TxPowAdjust ........................................................................................ 14-39WCDMA3G_VariableSrc .......................................................................................... 14-41

15 3GPPFDD 10-99 Physical Channel Multiplex ComponentsWCDMA3G_DnLkDeMux ......................................................................................... 15-2WCDMA3G_DnLkMux.............................................................................................. 15-6WCDMA3G_DPCHDeSeg........................................................................................ 15-10WCDMA3G_DPCHSeg ............................................................................................ 15-15WCDMA3G_UpLkDPCCHDeMux ............................................................................ 15-20WCDMA3G_UpLkDPCCHMux................................................................................. 15-22

16 3GPPFDD 10-99 Rake Receiver ComponentsWCDMA3G_1CHRakeReceiver ............................................................................... 16-2WCDMA3G_AdjustDelay.......................................................................................... 16-7WCDMA3G_ChEstimate .......................................................................................... 16-11WCDMA3G_Despreader .......................................................................................... 16-15WCDMA3G_DownSample ....................................................................................... 16-19WCDMA3G_PathSearch .......................................................................................... 16-21WCDMA3G_RakeCombine ...................................................................................... 16-25WCDMA3G_RakeReceiver ...................................................................................... 16-29

17 3GPPFDD 10-99 Spreading and Modulation ComponentsWCDMA3G_DnLkAllocOVSF................................................................................... 17-2WCDMA3G_DnLkPowerAlloc................................................................................... 17-5WCDMA3G_DnLkScrambler .................................................................................... 17-9WCDMA3G_DnLkSpreader...................................................................................... 17-12

ix

Page 10: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_OVSF ................................................................................................... 17-13WCDMA3G_QPSKDataMap .................................................................................... 17-15WCDMA3G_UpLkAllocDPCH .................................................................................. 17-17WCDMA3G_UpLkAllocOVSF................................................................................... 17-20WCDMA3G_UpLkGainFactor................................................................................... 17-23WCDMA3G_UpLkScrambler .................................................................................... 17-26WCDMA3G_UpLkSpreader...................................................................................... 17-30

18 3GPPFDD 10-99 Test Model ComponentsWCDMA3G_TestModel_Delay ................................................................................. 18-2WCDMA3G_TestModel_PCCPCH_Src.................................................................... 18-7WCDMA3G_TestModel_PICH.................................................................................. 18-8WCDMA3G_TestModel_PICH_Src .......................................................................... 18-10WCDMA3G_TestModel1 .......................................................................................... 18-12WCDMA3G_TestModel1_DPCH .............................................................................. 18-14WCDMA3G_TestModel2 .......................................................................................... 18-15WCDMA3G_TestModel2_DPCH .............................................................................. 18-17WCDMA3G_TestModel3 .......................................................................................... 18-18WCDMA3G_TestModel3_DPCH .............................................................................. 18-20WCDMA3G_TestModel4 .......................................................................................... 18-21

19 3GPPFDD 10-99 Transmit Diversity ComponentsWCDMA3G_STTDEncoder ...................................................................................... 19-2WCDMA3G_STTDMux............................................................................................. 19-6

20 3GPPFDD 10-99 Transport Channel Multiplex ComponentsWCDMA3G_CCTrCHDeRMatch .............................................................................. 20-2WCDMA3G_CCTrCHRMatch ................................................................................... 20-16WCDMA3G_RadioFrameDeEqual ........................................................................... 20-34WCDMA3G_RadioFrameDelay ................................................................................ 20-36WCDMA3G_RadioFrameDeSeg .............................................................................. 20-41WCDMA3G_RadioFrameEqual ................................................................................ 20-47WCDMA3G_RadioFrameSeg................................................................................... 20-49WCDMA3G_TrCHDeMux ......................................................................................... 20-55WCDMA3G_TrCHMux.............................................................................................. 20-66

21 3GPPFDD 10-99 User Equipment ComponentsWCDMA3G_DnLkDeSpreading ............................................................................... 21-2WCDMA3G_DnLkDPCHDeMux............................................................................... 21-7WCDMA3G_DnLkTrCHDecoding ............................................................................. 21-11WCDMA3G_UE_FixedRateDemod.......................................................................... 21-15WCDMA3G_UE_FixedRateReceiver ....................................................................... 21-18WCDMA3G_UE_FixedRateSrc ................................................................................ 21-21WCDMA3G_UE_FixedRateSrc_2M ......................................................................... 21-24

x

Page 11: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_UE_VariableRateDemod...................................................................... 21-27WCDMA3G_UE_VariableRateReceiver ................................................................... 21-32WCDMA3G_UE_VariableRateSrc............................................................................ 21-37WCDMA3G_UpLkDPCCH_Src ................................................................................ 21-40WCDMA3G_UpLkDPDCH_Src ................................................................................ 21-42WCDMA3G_UpLkTrCHCoding................................................................................. 21-44

22 Base Station Receiver Design ExamplesIntroduction............................................................................................................... 22-1Reference Sensitivity Level Measurements.............................................................. 22-7Dynamic Range Measurements ............................................................................... 22-9Adjacent Channel Selectivity Measurements ........................................................... 22-12Blocking Characteristics Measurements .................................................................. 22-14Intermodulation Characteristics Measurements ....................................................... 22-16

23 Base Station Transmitter Design ExamplesIntroduction............................................................................................................... 23-1Maximum Power Measurements .............................................................................. 23-4Occupied Bandwidth Measurements........................................................................ 23-6Complementary Cumulative Distribution Function Measurements........................... 23-8Transmitter Spectrum Emissions Measurements ..................................................... 23-10Adjacent Channel Leakage Power Measurements in Frequency Domain................ 23-13Transmitter EVM Measurements .............................................................................. 23-15Transmitter Peak Code Domain Error Measurements .............................................. 23-17Signal Power Distribution Measurements in Code Domain ...................................... 23-19Spurious Emissions Measurements ......................................................................... 23-22

24 BER Validation Design ExamplesIntroduction............................................................................................................... 24-1Viterbi Decoder Performance for Rate 1/3 and 1/2 Convolutional Coding................ 24-3MAP Decoder Performance for Rate 1/3 Turbo Coding............................................ 24-5

Base Station Receiver Performance Test ........................................................... 24-7User Equipment Receiver Performance Test...................................................... 24-10

Uplink HS-DPCCH Performance over AWGN channel............................................. 24-13Uplink HS-DPCCH Performance over Fading channel ............................................. 24-15

25 Power Amplifier Test ExamplesIntroduction............................................................................................................... 25-1Maximum Output Power Measurements .................................................................. 25-4Occupied Bandwidth Measurements........................................................................ 25-6Complementary Cumulative Distribution Function Measurements........................... 25-9Spectrum Emission Measurements.......................................................................... 25-11Adjacent Channel Leakage Power Ratio Measurements ......................................... 25-14

xi

Page 12: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Adjacent Channel Leakage Power Ratio Measurements in Presence of Switching Transients25-17

Error Vector Magnitude Measurements.................................................................... 25-20Peak Code Domain Error Measurements................................................................. 25-22Signal Power Distribution Measurements in Code Domain ...................................... 25-25

26 Signal Source Design ExamplesIntroduction............................................................................................................... 26-1Downlink Test Model 1 Signal Source ...................................................................... 26-3Uplink 12.2 kbps Signal Source................................................................................ 26-5ESG Option 100 Compliant Signal Source Demo .................................................... 26-7EVM Measurement with Non-synchronized Signal .................................................. 26-9EVM Measurement with Synchronized Signal.......................................................... 26-10ESG 4438C Interface Demo..................................................................................... 26-11ESG 443xB Interface Demo ..................................................................................... 26-12

27 User Equipment Receiver Design ExamplesIntroduction............................................................................................................... 27-1Reference Sensitivity Level ...................................................................................... 27-4Reference Sensitivity Level Test Without IF to RF Converters ................................. 27-6Maximum Input Level BER Measurements .............................................................. 27-9Adjacent Channel Sensitivity Measurements ........................................................... 27-11Inband Blocking Characteristics ............................................................................... 27-12Intermodulation Characteristics................................................................................ 27-14References ............................................................................................................... 27-15

28 User Equipment Transmitter Design ExamplesIntroduction............................................................................................................... 28-1Maximum Power ....................................................................................................... 28-4Occupied Bandwidth Measurements........................................................................ 28-7CCDF and Peak-to-Mean Information Measurements ............................................. 28-11Spectrum Emission Measurements.......................................................................... 28-14Adjacent Channel Leakage Power Ratio Measurements ......................................... 28-18Error Vector Magnitude Measurements.................................................................... 28-23Peak Code Domain Error Measurements................................................................. 28-26Signal Power Distribution Measurements in Code Domain ...................................... 28-29Spurious Emissions Measurements ......................................................................... 28-33

Index

xii

Page 13: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 1: 3GPP W-CDMA Design Library

IntroductionW-CDMA for the third generation (typically referred to as 3GPP, 3rd GenerationPartnership Project) evolved from the technical proposals from Japan and Europe forthird-generation wireless communications. The convergence of 3GPP specifications isbased on inputs from global contributors. 3GPP offers service rates up to 2 Mbps.3GPP is a complete protocol stack covering issues ranging from the physical layer tonetwork control aspects.

This 3GPP design library focuses on the physical layer, which includes the followingfunctionalities.

• Macro diversity distribution/combining and soft hand-over execution

• Error detection on transport channels and indication to higher layers

• Forward error control (FEC) encoding/decoding of transport channels

• Multiplexing of transport channels and demultiplexing of coded compositetransport channels

• Rate matching: data multiplexed on dedicated channels (DCHs)

• Mapping of coded composite transport channels on physical channels

• Power weighting and combining of physical channels

• Modulation and spreading/demodulation and de-spreading of physical channels

• Frequency and time (chip, bit, slot, frame) synchronization

• Radio characteristic measurements including frame error rate (FER),signal-to-interference (SIR), interference power level, and indication to higherlayers

• Closed-loop power control

• Radio frequency processing

Introduction 1-1

Page 14: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPP W-CDMA Design Library

3GPP Technical Specifications Supported3GPP committee updates 3GPP technical specifications every 3 months. The 3GPPFDD design library supports 3GPP release 1999 technical specifications. Thosespecifications are released in 2000-03, 2000-12, and 2002-03.

Each specification is further classified by features: release 1999 (Version 3.xx),release 4 (Version 4.xx) and release 5 (Version 5.xx). Basically, the contents defined inlower version specifications typically duplicate the contents from release 1999 andrelease 4 that are published simultaneously. Most features supported by the 3GPPFDD design library are release 1999 features; limited release 5 features are availablesuch as the downlink HSDPA signal source provided in TestModel5 and uplinkHS-DPCCH transmitter/receiver models. The HSDPA specification version isSeptember 2003.

Agilent Instrument CompatibilityThis 3GPP design library is also compatible with Agilent E4406A VSA SeriesTransmitter Tester, Agilent PSA Series High-Performance Spectrum Analyzer, andAgilent 89600 Series Vector Signal Analyzer.

Table 1-1 shows more information of instrument models, Firmware revisions, andoptions.

For more information about Agilent ESG Series of Digital and Analog RF SignalGenerator and Options, please visit

http://www.agilent.com/find/ESG

For more information about Agilent E4406A VSA Series Transmitter Tester andOptions, please visit

Table 1-1. Agilent Instrument Compatibility Information

3GPP Design Library ESG Models VSA Models

SpecVersion=03-2002 E443xB, Firmware Revision B.03.86Option 100 - “W-CDMA” PersonalityOption 200 - “Real-time W-CDMA” Personality

E4438C, Firmware Revision C.03.10 (and later)Option 400 - “3GPP W-CDMA FDD” Personality

E4406A, Firmware Revision A.04.21 (and later)Option BAF - “W-CDMA” MeasurementPersonality

PSA, Firmware Revision A.02.04 (and later)Option BAF - “W-CDMA” MeasurementPersonality

89600 Series, software version 3.01/4.xx/5.xxOption B7N - “3G Modulation Analysis”

1-2 3GPP Technical Specifications Supported

Page 15: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

http://www.agilent.com/find/VSA

For more information about Agilent PSA Series Spectrum Analyzer and Options,please visit

http://www.agilent.com/find/PSA

For more information about Agilent 89600 Series Vector Signal Analyzer andOptions, please visit

http://www.agilent.com/find/89600

Physical Layer Transmitter and Receiver StructuresThe downlink transmitter and receiver structures, based on the behavioral modelsand systems, are illustrated in Figure 1-1 and Figure 1-2.

The uplink transmitter and receiver structures are illustrated in Figure 1-3 andFigure 1-4.

Figure 1-1. Downlink Transmitter Structure

Variable-Rate

Service #1

1stInterleaving

TFCI

TFCIEncoder

for ExplicitRD

Transport Channel #1

Variable-Rate

Service #N

TrBkConcat/CodeBk

Seg

Convolution(TurboCode)

Encoder

RateMatching

withfixed DTX

1stInterleaving

Framing

Transport Channel #N

TFCIMapper

TrChMultiplexing

PhyChSegment/Mapping

withflexible

DTX

Transport Channel Number = N

2ndInterleaving

Physical Channel Number = M

MUX

TPCBits

TFCI

QPSKData

Mapping

STTDEncoder

STTDMUX

Pilot

Diversity Pilot

Tx. Antenna 1

2ndInterleaving MUX

QPSKData

Mapping

SpreadingCode

Generator

Radio FrameSegmentation

Radio FrameSegmentation

STTDEncoder

STTDMUX

Tx. Antenna 2

ScramblingCode

Generator

Physical Channel #1(DPDCH#1/DPCCH)

Physical Channel #M(DPDCH#M)

Pilot

Diversity Pilot

System ParameterSystem Parameter

TPCBits

Ant1

Ant1

Ant2

Ant2

Ant1

Ant1

Ant2

Ant2

PowerAdjustment

Ant1

Ant2

Ant1

Ant2

Ant1

Ant2

PowerAmplifier

TPC from Rx

TF#1

TF#N

TFCI

Link Direction = DownLinkTransport Channel Number =NPhysical Channel Number =MTTI = 10/20/40/80msTransport Channel TypePhysical Channel TypeInfo Rate per ServiceExplicit RD/Blind RD

Model

Notes:

Model

Operate every 10ms

Operate every TTI

Binary Data(0/1)

Complex Symbol

TrBkConcat/CodeBk

Seg

Convolution(TurboCode)

Encoder

RateMatching

withfixed DTX

Framing

Physical Layer Transmitter and Receiver Structures 1-3

Page 16: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPP W-CDMA Design Library

Figure 1-2. Downlink Receiver Structure

RecoveredVariable Rate

Data #1

1stDeInterleaving

Transport Channel #1

Transport Channel #N

TFCIDemapper

TrChMultiplexing

PhyChDesegment/Demappingwith flexible

DTX

Transport Channel Number = N

Physical Channel Number = M

Radio FrameDesegmentatio

n

System ParameterSystem Parameter

TF#1

TFCI

Link Direction = DownLinkTransport Channel Number =NPhysical Channel Number =MTTI = 10/20/40/80msTransport Channel TypePhysical Channel TypeInfo Rate per ServiceExplicit RD/Blind RD

Model Operate every TTI

Binary Data(0/1)

Complex Symbol

TrBk Concat/CodeBkDeseg

Viterbi(TurboCode)

Decoder

RateDematching

withfixed DTX

Deframing

Soft-Decision

MetricCalculator

RakeReceiver

Float Data

Model Operate every 10ms

Rx. Antenna

De-MUX2nd

DeInterleaving

TPCBits

TFCI Decoderfor Explicit RD

TFCI

SpreadingCode

Generator

ScramblingCode

Generator

Soft-Decision

MetricCalculator

De-MUX2nd

DeInterleaving

RecoveredVariable Rate

Data #1

1stDeInterleaving

Radio FrameDesegmentatio

n

TF#N

TrBk Concat/CodeBkDeseg

Viterbi(TurboCode)

Decoder

RateDematching

withfixed DTX

Deframing

Physical Channel#1(DPDCH#1/DPCCH)

Physical Channel#M(DPDCH#M)

1-4 Physical Layer Transmitter and Receiver Structures

Page 17: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 1-3. Uplink Transmitter Structure

Variable-Rate

Service #1

1stInterleaving

TFCI

TFCIEncoder

for ExplicitRD

Transport Channel #1

Variable-Rate

Service #N

TrBkConcat/CodeBk

Seg

Convolution(TurboCode)

Encoder

Framing

Transport Channel #N

TFCIMapper

TrChMultiplexing

PhyChSegment/Mapping

Transport Channel Number = N

2ndInterleaving

Physical Channel Number = M

TFCI

BPSKData

Mapping

Cch,1

Tx. Antenna

2ndInterleaving

BPSKData

Mapping

SpreadingCode

Generator

Radio FrameSegmentation

ScramblingCode

Generator

Physical Channel(Odd)(DPDCH#1,3,…,2k-1)

Physical Channel(Even)(DPDCH#2,4,…,2k)

System Parameter

PowerAmplifier

TPC from Rx

TF#1

TF#N

TFCI

Model

Notes:

Model

Operate every 10ms

Operate every TTI

Binary Data(0/1)

Complex Symbol

TrBkConcat/CodeBk

Seg

Convolution(TurboCode)

Encoder

RateMatching

Link Direction = UpLinkTransport Channel Number =NPhysical Channel Number =MTTI = 10/20/40/80msTransport Channel TypePhysical Channel TypeInfo Rate per ServiceExplicit RD/Blind RD

FramingRadioFrame

Equalisation

1stInterleaving

Radio FrameSegmentation

RateMatching

RadioFrame

Equalisation

DPCCHMUX

TPCBits

BPSKData

Mapping

βd

Cch,2

βd

Pilot

FBIBits

Cch,0

βc j

I

Q

DPCCH

DPDCH#3,...

Physical Layer Transmitter and Receiver Structures 1-5

Page 18: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPP W-CDMA Design Library

Figure 1-4. Uplink Receiver Structure

The WCDMA3G Design Library includes key features of a 3GPP system.

• Variable rate services

• Standard slot format including TPC, TFCI, FBI and pilot bits multiplexing

• Standard frame format

• Turbo coding/decoding and convolutional coding/decoding

• Multiplexing of different transport channels (TrCHs) onto one coded compositetransport channel (CCTrCH)

• Support of fixed and flexible positions of TrCHs in one CCTrCH frame

• Support of transport format detection with transport format combinationindicator (TFCI)

• Support of space time transmit diversity (STTD) encoding

• Synchronization based on common pilot channel

• Multipath searching

RecoveredVariable Rate

Data #1

1stDeInterleaving

Transport Channel #1

Transport Channel #N

TFCIDemapper

TrChMultiplexing

PhyChDesegment/Demapping

Transport Channel Number = N

Physical Channel Number = M

Radio FrameDesegmentatio

n

System ParameterSystem Parameter

TF#1

TFCI

Link Direction =UpLinkTransport Channel Number =NPhysical Channel Number =MTTI = 10/20/40/80msTransport Channel TypePhysical Channel TypeInfo Rate per ServiceExplicit RD/Blind RD

Model Operate every TTI

Binary Data(0/1)

Complex Symbol

TrBk Concat/CodeBkDeseg

Viterbi(TurboCode)

Decoder

RateDematchingDeframing

RakeReceiver

Float Data

Model Operate every 10ms

Rx. Antenna

DPCCHDe-MUX

TPCBits

TFCI Decoderfor Explicit RD

TFCI

SpreadingCode

Generator

ScramblingCode

Generator

2ndDeInterleavin

g

RecoveredVariable Rate

Data #1

TF#N

TrBk Concat/CodeBkDeseg

Viterbi(TurboCode)

Decoder

Deframing

DPCCH

Physical Channel(Even) (DPDCH #2,4,…,2k)

Physical Channel(Odd) (DPDCH#1,3,…,2k-1)

FBIBits

2ndDeInterleavin

g

Radio FrameDeeqaulisation

1stDeInterleaving

Radio FrameDesegmentatio

n

RateDematching

Radio FrameDeeqaulisation

TFCI

1-6 Physical Layer Transmitter and Receiver Structures

Page 19: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

• Standard Rake receiver with maximum ratio combining (MRC)

• Linear channel estimation with interpolation

• Coherent QPSK demodulation

• Power control

General Signal ProcessingGenerally, a single data stream from the TrCH multiplexing model is denoted as theCCTrCH. One CCTrCH is mapped onto M DPCHs. The spread signal is thenscrambled and mapped to the I and Q channel.

Each variable rate service model serves as a transport channel that generates avariable rate date source that changes every 10ms. Only one transport block set isgenerated during each TTI. The transport formats (TF) of N TrCHs are mapped intoa TFCI value by TFCI Mapper.

Framing of each transport block is done by performing cyclic redundancy check(CRC) to each transport block. The parity bits of CRC are 24, 16, 12, 8 or 0 dependingon signalling from higher layers.

After framing, all transport blocks in one TTI are serially concatenated andsegmented into channel coding blocks. The code blocks after segmentation are thesame size, which is less than a predetermined value based on the channel codingtype. Code blocks are delivered to channel coding models.

Bit streams of all TrCHs after channel coding are transferred to a rate matchingmodel. Rate matching is necessary for supporting variable rate source of DCH. Bitson a TrCH can be repeated or punctured after rate matching. Higher layers assign arate-matching attribute for each transport channel, which is used to calculate thenumber of bits to be repeated or punctured. For downlink, rate matching matches thebits of all TrCHs in 10ms to the total number of bits that are available for theCCTrCH in a radio frame. With the fixed positions of TrCHs, a fixed number of bits isreserved for each TrCH in the radio frame of CCTrCH. If the bits of one TrCH afterrate matching fill all allocated bit positions, DTX indication bits must be inserted.

The output bit streams after the first interleaver are segmented into radio frames.The first interleaver is a block interleaver with inter-column permutations. When theTTI is longer than 10ms, the input bit sequence is segmented and mapped ontoconsecutive radio frames; the number of bits in each radio frame is same.

General Signal Processing 1-7

Page 20: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPP W-CDMA Design Library

Every 10 ms, one radio frame from each TrCH is delivered to the TrCH multiplexingmodel. These radio frames are serially multiplexed into one frame of CCTrCH. Withflexible positions of TrCHs, any DTX indication bits are placed at the end of theCCTrCH radio frame. Bit streams from one CCTrCH will then be mapped ontoseveral DPCHs (consisting of DPDCH and DPCCH). When more than one DPCH isused, physical channelization is implemented by using orthogonal codes.

Second interleaving is performed between DPCH frames. The second interleaving is ablock interleaver with inter-column permutations. Control information bits, such asTPC commands and an optional TFCI, are mapped onto DPCCH. Data modulation,spreading, and scrambling are then performed

At the receiver side, coherent demodulation and MRC combining require the channelestimate information, which is obtained by the channel estimate model. Pathsearching model discriminate the delay between multipath signals, the delayinformation is fed into the standard Rake receiver model to perform multipath signalcombining.

The soft output from the Rake receiver is used by turbo/convolutional decoder tofurther improve the reliability of received information. De-framing andde-multiplexing are performed symmetrically as the framing and multiplexingprocedures and the transmitted signals are recovered.

Overview of Component Libraries

Channel Coding Components

Channel coding components accomplish the following functions.

• The cyclic redundancy check (CRC) provides error detection of the transportblocks for a particular transport channel. The CRC can take 0 (no CRC), 8, 12,16, or 24 bits depending on service requirements. CRC coding and decoding areperformed.

• Convolutional coding is applied to real time services such as speech. The Viterbialgorithm is used to obtain optimum performance.

• Turbo coding provides near-optimum performance. Non-realtime services useturbo coding to reduce the radio resource consumptions. Most models in thisgroup used for turbo coding take into account its parallel encoding and iterativedecoding nature. Some tail bits are padded in the encoding side to assist the

1-8 Overview of Component Libraries

Page 21: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

decoder to properly terminate the decoding trellis, which enhancesperformance. Internal turbo coding interleaving and de-interleaving algorithmsare also implemented.

• TFCI Reed-Muller (RM) coding. TFCI is important for the receiver to properlyde-segment the recovered bit streams into transport channels. TFCI isprotected by RM codes.

• Interleaving is used to spread burst errors into random errors in order toimprove the error correction code performance. There are two interleavingalgorithms in 3GPP: one is used for individual transport channels; one is usedbetween different transport channels.

• To simplify the top-level appearance, two sets of models have been grouped astwo subnetwork models: WCDMA3G_ChannelCoding andWCDMA3G_ChannelDecoding. When setting up a completed channel codingfunction, the use of these models is simpler than grouping a number ofindividual models to accomplish the desired function.

Channel Model Components

Two methods are available to simulate multi-path fading. The first method passes aGaussian random noise through a filter whose frequency response is identical toclassical Doppler fading; the second method is the sum-of-sinusoids methods in whichthe phase shift for each single sinusoid signal can be deterministic according to thetraditional Jake model, or statistical following a recently published academic paper.Both methods are implemented in the Fader component located in the Antenna &Propagation library; refer to Fader documentation for more information.

The new 3GPPFDD_Channel subnetwork design is based on Fader to simulate a3GPP multipath fading channel.

Beginning with 2003C, the 5 models provided in the 3GPPFDD 10-99 Channel Modellibrary are obsolete for new applications (WCDMA3G_CHDelay,WCDMA3G_CHInterpolate, WCDMA3G_CHModel, WCDMA3G_ClassicalChannel,and WCDMA3G_UserDefinedCH). These models can still be used; however, for newapplications the 3GPPFDD_Channel subnetwork (available in the 3GPPFDDDChannel Model library) is recommended.

Overview of Component Libraries 1-9

Page 22: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPP W-CDMA Design Library

Common Physical Channels Components

This group is used to process common physical channels, such as common pilotchannel and SCH for downlink. These channels are used to implement timing andsynchronizations specifically for base station identification, and frame and slotsynchronization.

Measurement Components

Variable data source generators are located in this group. There are three kinds ofdata sources:

• Broadcast channel source used for broadcast channels

• Fixed rate data source used for measurement channels

• Variable rate data source provides a variable rate bit stream to test thecapability of 3GPP to support variable rate service

BER and FER measurement models are used to obtain the required systemperformance measurement. These models provide users maximum flexibility toconveniently obtain the measurements.

To measure the performance of power control algorithm, theWCDMA3G_TxPowAdjust and WCDMA3G_PowCtrlCmd models facilitate powercontrol implementation. WCDMA3G_PowerMeasure is used to measure power of thetransmitted signal.

Physical Channel Multiplex Components

Models in this group are used to perform segmentation and de-segmentation betweenCCTrCH and physical channels. This includes packaging control bits and user datainto the standard frame structure and vice-versa.

Rake Receiver Components

A path-search model is used to resolve the overlapped signals transmitted over amulti-path channel. Signals with different delays are then down-sampled at theproper instant to eliminate inter-symbol interference. The down-sampled signals arede-spread and combined according to channel information obtained from the channelestimation. The combining rule is called maximum-ratio combining.

1-10 Overview of Component Libraries

Page 23: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Spreading and Modulation Components

The 3GPP channelization codes are called OVSF, which is an index-permuted Walshcode. Downlink and uplink OVSF allocations are performed byWCDMA3G_DnLkOVSFAlloc and WCDMA3G_UpLkOVSFAlloc. The OVSF spreadsignals are then scrambled by downlink and uplink scramble codes.

Downlink QPSK modulation and spreading and uplink spreading are also in thisgroup. WCDMA3G_UpLkGainFactor gives gain quantized factors to DPDCH andDPCCH channels. Where multiple physical channels are used in downlink, only thefirst physical channel is used to carry the control bits, such as TPC and TFCI bits.These bits are transmitted at high power levels; WCDMA3G_DnLkPowerAlloc isused to adjust their gains.

Transmit Diversity Components

STTD encoding is implemented in the WCDMA3G_STTDEncoder.WCDMA3G_STTDMux is used to insert the necessary pilot symbols into the STTDencoded signals.

Transport Channel Multiplex Components

Models in this group are used to perform transport channel processing in accordancewith 3GPP specifications; including implementation of the rate matching algorithm.

Base Station and User Equipment Components

To reduce the efforts in setting up common parts of a 3GPP system, a number ofmodel sets have been grouped as independent models. Instead of placing andconnecting a number of individual models, a reference system can be easily set up byusing the models in these groups.

Base Station Components

Models in this group accommodate implementation of specific macro-functions fordownlink, including fixed-rate signal source, variable signal source, receiver for fixed-and variable-rate signals with and without channel coding.

Other common channels and functions are also implemented as independent models,such as CPICH, PCCCH, transport channel coding and decoding. These areparticularly helpful for users whose focus is not on baseband signal processing.

Overview of Component Libraries 1-11

Page 24: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPP W-CDMA Design Library

User Equipment Components

Models in this group accommodate implementation of specific macro-functions foruplink, including fixed-rate signal source, variable signal source, receiver for fixed-and variable-rate signals with and without channel coding.

Other common channels and functions are also implemented as independent models.

FDD Components

Components with the 3GPPFDD prefix are compliant with 3GPP technicalspecifications after October 1999 and support arbitrary transport channelconfigurations; these components are in the 3GPPFDD library category. (Componentsthat are compliant with 3GPP technical specifications of October 1999 are in the3GPPFDD 10-99 library category.) The 3GPP version specification can be selected bythe SpecVersion parameter that is listed ahead of all other parameters.

Design Examples

The RF characteristics can be measured using the 3GPP W-CDMA Design Library.RF measurements for user equipment (UE) are defined in [1]; test methods aredescribed in [2]. For base station (BS), the RF characteristic are defined in [3]; testmethods are described in [4].

The RF Measurement Example designs are provided with the 3GPP W-CDMA DesignLibrary in the /examples/wcdma3g directory. This manual describes the examplesand includes schematics and simulation results. Projects and their correspondingdesign examples are listed here.

There are two sets of signal source models in the 3GPP Design Library. Componentsthat are compliant with 3GPP technical specifications of October 1999 are in the3GPPFDD 10-99 library category. Components in the 3GPPFDD library categorysupport three 3GPP specification version: March 2000 and December 2000 andMarch 2002. They can be selected by the SpecVersion parameter. These componentsare used to update the following application projects

• WCDMA3G_BERValidation_prj

• WCDMA3G_BS_Tx_prj

• WCDMA3G_PA_Test_prj

• WCDMA3G_SignalSource_prj

1-12 Overview of Component Libraries

Page 25: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

• WCDMA3G_UE_Tx_prj

• WCDMA3G_BS_Rx_prj

• WCDMA3G_PA_Test_prj

• WCDMA3G_UE_Rx_prj

• WCDMA3G_Export_prj

Compared with the previous release, the signal source and receiver, as well as themeasurement sub-system have been replaced by new integrated 3GPP models forTx/Rx characteristic test examples. The IF parts have been removed from the Tx/Rxtests.

The WCDMA3G_BERValidation_prj contains two designs to test 3GPP channelcoding performance over AWGN channel and two designs to test 3GPP performanceover fading channel.

• 3GPPFDD_ConvCode_BER.dsn

• 3GPPFDD_TurboCode_BER.dsn

• 3GPPFDD_BS_Rx_Performance.dsn

• 3GPPFDD_UE_Rx_Performance.dsn

The WCDMA3G_BS_Rx_prj project shows base station receiver measurementcharacteristics. Designs for these measurements include:

• Adjacent channel selectivity: BS_Rx_ACS.dsn

• Blocking characteristics: BS_Rx_Blocking.dsn

• Dynamic range: BS_Rx_DynamicRange.dsn

• Intermodulation characteristics: BS_Rx_Intermod.dsn

• Reference sensitivity levels: BS_Rx_RefLevel.dsn

The WCDMA3G_BS_Tx_prj project shows base station transmitter measurementcharacteristics. Designs for these measurements include:

• Adjacent channel leakage power measurements in frequency domain:BS_Tx_ACLR.dsn

• Complementary cumulative distribution function measurements:BS_Tx_CCDF.dsn

Overview of Component Libraries 1-13

Page 26: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPP W-CDMA Design Library

• Signal power distribution measurements in code domain:BS_Tx_Code_Domain_Power.dsn

• Transmitter EVM measurements: BS_Tx_EVM.dsn

• Maximum power measurements: BS_Tx_MaxPower.dsn

• Occupied bandwidth measurements: BS_Tx_Occupied_BW.dsn

• Transmitter peak code domain error measurements:BS_Tx_Pk_Code_Error.dsn

• Transmitter spectrum emissions measurements: BS_Tx_Spec_Emission.dsn

• Spurious emissions measurements: BS_Tx_SpurEmission.dsn

The WCDMA3G_UE_Rx_prj project shows 3GPP W-CDMA user equipment receivermeasurements. Designs for these measurements include:

• Adjacent channel selectivity: UE_Rx_ACS.dsn

• Intermodulation characteristics: UE_Rx_Intermod.dsn

• Maximum input levels: UE_Rx_MaxLevel.dsn

• In-band blocking characteristics: UE_Rx_In_Band_Blocking.dsn

• Reference sensitivity levels: UE_Rx_RefLevel.dsn andUE_Rx_RefLevel_Without_IF.dsn

The WCDMA3G_UE_Tx_prj project demonstrates user equipment transmittermeasurement characteristics. Designs for these measurements include:

• Adjacent channel leakage power ratio measurements: UE_Tx_ACLR.dsn andUE_Tx_ACLR_SwitchingTransients.dsn

• CCDF and peak-to-mean information measurements: UE_Tx_CCDF.dsn

• Signal power distribution measurements in code domain:UE_Tx_Code_Domain_Power.dsn

• Error vector magnitude measurements: UE_Tx_EVM.dsn

• Maximum power measurements: UE_Tx_Max_Power.dsn

• Occupied bandwidth measurements: UE_Tx_Occupied_BW.dsn

• Peak code domain error measurements: UE_Tx_Pk_Code_Error.dsn

• Spectrum emission measurements: UE_Tx_Spec_Emissions.dsn

1-14 Overview of Component Libraries

Page 27: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

• Spurious Emission: UE_Tx_SpurEmission.dsn

The WCDMA3G_SignalSource_prj project provides file-based signal sources for othermeasurements as well as EVM measurement examples. There are also designsdemonstrating interface with ESG and VSA instruments.These examples are:

• Downlink Test Model 1 Signal Source: 3GPPFDD_BS_Tx_TestModel1.dsn

• Uplink 12.2 kbps Signal Source: 3GPPFDD_UE_Tx_12_2.dsn

• ESG Option 100 Compliant Signal Source Demo:3GPPFDD_ESG100_Demo.dsn

• EVM Measurement with Non-Synchronized Signal:3GPPFDD_EVM_Demo.dsn

• EVM Measurement with Synchronized Signal:3GPPFDD_EVM_Synch_Demo.dsn

• ESG E4438C interface demo: 3GPPFDD_ESG4438C.dsn

• ESG E443xB interface demo: 3GPPFDD_ESG443xB.dsn

The WCDMA3G_PA_Test_prj project focuses on verification of power amplifier designfor 3GP wireless handsets that support two 3GPP specifications. Nine measurementsare provided:

• Adjacent channel leakage power ratio measurements:WCDMA3G_PA_UE_ACLR.dsn

• ACLR measurements in presence of switching transients:WCDMA3G_PA_UE_ACLR_SwitchingTransient.dsn

• CCDF and peak-to-mean information measurements:WCDMA3G_PA_UE_CCDF.dsn

• Signal power distribution measurements in code domain:WCDMA3G_PA_UE_CodeDomainPower.dsn

• Error vector magnitude measurements: WCDMA3G_PA_UE_EVM.dsn

• Occupied bandwidth measurements: WCDMA3G_PA_UE_OccupiedBW.dsn

• Maximum power measurements: WCDMA3G_PA_UE_OutputPower.dsn

• Peak code domain error measurements: WCDMA3G_PA_UE_PkCodeError.dsn

• Spectrum emission measurements: WCDMA3G_PA_UE_SpecEmissions.dsn

Overview of Component Libraries 1-15

Page 28: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPP W-CDMA Design Library

The WCDMA3G_Export_prj project contains the wireless test benches that aremigrated to RFDE design environments.

References

Release 5 Specifications

[1]3GPP Technical Specification TS 25.211, “Physical channels and mapping oftransport channels onto physical channels (FDD),” Sept. 2002, Release 5.

http://www.3gpp.org/ftp/Specs/2002-09/Rel-5/25_series/25211-520.zip

[2] 3GPP Technical Specification TS 25.213, “Spreading and modulation (FDD),”Sept. 2002, Release 5.

http://www.3gpp.org/ftp/Specs/2002-09/Rel-5/25_series/25213-520.zip

[3] 3GPP Technical Specification TS 25.141, “Base station conformance test,” Sept.2002, Release 5.

http://www.3gpp.org/ftp/Specs/2002-09/Rel-5/25_series/25141-540.zip

Release 1999 Specifications

[1]3GPP Technical Specification TS 25.211, “Physical channels and mapping oftransport channels onto physical channels (FDD),” Mar. 2000 / Dec. 2000 / Mar.2002, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.212, “Multiplexing and channel coding(FDD),” Mar. 2000 / Dec. 2000 / Mar. 2002, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[3] 3GPP Technical Specification TS 25.213, “Spreading and modulation (FDD),”Mar. 2000 / Dec. 2000 / Mar. 2002, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

[4] 3GPP Technical Specification TS 25.214, “Physical layer procedures (FDD),”Mar. 2000 / Dec. 2000 / Mar. 2002, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25214-3a0.zip

1-16 References

Page 29: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

[5] 3GPP Technical Specification TS 25.101, “UE Radio transmission andReception (FDD),” Apr. 2000 / Dec. 2000 / Mar. 2002, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

[6] 3GPP Technical Specification TS 25.104, “UTRA (BS) FDD: Radio transmissionand Reception,” Mar. 2000 / Dec. 2000 / Mar. 2002, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25104-3a0.zip

[7] 3GPP Technical Specification TS 25.141, “Base station conformance test,” Mar.2000 / Dec. 2000 / Mar. 2002, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25141-390.zip

[8] 3GPP Technical Specification TS 34.121, “Radio transmission and reception(FDD),” Mar. 2000 / Dec. 2000 / Mar. 2002, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/34_series/34121-380.zip

References 1-17

Page 30: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPP W-CDMA Design Library

1-18 References

Page 31: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 2: 3GPPFDD Base StationComponents

2-1

Page 32: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3GPPFDD_CPICH

Description Common Pilot ChannelLibrary 3GPPFDD, Base StationClass SDF3GPPFDD_CPICHDerived From 3GPPFDD_DLPCodeSrcBase

Parameters

Pin Outputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble code offset 0 int [0, 15]

SpreadCode index of spread code 0 int [0, SF-1]; SF can be setby SlotFormator equal toSpreadFactor; SF is 256 if forCPICH, PICHor uplinkDPCCH

CPICHType CPICH type: Primary,Secondary

Primary enum

Pin Name Description Signal Type

1 out output data complex

2 STTDout STTD encoder out on antenna 2 complex

2-2 3GPPFDD_CPICH

Page 33: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model is used to generate the fixed rate (SF = 256) CPICH of downlink thatcarries a pre-defined bit/symbol sequence.

This model performs the same as the Agilent signal generator instrumentESG-D Option 100.

2. Each firing, 2560 tokens are output. The complex output data sequence is thespread and scrambled chips, specified by the SpreadCode and ScrambleCodeparameters. The output sequence is repeated on a frame- by-frame basis.

3. This model can be used to generate either P-CPICH or S-CPICH as specified byCPICHType.

• When CPICHType is set to Primary, the primary scrambling code index isdetermined by the ScrambleCode parameter and the same channelizationcode (Cch, 256, 0) is always used (and, ScrambleOffset and SpreadCode are notused).

• When CPICHType is set to Secondary, spread code index is determined bythe SpreadCode parameter (0-255); ScrambleCode and ScrambleOffsetdetermine the scrambling code index according to the formula:

n = (16 × i) + k

where n = scrambling code index, i = ScrambleCode value (0-511), k =ScrambleOffset value (0-15).

4. The out pin transmits the non-STTD signal or STTD signal on antenna 1; theSTTDout pin transmits the STTD signal on antenna 2.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

3GPPFDD_CPICH 2-3

Page 34: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3GPPFDD_DL_12_2

Description 3GPP downlink reference measurement channel 12.2 kbpsLibrary 3GPPFDD, Base Station

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

2-4 3GPPFDD_DL_12_2

Page 35: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This subnetwork model is used to generate baseband signal of 12.2 kbps DLreference measurement channel. The schematic for this subnetwork is shown inFigure 2-1.

SpreadCode index of spread code 0 int [0, 127] fordownlink12.2kbps; [0, 31] fordownlink64kbps; [0, 15] fordownlink144kbps; [0, 7] fordownlink384kbps

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

ScrambleType scramble type: Normal,RightAlternate,LeftAlternate

Normal enum

Pin Name Description Signal Type

1 out non STTD complex

2 STTDout STTD complex

3 DTCH DTCH data int

4 DCCH DCCH data int

Name Description Default Type Range

3GPPFDD_DL_12_2 2-5

Page 36: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Figure 2-1. 3GPPFDD_DL_12_2 Schematic

2. Parameters for the 12.2 kbps DL reference measurement channel are specifiedin Table 2-1 and Table 2-2.

Table 2-1. DL Reference Measurement Channel,Physical Parameters (12.2 kbps)

Parameter Unit Level

Information bit rate kbps 12.2

DPCH ksps 30

Slot Format #i 11

TFCI On

Power offsets PO1, PO2 and PO3 dB 0

Puncturing % 14,7

2-6 3GPPFDD_DL_12_2

Page 37: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3. Channel coding is illustrated in Figure 2-2. After channel coding, the signal ofeach slot is spread and scrambled, then output at pin out (non STTD). PinSTTDout outputs the signal with STTD encoding.

4. This subnetwork model also provides the original transport source bits throughpins DCCH and DTCH that can be used in BER measurements.

Table 2-2. DL Reference Measurement Channel,Transport Channel Parameters (12.2 kbps)

Parameter DTCH DCCH

Transport Channel Number 1 2

Transport Block Size 244 100

Transport Block Set Size 244 100

Transmission Time Interval 20 ms 40 ms

Type of Error Protection Convolution Coding Convolution Coding

Coding Rate 1/3 1/3

Rate Matching attribute 256 256

Size of CRC 16 12

Position of TrCH in radio frame fixed fixed

3GPPFDD_DL_12_2 2-7

Page 38: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Figure 2-2. Channel Coding of DL Reference Measurement Channel (12.2 kbps)

References

[1]3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

2-8 3GPPFDD_DL_12_2

Page 39: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_DL_144

Description 3GPP downlink reference measurement channel 144 kbpsLibrary 3GPPFDD, Base Station

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

3GPPFDD_DL_144 2-9

Page 40: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Pin Outputs

Notes/Equations

1. This subnetwork model is used to generate baseband signal of 144 kbps DLreference measurement channel. The schematic for this subnetwork is shown inFigure 2-3.

SpreadCode index of spread code 0 int [0, 127] fordownlink12.2kbps; [0, 31] fordownlink64kbps; [0, 15] fordownlink144kbps; [0, 7] fordownlink384kbps

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

ScrambleType scramble type: Normal,RightAlternate,LeftAlternate

Normal enum

Pin Name Description Signal Type

1 out non STTD complex

2 STTDout STTD complex

3 DTCH DTCH data int

4 DCCH DCCH data int

Name Description Default Type Range

2-10 3GPPFDD_DL_144

Page 41: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 2-3. 3GPPFDD_DL_144 Schematic

2. Parameters for the 144 kbps DL reference measurement channel are specifiedin Table 2-3 and Table 2-4.

Table 2-3. DL Reference Measurement Channel Physical Parameters (144 kbps)

Parameter Unit Level

Information bit rate kbps 144

DPCH ksps 240

Slot Format #i 14

TFCI On

Power offsets PO1, PO2 and PO3 dB 0

Puncturing % 2.7

3GPPFDD_DL_144 2-11

Page 42: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3. Channel coding is illustrated in Figure 2-4. After channel coding, the signal ofeach slot is spread and scrambled, then output at pin out (non STTD). PinSTTDout outputs the signal with STTD encoding.

4. This subnetwork model also provides the original transport source bits throughpins DCCH and DTCH that can be used in BER measurement.

Table 2-4. DL Reference Measurement Channel,Transport Channel Parameters (144 kbps)

Parameter DTCH DCCH

Transport Channel Number 1 2

Transport Block Size 2880 100

Transport Block Set Size 2880 100

Transmission Time Interval 20 ms 40 ms

Type of Error Protection Turbo Coding Convolution Coding

Coding Rate 1/3 1/3

Static Rate Matching parameter 1.0 1.0

Size of CRC 16 12

Position of TrCH in radio frame fixed fixed

2-12 3GPPFDD_DL_144

Page 43: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 2-4. Channel Coding of DL Reference Measurement Channel (144 kbps)

References

[1]3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

3GPPFDD_DL_144 2-13

Page 44: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3GPPFDD_DL_384

Description 3GPP downlink reference measurement channel 384 kbpsLibrary 3GPPFDD, Base Station

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

2-14 3GPPFDD_DL_384

Page 45: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This subnetwork model is used to generate baseband signal of 384 kbps DLreference measurement channel. The schematic for this subnetwork is shown inFigure 2-5.

SpreadCode index of spread code 0 int [0, 127] fordownlink12.2kbps; [0, 31] fordownlink64kbps; [0, 15] fordownlink144kbps; [0, 7] fordownlink384kbps

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

ScrambleType scramble type: Normal,RightAlternate,LeftAlternate

Normal enum

Pin Name Description Signal Type

1 out non STTD complex

2 STTDout STTD complex

3 DTCH DTCH data int

4 DCCH DCCH data int

Name Description Default Type Range

3GPPFDD_DL_384 2-15

Page 46: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Figure 2-5. 3GPPFDD_DL_384 Schematic

2. Parameters for the DL measurement channel for 384 kbps are specified inTable 2-5 and Table 2-6.

Table 2-5. DL Reference Measurement Channel,Physical Parameters (384 kbps)

Parameter Unit Level

Information bit rate kbps 384

DPCH ksps 480

TFCI On

Puncturing % 22

2-16 3GPPFDD_DL_384

Page 47: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3. Channel coding is illustrated in Figure 2-6. After channel coding, the signal ofeach slot is spread and scrambled, then output at pin out (non STTD). PinSTTDout outputs the signal with STTD encoding.

4. This subnetwork model provides original transport source bits through pinsDCCH and DTCH that can be used in BER measurements.

Table 2-6. DL Reference Measurement Channel,Transport Channel Parameters (384 kbps)

Parameter DTCH DCCH

Transport Channel Number 1 2

Transport Block Size 3840 100

Transport Block Set Size 3840 100

Transmission Time Interval 10 ms 40 ms

Type of Error Protection Turbo Coding Convolution Coding

Coding Rate 1/3 1/3

Rate Matching attribute 256 256

Size of CRC 16 12

Position of TrCH in radio frame fixed Fixed

3GPPFDD_DL_384 2-17

Page 48: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Figure 2-6. Channel Coding of DL Reference Measurement Channel (384 kbps)

References

[1]3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

2-18 3GPPFDD_DL_384

Page 49: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_DL_64

Description 3GPP downlink reference measurement channel 64 kbpsLibrary 3GPPFDD, Base Station

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

3GPPFDD_DL_64 2-19

Page 50: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Pin Outputs

Notes/Equations

1. This subnetwork model is used to generate baseband signal of 64 kbps DLreference measurement channel. The schematic for this subnetwork is shown inFigure 2-7.

SpreadCode index of spread code 0 int [0, 127] fordownlink12.2kbps; [0, 31] fordownlink64kbps; [0, 15] fordownlink144kbps; [0, 7] fordownlink384kbps

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

ScrambleType scramble type: Normal,RightAlternate,LeftAlternate

Normal enum

Pin Name Description Signal Type

1 out non STTD complex

2 STTDout STTD complex

3 DTCH DTCH data int

4 DCCH DCCH data int

Name Description Default Type Range

2-20 3GPPFDD_DL_64

Page 51: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 2-7. 3GPPFDD_DL_64 Schematic

2. Parameters for the DL reference measurement channel for 64 kbps are specifiedin Table 2-7 and Table 2-8.

Table 2-7. DL Reference Measurement ChannelPhysical Parameters (64 kbps)

Parameter Unit Level

Information bit rate kbps 64

DPCH ksps 120

Slot Format #i 13

TFCI On

Power offsets PO1, PO2 and PO3 dB 0

Repetition % 2,9

3GPPFDD_DL_64 2-21

Page 52: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3. Channel coding is illustrated in Figure 2-8. After channel coding, the signal ofeach slot is spread and scrambled, then output at pin out (non STTD). PinSTTDout outputs the signal with STTD encoding.

4. This subnetwork model also provides original transport source bits throughpins DCCH and DTCH that can be used in BER measurements.

Table 2-8. DL Reference Measurement Channel,Transport Channel Parameters (64 kbps)

Parameter DTCH DCCH

Transport Channel Number 1 2

Transport Block Size 1280 100

Transport Block Set Size 1280 100

Transmission Time Interval 20 ms 40 ms

Type of Error Protection Turbo Coding Convolution Coding

Coding Rate 1/3 1/3

Rate Matching attribute 256 256

Size of CRC 16 12

Position of TrCH in radio frame fixed fixed

2-22 3GPPFDD_DL_64

Page 53: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 2-8. Channel Coding of DL Reference Measurement Channel (64 kbps)

References

[1]3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

3GPPFDD_DL_64 2-23

Page 54: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3GPPFDD_DL_BCH

Description 3GPP downlink reference BCH measurement channelLibrary 3GPPFDD, Base Station

Parameters

Pin Outputs

Notes/Equations

1. This subnetwork model is used to generate the baseband signal of DL BCHchannel. The schematic for this subnetwork is shown in Figure 2-9.

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

BCHDataPattern BCH source data pattern:BCH_random, BCH_PN9,BCH_PN15,BCH_bits_repeat,BCH_user_file

BCH_random enum

BCHRepBitValue BCH repeating data value 0xff int [0, 255]

BCHUserFileName BCH user-defined data filename

datafile.txt filename

Pin Name Description Signal Type

1 out non STTD complex

2 STTDout STTD complex

3 BCH BCH data out int

2-24 3GPPFDD_DL_BCH

Page 55: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 2-9. 3GPPFDD_DL_BCH Schematic

2. Parameters for DL BCH channel are specified in Table 2-9.

3. Channel coding is illustrated in Figure 2-10. After channel coding, the signal ofeach slot is spread and scrambled, then output at pin out (non STTD). PinSTTDout outputs the signal with STTD encoding.

4. This subnetwork model also provides original transport source bits through pinBCH that can be used in BER measurements.

Table 2-9. BCH ParametersTransport block size 246

CRC 16 bits

Coding CC, coding rate = 1/2

TTI 20 ms

Number of codes 1

SF 256

3GPPFDD_DL_BCH 2-25

Page 56: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Figure 2-10. Channel Coding for BCH

References

[1]3GPP Technical Specification TS 25.944 V3.1.0, “Channel coding andmultiplexing examples” Release 1999.

Transport Block

CRC and Tail

Radio Frame

ConvolutionalCoding R=1/2

1st Interleaving

Physical ChannelMapping

Rate Matching

246

246

CRC

540

540

540

270

16

Radio Frame

Tail

Attachment

270

270 270

1 2 15

18 18 18

Radio Frame

Slot

1 2 15

18 18 18

2nd Interleaving

Segmentation

8

PCCPCH

2-26 3GPPFDD_DL_BCH

Page 57: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_DL_BTFD

Description 3GPP downlink reference BTFD measurement channelLibrary 3GPPFDD, Base Station

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

3GPPFDD_DL_BTFD 2-27

Page 58: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Pin Outputs

Notes/Equations

1. This subnetwork model is used to generate baseband signal of DL referencemeasurement channel for BTFD. The schematic for this subnetwork is shown inFigure 2-11.

SpreadCode index of spread code 0 int [0, 127] fordownlink12.2kbps; [0, 31] fordownlink64kbps; [0, 15] fordownlink144kbps; [0, 7] fordownlink384kbps

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

ScrambleType scramble type: Normal,RightAlternate,LeftAlternate

Normal enum

Pin Name Description Signal Type

1 out non STTD complex

2 STTDout STTD complex

3 DTCH DTCH data int

4 DCCH DCCH data int

Name Description Default Type Range

2-28 3GPPFDD_DL_BTFD

Page 59: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 2-11. 3GPPFDD_DL_BTFD Schematic

2. Parameters for DL reference measurement channel for BTFD are listed inTable 2-10 and Table 2-11.

3. Channel coding for rates 1, 2, and 3 are illustrated in Figure 2-12, Figure 2-13,and Figure 2-14, respectively. After channel coding, the signal of each slot isspread and scrambled, then output at pin out (non STTD). Pin STTDoutoutputs the signal with STTD encoding.

4. This subnetwork model also provides original transport source bits throughpins DCCH and DTCH that can be used in BER measurements.

3GPPFDD_DL_BTFD 2-29

Page 60: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Table 2-10. DL Reference Measurement ChannelPhysical Parameters for BTFD

Parameter Unit Rate 1 Rate 2 Rate 3

Information bit rate kbps 12.2 7.95 1.95

DPCH ksps 30

TFCI Off

Repetition % 5

Table 2-11. DL Reference Measurement Channel,Transport Channel Parameters for BTFD

Parameter

DTCH

DCCHRate 1 Rate 2 Rate 3

Transport Channel Number 1 2

Transport Block Size 244 159 39 100

Transport Block Set Size 244 159 39 100

Transmission Time Interval 20 ms 40 ms

Type of Error Protection Convolution Coding Convolution Coding

Coding Rate 1/3 1/3

Rate Matching attribute 256 256

Size of CRC 12 12

Position of TrCH in radio frame fixed fixed

2-30 3GPPFDD_DL_BTFD

Page 61: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 2-12. Channel Coding of DL Reference Measurement Channelfor BTFD (Rate 1)

3GPPFDD_DL_BTFD 2-31

Page 62: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Figure 2-13. Channel Coding of DL Reference Measurement Channel forBTFD (Rate 2)

Figure 2-14. Channel Coding of DL Reference Measurement Channel forBTFD (Rate 3)

2-32 3GPPFDD_DL_BTFD

Page 63: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

3GPPFDD_DL_BTFD 2-33

Page 64: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3GPPFDD_DL_PCH_FACH

Description 3GPP downlink reference PCH&FACH measurement channelLibrary 3GPPFDD, Base Station

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SpreadCode index of spread code 0 int [0, 127] fordownlink12.2kbps; [0, 31] fordownlink64kbps; [0, 15] fordownlink144kbps; [0, 7] fordownlink384kbps

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

ScrambleType scramble type: Normal,RightAlternate,LeftAlternate

Normal enum

PCHDataPattern PCH source data pattern:PCH_random, PCH_PN9,PCH_PN15,PCH_bits_repeat,PCH_user_file

PCH_random enum

PCHRepBitValue PCH repeating data value 0xff int [0, 255]

PCHUserFileName PCH user-defined data filename

datafile.txt filename

2-34 3GPPFDD_DL_PCH_FACH

Page 65: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

FACH1DataPattern FACH1 source datapattern: FACH1_random,FACH1_PN9,FACH1_PN15,FACH1_bits_repeat,FACH1_user_file

FACH1_random enum

FACH1RepBitValue FACH1 repeating datavalue

0xff int [0, 255]

FACH1UserFileName FACH1 user-defined datafile name

datafile.txt filename

FACH2DataPattern FACH2 source datapattern: FACH2_random,FACH2_PN9,FACH2_PN15,FACH2_bits_repeat,FACH2_user_file

FACH2_random enum

FACH2RepBitValue FACH2 repeating datavalue

0xff int [0, 255]

FACH2UserFileName FACH2 user-defined datafile name

datafile.txt filename [0, 255]

RMArray rate matching attributes ofall Transport Channels

1.0 1.0 1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe 3

TrCHMulPos Transport Channelmultiplex position inCCTrCH: Fixed, Flexible

Fixed enum

PilotField Pilot field on/off switch:Pilot_On, Pilot_Off

Pilot_On enum

Pin Name Description Signal Type

1 out non STTD complex

2 STTDout STTD complex

3 PCH PCH data out int

4 FACH1 FACH1 data out int

5 FACH2 FACH2 data out int

Name Description Default Type Range

3GPPFDD_DL_PCH_FACH 2-35

Page 66: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Notes/Equations

1. This subnetwork model is used to generate baseband signal of DL PCH andFACH channel. The schematic for this subnetwork is shown in Figure 2-15.

Figure 2-15. 3GPPFDD_DL_PCH_FACH Schematic

2. Parameters for DL PCH and FACH channels are specified in Table 2-12.

Table 2-12. Parameter Examples for PCH and FACHTransport block size PCH NPCH=64 or 240 bits

FACH1 360 bits

FACH2 168 bits

Transport block set size PCH 64 × BPCH or 240 × BPCH bits (BPCH=0, 1)

FACH1 360 × BFACH1 bits(BFACH1=0, 1)

FACH2 168 × BFACH2 bits(BFACH2=0, 1, 2, 3)

Coding PCH, FACH2 CC, coding rate = 1/2

FACH1 TC

TTI 10 ms

The numbers of codes 1

SF 64

2-36 3GPPFDD_DL_PCH_FACH

Page 67: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3. Channel coding is illustrated in Figure 2-16. After channel coding, the signal ofeach slot is spread and scrambled, then output at pin out (non STTD). PinSTTDout outputs the signal with STTD encoding.

4. This subnetwork model also provides original transport source bits through pinPCH, FACH1, and FACH2 that can be used in BER measurements.

Figure 2-16. Channel Coding

Transport Block

CRC Attachment

TrBk

Tail Bit Attachment

Rate Matching

TrCHMultiplexing

Insertion of DTX

1 2 3 15

Concatenation

for CC

Tail Bit Attachmentfor TC

Indication

2nd Interleaving

Physical ChannelMapping

[2×(NPCH_TB+24)+NPCH_RM]×BPCH+(1140+NFACH1_RM)×BFACH1+2×(184×BFACH2+8× BFACH2/3 )+NFACH2_RM× BFACH2/3+NSCCPCH_DI

[2×(NPCH_TB+24)+NPCH_RM]×BPCH+(1140+NFACH1_RM)×BFACH1+2×(184×BFACH2+8× BFACH2/3 )+NFACH2_RM× BFACH2/3

[2×(NPCH_TB + 24) + NPCH_RM]×BPCH (1140 + NFACH1_RM)×BFACH1

1128 × BFACH1 12×BFACH1

2×(NPCH_TB+24) × BPCH 1128 × BFACH1 2×(184 × BFACH2 + 8× BFACH2/3 )

(NPCH_TB+16) × BPCH 8× BPCH 376 × BFACH1

376 × BFACH1 184 × BFACH2

184 × BFACH2 8 × BFACH2/3

TailTail

Tail

(NPCH_TB+16)× BPCH

BPCH TrBks(BPCH =0,1)

BFACH1 TrBks(BFACH1 =0,1)

BFACH 2TrBks(BFACH2 =0,1,2,3)

NPCH_TB

CRC

16

CRC

360 16

CRC

168 16

NPCH_TB

151 2 3SCCPCH

[2×(NPCH_TB+24)+NPCH_RM]×BPCH+(1140+NFACH1_RM)×BFACH1+2×(184×BFACH2+8× BFACH2/3 )+NFACH2_RM× BFACH2/3+NSCCPCH_DI

360 168

Radio Frame

TFCI

NSCCPCH_TFCI

PCH FACH1 FACH2

CC R = 1/2 or TC

2×(184×BFACH2+8× BFACH2/3 )+NFACH2_RM× BFACH2/3

3GPPFDD_DL_PCH_FACH 2-37

Page 68: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

References

[1]3GPP Technical Specification TS 25.944 V3.1.0, “Channel coding andmultiplexing examples” Release 1999.

2-38 3GPPFDD_DL_PCH_FACH

Page 69: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_DL_RefCh

Description 3GPP downlink integrated reference measurement channelLibrary 3GPPFDD, Base Station

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

3GPPFDD_DL_RefCh 2-39

Page 70: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Pin Outputs

Notes/Equations

1. This subnetwork model is an integrated signal source; users can select thereference measurement channel. The output is identical with the independentreference measurement channel. The schematic for this subnetwork is shown inFigure 2-17.

SpreadCode index of spread code 0 int [0, 127] fordownlink12.2kbps; [0, 31] fordownlink64kbps; [0, 15] fordownlink144kbps; [0, 7] fordownlink384kbps

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

ScrambleType scramble type: Normal,RightAlternate,LeftAlternate

Normal enum

RefCh reference measurementchannel: DL_REF_12_2,DL_REF_64,DL_REF_144,DL_REF_384

DL_REF_12_2 enum

Pin Name Description Signal Type

1 out non STTD complex

2 STTDout STTD complex

3 DTCH DTCH data int

4 DCCH DCCH data int

5 DTCHCoderOut DTCH coded bits int

6 DCCHCoderOut DCCH coded bits int

7 outSym non-STTD coded bits real

8 STTDSym STTD coded bits real

Name Description Default Type Range

2-40 3GPPFDD_DL_RefCh

Page 71: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 2-17. 3GPPFDD_DL_RefCh Schematic

References

[1]3GPP Technical Specification TS 34.121 V3.8.0, Terminal ConformanceSpecification, Radio Transmission and Reception (FDD), March 2003, Release1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/34_series/34121-380.zip

[2] 3GPP Technical Specification TS 25.141 V3.9.0, Base station conformancetesting (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25141-390.zip

3GPPFDD_DL_RefCh 2-41

Page 72: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3GPPFDD_DL_Source

Description 3GPP integrated base station signal sourceLibrary 3GPPFDD, Base Station

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

2-42 3GPPFDD_DL_Source

Page 73: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

ScrambleType scramble type: Normal,RightAlternate,LeftAlternate

Normal enum

RefCh reference measurmentchannel: DL_REF_12_2,DL_REF_64,DL_REF_144,DL_REF_384

DL_REF_12_2 enum

DPCH_SpreadCode spread code index ofDPCH

127 int [0, 127] for12.2kbps; [0, 31] for64kbps; [0, 15] for144kbps; [0, 7] for384kbps

CPICH_SpreadCode spread code index ofCPICH

2 int [0, 255]

PICH_SpreadCode spread code index of PICH 16 int [0, 255]

SCCPCH_SlotFormat SCCPCH slot format 0 int [0, 17]

SCCPCH_SpreadCode spread code index ofSCCPCH

3 int [0,SpreadFactor-1];SpreadFactor isset bySCCPCH_SlotFormat

DPCH_GainFactor DPCH power gain in dB 0 dB real (-∞, ∞)

P_CPICH_GainFactor primary CPICH power gainin dB

-3.3 dB real (-∞, ∞)

S_CPICH_GainFactor secondary CPICH powergain in dB

-3.3 dB real (-∞, ∞)

PCCPCH_GainFactor PCCPCH power gain in dB -5.3 dB real (-∞, ∞)

SCCPCH_GainFactor SCCPCH power gain in dB -10.3 dB real (-∞, ∞)

P_SCH_GainFactor primary SCH power gain indB

-5.3 dB real (-∞, ∞)

S_SCH_GainFactor secondary SCH powergain in dB

-5.3 dB real (-∞, ∞)

PICH_GainFactor PICH power gain in dB -8.3 dB real (-∞, ∞)

OCNS_ChannelNum OCNS channel number 16 int [1, 512]

Name Description Default Unit Type Range

3GPPFDD_DL_Source 2-43

Page 74: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Pin Outputs

OCNS_PowerArray OCNS channel powerarray in dB

-10 -12 -12 -14-11 -13 -17 -16-13 -15 -14 -18-19 -17 -15 -9

real array (-∞, ∞); the array sizeshall be equal toOCNS_ChannelNum

OCNS_SpreadFactorArray orthogonal channel spreadfactor array

128 128 128 128128 128 128 128128 128 128 128128 128 128 128

int array2n , n=1,...,9; array size shallbe equal toOCNS_ChannelNum

OCNS_SpreadCodeArray orthogonal channel spreadcode array

2 11 17 23 31 3847 55 62 69 78 8594 102 113 119

int array [0,OCNS_SpreadFactorArray-1]; array size shallbe equal toOCNS_ChannelNum; code conflict ischecked

OCNS_DataPatternArray OCNS data pattern array:0-random, 1-PN9, 2-PN15,3-Repeat Bits

0 0 0 0 0 0 0 0 0 00 0 0 0 0 0

int array [0, 1,2,3]; array size shallbe equal toOCNS_ChannelNum

OCNS_RepBitValueArray OCNS repeat bit valuearray

0 0 0 0 0 0 0 0 0 00 0 0 0 0 0

int array [0, 255]; array size shallbe equal toOCNS_ChannelNum

OCNS_tOffsetArray time offset of each channelin terms of 256 chips

0 0 0 0 0 0 0 0 0 00 0 0 0 0 0

int array [0, 149]; array size shallbe equal toOCNS_ChannelNum

Pin Name Description Signal Type

1 out non STTD complex

2 STTDout STTD complex

3 DTCH DTCH data int

4 DCCH DCCH data int

5 DPCH_chip Non STTD coded DPCH complex

6 DPCH_STTDchip STTD coded DPCH complex

7 DTCHCoderOut DTCH coded bits int

8 DCCHCoderOut DCCH coded bits int

Name Description Default Unit Type Range

2-44 3GPPFDD_DL_Source

Page 75: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This subnetwork model is used to simulate integrated base station signalsource. The schematic for this subnetwork is shown in Figure 2-18.

Figure 2-18. 3GPPFDD_DL_Source Schematic

2. The physical channels integrated in this subnetwork are listed in Table 2-13.

9 DPCH_sym DPCH non-STTD coded bits real

10 DPCH_STTDsym DPCH STTD coded bits real

Pin Name Description Signal Type

3GPPFDD_DL_Source 2-45

Page 76: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3. The DPCH is generated by the fully-coded 3GPPFDD_DL_RefCh signal source.

• Pins DTCH and DCCH output traffic and control channel data beforechannel coding; the number of output tokens is determined by their transportblock set sizes.

• Pin DPCH_chip outputs DPCH data of a slot; each token represents a chipafter spreading and scrambling.

• Pin DPCH_STTDchip outputs STTD coded chips.

• Pins DTCHCoderOut and DCCHCoderOut output DTCH and DCCH dataafter channel coding and before rate matching.

• Pins DPCH_sym and DPCH_STTDsym output symbols after physicalchannel multiplexing and before spreading and scrambling.

4. DTCH, DCCH, and TPC patterns can be set through the DTCHDataPattern,DCCHDataPattern, and TPCDataPattern parameters; 5 data patterns aresupported: random, PN9, PN15, fixed repeated 8-bits, and user-defined file.

If the data pattern is 8-bits repeating, the bits to be repeated is set by therespective RepBitValue. For example if RepBitValue is set as 0x7a, bit sequence0,1,1,1,1,0,1,0 will be output repeatedly.

If data is from a user-defined file, the file name is defined by the respectiveUserFileName. The user can edit the file with any text editor. The separatorbetween bits can be a space, comma, or any other separator. If the bit sequenceis shorter than the output length, data will be output repeatedly.

Table 2-13. Downlink Physical Channels

Physical Channel

P_CPICH

S_CPICH

PCCPCH

P_SCH

S_SCH

SCCPCH

PICH

OCNS

DPCH

2-46 3GPPFDD_DL_Source

Page 77: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

5. The DPCH data rate can be set through RefCh. DPCH channelization code isset through DPCH_SpreadCode.

6. CPICH includes primary and secondary CPICH. Primary CPICHchannelization code is fixed at C256,0. CPICH_SpreadCode is set on secondaryCPICH, with a spread factor of 256.

7. The PICH spread factor is 256. PICH channelization code is set throughPICH_SpreadCode.

8. The PCCPCH channelization code is fixed at C256,1. The SCCPCH spread factorand spread channelization code are set through SCCPCH_SpreadFactor andSCCPCH_SpreadCode.

9. Power levels of each channel can be set through the respective GainFactorparameters, in dB units. They are converted into voltage values and multipliedto the output of each channel model. A channel can be disabled by setting itsgain factor to a large minus value such as -300 dB.

10. OCNS can be set through the OCNS_ChannelNum and six OCNS arrayparameters. The default OCNS channel is 16 and corresponding arrayparameters are 16 elements long. To change the OCNS channel number, thecorresponding array parameters must be changed. For details regarding OCNSsettings, refer to “3GPPFDD_OCNS” on page 2-68.

11. Figure 2-19 illustrates power distribution of 3GPP_DL_Source on code domain(layer 8) under default settings. The measurement is implemented on thesecond frame by the WCDMA3G_CodeDomainPwr model. The Y axis is codedomain power in log.

3GPPFDD_DL_Source 2-47

Page 78: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Figure 2-19. Power distribution of 3GPP_DL_Source in code domain

References

[1]3GPP Technical Specification TS 34.121 V3.8.0, Terminal ConformanceSpecification, Radio Transmission and Reception (FDD), March 2003, Release1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/34_series/34121-380.zip

[2] 3GPP Technical Specification TS 25.141 V3.9.0, Base station conformancetesting (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25141-390.zip

2-48 3GPPFDD_DL_Source

Page 79: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_DnLinkRF

Description 3GPP FDD downlink signal sourceLibrary 3GPPFDD, Base Station

Parameters

Name Description Default Sym Unit Type Range

ROut Source resistance DefaultROut Ohm real (0, ∞)

RTemp Temperature DefaultRTemp Celsius real [-273.15, ∞)

TStep Expression showing howTStep is related to theother source parameters

1/3.84MHz/SamplesPerChip

string

FCarrier Carrier frequency 2140 MHz Hz real (0, ∞)

Power Power dbmtow(43.0) W real [0, ∞)

MirrorSpectrum Mirror spectrum aboutcarrier? NO, YES

NO enum

GainImbalance Gain imbalance, Q vs I 0.0 dB real (-∞, ∞)

PhaseImbalance Phase imbalance, Q vs I 0.0 deg real (-∞, ∞)

I_OriginOffset I origin offset (percent) 0.0 real (-∞, ∞)

Q_OriginOffset Q origin offset (percent) 0.0 real (-∞, ∞)

IQ_Rotation IQ rotation 0.0 deg real (-∞, ∞)

SamplesPerChip Samples per chip 8 S int [2, 32]

RRC_FilterLength RRC filter length (chips) 16 int [2, 128]

3GPPFDD_DnLinkRF 2-49

Page 80: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Pin Outputs

Notes/Equations

1. This 3GPP FDD signal source generates a downlink RF signal of 3GPP FDDtest models. The RF signal has a chip rate of 3.84 MHz. The downlink is fromthe base station to the user equipment.

To use this source RF carrier frequency (FCarrier) and power (Power) must beset.

RF impairments can be introduced by setting the ROut, RTemp,MirrorSpectrum, GainImbalance, PhaseImbalance, I_OriginOffset,Q_OriginOffset, and IQ_Rotation parameters.

3GPP FDD signal characteristics can be specified by setting theRRC_FilterLength, SpecVersion, and SourceType parameters.

Note While the function of this model is similar to 3GPPFDD_RF_Downlink,some parameter and output pins are different.

2. This signal source includes a DSP section, RF modulator, and RF outputresistance as illustrated in Figure 2-20.

SpecVersion Specification version:Version 03_00, Version12_00, Version 03_02

Version 12_00 enum

SourceType Source type:TestModel1_16DPCHs,TestModel1_32DPCHs,TestModel1_64DPCHs,TestModel2,TestModel3_16DPCHs,TestModel3_32DPCHs,TestModel4

TestModel1_16DPCHs

enum

Pin Name Description Signal Type

1 RF RF output timed

2 I I symbols real

3 Q Q symbols real

Name Description Default Sym Unit Type Range

2-50 3GPPFDD_DnLinkRF

Page 81: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 2-20. Signal Source Block Diagram

The ROut and RTemp parameters are used by the RF output resistance. TheFCarrier, Power, MirrorSpectrum, GainImbalance, PhaseImbalance,I_OriginOffset, Q_OriginOffset, and IQ_Rotation parameters are used by theRF modulator. The remaining signal source parameters are used by the DSPblock.

The RF output from the signal source is at the frequency specified (FCarrier),with the specified source resistance (ROut) and with power (Power) deliveredinto a matched load of resistance ROut. The RF signal has additive Gaussiannoise power set by the resistor temperature (RTemp).

The I and Q outputs are baseband outputs with zero source resistance andcontain the unfiltered I and Q chips available at the RF modulator input.Because the I and Q outputs are from the inputs to the RF modulator, the RFoutput signal has a time delay relative to the I and Q chips. This RF time delay(RF_Delay) is related to the RRC_FilterLength parameter value.

RF_Delay = RRC_FilterLength/(3.84e6)/2 sec

3. This 3GPP FDD signal source model is compatible with Agilent E4438C ESGVector Signal Generator, Option 400 (3GPP W-CDMA Firmware Option for theE4438C ESG Vector Signal Generator).

Details regarding Agilent E4438C ESG for 3GPP FDD are included at thewebsite http://www.agilent.com/find/esg .

4. Regarding the 3GPP downlink signal frame structure, one frame has a timeduration of 10 msec and consists of 15 slots. Each slot contains 2560 chips. Eachchip is an RF signal symbol.

There is only one type of downlink dedicated physical channel, the downlinkdedicated physical channel (downlink DPCH).

Within one downlink DPCH, dedicated data generated at Layer 2 and above, i.e.the dedicated transport channel (DCH), is transmitted in time-multiplex withcontrol information generated at Layer 1. The Layer 1 control information

DSPRFModulator

RF OutputResistance

RFOutput

Q Chips

I Chips

3GPPFDD_DnLinkRF 2-51

Page 82: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

consists of known pilot bits to support channel estimation for coherentdetection, transmit power-control (TPC) commands, and an optionaltransport-format combination indicator (TFCI). The TFCI informs the receiverabout the instantaneous transport format combination of the transportchannels mapped to the simultaneously transmitted downlink DPCH radioframe.

The downlink DPCH can therefore be seen as a time multiplex of a downlinkDPDCH (Data1 and Data2) and a downlink DPCCH (TPC, TFCI, and Pilot).

The frame and slot structure of the downlink DPCH is illustrated inFigure 2-21. (Table 2-18 and Table 2-19 provide more information about eachfield.)

Figure 2-21. 3GPP FDD Downlink Frame and Slot Structure

5. Parameter Details

• ROut is the RF output source resistance.

• RTemp is the RF output source resistance temperature in Celsius and setsthe noise density in the RF output signal to (k(RTemp+273.15)) Watts/Hz,where k is Boltzmann’s constant.

• FCarrier is the RF output signal frequency.

• Power is the RF output signal power delivered into a matched load ofresistance ROut.

• MirrorSpectrum is used to mirror the RF_out signal spectrum about thecarrier. This is equivalent to conjugating the complex RF envelope voltage.

Depending on the configuration and number of mixers in an RF transmitter,the RF output signal from hardware RF generators can be inverted. If suchan RF signal is desired, set this parameter to YES.

DPDCH DPCCH DPDCH DPCCH

Data1Ndata1 bits

TPCNTPC bits

TFCINTFCI bits

Data2Ndata2 bits

PilotNpilot bits

Tslot = 2560 chips, 10 × 2k bits (k = 0, ... , 7)

Slot #0 Slot #1 Slot #i Slot #14

One Radio Frame, Tf = 10 msec

2-52 3GPPFDD_DnLinkRF

Page 83: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

• GainImbalance, PhaseImbalance, I_OriginOffset, Q_OriginOffset, andIQ_Rotation are used to add certain impairments to the ideal output RFsignal. Impairments are added in the order described here.

The unimpaired RF I and Q envelope voltages have gain and phaseimbalance applied. The RF is given by:

where A is a scaling factor based on the Power and ROut parametersspecified by the user, VI(t) is the in-phase RF envelope, VQ(t) is thequadrature phase RF envelope, g is the gain imbalance

and, φ (in degrees) is the phase imbalance.

Next, the signal VRF(t) is rotated by IQ_Rotation degrees. I_OriginOffset andQ_OriginOffset are then applied to the rotated signal. Note that the amountsspecified are percentages with respect to the output rms voltage. The outputrms voltage is given by sqrt(2 × ROut × Power).

• SamplesPerChip is used to set the number of samples in a chip.

The default value is set to 8 to display settings according to the 3GPPstandard. It can be set to a larger value for a simulation frequencybandwidth wider than 8 × 3.84 MHz. It can be set to a smaller value for fastersimulation; however, this will result in lower signal fidelity. IfSamplesPerChip = 8, the simulation RF bandwidth is larger than the signalbandwidth by a factor of 8 (e.g., simulation RF bandwidth = 8 × 3.84 MHz).

• RRC_FilterLength is used to set root raised-cosine (RRC) filter length innumber of chips.

The default value is set to 16 to transmit a 3GPP FDD downlink signal intime and frequency domains based on the 3GPP standard defined in [4]. Itcan be set to a smaller value for faster simulation times; however, this willresult in lower signal fidelity.

• SpecVersion is used to specify the 3GPP specification versions (2000-03,2000-12 and 2002-03).

V RF t( ) A V I t( ) ωct( )cos gVQ t( ) ωct φπ180---------+

sin– =

g 10

GainImbalance20

-----------------------------------------------=

3GPPFDD_DnLinkRF 2-53

Page 84: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

• SourceType is used to specify the type of baseband signal that can begenerated by this source based on the test model as defined in [5].

TestModel1_16DPCHs , TestModel1_32DPCHs , TestModel1_64DPCHs.Table 2-14 lists the active channels of Test Model 1 that tests spectrumemission mask, ACLR, spurious emissions, transmit intermodulation, andbase station maximum output power.

TestModel2 . Table 2-15 lists the active channels in Test Model 2 that testsoutput power dynamics.

TestModel3_16DPCHs , TestModel3_32DPCHs . Table 2-16 lists the activechannels of Test Model 3 that tests peak code domain error.

TestModel4 . Table 2-17 lists the active channels of Test Model 4 that testsEVM.

Table 2-14. Test Model 1 Active Channels

TypeNumber ofChannels

Fraction ofPower (%)

LevelSetting (dB)

ChannelizationCode

TimingOffset(x256Tchip )

PCCPCH+SCH 1 10 -10 1 0

Primary CPICH 1 10 -10 0 0

PICH 1 1.6 -18 16 120

SCCPCH containing PCH (SF=256)† 1 1.6 -18 3 0

DPCH (SF=128)†† 16/32/64 76.8 total see [5] see [5] see [5]

† SCCPCH containing PCH is not included in versions 2000-03 and 2000-12 [5].†† Refer to Table 2-18 for DPCH structure.

Table 2-15. Test Model 2 Active Channels

TypeNumber ofChannels

Fraction ofPower (%)

Level Setting(dB)

ChannelizationCode

Timing Offset(x256Tchip )

PCCPCH+SCH 1 10 -10 1 0

Primary CPICH 1 10 -10 0 0

PICH 1 5 -13 16 120

S-CCPCH containing PCH (SF=256) 1 5 -13 3 0

DPCH (SF=128)†† 3 2 x 10,1 x 50 2 x –10, 1 x –3 24, 72, 120 1, 7, 2

† SCCPCH containing PCH is not included in versions 2000-03 and 2000-12 [5].†† Refer to Table 2-18 for DPCH structure.

2-54 3GPPFDD_DnLinkRF

Page 85: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.211, “Physical channels and mapping oftransport channels onto physical channels (FDD)” Release 1999.

Table 2-16. Test Model 3 Active Channels

TypeNumber ofChannels

Fraction of Power(%) 16/32

Level Settings(dB) 16/32

ChannelizationCode

Timing Offset(x256Tchip )

PCCPCH+SCH 1 12.6/7.9 -9 / -11 1 0

Primary CPICH 1 12.6/7.9 -9 / -11 0 0

PICH 1 5/1.6 -13 / -18 16 120

SCCPCH containing PCH (SF=256) † 1 5/1.6 -13 / -18 3 0

DPCH (SF=256)†† 16/32 63,7/80,4 total see Reference [5] see Reference [5] see Reference [5]

† SCCPCH containing PCH is not included in versions 2000-03 and 2000-12 [5]†† Refer to Table 2-19 for DPCH structure.

Table 2-17. Test Model 4 Active Channels

TypeNumber ofChannels

Fraction of Power(%) 16/32

Level Settings(dB) 16/32

ChannelizationCode

Timing Offset(x256Tchip )

PCCPCH+SCH whenPrimary CPICH is disabled

1 50 to 1.6 -3 to -18 1 0

PCCPCH+SCH whenPrimary CPICH is enabled

1 25 to 0.8 -6 to -21 1 0

Primary CPICH† 1 25 to 0.8 -6 to -21 0 0

† Primary CPICH is optional; it is not included in versions 2000-03 and 2000-12 [5]

Table 2-18. DPCH Structure for Test Model 1 and Test Model 2

Slot Format No.Channel BitRate (kbps)

Channel SymbolRate (kbps) SF Bits / Slot

DPDCH Bits / Slot DPCCH Bits / Slot

NData1 NData2 NTFCI NTPC Npilot

10 60 30 128 40 6 24 0 2 8

Table 2-19. DPCH Structure for Test Model 3

Slot Format No.Channel BitRate (kbps)

Channel SymbolRate (kbps) SF Bits / Slot

DPDCH Bits / Slot DPCCH Bits / Slot

NData1 NData2 NTFCI NTPC Npilot

6 30 15 256 20 2 8 0 2 8

3GPPFDD_DnLinkRF 2-55

Page 86: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.212, “Multiplexing and Channel Coding(FDD)” Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[3] 3GPP Technical Specification TS 25.213, “Spreading and modulation (FDD)”Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

[4] 3GPP Technical Specification TS 25.104, “UTRA (BS) FDD; Radio transmissionand Reception” Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25104-3a0.zip

[5] 3GPP Technical Specification TS 25.141, “Base station conformance testing(FDD)” Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25141-390.zip

2-56 3GPPFDD_DnLinkRF

Page 87: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_DPCH

Description Downlink DPCH simulatorLibrary 3GPPFDD, Base StationClass SDF3GPPFDD_DPCHDerived From 3GPPFDD_DLPCodeSrcBase

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DataPattern source data pattern:random, PN9, PN15,bits_repeat, user_file

random enum

RepBitValue repeating data value 0xff int [0, 255]

UserFileName user-defined data file name datafile.txt filename

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble code offset 0 int [0, 15]

ScrambleType scramble code type:normal, right, left

normal enum

SpreadCode index of spread code 0 int [0, SF-1]; SF can be setby SlotFormator equal toSpreadFactor; SF is 256 if forCPICH, PICHor uplinkDPCCH

TFCIField TFCI field on/off switch:On, Off

Off enum

TFCIValue TFCI value 0 int [0, 1023]

3GPPFDD_DPCH 2-57

Page 88: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Pin Outputs

Notes/Equations

1. This model is used to generate the downlink DPCH signal.

This model performs the same as the Agilent signal generator instrumentESG-D Option 100.

2. Each firing, 2560 tokens are output. The complex output data sequence is thespread and scrambled chips where SpreadCode and ScrambleCode specify thespread and scramble codes. The output sequence is repeated on aframe-by-frame basis.

3. The combined parameters, such as symbol rate, number of pilot bits, TFCI fieldswitch are converted to the slot format as defined in [1].

4. The ScrambleCode i, ScrambleOffset k, and ScrambleType parameters are usedtogether to determine the scrambling code n as follows:

TPCValue transmit power controlvalue in hexadecimal

0x5555 int [0, 0x7ffff]

tDPCHOffset DPCH channel offset 0 int [0, 149]

TFCIPowerOffset TFCI field power offset indecibels

0.0 dB real [-20, 20]

TPCPowerOffset TPC field power offset indecibels

0.0 dB real [-20, 20]

PilotBitsNum number of pilot bits: Pilot2,Pilot4, Pilot8, Pilot16

Pilot4 enum

PilotPowerOffset pilot field power offset indecibels

0.0 dB real [-20, 20]

SymbolRate downlink physical channelsymbol rate:DPCH_7_5ksps,DPCH_15ksps,DPCH_30ksps,DPCH_60ksps,DPCH_120ksps,DPCH_240ksps,DPCH_480ksps,DPCH_960ksps

DPCH_15ksps enum

Pin Name Description Signal Type

1 out output data complex

Name Description Default Unit Type Range

2-58 3GPPFDD_DPCH

Page 89: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

n = (16 × i) + k + m

• If ScrambleType is normal, then m = 0

• If ScrambleType is right, then m = 16384

• If ScrambleType is left, then m = 8192

5. tDPCHOffset indicates the time offset of DPCH relative the SCH channel. Theunit is 256 chips.

6. If TFCIField is on, the TFCI value is converted into 10-bit binary equivalentand coded to 32 bits, then filled into TFCI field of each slot as defined in [2].

7. The power offsets of TFCI field, TPC field and Pilot field of as expressed indecibels are relative to downlink data channel DPDCH.

8. Hexadecimal TPC values are converted to their binary equivalent. The value7F80 becomes 111 1111 1000 0000. Notice that there are 15 digits in the binaryTPC value. Because one frame contains 15 time slots, one binary digit isassigned to each time slot. The assigned bit is then repeated enough times to fillthe TPC bit field.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[3] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

3GPPFDD_DPCH 2-59

Page 90: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3GPPFDD_DPCHs

Description Downlink Dedicated Physical ChannelsLibrary 3GPPFDD, Base StationClass SDF3GPPFDD_DPCHsDerived From 3GPPFDD_DLPCodeSrcBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DPCHNum downlink DPCH number 1 int [1, 8] for othermodels; [1, 512] for3GPPFDD_OCNS and3GPPFDD_DPCHs

SpreadCodeArray index array of spreadcodes

0 int array the ith element

shall be in [0,SpreadFactor[i]-1]; array size shallbe equal tocode channelnumber; codes shall bein differentOVSF codebranch

DataPatternArray data pattern array:0-random, 1-PN9, 2-PN15,3-Repeat Bits

0 int array [0, 1,2,3]; array size shallbe equal tocode channelnumber

RepBitValueArray bits value array to be filledin data sequence

0x55 int array [0, 255]; array size shallbe equal tocode channelnumber

2-60 3GPPFDD_DPCHs

Page 91: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

DPCHGainArray DPCH gain array indecibels

0.0 real array (-∞, ∞); array size shallbe equal toDPCH channelnumber

tDPCHOffsetArray DPCH channel offset array 0 int array [0, 149]; array size shallbe equal toDPCH channelnumber

TFCIFieldArray TFCI field on/off switcharray: 0-Off, 1-On

0 int array [0, 1]; array size shallbe equal toDPCH channelnumber

TFCIValueArray TFCI value array 0 int array [0, 1023]; array size shallbe equal toDPCH channelnumber

TFCIPowerOffsetArray TFCI field power offsetarray in decibels

0.0 real array [-20, 20]; array size shallbe equal toDPCH channelnumber

TPCValueArray transmit power controlvalue array in hexadecimal

0x5555 int array [0, x7FFF]; array size shallbe equal toDPCH channelnumber

TPCPowerOffsetArray TPC field power offsetarray in decibels

0.0 real array [-20, 20]; array size shallbe equal toDPCH channelnumber

PilotBitsNumArray number array of pilot bits 2 int array [0, 1,2,3]; array size shallbe equal toDPCH channelnumber

PilotPowerOffsetArray pilot field power offset arrayin decibels

0.0 real array [-20, 20]; array size shallbe equal toDPCH channelnumber

Name Description Default Type Range

3GPPFDD_DPCHs 2-61

Page 92: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Pin Outputs

Notes/Equations

1. This model is used to generate multiple downlink DPCH signal.

This model performs the same as the Agilent signal generator instrumentESG-D Option 100.

2. The number of DPCHs is set through the DPCHNum parameter. 2560 tokensare output each firing. The complex output data sequence is the spread andscrambled chips where SpreadCode and ScrambleCode specify the spread andscramble codes. The output sequence is repeated on a frame-by-frame basis.Figure 2-22 illustrates how different downlink channels are combined.

ScrambleCodeArray index array of scramblecodes

0 int array [0, 512] fordownlink; [0,16777215]for uplink; array size shallbe equal toDPCH channelnumber

ScrambleOffsetArray scramble code offset array 0 int array [0, 15]; array size shallbe equal toDPCH channelnumber

ScrambleTypeArray scramble code type array 0 int array [0, 1,2]; array size shallbe equal toDPCH channelnumber

RateArray DPCH rate (ksps) 7.5 real array [7.5, 15, 30, 60,120, 240, 480,960]; array size shallbe equal toDPCHNum

Pin Name Description Signal Type

1 out output data complex

Name Description Default Type Range

2-62 3GPPFDD_DPCHs

Page 93: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 2-22. DPCHs Combination

3. Each DPCH can be configured through a series of parameter arrays. The ithDPCH, for instance, will use the ith value of each parameter array. For thisreason, the length of each array must be consistent with DPCHNum value.

4. ScrambleCode i, ScrambleOffset k, and ScrambleType parameters determinethe scrambling code n as follows:

n = (16 × i) + k + m

• If ScrambleType is normal, m = 0

• If ScrambleType is right, m = 16384

• If ScrambleType is left, m = 8192

5. tDPCHOffsetArray indicates the time offset of each DPCH, the value range ofthis parameter is [0, 149], and the unit is 256 chips, therefore the real timeoffset in terms of chip can be calculated.

6. TFCIFieldArray indicates if the relative DPCH includes TFCI: 1 means withTFCI; 0 means without TFCI. TFCIValueArray is converted into 10-bit binaryequivalent and coded to 32 bits, then filled into TFCI field of each slot asdefined in [2].

7. TPCValueArray is used to input a hexadecimal value for each DPCH, the rangeis from 0 to 0x7FFF, so it can be converted to a 15-digit binary value. Therefore,these 15 binary digits can be assigned to 15 time slots, then repeated to fill theTPC bit field.

S

P

DPCH1i

DelaytOffset

I + iO Sdln

Σ

DPCHM

CchSFm

3GPPFDD_DPCHs 2-63

Page 94: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

8. PilotBitsNumArray indicates the bits number of pilot part of each DPCH. Inthis way, the slot format of each DPCH can be determined by RateArray,TFCIFieldArray and PilotBitsNumArray together.

9. TFCIPowerOffsetArray, TPCPowerOffsetArray, PilotPowerOffsetArray are usedto set TFCI, TPC and Pilot power offsets that are relative to the transmit powerof DPDCH.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.212 V3.2.0, “Multiplexing and ChannelCoding (FDD)” Release 1999.

[3] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

2-64 3GPPFDD_DPCHs

Page 95: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_HS_Uplink_Rx

Description Uplink receiver for HS-DPCCHLibrary 3GPPFDD, Base Station

Parameters

Name Description Default Type Range

SpecVerHSDPA version of HSDPAspecifications:Version_09_03

Version_09_03 enum

ScrambleCode index of scramble code 0 int [0, 512] foruplink; [0, 16777215]for uplink

ScrambleType scramble type: Long, Short Long enum

SampleRate sample rate 8 int [1, 256]

MaxDelaySample maximum delay boundary,in terms of samples

1 int [0, 2559]

ChannelType select the channel type tobe processed:CH_GAUSSIAN,CH_FADING

CH_GAUSSIAN enum

ChannelInfo fading channel informationsource: Known, Estimated

Known enum

ChannelInfoOffset offset between spreadcode and channelinformation in terms ofsample

0 int [0,MaxDelaySample]

PathSearch path search frequency:EverySlot, Once

Once enum

SearchSlotsNum number of slots for pathsearch

1 int [1, 6]

PathNum number of Rake fingers 1 int [1, 6]

PathDelaySample delay for each finger, interms of samples

0 int array [0,MaxDelaySample]; array size shallbe equal toPathNum

CQI_Type CQI type: Decimal, Binary Binary enum

3GPPFDD_HS_Uplink_Rx 2-65

Page 96: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork is the uplink receiver to decode HS-DPCCH. This receiveroutputs decoded HARQ-Ack and CQI messages and the envelope ratio betweenHS-DPCCH and DPCCH.

The schematic for this subnetwork is shown in Figure 2-23.

Figure 2-23. 3GPPFDD_HS_Uplink_Rx Schematic

2. This receiver decodes the 3GPPFDD_HS_Uplink source. 3GPPFDD_HS_Rakede-spreads and de-modulates the HS-DPCCH channel. The Rake receiveroutput is de-multiplexed as coded HARQ-Ack and CQI bit frames. TheHARQ-Ack and CQI messages are recovered by channel decoder.

3. The CQI output, controlled by CQI_Type, can be a decimal or a binary number.

Pin Name Description Signal Type

1 inChip input data stream complex

2 inChM channel information multiple complex

Pin Name Description Signal Type

3 ACK coded HARQ Ack information int

4 CQI coded CQI information int

5 HS_Gain gain of HS-DPCCH real

2-66 3GPPFDD_HS_Uplink_Rx

Page 97: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.211 V5.5.0, “Physical channels andmapping of transport channels onto physical channels (FDD)” Release 5.

[2] 3GPP Technical Specification TS 25.212 V5.6.0 “Multiplexing and channelcoding (FDD)” Release 5.

[3] 3GPP Technical Specification TS 25.213 V5.4.0, “Spreading and modulation(FDD)” Release 5.

3GPPFDD_HS_Uplink_Rx 2-67

Page 98: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3GPPFDD_OCNS

Description Flexible OCNS generatorLibrary 3GPPFDD, Base StationClass SDF3GPPFDD_OCNSDerived From 3GPPFDD_DLPCodeSrcBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DPCHNum downlink DPCH number 16 int [1, 8] for othermodels; [1, 512] for3GPPFDD_OCNS and3GPPFDD_DPCHs

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble code offset 0 int [0, 15]

ScrambleType scramble code type:normal, right, left

normal enum

SpreadCodeArray index array of spreadcodes

2 11 17 23 31 3847 55 62 69 78 8594 125 113 119

int array the ith element

shall be in [0,SpreadFactor[i]-1]; array size shallbe equal tocode channelnumber; codes shall bein differentOVSF codebranch

2-68 3GPPFDD_OCNS

Page 99: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is the flexible orthogonal channel noise simulator.

2. Each firing, this model outputs a slot of complex chips that consists of 2560spread and scrambled complex data bits.

3. The number of dedicated channels can be set flexibly from 1 to 512. Thededicated channels of the OCNS signal should be evenly distributed in the codedomain; timing offset should be equidistantly distributed over the dedicatedchannels; level settings of dedicated channels should be similar.

4. The default OCNS model has 16 dedicated channels with channelization codes,timing offsets and level settings as specified in [4] for test model 1.

DataPatternArray data pattern array:0-random, 1-PN9, 2-PN15,3-Repeat Bits

0 0 0 0 0 0 0 0 0 00 0 0 0 0 0

int array [0, 1,2,3]; array size shallbe equal tocode channelnumber

RepBitValueArray bits value array to be filledin data sequence

0 0 0 0 0 0 0 0 0 00 0 0 0 0 0

int array [0, 255]; array size shallbe equal tocode channelnumber

PowerArray channel power array indecibels

-1 -3 -3 -5 -2 -4 -8-7 -4 -6 -5 -9 -10-8 -6 0

real array (-∞, ∞); array size shallbe equal tocode channelnumber

tDPCHOffsetArray DPCH channel offset array 86 134 52 45 143112 59 23 1 88 3018 30 61 128 143

int array [0, 149]; array size shallbe equal toDPCH channelnumber

SpreadFactorArray orthogonal channel spreadfactor array

128 128 128 128128 128 128 128128 128 128 128128 128 128 128

int array2n , n=1,...,9; array size shallbe equal toDPCHNum

Pin Name Description Signal Type

1 out output data complex

Name Description Default Type Range

3GPPFDD_OCNS 2-69

Page 100: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

5. ScrambleCode i, ScrambleOffset k, and ScrambleType parameters determinethe scrambling code n as follows:

n = (16 × i) + k + m

• If ScrambleType is normal, m = 0

• If ScrambleType is right, m = 16384

• If ScrambleType is left, m = 8192

References

[1]3GPP Technical Specification TS 34.121 V3.8.0, Terminal ConformanceSpecification, Radio Transmission and Reception (FDD), March 2003, Release1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/34_series/34121-380.zip

[2] 3GPP Technical Specification TS 25.141 V3.9.0, Base station conformancetesting (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25141-390.zip

2-70 3GPPFDD_OCNS

Page 101: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_PCCPCH

Description Primary Common Control Physical ChannelLibrary 3GPPFDD, Base StationClass SDF3GPPFDD_PCCPCHDerived From 3GPPFDD_DLPCodeSrcBase

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate PCCPCH.

This model performs the same as the Agilent signal generator instrumentESG-D Option 100.

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DataPattern source data pattern:random, PN9, PN15,bits_repeat, user_file

random enum

RepBitValue repeating data value 0xff int [0, 255]

UserFileName user-defined data file name datafile.txt filename

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Pin Name Description Signal Type

1 out output data complex

2 STTDout STTD encoder output on antenna 2 complex

3GPPFDD_PCCPCH 2-71

Page 102: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

2. The channelization code for the Primary CCPCH is fixed to Cch,256,1, andprimary scrambling code is always used.

3. The PCCPCH is not transmitted during first 256 chips of each slot. It is filledwith 0.

4. This model supports 5 data patterns: random, PN9, PN15, fixed repeated 8-bits,and from a user-defined file.

If the data pattern is 8-bits repeating, the bits to be repeated is set byRepBitValue. For example if the RepBitValue is set as 0x7a, the bit sequence 0,1, 1, 1, 1, 0, 1, 0 will be output repeatedly.

If the data is from a user file, the user file name is specified by UserFileName.The file can be edited with any text editor. Separators between bits can bespaces, commas, or any other separator. If the bit sequence is shorter than theoutput length, the data will be output repeatedly.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

2-72 3GPPFDD_PCCPCH

Page 103: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_PICH

Description Paging Indicator ChannelLibrary 3GPPFDD, Base StationClass SDF3GPPFDD_PICHDerived From 3GPPFDD_DLPCodeSrcBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DataPattern source data pattern:random, PN9, PN15,bits_repeat, user_file

random enum

RepBitValue repeating data value 0xff int [0, 255]

UserFileName user-defined data file name datafile.txt filename

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble code offset 0 int [0, 15]

SpreadCode index of spread code 0 int [0, SF-1]; SF can be setby SlotFormator equal toSpreadFactor; SF is 256 if forCPICH, PICHor uplinkDPCCH

PINum paging indicator numberswithin one frame: N18,N36, N72, N144

N18 enum

tOffset time offset in terms of 256chips

0 int [0, 149]

3GPPFDD_PICH 2-73

Page 104: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Pin Outputs

Notes/Equations

1. This model is used to generate the PICH.

This model performs the same as the Agilent signal generator instrumentESG-D Option 100.

2. Each firing, 2560 tokens are output. The complex output data sequence is thespread and scrambled chips where SpreadCode and ScrambleCode specify thespread and scramble codes. The output sequence is repeated on aframe-by-frame basis.

3. SpreadCode indicates the channelization code index. ScrambleCode andScrambleOffset together determine the scrambling code index according to theformula:

n = (16 × i) + k

where

n=scrambling code index, i=ScrambleCode value, k=ScrambleOffset value.

4. PICH bits are generated from the PI sequence. The PI sequence pattern isdefined by DataPattern, RepBitValue, and UserFileName.

PINum specifies how many paging indicators will be carried within one radioframe.

5. tOffset is the PICH time delay from the start of PCCPCH.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

Pin Name Description Signal Type

1 out output data complex

2 STTDout STTD encoder output on antenna 2 complex

2-74 3GPPFDD_PICH

Page 105: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

3GPPFDD_PICH 2-75

Page 106: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3GPPFDD_RF_Downlink

Description 3GPP downlink RF signal sourceLibrary 3GPPFDD, Base Station

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ROut output resistance DefaultROut Ohm real (0, ∞)

FCarrier carrier frequency 2140e6 Hz real (0, ∞)

Power RF output power 0.01 W real [0, ∞)

PhasePolarity if set to Invert, Q channelsignal is inverted:DL_Normal, DL_Invert

DL_Normal enum

GainImbalance gain imbalance, I to Qchannel, in dB

0.0 real (-∞, ∞)

PhaseImbalance phase imbalance, I to Qchannel, in degrees

0.0 real (-∞, ∞)

I_OriginOffset I origin offset in percentwith respect to output rmsvoltage

0.0 real (-∞, ∞)

Q_OriginOffset Q origin offset in percentwith respect to output rmsvoltage

0.0 real (-∞, ∞)

IQ_Rotation IQ rotation in degress 0.0 real (-∞, ∞)

NDensity additive noise density indBm per Hz

-10000 real (-∞, ∞)

SamplesPerChip samples per chip 8 int [2, 32]

ExcessBW excess bandwidth of raisedcosine filters

0.22 real (0.0, 1.0)

FilterLength length of raised cosinefilters in number of symbols

16 int [2, 128]

2-76 3GPPFDD_RF_Downlink

Page 107: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

SourceType signal source type:Ref_12_2, Ref_64,Ref_144, Ref_384,TestModel1_16DPCHs,TestModel1_32DPCHs,TestModel1_64DPCHs,TestModel2,TestModel3_16DPCHs,TestModel3_32DPCHs,TestModel4,TestModel5_6DPCHs,TestModel5_14DPCHs,TestModel5_30DPCHs

Ref_12_2 enum

ScrambleCode index of scramble code 0 int [0, 511]

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

ScrambleType scramble type: Normal,RightAlternate,LeftAlternate

Normal enum

DPCH_SpreadCode spread code index ofDPCH

127 int [0, DPCHSpread Factor-1 ]

CPICH_SpreadCode spread code index ofCPICH

2 int [0, 255]

PICH_SpreadCode spread code index of PICH 16 int [0, 255]

SCCPCH_SlotFormat SCCPCH slot format 0 int [0, 17]

SCCPCH_SpreadCode spread code index ofSCCPCH

3 int [0, SCCPCHSpread Factor-1 ]

DPCH_GainFactor DPCH power gain in dB 0 dB real (-∞, ∞)

P_CPICH_GainFactor primary CPICH power gainin dB

7 dB real (-∞, ∞)

S_CPICH_GainFactor secondary CPICH powergain in dB

-300 dB real (-∞, ∞)

PCCPCH_GainFactor PCCPCH power gain in dB 5 dB real (-∞, ∞)

SCCPCH_GainFactor SCCPCH power gain in dB -300 dB real (-∞, ∞)

P_SCH_GainFactor primary SCH power gain indB

2 dB real (-∞, ∞)

S_SCH_GainFactor secondary SCH powergain in dB

2 dB real (-∞, ∞)

PICH_GainFactor PICH power gain in dB 2 dB real (-∞, ∞)

OCNS_ChannelNum OCNS channel number 1 int [1, 512]

Name Description Default Unit Type Range

3GPPFDD_RF_Downlink 2-77

Page 108: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

OCNS_PowerArray OCNS channel powerarray in dB

-300 dB real array (-∞, ∞) array size shallbe equal toOCNS_ChannelNum

OCNS_SpreadFactorArray orthogonal channel spreadfactor array

128 int array2n , n=2,...,9 array size shallbe equal toOCNS_ChannelNum

OCNS_SpreadCodeArray orthogonal channel spreadcode array

2 int array [0,SpreadFactor-1]; array size shallbe equal toOCNS_ChannelNum

OCNS_DataPatternArray OCNS data pattern array:0-random, 1-PN9, 2-PN15,3-Repeat Bits

0 int array [0, 1,2,3]; array size shallbe equal toOCNS_ChannelNum

OCNS_RepBitValueArray OCNS repeat bit valuearray

0 int array [0, 255]; array size shallbe equal toOCNS_ChannelNum

OCNS_tOffsetArray time offset of each channelin terms of 256 chips

0 int array [0, 149]; array size shallbe equal toOCNS_ChannelNum

TM_OutputMode output mode of test model:Ramp, Stable

Ramp enum

SCCPCH_SltFmt SCCPCH slot format: SF0,SF1, SF2, SF3

SF0 enum

TM4_EnableP_CPICH Test Model 4 enableprimary CPICH? NO, YES

YES enum

TM4_PCCPCH_SCH_Gain Test Model 4PCCPCH_SCH levelsetting

-6 dB real (-∞, ∞)

TM4_P_CPICH_Gain Test Model 4 P_CPICHlevel setting

-6 dB real (-∞, ∞)

Name Description Default Unit Type Range

2-78 3GPPFDD_RF_Downlink

Page 109: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This subnetwork model is the downlink RF signal source for 3GPP FDD.Pre-defined downlink sources, including reference measurement channels and 5test models, are integrated in this subnetwork. The source type can be specified.Slot format, spreading codes, and gain for each code channel can be configuredby setting the related parameters.

The schematic for this subnetwork is shown in Figure 2-24.

2. A modulated timed RF source is output.

Outputs also include the reference bit streams for DPCH, DTCH, and DCCHBER tests. A baseband reference signal is provided for EVM measurement.

Pin Name Description Signal Type

1 RFout output RF signal timed

2 EVMRef reference signal for EVM complex

3 DTCH DTCH data int

4 DCCH DCCH data int

5 DPCH DPCH data real

3GPPFDD_RF_Downlink 2-79

Page 110: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Figure 2-24. 3GPPFDD_RF_Uplink_Receiver Schematic

2-80 3GPPFDD_RF_Downlink

Page 111: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_RF_Uplink_Receiver

Description 3GPP uplink RF receiverLibrary 3GPPFDD, Base Station

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

RLoad input resistance DefaultROut Ohm real (0, ∞)

FCarrier frequency of carrier 1950e6 Hz real (0, ∞)

Phase demodulator referencephase in degrees

0 deg real (-∞, ∞)

VRef reference voltage foroutput power calibration

1 V real (0, ∞)

SamplesPerChip samples per chip 8 int [2, 32]

ExcessBW excess bandwidth of raisedcosine filters

0.22 real (0, 1)

FilterLength length of raised cosinefilters in number of symbols

16 int [2, 128]

RefCh reference measurementchannel: UL_REF_12_2,UL_REF_64,UL_REF_144,UL_REF_384_10,UL_REF_384_20,UL_REF_768,UL_REF_2048

UL_REF_12_2 enum

DPCCH_SltFmt DPCCH slot format 0 int [0, 5]

ScrambleType scramble type: Long, Short Long enum

ScrambleCode index of scramble code 0 int [0, 16777215]

MaxDelaySample maximum delay boundary,in terms of samples

1 int [0, 2559]

3GPPFDD_RF_Uplink_Receiver 2-81

Page 112: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Pin Inputs

Pin Outputs

ChannelType select the channel type tobe processed:CH_GAUSSIAN,CH_FADING

CH_GAUSSIAN enum

ChannelInfo fading channel informationsource: Known, Estimated

Known enum

ChannelInfoOffset offset between spreadcode and channelinformation in terms ofsample

0 int [0,MaxDelaySample]

PathSearch path search frequency:EverySlot, Once

Once enum

SearchMethod path search method:Coherent, NonCoherent,Combined

Coherent enum

SearchSlotsNum number of slots for pathsearch

6 int [1, 6]

PathNum number of Rake fingers 1 int [1, 6]

PathDelaySample delay for each finger, interms of samples

0 int array [0,MaxDelaySample]; array size shallbe equal toPathNum

Pin Name Description Signal Type

1 RFin input RF signal timed

2 DTCH DTCH data int

3 DCCH DCCH data int

4 DPDCH DPDCH data multiple int

5 inChM channel information multiple complex

Pin Name Description Signal Type

6 DTCHout DTCH data int

7 RefDTCHout synchronized reference DTCH int

8 DTCH_CRC DTCH CRC int

9 DCCHout DCCH data int

10 RefDCCHout synchronized reference DCCH int

11 DCCH_CRC DCCH CRC int

Name Description Default Unit Type Range

2-82 3GPPFDD_RF_Uplink_Receiver

Page 113: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This subnetwork model is the uplink RF receiver for 3GPP FDD. Thissubnetwork consists of hierarchical models. The timed demodulator is at thefront of this subnetwork; the demodulated I/Q signal is sent to the basebandreceiver.

The schematic for this subnetwork is shown in Figure 2-25.

Figure 2-25. 3GPPFDD_RF_Uplink_Receiver Schematic

2. Refer to “3GPPFDD_UL_Rx_RefCH” on page 2-102 and “3GPPFDD_UL_Rake”on page 6-11 for more information.

12 DPDCHout DPDCH data int

13 RefDPDCHout synchronized reference DPDCH int

Pin Name Description Signal Type

3GPPFDD_RF_Uplink_Receiver 2-83

Page 114: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3GPPFDD_SCH

Description Synchronization ChannelLibrary 3GPPFDD, Base StationClass SDF3GPPFDD_SCHDerived From 3GPPFDD_DLPCodeSrcBase

Parameters

Pin Outputs

Notes/Equations

1. This model can be used to generate P-SCH or S-SCH.

This model performs the same as the Agilent signal generator instrumentESG-D Option 100.

2. SCHType = Secondary specifies the cell’s downlink scrambling code group.

When SCHType = Primary, ScrambleCode is not used.

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

SCHType SCH type: Primary,Secondary

Primary enum

Pin Name Description Signal Type

1 out output data complex

2 STTDout associated with STTD encoded PCCPCH complex

2-84 3GPPFDD_SCH

Page 115: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

3GPPFDD_SCH 2-85

Page 116: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3GPPFDD_StdOCNS

Description Orthogonal Channel Noise SimulatorLibrary 3GPPFDD, Base StationClass SDF3GPPFDD_StdOCNSDerived From 3GPPFDD_TestModelBase

Parameters

Pin Outputs

Notes/Equations

1. This model is the standard orthogonal channel noise simulator.

2. Each firing, this model outputs a slot of complex chips that consists of 2560spread and scrambled complex data.

3. The 16 dedicated channels of the OCNS signal are evenly distributed in thecode domain; timing offset is equidistantly distributed over the 16 dedicated

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble code offset 0 int [0, 15]

ScrambleType scramble code type:normal, right, left

normal enum

Pin Name Description Signal Type

1 out output data complex

2-86 3GPPFDD_StdOCNS

Page 117: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

channels; and, the dedicated channel setting levels are the same as the 16dedicated channels.

The appropriated channelization codes, timing offsets and level settings for 16dedicated channels as specified in [4] for test model 1 are used to simulate theOCNS noise.

4. ScrambleCode i, ScrambleOffset k, and ScrambleType parameters determinethe scrambling code n as follows:

n = (16 × i) + k + m

• If ScrambleType is normal, m = 0

• If ScrambleType is right, m = 16384

• If ScrambleType is left, m = 8192

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

[3] 3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

[4] 3GPP Technical Specification TS 25.141 V3.9.0, Base station conformancetesting (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25141-390.zip

3GPPFDD_StdOCNS 2-87

Page 118: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3GPPFDD_TestModel1

Description Signal source to simulate test model 1Library 3GPPFDD, Base StationClass SDF3GPPFDD_TestModel1Derived From 3GPPFDD_TestModelBase

Parameters

Pin Outputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble code offset 0 int [0, 15]

ScrambleType scramble code type:normal, right, left

normal enum

SCCPCH_SltFmt SCCPCH slot format: SF0,SF1, SF2, SF3

SF0 enum

OutputMode output from 1st frame or2nd frame: Ramp, Stable

Ramp enum

Seed PN seed offset of DPCH 0 int [0, ∞)

DPCHSet number of DPCHs in testmodel1 for base station:DPCH16, DPCH32,DPCH64

DPCH16 enum

Pin Name Description Signal Type

1 out output data complex

2-88 3GPPFDD_TestModel1

Page 119: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model is the base station test model 1 as defined in [4].

2. Each firing, a slot of complex chips is output that consists of 2560 spread andscrambled data.

3. Test model 1 consists of PCCPCH, SCH, CPICH, PICH, DPCH, and SCCPCHchannels (SCCPCH is for Version_03_02 only). Channelization codes, timeoffset, and power level of each channel are defined in [4].

4. DPCH channels can be set to 16, 32 or 64.

5. ScrambleCode i, ScrambleOffset k, and ScrambleType parameters determinethe scrambling code n as follows:

n = (16 × i) + k + m

• If ScrambleType is normal, m = 0

• If ScrambleType is right, m = 16384

• If ScrambleType is left, m = 8192

6. The DPDCH bits of the DPCHs are filled with PN9 sequences. To ensurenon-correlation of the PN9 sequences, each DPDCH uses a unique code Sc asthe seed for the PN9 sequence at the start of each frame. The code isdetermined by the channelization code Cch of the DPCH and a seed offset So as:

Sc = Cch + So

The seed offset is set by the Seed parameter to ensure non-correlation of thePN9 sequences when more than one test model is used.

7. When OutputMode=Ramp, the signal starts from the first frame and channelsare added with their time offset; when OutputMode=Stable, the signal istransmitted after all channels are added (the signal starts from the secondframe).

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_TestModel1 2-89

Page 120: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

[2] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

[3] 3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

[4] 3GPP Technical Specification TS 25.141 V3.9.0, Base station conformancetesting (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25141-390.zip

2-90 3GPPFDD_TestModel1

Page 121: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_TestModel2

Description Signal source to simulate test model 2Library 3GPPFDD, Base StationClass SDF3GPPFDD_TestModel2Derived From 3GPPFDD_TestModelBase

Parameters

Pin Outputs

Notes/Equations

1. This model is the base station test model 2 as defined in [4].

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble code offset 0 int [0, 15]

ScrambleType scramble code type:normal, right, left

normal enum

SCCPCH_SltFmt SCCPCH slot format: SF0,SF1, SF2, SF3

SF0 enum

OutputMode output from 1st frame or2nd frame: Ramp, Stable

Ramp enum

Seed PN seed offset of DPCH 0 int [0, ∞)

Pin Name Description Signal Type

1 out output data complex

3GPPFDD_TestModel2 2-91

Page 122: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

2. Each firing, a slot of complex chips is output that consists of 2560 spread andscrambled complex data bits.

3. Test model 2 consists of PCCPCH, SCH, CPICH, PICH, SCCPCH (SCCPCH isfor Version_03_02 only), and 3 DPCH channels. Channelization codes, timeoffset, and power levels of each channel are defined in [4].

4. ScrambleCode i, ScrambleOffset k, and ScrambleType parameters determinethe scrambling code n as follows:

n = (16 × i) + k + m

• If ScrambleType is normal, m = 0file name

• If ScrambleType is right, m = 16384

• If ScrambleType is left, m = 8192

5. The DPDCH bits of the DPCHs are filled with PN9 sequences. To ensurenon-correlation of the PN9 sequences, each DPDCH uses a unique code Sc asthe seed for the PN9 sequence at the start of each frame. The code isdetermined by the channelization code Cch of the DPCH and a seed offset So as:

Sc = Cch + So

The seed offset is set by the Seed parameter to ensure non-correlation of thePN9 sequences when more than one test model is used.

6. When OutputMode=Ramp, the signal starts from the first frame and channelsare added with their time offset; when OutputMode=Stable, the signal istransmitted after all channels are added (the signal starts from the secondframe).

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

[3] 3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

2-92 3GPPFDD_TestModel2

Page 123: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

[4] 3GPP Technical Specification TS 25.141 V3.9.0, Base station conformancetesting (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25141-390.zip

3GPPFDD_TestModel2 2-93

Page 124: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3GPPFDD_TestModel3

Description Signal source to simulate test model 3Library 3GPPFDD, Base StationClass SDF3GPPFDD_TestModel3Derived From 3GPPFDD_TestModelBase

Parameters

Pin Outputs

Notes/Equations

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble code offset 0 int [0, 15]

ScrambleType scramble code type:normal, right, left

normal enum

SCCPCH_SltFmt SCCPCH slot format: SF0,SF1, SF2, SF3

SF0 enum

OutputMode output from 1st frame or2nd frame: Ramp, Stable

Ramp enum

Seed PN seed offset of DPCH 0 int [0, ∞)

DPCHSet number of DPCHs in testmodel 3 for base station:DPCH16, DPCH32

DPCH16 enum

Pin Name Description Signal Type

1 out output data complex

2-94 3GPPFDD_TestModel3

Page 125: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

1. This model is the base station test model 3 as defined in [4].

2. Each firing, a slot of complex chips is output that consists of 2560 spread andscrambled complex data bits.

3. Test model 2 consists of PCCPCH, SCH, CPICH, PICH, SCCPCH (SCCPCH isfor Version_03_02 only), and DPCH channels. Channelization codes, time offset,and power levels of each channel are defined in [4].

4. ScrambleCode i, ScrambleOffset k, and ScrambleType parameters determinethe scrambling code n as follows:

n = (16 × i) + k + m

• If ScrambleType is normal, m = 0

• If ScrambleType is right, m = 16384

• If ScrambleType is left, m = 8192

5. The DPDCH bits of the DPCHs are filled with PN9 sequences. To ensurenon-correlation of the PN9 sequences, each DPDCH uses a unique code Sc asthe seed for the PN9 sequence at the start of each frame. The code isdetermined by the channelization code Cch of the DPCH and a seed offset So as:

Sc = Cch + So

The seed offset is set by the Seed parameter to ensure non-correlation of thePN9 sequences when more than one test model is used.

6. When OutputMode=Ramp, the signal starts from the first frame and channelsare added with their time offset; when OutputMode=Stable, the signal istransmitted after all channels are added (the signal starts from the secondframe).

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

3GPPFDD_TestModel3 2-95

Page 126: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

[3] 3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

[4] 3GPP Technical Specification TS 25.141 V3.9.0, Base station conformancetesting (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25141-390.zip

2-96 3GPPFDD_TestModel3

Page 127: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_TestModel4

Description Signal source to simulate test model 4Library 3GPPFDD, Base StationClass SDF3GPPFDD_TestModel4Derived From 3GPPFDD_TestModelBase

Parameters

Pin Outputs

Notes/Equations

1. This model simulates test model 4, as defined in 3GPP specification, for EVMmeasurement.

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble code offset 0 int [0, 15]

ScrambleType scramble code type:normal, right, left

normal enum

EnableP_CPICH enable primary CPICH?NO, YES

YES enum

PCCPCH_SCH_Gain PCCPCH_SCH levelsetting

-6 dB real (-∞, ∞)

P_CPICH_Gain P_CPICH level setting -6 dB real (-∞, ∞)

Pin Name Description Signal Type

1 out output data complex

3GPPFDD_TestModel4 2-97

Page 128: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

2. P-CCPCH The aggregate 15x18 = 270 P-CCPCH bits per frame are filled with aPN9 sequence generated using the primitive trinomial. The P-CCPCHchannelization code is used as the seed for the PN sequence at the start of eachframe. The generator is seeded so that the sequence begins with the 8-bitchannelization code starting from the LSB and followed by 1.

3. SCH The scrambling code defines the SSC sequence of the secondary SCH. Intheir active parts, primary and secondary SCHs share equally the power leveldefined for PCCPCH+SCH.

References

[1]3GPP Technical Specification TS 25.141 V3.9.0, Base station conformancetesting (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25141-390.zip

Table 2-20. Test Model 4 Active Channels

TypeNumber ofChannels

Fraction ofPower (%)

Level Setting(dB)

ChannelizationCode

Timing offset(x256Tchip )

PCCPCH+SCH when PrimaryCPICH is disabled

1 50 to 1.6 -3 to -18 1 0

PCCPCH+SCH when PrimaryCPICH is enabled

1 25 to 0.8 -6 to -21 1 0

Primary CPICH 1 25 to 0.8 -6 to -21 0 0

2-98 3GPPFDD_TestModel4

Page 129: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_TestModel5

Description Signal source to simulate test model 5Library 3GPPFDD, Base StationClass SDF3GPPFDD_TestModel5Derived From 3GPPFDD_TestModelBase

Parameters

Pin Outputs

Notes/Equations

Name Description Default Type Range

SpecVerHSDPA version of HSDPAspecifications:Version_09_03

Version_09_03 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble code offset 0 int [0, 15]

ScrambleType scramble code type:normal, right, left

normal enum

SCCPCH_SltFmt SCCPCH slot format: SF0,SF1, SF2, SF3

SF0 enum

OutputMode output from 1st frame or2nd frame: Ramp, Stable

Ramp enum

Seed PN seed offset of DPCH 0 int [0, ∞)

DPCHSet number of DPCHs in testmodel5 for base station:DPCH6, DPCH14,DPCH30

DPCH6 enum

Pin Name Description Signal Type

1 out output data complex

3GPPFDD_TestModel5 2-99

Page 130: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

1. This model is the base station test model 5 as defined in [3].

2. Each firing, a slot of complex chips is output that consists of 2560 spread andscrambled data.

3. Test model 5 consists of PCCPCH, SCH, CPICH, PICH, SCCPCH, DPCH,HS_SCCH, and HS_PDSCH channels. Channelization codes, time offset, andpower levels of each channel are defined in [3].

4. DPCH channels can be set to 6, 14, or 30, with 2, 4, or 8 HS_SCCH, respectively.

5. ScrambleCode i, ScrambleOffset k, and ScrambleType parameters determinethe scrambling code n as follows:

n = (16 × i) + k + m

• If ScrambleType is normal, m = 0

• If ScrambleType is right, m = 16384

• If ScrambleType is left, m = 8192

6. The DPDCH bits of the DPCHs are filled with PN9 sequences. To ensurenon-correlation of the PN9 sequences, each DPDCH uses a unique code Sc asthe seed for the PN9 sequence at the start of each frame. The code isdetermined by the channelization code Cch of the DPCH and a seed offset So as:

Sc = Cch + So

7. The seed offset is set by the Seed parameter to ensure non-correlation of thePN9 sequences when more than one test model is used.

8. There are 640 bits per slot in a 16QAM-modulated HS-PDSCH. The aggregate15 × 640 = 9600 bits per frame are filled with repetitions of a PN9 sequencegenerated using the primitive trinomial. To ensure non-correlation of the PN9sequences, each HS-PDSCH uses its channelization code as the seed for the PNsequence at the start of each frame.The generator is seeded so that thesequence begins with the channelization code starting from the LSB.

9. There are 40 bits per time slot in a HS-SCCH. The aggregate 15 × 40 = 600 bitsper frame are filled with repetitions of a PN9 sequence generated using theprimitive trinomial. The HS-SCCH channelization code is used as the seed forthe PN sequence at the start of each frame. The generator is seeded so that thesequence begins with the channelization code starting from the LSB.

2-100 3GPPFDD_TestModel5

Page 131: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.211 V5.2.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” Sept. 2002,Release 5.

http://www.3gpp.org/ftp/Specs/2002-09/Rel-5/25_series/25211-520.zip

[2] 3GPP Technical Specification TS 25.213 V5.4.0, “Spreading and modulation(FDD),” Sept. 2002, Release 5.

http://www.3gpp.org/ftp/Specs/2002-09/Rel-5/25_series/25213-520.zip

[3] 3GPP Technical Specification TS 25.141 V5.4.0, “Base station conformancetesting (FDD),” Sept. 2002, Release 5.

http://www.3gpp.org/ftp/Specs/2002-09/Rel-5/25_series/25141-540.zip

3GPPFDD_TestModel5 2-101

Page 132: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

3GPPFDD_UL_Rx_RefCH

Description Uplink integrated reference measurement channel receiverLibrary 3GPPFDD, Base Station

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

RefCh reference measurementchannel: UL_REF_12_2,UL_REF_64,UL_REF_144,UL_REF_384_10,UL_REF_384_20,UL_REF_768,UL_REF_2048

UL_REF_12_2 enum

DPCCH_SltFmt DPCCH slot format 0 int [0, 5]

ScrambleCode index of scramble code 0 int [0, 512] foruplink; [0, 16777215]for uplink

ScrambleType scramble type: Long, Short Long enum

SampleRate sample rate 8 int [1, 256]

MaxDelaySample maximum delay boundary,in terms of samples

1 int [0, 2559]

ChannelType select the channel type tobe processed:CH_GAUSSIAN,CH_FADING

CH_GAUSSIAN enum

ChannelInfo fading channel informationsource: Known, Estimated

Known enum

ChannelInfoOffset offset between spreadcode and channelinformation in terms ofsample

0 int [0,MaxDelaySample]

2-102 3GPPFDD_UL_Rx_RefCH

Page 133: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

PathSearch path search frequency:EverySlot, Once

Once enum

SearchMethod path search method:Coherent, NonCoherent,Combined

Coherent enum

SearchSlotsNum number of slots for pathsearch

1 int [1, 6]

PathNum number of Rake fingers 1 int [1, 6]

PathDelaySample delay for each finger, interms of samples

0 int array [0,MaxDelaySample]; array size shallbe equal toPathNum

Pin Name Description Signal Type

1 inChip input data stream complex

2 inRefDTCH reference DTCH int

3 inRefDCCH reference DCCH int

4 inRefDTCHCoder reference DTCH after channel coding int

5 inRefDCCHCoder reference DCCH after channel coding int

6 inRefDPDCH reference DCCH multiple int

7 inChM channel information multiple complex

Pin Name Description Signal Type

8 DTCH DTCH data int

9 RefDTCH synchronized reference DTCH int

10 DTCH_CRC DTCH CRC int

11 DCCH DCCH data int

12 RefDCCH synchronized reference DCCH int

13 DCCH_CRC DCCH CRC int

14 DTCHCoder DTCH before channel decoding int

15 RefDTCHCoder synchronized reference DTCH before channeldecoding

int

16 DCCHCoder DCCH before channel decoding int

17 RefDCCHCoder synchronized reference DCCH before channeldecoding

int

Name Description Default Type Range

3GPPFDD_UL_Rx_RefCH 2-103

Page 134: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

Notes/Equations

1. This integrated receiver for UTRA/WCDMA 3GPP uplink decodes the uplinkreference measurement channel defined in 3GPP specifications. The signalprocessing flow covers the full 3GPP physical layer. The process is symmetricbut in reverse order as at the signal source side.

2. The uplink Rake receiver is at the front of this receiver; refer to“3GPPFDD_UL_Rake” on page 6-11 for more information. The despread anddemodulated bits obtained from the Rake receiver are fed to the transportchannel processing models for rate de-matching, channel decoding, and so on.

3. Note that the physical channel bit stream has been delayed 1 frame (15 slots or10 msec). The delay for each of the two transport channels is equal to the TTIfor the associated transport channel. Therefore, the reference outputs from thesource are taken as inputs and are delayed to be aligned with the decoded bitstream. The delayed data will be discarded when measuring BER/FER.

4. This design can be a template to set up integrated receivers for othermultiplexed services.

5. The TFCI is set as a constant to avoid propagating the TFCI decoding error tothe final BER performance. A degradation of approximately 1dB in BERperformance occurs if the TFCI is input from the TFCI decoder. If the TFCI isvariable, it is better to get the error-free TFCI from the signal source side.

6. If the 3GPP signal is S(t), this signal may be delayed t1 by some filters (such asthe Tx RC filters). So, the delayed signal is S(t-t1) and the signal from 0 to t1 iszero and the real 3GPP signal transmission starts from t1. When the delayedsignals pass through a fading channel, the fading factor is applied to the overallsignals starting from time 0. The offset t1 must be known if the receiver of thechannel information is input from outside; this offset is expressed in terms ofsamples.

References

[1]Refer to the introduction section.

18 DPDCH DPDCH data int

19 RefDPDCH synchronized reference DPDCH int

Pin Name Description Signal Type

2-104 3GPPFDD_UL_Rx_RefCH

Page 135: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_UL_Rx_RefCH 2-105

Page 136: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Base Station Components

2-106

Page 137: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 3: 3GPPFDD MeasurementComponents

3-1

Page 138: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

3GPPFDD_CodeDomainErr

Description 3GPP FDD code domain error measurementLibrary 3GPPFDD, Measurement

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

LinkDir link direction: Downlink,Uplink

Uplink enum

SlotFormat slot format 0 int †

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Scramble scramble code type:LONG, SHORT

LONG enum

ScrambleOffset scramble code offset 0 int [0, 15]

ScrambleType scramble code type:normal, right, left

normal enum

SpreadCode index of spread code 0 int [0, SF-1]; SF can be setby SlotFormator equal toSpreadFactor; SF is 256 if forCPICH, PICHor uplinkDPCCH

SampleRate sample rate 8 int [1, 256]

MaxDelaySample maximum delay boundary,in terms of samples

0 int [0, 2559] forRAKE receiver; [0, 102400] inother models

StartSlot number of slot to beignored

0 int [0, ∞)

3-2 3GPPFDD_CodeDomainErr

Page 139: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

SymBurstLen burst length in term ofsymbol

2560 int [16, 5120]

Correlator correlator method:Coherent, NonCoherent

Coherent enum

SCH switch for SCH: SCH_On,SCH_Off

SCH_On enum

CPICH switch for CPICH:CPICH_On, CPICH_Off

CPICH_Off enum

Correct_IQ_Offset switch for IQ offsetcorrection: Yes, No

Yes enum

RefSlotBoundary reference signal slotboundary in terms ofsample

0 int [0,102400/Interp];

Interp=int(128/SampleRate)

TestSlotBoundary test signal slot boundary interms of sample

0 int [0,102400/Interp];

Interp=int(128/SampleRate)

CodeLayer the code layer to calculatethe peak code error

8 int [2, 9]

† [0:5] for uplink DPCCH;

[0:16] for downlink DPCH;

[0:17] for downlink SCCPCH;

[0:5] for uplink PCPCH (Ver 03_00);

[0:2] for uplink PCPCH (Ver 12_00);

[0:1] for uplink PCPCH (Ver 03_02);

Uplink DPCCH spread factor is 256;

Spread Factor is 512 when down link DPCH SlotFormat is 0 and 1;

Spread Factor is 256 when down link DPCH SlotFormat is 2, 3, 4, 5, 6, and 7;

Spread Factor is 128 when down link DPCH SlotFormat is 8, 9, 10, and 11;

Spread Factor is 64 when down link DPCH SlotFormat is 12;

Spread Factor is 32 when down link DPCH SlotFormat is 13;

Spread Factor is 16 when down link DPCH SlotFormat is 14;

Spread Factor is 8 when down link DPCH SlotFormat is 15;

Spread Factor is 4 when down link DPCH SlotFormat is 16;

Name Description Default Type Range

3GPPFDD_CodeDomainErr 3-3

Page 140: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

Pin Inputs

Notes/Equations

1. This subnetwork model is used to measure 3GPP code domain error. Theschematic for this subnetwork is shown in Figure 3-1.

Figure 3-1. 3GPPFDD_CodeDomainErr Schematic

2. The test and reference signals are interpolated to ensure that each chip has 128samples. A 6-order Lagrange interpolation is used; the interpolation rate isdetermined by the symbol sample rate. For more information regarding thesynchronization process refer to “3GPPFDD_Synch” on page 3-52.

3. After synchronization, the measurement sequence is down-sampled to chiprate. The code domain error is measured at the chip times within one burst.

4. CodeLayer specifies the code layer on which the code domain error is measured.

Code domain error is the error vector projection over each OVSF code on thespecified layer. Error vector is defined as the difference between the referenceand the test signal. The test signal is compensated by phase shift and frequencyand phase error. Compensation of IQ origin offset on the test signal is optional.

5. Correct_IQ_Offset indicates if the original IQ offset is to be included in the codedomain error calculation.

Pin Name Description Signal Type

1 test tested signals complex

2 ref reference signals complex

3-4 3GPPFDD_CodeDomainErr

Page 141: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

6. The algorithm used to measure code domain error is defined in Annex B.2.7.2 of[2] in which Code domain error is not clearly stated to be normalized againstspread factor (SF); this can lead to a difference of 10*log10(SF) dB if the codedomain error is normalized against SF. In this subnetwork model, code domainerror is normalized against spread factor (SF).

7. RefSlotBoundary and TestSlotBoundary are used to set the slot boundary forthe reference and test signals, respectively. If the value is set to 0, the slotboundary is determined by the synchronization model; otherwise, the non-zerovalue is taken as the slot boundary. Please note this boundary is for theinterpolated slot that has a higher sample rate.

8. If the test signal is severely impaired, the slot boundary may not be correctlydetermined by the internal synchronization model. In these cases, the sourcewhere the impairment is introduced must first be manually removed. The slotboundary reported in the simulation panel measured under ideal conditions canthen be written back to the parameter set to specify the correct slot boundary.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 34.121 V3.8.0, Terminal ConformanceSpecification, Radio Transmission and Reception (FDD), March 2003, Release1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/34_series/34121-380.zip

3GPPFDD_CodeDomainErr 3-5

Page 142: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

3GPPFDD_CodeDomainErr_NonSyn

Description 3GPP FDD code domain error measurementLibrary 3GPPFDD, Measurement

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

LinkDir link direction: Downlink,Uplink

Uplink enum

SlotFormat slot format 0 int †

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Scramble scramble code type:LONG, SHORT

LONG enum

ScrambleOffset scramble code offset 0 int [0, 15]

ScrambleType scramble code type:normal, right, left

normal enum

SpreadCode index of spread code 0 int [0, SF-1]; SF can be setby SlotFormator equal toSpreadFactor; SF is 256 if forCPICH, PICHor uplinkDPCCH

SampleRate sample rate 8 int [1, 256]

StartSlot number of slot to beignored

0 int [0, ∞)

Correlator correlator method:Coherent, NonCoherent

Coherent enum

SCH switch for SCH: SCH_On,SCH_Off

SCH_On enum

3-6 3GPPFDD_CodeDomainErr_NonSyn

Page 143: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Notes/Equations

1. This subnetwork model measures code domain error. The error vector obtainedduring EVM calculation is then used to measure code domain error.

CPICH switch for CPICH:CPICH_On, CPICH_Off

CPICH_Off enum

Correct_IQ_Offset switch for IQ offsetcorrection: Yes, No

Yes enum

CodeLayer the code layer to calculatethe peak code error

8 int [2, 9]

DUT_DelayBound DUT delay bound .00001 sec sec real [0, ∞)

† [0:5] for uplink DPCCH;

[0:16] for downlink DPCH;

[0:17] for downlink SCCPCH;

[0:5] for uplink PCPCH (Ver 03_00);

[0:2] for uplink PCPCH (Ver 12_00);

[0:1] for uplink PCPCH (Ver 03_02);

Uplink DPCCH spread factor is 256;

Spread Factor is 512 when down link DPCH SlotFormat is 0 and 1;

Spread Factor is 256 when down link DPCH SlotFormat is 2, 3, 4, 5, 6, and 7;

Spread Factor is 128 when down link DPCH SlotFormat is 8, 9, 10, and 11;

Spread Factor is 64 when down link DPCH SlotFormat is 12;

Spread Factor is 32 when down link DPCH SlotFormat is 13;

Spread Factor is 16 when down link DPCH SlotFormat is 14;

Spread Factor is 8 when down link DPCH SlotFormat is 15;

Spread Factor is 4 when down link DPCH SlotFormat is 16;

Pin Name Description Signal Type

1 test tested signals complex

2 ref reference signals complex

Name Description Default Unit Type Range

3GPPFDD_CodeDomainErr_NonSyn 3-7

Page 144: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

2. 3GPPFDD_CodeDomainErr_NonSyn uses the same EVM measurementmethod as 3GPPFDD_EVM. This method is sensitive to the synchronizationperformance.

3GPPFDD_CodeDomainErr_NonSyn uses the same error vector method as3GPPFDD_EVM_NonSyn. The same robustness is achieved by using the sameexhaustive offset search as in 3GPPFDD_EVM_NonSyn.

Refer to 3GPPFDD_CodeDomainErr, 3GPPFDD_EVM and3GPPFDD_EVM_NonSyn for information regarding EVM and code domainerror measurement.

3. The 3GPP system chip rate is 3.84 Mcps. The BS_Tx_Pk_Code_Error.dsn designdemonstrates the use of this subnetwork model in the ExamplesWCDMA3G/WCDMA3G_BS_Tx_prj; this project is discussed in Chapter 23,Base Station Transmitter Design Examples.

References

[1]3GPP Technical Specification TS 34.121 V3.8.0, Terminal ConformanceSpecification, Radio Transmission and Reception (FDD), March 2003, Release1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/34_series/34121-380.zip

3-8 3GPPFDD_CodeDomainErr_NonSyn

Page 145: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_Distort

Description signal distortionLibrary 3GPPFDD, MeasurementClass SDF3GPPFDD_Distort

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

Name Description Default Type Range

C0 constant I/Q imbalance 0 complex (-∞, ∞)

C1 constant phase offset 1.0 complex (-∞, ∞)

dr frequency error real part 0 real (-∞, ∞)

da frequency error image part 0 real (-∞, ∞)

BurstLen burst length 40960 int [1, ∞)

EVM EVM value 0.0 real [0, ∞)

RefMeanSquare reference signal meansquare

1.0 real (0.0, ∞)

Pin Name Description Signal Type

1 In signal for interpolation complex

Pin Name Description Signal Type

2 Out output interpolated signal complex

3GPPFDD_Distort 3-9

Page 146: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

1. This model is to simulate the transmitted signal distortion. The reference idealsignal S(k) is distorted by the mathematical model as:

Z(k) = {C0 + C1[S(k) + E(k)]}Wk

where

W = exp(dr + jda) accounts for the instantaneous frequency offset da andamplitude change dr per chip.

C0 is constant original offset representing quadrature modulator imbalance.

C1 is a complex constant representing the arbitrary phase and output power ofthe transmitter.

E(k) is the residual vector of S(k), simulated by an AWGN of which the varianceis determined by EVM and the mean square of S(k). The relationship of E(k),S(k), and EVM is:

EVME k( ) 2

k∑

S k( ) 2

k∑-------------------------=

3-10 3GPPFDD_Distort

Page 147: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_EVM

Description 3GPP FDD EVM measurementLibrary 3GPPFDD, Measurement

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

LinkDir link direction: Downlink,Uplink

Uplink enum

SlotFormat slot format 0 int †

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Scramble scramble code type:LONG, SHORT

LONG enum

ScrambleOffset scramble code offset 0 int [0, 15]

ScrambleType scramble code type:normal, right, left

normal enum

SpreadCode index of spread code 0 int [0, SF-1]; SF can be setby SlotFormator equal toSpreadFactor; SF is 256 if forCPICH, PICHor uplinkDPCCH

SampleRate sample rate 8 int [1, 256]

MaxDelaySample maximum delay boundary,in terms of samples

0 int [0, 2559] forRAKE receiver; [0, 102400] inother models

StartSlot number of slot to beignored

0 int [0, ∞)

3GPPFDD_EVM 3-11

Page 148: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

SlotNum slot number 1 int [1, 15]

Correlator correlator method:Coherent, NonCoherent

Coherent enum

SCH switch for SCH: SCH_On,SCH_Off

SCH_On enum

CPICH switch for CPICH:CPICH_On, CPICH_Off

CPICH_Off enum

EVMValue EVM value expressionoptions: EVM_Ratio,EVM_Percent

EVM_Percent enum

Correct_IQ_Offset switch for IQ offsetcorrection: Yes, No

Yes enum

RefSlotBoundary reference signal slotboundary in terms ofsample

0 int [0,102400/(128/SampleRate)]

TestSlotBoundary test signal slot boundary interms of sample

0 int [0,102400/(128/SampleRate)]

† [0:5] for uplink DPCCH;

[0:16] for downlink DPCH;

[0:17] for downlink SCCPCH;

[0:5] for uplink PCPCH (Ver 03_00);

[0:2] for uplink PCPCH (Ver 12_00);

[0:1] for uplink PCPCH (Ver 03_02);

Uplink DPCCH spread factor is 256;

Spread Factor is 512 when down link DPCH SlotFormat is 0 and 1;

Spread Factor is 256 when down link DPCH SlotFormat is 2, 3, 4, 5, 6, and 7;

Spread Factor is 128 when down link DPCH SlotFormat is 8, 9, 10, and 11;

Spread Factor is 64 when down link DPCH SlotFormat is 12;

Spread Factor is 32 when down link DPCH SlotFormat is 13;

Spread Factor is 16 when down link DPCH SlotFormat is 14;

Spread Factor is 8 when down link DPCH SlotFormat is 15;

Spread Factor is 4 when down link DPCH SlotFormat is 16;

Name Description Default Type Range

3-12 3GPPFDD_EVM

Page 149: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Notes/Equations

1. This subnetwork model measures EVM that is used to evaluate modulationaccuracy. The schematic for this subnetwork is shown in Figure 3-2.

Figure 3-2. 3GPPFDD_EVM Schematic

2. To measure EVM, reference and test signals must be fully time-aligned. And,the EVM value measurement interval must be one slot. Therefore, bothreference and test signals must be synchronized to the slot boundary.

3. To ensure high synchronization accuracy, the signals are upsampled to 128samples per chip by a 6-order Lagrange interpolator. The upsampled signals arethen correlated with the specified spreading codes. The largest correlation valueis used to determine the synchronization point. For more information of thesynchronization process and the use of SlotFormat, SpreadCode, Correlator,SCH, and CPICH parameters, refer to “3GPPFDD_Synch” on page 3-52.

4. The MaxDelaySample parameter is the size of correlation window. Thisparameter must be set large enough to cover the slot boundary to bedetermined. However, a larger window size will result in longer simulationtime.

5. The synchronized reference and test signals calculate the EVM value. Thesystem model is:

Pin Name Description Signal Type

1 test tested signals complex

2 ref reference signals complex

3GPPFDD_EVM 3-13

Page 150: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

Z(k) is the complex vector produced by observing the real transmitter at theoptimal phase of symbol k. S(k) is the reference (ideal) signal of symbol ksampled at the same phase as that of Z(k). The transmitter model is

Z(k) = {C0 + C1[S(k) + E(k)]}Wk

W = exp(dr + jda) accounts for both a frequency offset giving da radians persymbol phase rotation and an amplitude change of dr nepers per symbol

C0 is a constant origin offset representing quadrature modulator imbalance

C1 is a complex constant representing the arbitrary phase and output power ofthe transmitter

E(k) is the residual vector error on sample S(k).The error vector E(k) ismeasured and calculated for each instance k.

The sum square vector error for each component is calculated over one burst.The relative RMS vector error is defined as

6. This subnetwork model supports EVM measurements over multiple slots.StartSlot specifies the offset where the measurement starts; SlotNum is thenumber of slots to be measured. The EVM value can be expressed as Ratio orPercentage, as controlled by EVMValue.

EVM over different slots is expressed as individual values. For example, ifStartSlot = 12, and SlotNum = 4, the measurement will start from the 12th slotof the first frame, and the EVM will be measured over the last 3 slots of the firstframe plus the first slot of the next frame.

This EVM algorithm automatically corrects the IQ origin offset. If the IQ originoffset is to be counted as a modulation error, the EVM value measured by thismodel could be smaller.

7. RefSlotBoundary and TestSlotBoundary are used to set the slot boundary forreference and test signals, respectively. If the value is set to 0, the slot boundaryis determined by the synchronization model; otherwise, the non-zero value is

E k( )Z k( )Wk C0–

C1---------------------------------- S k( )–=

EVME k( ) 2

k∑

S k( ) 2

k∑-------------------------=

3-14 3GPPFDD_EVM

Page 151: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

taken as the slot boundary. Please note this boundary is for the interpolated slotthat has a higher sample rate.

If the test signal is severely impaired, the slot boundary may not be correctlydetermined by the internal synchronization model. In these cases, the sourcewhere the impairment is introduced must first be manually removed. The slotboundary reported in the simulation panel measured under ideal conditions canthen be written back to the parameter set to specify the correct slot boundary.

8. Use of this model is demonstrated in base station and user equipmenttransmitter examples: File > Example Project > WCDMA3G >WCDMA3G_BS_Tx_prj > BS_Tx_EVM.dsn and WCDMA3G_UE_Tx_prj >UE_Tx_EVM.dsn. Simulation results are provided in Data Display windows forthese designs.

9. Previous releases included a SpreadFactor parameter; the SlotFormatparameter now includes the spread factor.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 34.121 V3.8.0, Terminal ConformanceSpecification, Radio Transmission and Reception (FDD), March 2003, Release1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/34_series/34121-380.zip

3GPPFDD_EVM 3-15

Page 152: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

3GPPFDD_EVM_NonSyn

Description 3GPP FDD EVM measurementLibrary 3GPPFDD, Measurement

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

LinkDir link direction: Downlink,Uplink

Uplink enum

SlotFormat slot format 0 int †

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Scramble scramble code type:LONG, SHORT

LONG enum

ScrambleOffset scramble code offset 0 int [0, 15]

ScrambleType scramble code type:normal, right, left

normal enum

SpreadCode index of spread code 0 int [0, SF-1]; SF can be setby SlotFormator equal toSpreadFactor; SF is 256 if forCPICH, PICHor uplinkDPCCH

SampleRate sample rate 8 int [1, 256]

StartSlot number of slot to beignored

0 int [0, ∞)

SlotNum slot number 1 int [1, 15]

Correlator correlator method:Coherent, NonCoherent

Coherent enum

3-16 3GPPFDD_EVM_NonSyn

Page 153: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Notes/Equations

SCH switch for SCH: SCH_On,SCH_Off

SCH_On enum

CPICH switch for CPICH:CPICH_On, CPICH_Off

CPICH_Off enum

EVMValue EVM value expressionoptions: EVM_Ratio,EVM_Percent

EVM_Percent enum

Correct_IQ_Offset switch for IQ offsetcorrection: Yes, No

Yes enum

DUT_DelayBound DUT delay bound .00001 sec sec real [0,(400.0/3840000)]

† [0:5] for uplink DPCCH;

[0:16] for downlink DPCH;

[0:17] for downlink SCCPCH;

[0:5] for uplink PCPCH (Ver 03_00);

[0:2] for uplink PCPCH (Ver 12_00);

[0:1] for uplink PCPCH (Ver 03_02);

Uplink DPCCH spread factor is 256;

Spread Factor is 512 when down link DPCH SlotFormat is 0 and 1;

Spread Factor is 256 when down link DPCH SlotFormat is 2, 3, 4, 5, 6, and 7;

Spread Factor is 128 when down link DPCH SlotFormat is 8, 9, 10, and 11;

Spread Factor is 64 when down link DPCH SlotFormat is 12;

Spread Factor is 32 when down link DPCH SlotFormat is 13;

Spread Factor is 16 when down link DPCH SlotFormat is 14;

Spread Factor is 8 when down link DPCH SlotFormat is 15;

Spread Factor is 4 when down link DPCH SlotFormat is 16;

Pin Name Description Signal Type

1 test tested signals complex

2 ref reference signals complex

Name Description Default Unit Type Range

3GPPFDD_EVM_NonSyn 3-17

Page 154: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

1. This subnetwork model measures EVM that is used to evaluate modulationaccuracy. The schematic for this subnetwork is shown in Figure 3-3.

Figure 3-3. 3GPPFDD_EVM_NonSyn Schematic

In the 2003C release, 3GPPFDD_EVM_NonSyn provides a new method forEVM measurement compared to 3GPPFDD_EVM.

To measure EVM, the reference signal and test signal must be fullytime-aligned. 3GPPFDD_EVM reference and test signals are synchronizedusing the spreading code. Because the EVM value relies on the synchronizationperformance, if the test signal is severely impaired the EVM calculation may beerroneous.

3GPPFDD_EVM_NonSyn uses the spreading code to synchronize the referencesignals only. The noise-free reference signal can be accurately aligned at the slotboundary.

The EVM is calculated by probing the minimum differences between thereference signals (aligned at slot boundary) and test signals (not aligned at slotboundary) over a window size that is determined by DUT_DelayBound. TheEVM is the minimum when the test and reference signals are fully aligned.

This method is very robust against impairments imposed on test signals. Thesimulation time is linearly proportional to the EVM probing widow size(determined by DUT_DelayBound). The simulation time is approximately 30seconds for a window size of 128, in a P4/1.7G 512M PC (powered by ADS2003C and MS Windows 2000).

2. The 3GPP system chip rate is 3.84 Mcps. The BS_Tx_EVM.dsn designdemonstrates the use of this model in File > Example Project > WCDMA3G >

3-18 3GPPFDD_EVM_NonSyn

Page 155: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_BS_Tx_prj; this project is discussed in Chapter 23, Base StationTransmitter Design Examples.

References

[1]3GPP Technical Specification TS 34.121 V3.8.0, Terminal ConformanceSpecification, Radio Transmission and Reception (FDD), March 2003, Release1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/34_series/34121-380.zip

3GPPFDD_EVM_NonSyn 3-19

Page 156: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

3GPPFDD_Interpolator

Description InterpolatorLibrary 3GPPFDD, MeasurementClass SDF3GPPFDD_Interpolator

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. The interpolator implements the Lagrange polynomial interpolation. The orderof the polynomial and the interpolation rate is specified by the Order andInterpolation parameters.

Name Description Default Type Range

Order order for Lagrangeinterpolation

6 int [2, 32]

Interpolation interpolation rate 16 int [1, 256]

Pin Name Description Signal Type

1 In input signal for interpolation complex

Pin Name Description Signal Type

2 Out output interpolated signal complex

3-20 3GPPFDD_Interpolator

Page 157: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_RF_ACLR

Description 3GPP ACLR measurementsLibrary 3GPPFDD, Measurement

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

RLoad input resistance DefaultROut Ohm real (0, ∞)

RTemp temperature of resistor, incelsius

DefaultRTemp real [-273.15, ∞)

FCarrier frequency of carrier 1950e6 Hz real [0, ∞)

ExcessBW excess bandwidth of raisedcosine filters

0.22 real (0.0, 1.0)

SpecMeasResBW Spectrum resolutionbandwidth

0 Hz real [0, ∞)

SpecMeasWindow Window type: none,Hamming 0.54, Hanning0.50, Gaussian 0.75,Kaiser 7.865, HP8510 6.0,Blackman,Blackman-Harris

none enum

SamplesPerChip samples per chip 8 int [1, 256]

LinkDir link direction: Downlink,Uplink

Uplink enum

ScrambleCode index of scramble code 0 int [0, 511] fordownlink; [0, 16777215]for uplink

ULScrambleType uplink scramble code type:LONG, SHORT

LONG enum

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

DLScrambleType downlink scramble codetype: Normal,RightAlternate,LeftAlternate

Normal enum

3GPPFDD_RF_ACLR 3-21

Page 158: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

Pin Inputs

Notes/Equations

1. This subnetwork model measures ACLR in a 3GPP FDD transmitter with 4adjacent channels. ACLR is the ratio of adjacent leakage channel power to thetransmitted signal power.

The schematic for this subnetwork is shown in Figure 3-4.

2. A root-raised cosine filter is used in each channel. Adjacent channel offsets tothe central frequency are +5, +10, -5, and -10 MHz. A spectrum analyzermeasures power in the frequency domain by accumulating power within thedesired bandwidth. The ACLR is measured at specified slots. The measured

SpreadCode index of spread code 0 int [0, 255] foruplink DPCCH; [0, SF-1] fordownlink; SF is set bySlotFormat

SlotFormat slot format 0 int [0, 5] for uplinkDPCCH; [0, 16 ] fordownlink DPCH

StartSlot number of slot to beignored

0 int [0, ∞)

SlotNum number of slots measured 1 int [0, 100]

SCH switch for SCH: OFF, ON ON enum

CPICH switch for CPICH: OFF, ON OFF enum

SearchLength Search length .00001 sec sec real (0,(400.0/3840000))

SlotBoundary slot boundary in terms ofsample

0 int [0,MaxDelaySample]†

† MaxDelaySample = int( (SearchLength + (16e-6/3.84))*3840000*SamplesPerChip*Ratio).

Ratio=if (SamplesPerChip> =16) then (1) else ( if(SamplesPerChip> =8) then (2) else (4) endif) endif.

Pin Name Description Signal Type

1 RFin input RF signal timed

Name Description Default Unit Type Range

3-22 3GPPFDD_RF_ACLR

Page 159: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

signals are aligned at the slot boundary using slot format and spreading codeinformation.

3. Use of this model is demonstrated in base station and user equipmenttransmitter examples: File > Example Project > WCDMA3G >WCDMA3G_BS_Tx_prj > BS_Tx_ACLR.dsn and WCDMA3G_UE_Tx_prj >UE_Tx_ACLR.dsn. Simulation results are provided in Data Display windows.

3GPPFDD_RF_ACLR 3-23

Page 160: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

Figure 3-4. 3GPPFDD_RF_ACLR Schematic

3-24 3GPPFDD_RF_ACLR

Page 161: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_RF_ACLR_SwitchingTransients

Description 3GPP ACLR due to switching transients measurementsLibrary 3GPPFDD, Measurement

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

RLoad input resistance DefaultROut Ohm real (0, ∞)

RTemp temperature of resistor, incelsius

DefaultRTemp real [-273.15, ∞)

FCarrier frequency of carrier 1950e6 Hz real [0, ∞)

ExcessBW excess bandwidth of raisedcosine filters

0.22 real (0.0, 1.0)

SamplesPerChip samples per chip 8 int [1, 256]

ScrambleCode index of scramble code 0 int [0, 16777215]

ULScrambleType uplink scramble code type:LONG, SHORT

LONG enum

SpreadCode index of spread code 0 int [0, 255]

SlotFormat slot format 0 int [0, 5 ]

StartSlot number of slot to beignored

0 int [0, ∞)

SlotNum number of slots measured 1 int [0, 100]

SearchLength Search length .00001 sec sec real (0,(400.0/3840000))

SlotBoundary slot boundary in terms ofsample

0 int [0,MaxDelaySample]†

† MaxDelaySample = int( (SearchLength + (16e-6/3.84))*3840000*SamplesPerChip*Ratio).

Ratio=if (SamplesPerChip> =16) then (1) else ( if(SamplesPerChip> =8) then (2) else (4) endif) endif.

3GPPFDD_RF_ACLR_SwitchingTransients 3-25

Page 162: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

Pin Inputs

Notes/Equations

1. This subnetwork model is used to measure ACLR due to switching transientsfor a 3GPP FDD transmitter with 4 adjacent channels.

The schematic for this subnetwork is shown in Figure 3-5.

Figure 3-5. 3GPPFDD_RF_ACLR_SwitchingTransients Schematic

2. The power level varies between consecutive slots; power level changes atdifferent slots have a negative effect on ACLR performance.

A root-raised cosine filter is used in each channel. Adjacent channel offsets tothe central frequency are +5, +10, -5, and -10 MHz.

3. Power is measured in the time domain by averaging power in the specified slots.The slots are aligned at a specified slot boundary using slot format andspreading code information.

4. Use of this model is demonstrated in user equipment transmitter example: File> Example Project > WCDMA3G_UE_Tx_prj >UE_Tx_ACLR_SwitchingTransients.dsn. Simulation results are provided inData Display windows for this design.

Pin Name Description Signal Type

1 RFin input RF signal timed

3-26 3GPPFDD_RF_ACLR_SwitchingTransients

Page 163: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_RF_CCDF

Description 3GPP CCDF measurementsLibrary 3GPPFDD, Measurement

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

RLoad input resistance DefaultROut Ohm real (0, ∞)

RTemp temperature of resistor, incelsius

DefaultRTemp real [-273.15, ∞)

FCarrier frequency of carrier 1950e6 Hz real [0, ∞)

SamplesPerChip samples per chip 8 int [1, 256]

LinkDir link direction: Downlink,Uplink

Uplink enum

ScrambleCode index of scramble code 0 int [0, 511] fordownlink; [0, 16777215]for uplink

ULScrambleType uplink scramble code type:LONG, SHORT

LONG enum

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

DLScrambleType downlink scramble codetype: Normal,RightAlternate,LeftAlternate

Normal enum

SpreadCode index of spread code 0 int [0, 255] foruplink DPCCH; [0, SF-1] fordownlink; SF is set bySlotFormat

SlotFormat slot format 0 int [0, 5] for uplinkDPCCH; [0, 16 ] fordownlink DPCH

3GPPFDD_RF_CCDF 3-27

Page 164: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

Pin Inputs

Notes/Equations

1. This subnetwork model is used to measure the complementary cumulativedistribution function (CCDF), and the peak-to-mean value of 3GPP FDD signalswithin specified slots. The signal is aligned at a specified slot boundary usingthe slot format and spreading code information.

The schematic for this subnetwork is shown in Figure 3-6.

Figure 3-6. 3GPPFDD_RF_CCDF Schematic

2. The schematic for the WCDMA3G_RF_CCDF subnetwork model is shown inFigure 3-17 with information about WCDMA3G_RF_CCDF.

StartSlot number of slot to beignored

0 int [0, ∞)

SlotNum number of slots measured 1 int [0, 100]

SCH switch for SCH: OFF, ON ON enum

CPICH switch for CPICH: OFF, ON OFF enum

SearchLength Search length .00001 sec sec real (0,(400.0/3840000))

SlotBoundary slot boundary in terms ofsample

0 int [0,int(SearchLength*3840000*SamplesPerChip)]

Pin Name Description Signal Type

1 RFin input RF signal timed

Name Description Default Unit Type Range

3-28 3GPPFDD_RF_CCDF

Page 165: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_RF_CDP

Description 3GPP code domain power measurementsLibrary 3GPPFDD, Measurement

Parameters

Pin Inputs

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

RLoad input resistance DefaultROut Ohm real (0, ∞)

RTemp temperature of resistor, incelsius

DefaultRTemp real [-273.15, ∞)

FilterLength length of raised cosinefilters in number of symbols

16 int [1, ∞)

ExcessBW excess bandwidth of raisedcosine filters

0.22 real (0.0, 1.0)

SamplesPerChip samples per chip 8 int [1, 256]

ScrambleType scramble code type:UL_long, UL_short, DL

UL_long enum

ScrambleCode index of scramble code 0 int [0, 511] fordownlink; [0, 16777215]for uplink

SpreadFactor spreading factor 64 int2n , n=1,...,9

StartSlot number of slot to beignored

0 int [0, ∞)

SearchLength Search length .00001 sec sec real (0,(400.0/3840000))

Pin Name Description Signal Type

1 RFin input RF signal timed

3GPPFDD_RF_CDP 3-29

Page 166: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

Notes/Equations

1. This subnetwork model is used to measure the code domain power of 3GPPFDD signals. The subnetwork includes the root-raised cosine filter and the codedomain power measurement model.

The schematic for this subnetwork is shown in Figure 3-7.

Figure 3-7. 3GPPFDD_RF_CDP Schematic

2. Use of this model is demonstrated in base station and user equipmenttransmitter examples: File > Example Project > WCDMA3G >WCDMA3G_BS_Tx_prj > BS_Tx_Code_Domain_Power.dsn andWCDMA3G_UE_Tx_prj > UE_Tx_Code_Domain_Power.dsn. Simulation resultsare provided in Data Display windows for these designs.

3-30 3GPPFDD_RF_CDP

Page 167: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_RF_Downlink_BER

Description 3GPP downlink BER measurementsLibrary 3GPPFDD, Measurement

Parameters

Pin Inputs

Notes/Equations

1. This subnetwork model measures 3GPP FDD downlink reference measurementchannel bit error rate (BER) for DPCH, DTCH and DCCH, as well as block

Name Description Default Type Range

FrameNum frame number 4 int [0, ∞)

RefCh reference measurmentchannel: DL_REF_12_2,DL_REF_64,DL_REF_144,DL_REF_384

DL_REF_12_2 enum

CollectBits collect bits? NO, YES YES enum

Pin Name Description Signal Type

1 DTCH DTCH data int

2 RefDTCH synchronized reference DTCH int

3 DTCH_CRC DTCH CRC int

4 DCCH DCCH data int

5 RefDCCH synchronized reference DCCH int

6 DCCH_CRC DCCH CRC int

7 DPCH DPCH data int

8 RefDPCH synchronized reference DPCH int

3GPPFDD_RF_Downlink_BER 3-31

Page 168: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

error rates (BLER) for DTCH and DCCH. BER is measured by comparing thedecoded bits with the reference bits. BLER is measured based on the CRCresults.

2. The schematic for this subnetwork is shown in Figure 3-8.

Figure 3-8. 3GPPFDD_RF_Downlink_BER Schematic

3. FrameNum specifies the number of 10msec frames to be measured. The DPCHchannel is measured based on a 10msec frame; DTCH and DCCH are measuredbased on the transport block set size per each TTI. The frame number that isbased on a 10msec-frame is converted to the TTI number using the ceilfunction. For example, if the frame number is 11 and the TTI is 20msec, theTTIs to be measured will be ceil(11*10/20)=6.

3-32 3GPPFDD_RF_Downlink_BER

Page 169: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Transport block set size for each reference measurement channel is pre-definedusing equations.

4. CollectBits is used to specify whether or not to save the reference and decodedbits.

3GPPFDD_RF_Downlink_BER 3-33

Page 170: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

3GPPFDD_RF_EVM

Description 3GPP EVM measurementsLibrary 3GPPFDD, Measurement

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

RLoad input resistance DefaultROut Ohm real (0, ∞)

RTemp temperature of resistor, incelsius

DefaultRTemp real [-273.15, ∞)

ExcessBW excess bandwidth of raisedcosine filters

0.22 real (0.0, 1.0)

FilterLength length of raised cosinefilters in number of symbols

16 int [1, ∞]

SamplesPerChip samples per chip 8 int [1, 256]

LinkDir link direction: Downlink,Uplink

Uplink enum

ScrambleCode index of scramble code 0 int [0, 511] fordownlink; [0, 16777215]for uplink

ULScrambleType uplink scramble code type:LONG, SHORT

LONG enum

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

DLScrambleType downlink scramble codetype: Normal,RightAlternate,LeftAlternate

Normal enum

SpreadCode index of spread code 0 int [0, 255] foruplink DPCCH; [0, SF-1] fordownlink; SF is set bySlotFormat

3-34 3GPPFDD_RF_EVM

Page 171: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Notes/Equations

1. This subnetwork model is used to measure EVM for 3GPP FDD transmitter.

EVM is measured by comparing the reference signals with the signals to betested. Root-raised cosine filtering is performed before each test and referencesignal.

The schematic for this subnetwork is shown in Figure 3-9.

SlotFormat slot format 0 int [0, 5] for uplinkDPCCH; [0, 16 ] fordownlink DPCH

StartSlot number of slot to beignored

0 int [0, ∞)

SlotNum number of slots measured 1 int [1, 15]

SCH switch for SCH: OFF, ON ON enum

CPICH switch for CPICH: OFF, ON OFF enum

DUT_DelayBound Search length .00001 sec sec real (0,(400.0/3840000))

EVMValue EVM value expressionoptions: EVM_Ratio,EVM_Percent

EVM_Percent enum

Correct_IQ_Offset switch for IQ offsetcorrection: NO, YES

YES enum

Pin Name Description Signal Type

1 RFin input RF signal timed

2 RefIn reference signal for EVM complex

Name Description Default Unit Type Range

3GPPFDD_RF_EVM 3-35

Page 172: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

Figure 3-9. Schematic of 3GPPFDD_RF_EVM

2. Refer to 3GPPFDD_EVM_NonSyn for more information.

3. Use of this model is demonstrated in base station and user equipmenttransmitter examples: File > Example Project > WCDMA3G >WCDMA3G_BS_Tx_prj > BS_Tx_EVM.dsn and WCDMA3G_UE_Tx_prj >UE_Tx_EVM.dsn. Simulation results are provided in Data Display windows forthese designs.

3-36 3GPPFDD_RF_EVM

Page 173: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_RF_OccupiedBW

Description 3GPP occupied band width measurementsLibrary 3GPPFDD, Measurement

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

RLoad input resistance DefaultROut Ohm real (0, ∞)

RTemp temperature of resistor, incelsius

DefaultRTemp real [ -273.15, ∞ )

FCarrier frequency of carrier 1950e6 Hz real [0, ∞)

SpecMeasResBW Spectrum resolutionbandwidth

0 Hz real [0, ∞)

SpecMeasWindow Window type: none,Hamming 0.54, Hanning0.50, Gaussian 0.75,Kaiser 7.865, HP8510 6.0,Blackman,Blackman-Harris

none enum

SamplesPerChip samples per chip 8 int [1, 256]

LinkDir link direction: Downlink,Uplink

Uplink enum

ScrambleCode index of scramble code 0 int [0, 511] fordownlink; [0, 16777215]for uplink

ULScrambleType uplink scramble code type:LONG, SHORT

LONG enum

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

DLScrambleType downlink scramble codetype: Normal,RightAlternate,LeftAlternate

Normal enum

3GPPFDD_RF_OccupiedBW 3-37

Page 174: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

Pin Inputs

Notes/Equations

1. This subnetwork model is used to measure the occupied bandwidth for 3GPPFDD transmitter.

The schematic for this subnetwork is shown in Figure 3-10.

Figure 3-10. Schematic of 3GPPFDD_RF_OccupiedBW

SpreadCode index of spread code 0 int [0, 255] foruplink DPCCH; [0, SF-1] fordownlink; SF is set bySlotFormat

SlotFormat slot format 0 int [0, 5] for uplinkDPCCH; [0, 16 ] fordownlink DPCH

StartSlot number of slot to beignored

0 int [0, ∞)

SlotNum number of slots measured 1 int [0, 100]

SCH switch for SCH: OFF, ON ON enum

CPICH switch for CPICH: OFF, ON OFF enum

SearchLength Search length .00001 sec sec real (0,(400.0/3840000))

SlotBoundary slot boundary in terms ofsample

0 int [0,int(SearchLength*3840000*SamplesPerChip)]

Pin Name Description Signal Type

1 RFin input RF signal timed

Name Description Default Unit Type Range

3-38 3GPPFDD_RF_OccupiedBW

Page 175: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. Test signals are aligned at the specified slot boundary; signals within thedesired slots are sent to a spectrum analyzer. The occupied bandwidth can bemeasured by determining the bandwidth that accommodates 99.9% of thetransmitted power. This procedure can be implemented in the data displaysheet.

3. Use of this model is demonstrated in base station and user equipmenttransmitter examples: File > Example Project > WCDMA3G >WCDMA3G_BS_Tx_prj > BS_Tx_Occupied_BW.dsn andWCDMA3G_UE_Tx_prj > UE_Tx_Occupied_BW.dsn. Simulation results areprovided in Data Display windows for these designs.

3GPPFDD_RF_OccupiedBW 3-39

Page 176: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

3GPPFDD_RF_OutputPower

Description 3GPP output power measurementsLibrary 3GPPFDD, Measurement

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

RLoad input resistance DefaultROut Ohm real (0, ∞)

RTemp temperature of resistor, incelsius

DefaultRTemp real [-273.15, ∞)

FCarrier frequency of carrier 1950e6 Hz real [0, ∞)

SamplesPerChip samples per chip 8 int [1, 256]

LinkDir link direction: Downlink,Uplink

Uplink enum

ScrambleCode index of scramble code 0 int [0, 511] fordownlink; [0, 16777215]for uplink

ULScrambleType uplink scramble code type:LONG, SHORT

LONG enum

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

DLScrambleType downlink scramble codetype: Normal,RightAlternate,LeftAlternate

Normal enum

SpreadCode index of spread code 0 int [0, 255] foruplink DPCCH; [0, SF-1] fordownlink; SF is set bySlotFormat

SlotFormat slot format 0 int [0, 5] for uplinkDPCCH; [0, 16 ] fordownlink DPCH

3-40 3GPPFDD_RF_OutputPower

Page 177: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Notes/Equations

1. This subnetwork model measures the average power of the specified slots.

The average period is one slot; SlotNum specifies the number of slots to bemeasured.

Test signals are aligned at the specified slot boundary to ensure that the poweraverage is based on a single slot.

The schematic for this subnetwork is shown in Figure 3-11.

Figure 3-11. 3GPPFDD_RF_OutputPower Schematic

2. Refer to WCDMA3G_RF_PowMeas for more information.

3. Use of this model is demonstrated in base station and user equipmenttransmitter examples: File > Example Project > WCDMA3G >WCDMA3G_BS_Tx_prj > BS_Tx_MaxPower.dsn and WCDMA3G_UE_Tx_prj >

StartSlot number of slot to beignored

0 int [0, ∞)

SlotNum number of slots measured 1 int [1, 30]

SCH switch for SCH: OFF, ON ON enum

CPICH switch for CPICH: OFF, ON OFF enum

SearchLength Search length .00001 sec sec real (0,(400.0/3840000))

SlotBoundary slot boundary in terms ofsample

0 int [0,int(SearchLength*3840000*SamplesPerChip)]

Pin Name Description Signal Type

1 RFin input RF signal timed

Name Description Default Unit Type Range

3GPPFDD_RF_OutputPower 3-41

Page 178: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

UE_Tx_MaxPower.dsn. Simulation results are provided in Data Displaywindows for these designs.

3-42 3GPPFDD_RF_OutputPower

Page 179: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_RF_PCDE

Description 3GPP peak code domain error measurementsLibrary 3GPPFDD, Measurement

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

RLoad input resistance DefaultROut Ohm real (0, ∞)

RTemp temperature of resistor, incelsius

DefaultRTemp real [-273.15, ∞)

ExcessBW excess bandwidth of raisedcosine filters

0.22 real (0.0, 1.0)

FilterLength length of raised cosinefilters in number of symbols

16 int [1, ∞]

SamplesPerChip samples per chip 8 int [1, 256]

LinkDir link direction: Downlink,Uplink

Uplink enum

ScrambleCode index of scramble code 0 int [0, 511] fordownlink; [0, 16777215]for uplink

ULScrambleType uplink scramble code type:LONG, SHORT

LONG enum

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

DLScrambleType downlink scramble codetype: Normal,RightAlternate,LeftAlternate

Normal enum

SpreadCode index of spread code 0 int [0, 255] foruplink DPCCH; [0, SF-1] fordownlink; SF is set bySlotFormat

3GPPFDD_RF_PCDE 3-43

Page 180: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

Pin Inputs

Notes/Equations

1. This subnetwork model is used to measure code domain error for a 3GPP FDDtransmitter.

The schematic for this subnetwork is shown in Figure 3-12.

Figure 3-12. 3GPPFDD_RF_Uplink_Receiver Schematic

SlotFormat slot format 0 int [0, 5] for uplinkDPCCH; [0, 16 ] fordownlink DPCH

StartSlot number of slot to beignored

0 int [0, ∞)

SCH switch for SCH: OFF, ON ON enum

CPICH switch for CPICH: OFF, ON OFF enum

DUT_DelayBound Search length .00001 sec sec real (0,(400.0/3840000))

Correct_IQ_Offset switch for IQ offsetcorrection: NO, YES

YES enum

CodeLayer the code layer to calculatethe peak code error

8 int [2, 9]

Pin Name Description Signal Type

1 RFin input RF signal timed

2 RefIn reference signal for EVM complex

Name Description Default Unit Type Range

3-44 3GPPFDD_RF_PCDE

Page 181: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. The code domain error is measured by comparing the reference signals with thetest signals. The difference between the test and reference signals is projectedon the code domain to determine the code domain error distribution. The peakerror is identified on data display sheet using equation expressions.

A root-raised cosine filter is placed before each test and reference signal.

3. Refer to 3GPPFDD_CodeDomainErrror_NonSyn for more information.

4. Use of this model is demonstrated in base station and user equipmenttransmitter examples: File > Example Project > WCDMA3G >WCDMA3G_BS_Tx_prj > BS_Tx_Pk_Code_Error.dsn andWCDMA3G_UE_Tx_prj > UE_Tx_Pk_Code_Error.dsn. Simulation results areprovided in Data Display windows for these designs.

3GPPFDD_RF_PCDE 3-45

Page 182: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

3GPPFDD_RF_SpecEmission

Description 3GPP spectrum emission measurementsLibrary 3GPPFDD, Measurement

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

RLoad input resistance DefaultROut Ohm real (0, ∞)

RTemp temperature of resistor, incelsius

DefaultRTemp real [-273.15, ∞)

FCarrier frequency of carrier 1950e6 Hz real [0, ∞)

ExcessBW excess bandwidth of raisedcosine filters

0.22 real (0.0, 1.0)

DeltaFreq delta frequency -12e6 Hz real (-∞, ∞)

SpecMeasResBW Spectrum resolutionbandwidth

0 Hz real [0, ∞)

SpecMeasWindow Window type: none,Hamming 0.54, Hanning0.50, Gaussian 0.75,Kaiser 7.865, HP8510 6.0,Blackman,Blackman-Harris

none enum

SamplesPerChip samples per chip 8 int [1, 256]

LinkDir link direction: Downlink,Uplink

Uplink enum

ScrambleCode index of scramble code 0 int [0, 511] fordownlink; [0, 16777215]for uplink

ULScrambleType uplink scramble code type:LONG, SHORT

LONG enum

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

3-46 3GPPFDD_RF_SpecEmission

Page 183: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Notes/Equations

1. This subnetwork model is used to measure the spectrum emission for 3GPPFDD transmitter.

The schematic for this subnetwork is shown in Figure 3-13.

DLScrambleType downlink scramble codetype: Normal,RightAlternate,LeftAlternate

Normal enum

SpreadCode index of spread code 0 int [0, 255] foruplink DPCCH; [0, SF-1] fordownlink; SF is set bySlotFormat

SlotFormat slot format 0 int [0, 5] for uplinkDPCCH; [0, 16 ] fordownlink DPCH

StartSlot number of slot to beignored

0 int [0, ∞)

SlotNum number of slots measured 1 int [1, 100]

SCH switch for SCH: OFF, ON ON enum

CPICH switch for CPICH: OFF, ON OFF enum

SearchLength Search length .00001 sec sec real (0,(400.0/3840000))

SlotBoundary slot boundary in terms ofsample

0 int [0,MaxDelaySample]†

† MaxDelaySample = int( (SearchLength + (256e-6/3.84))*3840000*SamplesPerChip*Ratio).

Ratio=if (SamplesPerChip> =16) then (1) else ( if(SamplesPerChip> =8) then (2) else (4) endif) endif.

Pin Name Description Signal Type

1 RFin input RF signal timed

Name Description Default Unit Type Range

3GPPFDD_RF_SpecEmission 3-47

Page 184: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

Figure 3-13. 3GPPFDD_RF_SpecEmission Schematic

2. Emission power is measured in the time domain using a root-raised cosinefilter. Offset of the central frequency of the RRC filter measurement to thecarrier frequency is set by the DeltaFreq parameter. If the offset is within 4MHz, the passband bandwidth of RRC filter is 30 kHz; otherwise, the passbandis set to 1MHz.

The main power is also measured.

3. The spectrum emission mask is plotted using equation expressions in the DataDisplay window. The mask is different for different transmitted power.

4. Use of this model is demonstrated in base station and user equipmenttransmitter examples: File > Example Project > WCDMA3G >WCDMA3G_BS_Tx_prj > BS_Tx_Spec_Emission.dsn andWCDMA3G_UE_Tx_prj > UE_Tx_SpecEmissions.dsn. Simulation results areprovided in Data Display windows for these designs.

3-48 3GPPFDD_RF_SpecEmission

Page 185: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_RF_Uplink_BER

Description 3GPP uplink BER measurementsLibrary 3GPPFDD, Measurement

Parameters

Pin Inputs

Notes/Equations

Name Description Default Type Range

FrameNum frame number 4 int [0, ∞)

RefCh reference measurementchannel: UL_REF_12_2,UL_REF_64,UL_REF_144,UL_REF_384_10,UL_REF_384_20,UL_REF_768,UL_REF_2048

UL_REF_12_2 enum

CollectBits collect bits? NO, YES YES enum

Pin Name Description Signal Type

1 DTCH DTCH data int

2 RefDTCH synchronized reference DTCH int

3 DTCH_CRC DTCH CRC int

4 DCCH DCCH data int

5 RefDCCH synchronized reference DCCH int

6 DCCH_CRC DCCH CRC int

7 DPDCH DPDCH data int

8 RefDPDCH synchronized reference DPDCH int

3GPPFDD_RF_Uplink_BER 3-49

Page 186: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

1. This subnetwork model measures 3GPP FDD uplink reference channel bit errorrate (BER) for DPDCH, DTCH, and DCCH, as well as block error rates (BLER)for DTCH and DCCH. BER is measured by comparing the decoded bits with thereference bits. BLER is measured based on the CRC results.

The schematic for this subnetwork is shown in Figure 3-14.

2. FrameNum specifies the number of 10msec frames to be measured. TheDPDCH physical channel is measured based on a 10msec-frame; DTCH andDCCH are measured based on the transport block set size per each TTI. Theframe number that is set based on a 10msec frame is converted to the TTInumber using the ceil function. For example, if frame number is 11 and the TTIis 20msec, the TTIs to be measured will be ceil(11*10/20)=6.

3. CollectBits specifies whether or not to save the reference and decoded bits.

4. The transport block set size for each reference measurement channel ispre-defined using equations.

3-50 3GPPFDD_RF_Uplink_BER

Page 187: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

:

Figure 3-14. 3GPPFDD_RF_Uplink_BER Schematic

3GPPFDD_RF_Uplink_BER 3-51

Page 188: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

3GPPFDD_Synch

Description 3GPP FDD slot synchronizationLibrary 3GPPFDD, MeasurementClass SDF3GPPFDD_SynchDerived From 3GPPFDD_MeasBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

LinkDir link direction: Downlink,Uplink

Uplink enum

SlotFormat slot format 0 int †

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Scramble scramble code type:LONG, SHORT

LONG enum

ScrambleOffset scramble code offset 0 int [0, 15]

ScrambleType scramble code type:normal, right, left

normal enum

SpreadCode index of spread code 0 int [0, SF-1]; SF can be setby SlotFormator equal toSpreadFactor; SF is 256 if forCPICH, PICHor uplinkDPCCH

SampleRate sample rate 8 int [1, 256]

3-52 3GPPFDD_Synch

Page 189: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

MaxDelaySample maximum delay boundary,in terms of samples

0 int [0, 2559] forRAKE receiver; [0, 102400] inother models

StartSlot number of slot to beignored

0 int [0, ∞)

Correlator correlator method:Coherent, NonCoherent

Coherent enum

SCH switch for SCH: SCH_On,SCH_Off

SCH_On enum

CPICH switch for CPICH:CPICH_On, CPICH_Off

CPICH_Off enum

SlotBoundary slot boundary in terms ofsample

0 int [0,MaxDelaySample]

WarningMsg display debug information?WarningMsg_On,WarningMsg_Off

WarningMsg_Off enum

† [0:5] for uplink DPCCH;

[0:16] for downlink DPCH;

[0:17] for downlink SCCPCH;

[0:5] for uplink PCPCH (Ver 03_00);

[0:2] for uplink PCPCH (Ver 12_00);

[0:1] for uplink PCPCH (Ver 03_02);

Uplink DPCCH spread factor is 256;

Spread Factor is 512 when down link DPCH SlotFormat is 0 and 1;

Spread Factor is 256 when down link DPCH SlotFormat is 2, 3, 4, 5, 6, and 7;

Spread Factor is 128 when down link DPCH SlotFormat is 8, 9, 10, and 11;

Spread Factor is 64 when down link DPCH SlotFormat is 12;

Spread Factor is 32 when down link DPCH SlotFormat is 13;

Spread Factor is 16 when down link DPCH SlotFormat is 14;

Spread Factor is 8 when down link DPCH SlotFormat is 15;

Spread Factor is 4 when down link DPCH SlotFormat is 16;

Name Description Default Type Range

3GPPFDD_Synch 3-53

Page 190: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to align the signal to the slot boundary. To avoid the firematching problem, this model is designed to consume and produce one tokeneach firing.

2. This model always introduces an additional one-slot delay; this delayed slot ispadded with all zeros.

3. Synchronization is achieved by correlating the signals with the spread codes.The spreading codes are specified by ScrambleCode, Scramble, ScrambleType,ScrambleOffset, SlotFormat and SpreadCode. These parameters determine thespread codes that are used to correlate with the signals. The largest correlationvalue determines the synchronization point.

4. MaxDelaySample is the size of correlation window. This parameter must be setlarge enough to cover the slot boundary to be determined. However, a largerwindow size will result in a longer simulation time.

5. StartSlot is the offset where the synchronization begins. For example, ifStartSlot is 12, and SlotNum is 4, the measurement starts from the 12th slot ofthe first frame, and the EVM will be measured over the last 3 slots of the firstframe plus the first slot of the next frame.

6. Signals input from the multiple input pin are delayed in the same way as beingapplied to the main signal input at pin 1. This is useful when multiple signalsare to be processed, such as in ACLR measurements.

7. Two correlator methods are available. If Correlator = Coherent, the correlationis performed on the known pilot field bits; if Correlator = NonCoherent, thecorrelation value includes the noncoherent correlation value over data fields.

Pin Name Description Signal Type

1 in input data stream complex

2 inM associated input data stream multiple complex

Pin Name Description Signal Type

3 out output data stream complex

4 outM associated output data stream multiple complex

3-54 3GPPFDD_Synch

Page 191: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

The mean of noncoherent value is not zero and the estimation based on it wouldbe biased.

8. If LinkDir is Uplink, the synchronization process is based on the uplinkDPCCH channel. In 3GPP TS, the spread code for DPCCH is always 0. Forgeneral purposes, this model allows the spread code for DPCCH to be set.

If LinkDir is Downlink, the synchronization is based on SCH, CPICH or DPCH.If SCH is on, DPCH is turned off by default and the spread code is referred tothe PCCPCH channel. If SCH is off, the DPCH is turned on and the slot formatand spread code is for DPCH.

9. If SCH is on and Correlator = NonCoherent, the PCCPCH is used forcorrelation. Correlation over CPICH is always coherent.

10. If SlotBoundary = 0, the slot boundary is determined by correlation; otherwise,the slot boundary is the value set by this parameter and no correlation isperformed.

11. When WarningMsg is on, debug information regarding the allowed maximumdelay as well as the slot starting point will be displayed in the simulation statuswindow.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_Synch 3-55

Page 192: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

3GPPFDD_TrCHBER

Description 3GPP FDD BER measurementLibrary 3GPPFDD, MeasurementClass SDF3GPPFDD_TrCHBERDerived From 3GPPFDD_TrCHBase

Parameters

Pin Inputs

Pin Outputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

IgnoreTTInum ignore TTI (Transport BlockSet) number

0 int [0, ∞)

MeasTTInum measured TTI (TransportBlock Set) number

1 int [1, ∞)

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

Pin Name Description Signal Type

1 ref reference signals int

2 datain test signals int

3 TFIin TFI int

4 DetectFlag detector flag used with RACH int

Pin Name Description Signal Type

5 BER BER output real

3-56 3GPPFDD_TrCHBER

Page 193: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model is used to measure BER of transport channels. The TFI is input tocalculate the current data length with DynTFSet when variable rate channelsare measured. Each firing, the data block of a TTI (transport block set) isconsumed.

2. The DetectFlag (pin 4) indicates if the current data block is to be used; onlywhen DetectFlag=1, the current block will be used for BER calculation.

3. IgnoreTTInum and MeasTTInum specify the number of blocks to be ignoredand the number of blocks to be measured, respectively.

References

[1]3GPP Technical Specification TS 25.302, “Service Provided by Physical Layer.”

3GPPFDD_TrCHBER 3-57

Page 194: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

WCDMA3G_CodeDomainPwr

Description Code Domain Power measurementLibrary 3GPPFDD, Measurement

Parameters

Pin Inputs

Notes/Equations

1. This subnetwork model measures code domain power. The schematic for thissubnetwork is shown in Figure 3-15.

Name Description Default Type Range

SampleRate sample rate per chip 8 int [1, 32]

StartSlot number of slot to beignored

0 int [0, ∞)

MaxDelay maximum search delay interms of chip number

0 int [0, 1280]

ScrambleType scramble code type:UL_long, UL_short, DL

UL_long enum

ScrambleCode index of scramble code 0 int [0, 8191] fordownlink; [0, 16777215]for uplink

SF spreading factor 256 int [2, 512]

Pin Name Description Signal Type

1 in input data complex

3-58 WCDMA3G_CodeDomainPwr

Page 195: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 3-15. WCDMA3G_CodeDomainPwr Schematic

2. Code domain power is the distribution of signal energy on the set of orthogonalcode channels, normalized by the total signal energy. Because the set oforthogonal codes is complete, all signal energy projects on the set ofcode-channels (whether or not the signal has an error).

In general the vector (Z) of samples of the received, descrambled chip streamcan be regarded as comprising M × N samples, where N is the number of symbolperiods in the measurement interval and M is the spreading factor (M chips persymbol, with one sample per chip). The measurement interval is one time slot.Within this constraint it is evident that the values of N and M depend on whichlayer of the OVSF code tree is being evaluated.

Code domain power is always calculated at the C(8) layer regardless of theactual traffic mix, so M=256. (A measurement interval of time slot N, inprinciple, should equal 10 (15 kilosymbols per second).) This is legitimatebecause the power attributable to a physical channel using a higher ratespreading code will correlate with the block of K adjacent codes at the level forwhich the higher rate code is the parent. (K is also the ratio between the usedspreading code rate and 15 kilosymbols per second). Provided that all the codesin this block are identified as used codes then the aggregate power of the Kcodes in the block will equal the signal power of the higher rate code.

The code domain power (coefficient) calculation given in eq. (3-1) is applied fori ∈ {0, 1, 2, ... , M - 1} to generate a vector of normalized code domain power.

WCDMA3G_CodeDomainPwr 3-59

Page 196: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

(3-1)

In this case signal Ri,k = Ci,k + jCi,k and Ci, k is the kth chip of the ith spreadingcode.

When the OVSF spreading code set is complete, and all energy must beaccounted for, this conclusion is made for the sum of code domain powercoefficients equality:

(3-2)

According to eq. (3-1), code domain power is calculated as follows:

• take the descrambled vectors Z

• take the orthogonal vectors of the channelization code set C (all codesbelonging to one spreading factor

• calculate the inner product of Z with C. Do this for all symbols of themeasurement interval and for all codes in the code space. This gives an arrayof format N × M, each value representing a specific symbol and a specificcode, where

M = number of codes

N = number of symbols in the measurement interval

• calculate M RMS values, each RMS value unifying N symbols within onecode.

• normalize each RMS value to the received signal power.

The vector of code domain power can be plotted as a histogram then used todisplay the power distribution in the code domain.

The MaxDelay parameter is a user-specified time delay range in terms of chip tobe used in signal search. The StartSlot parameter indicates which slot will bemeasured.

3. The 3GPP system chip rate is 3.84 Mcps. The BS_Tx_Code_Domain_Power.dsndesign demonstrates the use of this subnetwork model in the Examples

ρi1

Ri k,k 0=

M 1–

∑--------------------------

Z h m⋅ k+( ) Ri k,⋅k 0=

M 1–

∑h 0=

N 1–

Z h m⋅ k+( ) k⋅k 0=

M 1–

∑h 0=

N 1–

∑-------------------------------------------------------------------⋅=

ρii 0=

M 1–

∑ 1≡

3-60 WCDMA3G_CodeDomainPwr

Page 197: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G/WCDMA3G_BS_Tx_prj; this project is discussed in Chapter 23,Base Station Transmitter Design Examples.

References

[1]3GPP Technical Specification TS 34.121 V3.8.0, Terminal ConformanceSpecification, Radio Transmission and Reception (FDD), March 2003, Release1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/34_series/34121-380.zip

[2] 3GPP/TSG R4 #3 (99) 107 “Uplink and Downlink Modulation Accuracy.”

WCDMA3G_CodeDomainPwr 3-61

Page 198: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

WCDMA3G_MeanSquare

Description Measure the mean square of baseband signalLibrary 3GPPFDD, Measurement

Parameters

Pin Inputs

Notes/Equations

1. This subnetwork model is used to measure the mean square of a basebandsignal. The schematic is shown in Figure 3-16.

Each firing, one token is consumed.

2. The SquareRoot parameter is used to indicate whether the value is squarerooted.

3. The block mean square is the value measured based on each data block whilethe average is the value measured based on all the past blocks.

Name Description Default Type Range

StartSym start symbol 0 int [0, ∞)

BurstLen length of input signal burst 2560 int (0, 102400]

BurstNum number of bursts 1 int (0, 30]

SquareRoot if the result is square root:No, Yes

No enum

Pin Name Description Signal Type

1 In signal to be measured complex

3-62 WCDMA3G_MeanSquare

Page 199: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 3-16. WCDMA3G_MeanSquare Schematic

WCDMA3G_MeanSquare 3-63

Page 200: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

WCDMA3G_RF_CCDF

Description RF signal complementary cumulative distribution functionLibrary 3GPPFDD, Measurement

Parameters

Pin Inputs

Notes/Equations

1. This subnetwork model is used to measure the complementary cumulativedistribution function (CCDF) of the RF signal. The schematic is shown inFigure 3-17.

Each firing, starting at StartSym, BurstNum × BurstLen signals are input(BurstLen is the length of slot and BurstNum is the number of slots to bemeasured).

Name Description Default Unit Type Range

StartSym symbol from whichmeasurement begin

0 int [0, ∞)

BurstLen length of input signal burst 2560 int [1, 65536)

OutputPoint indicate output precision 100 int [1, 65536)

BurstNum number of bursts 1 int [1, 65536]

RLoad load resistance 50.0 Ohm real (0, ∞)

RTemp temperature of referenceresistor, in degrees C

-273.15 real [-273.15, ∞)

Rref reference resistance 50.0 Ohm real (0, ∞)

Pin Name Description Signal Type

1 in input signals timed

3-64 WCDMA3G_RF_CCDF

Page 201: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 3-17. WCDMA3G_RF_CCDF Schematic

WCDMA3G_RF_DisFunc measures the distribution function according to inputsignal power; results are collected by 4 NumericSink components. Thedistribution range is sent to the NumericSink identified as SignalRange and isdivided into segments according to OutputPoint. The correspondingdistribution probability is calculated based on these segments and sent to theNumericSink identified as CCDF.

WCDMA3G_RF_DisFunc calculates peak power of 99.9% probability andaverage power of the input signals. These results are collected by theNumericSinks identified as PeakPower and MeanPower.

Note that PeakPower, MeanPower and SignalRange units are dBm;SignalRange is the absolute signal power minus MeanPower.

Typical simulation results are shown in Figure 3-18.

WCDMA3G_RF_CCDF 3-65

Page 202: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

Figure 3-18. Typical Simulation Results

2. The 3GPP system chip rate is 3.84 Mcps. The BS_Tx_CCDF.dsn designdemonstrates the use of this subnetwork model in the ExamplesWCDMA3G/WCDMA3G_BS_Tx_prj; this project is discussed in Chapter 23,Base Station Transmitter Design Examples.

3-66 WCDMA3G_RF_CCDF

Page 203: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_RF_PowMeas

Description RF signal average power measurementLibrary 3GPPFDD, Measurement

Parameters

Pin Inputs

Notes/Equations

1. This subnetwork model is used to measure the RF signal average power. Theschematic is shown in Figure 3-19.

Each firing, one token is consumed.

Name Description Default Unit Type Range

StartSym start symbol 0 int [0, ∞)

BurstLen length of input signal burst 2560 int (0, 102400]

BurstNum number of bursts 1 int (0, 30]

RLoad reference resistance 50.0 Ohm real (0, ∞)

RTemp temperature of referenceresistor, in degrees C

-273.15 real [-273.15, ∞)

Pin Name Description Signal Type

1 In RF signal to be measured timed

WCDMA3G_RF_PowMeas 3-67

Page 204: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

Figure 3-19. WCDMA3G_RF_PowMeas Schematic

2. The average block power is the value measured based on each data block whilethe average total power is the value measured based on all past blocks.

3. Power is measured on the load resistance specified by RLoad. The output iswatts.

4. The 3GPP system chip rate is 3.84 Mcps. The BS_Tx_MaxPower.dsn designdemonstrates the use of this subnetwork model in the ExamplesWCDMA3G/WCDMA3G_BS_Tx_prj; this project is discussed in Chapter 23,Base Station Transmitter Design Examples.

3-68 WCDMA3G_RF_PowMeas

Page 205: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_RF_PowMeas 3-69

Page 206: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Measurement Components

3-70

Page 207: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 4: 3GPPFDD Physical ChannelDemultiplexers and Decoders

4-1

Page 208: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Demultiplexers and Decoders

3GPPFDD_DPCCHDeMux

Description Uplink DPCCH de-multiplexingLibrary 3GPPFDD, PhyCH DeMultiplexers & DeCodersClass SDF3GPPFDD_DPCCHDeMuxDerived From 3GPPFDD_PhyCHBase

Parameters

Pin Inputs

Pin Outputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 DPCCHin multiplexed DPCCH data real

Pin Name Description Signal Type

2 TFCI TFCI bits of a slot real

3 FBI FBI bits of a slot real

4 TPC TPC bits of a slot real

5 Pilot pilot bits/slot real

4-2 3GPPFDD_DPCCHDeMux

Page 209: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model de-multiplexes the uplink DPCCH signal to different control fieldsincluding TFCI, TPC, FBI and Pilot.

2. Each firing, one slot of data, 10 tokens, is consumed; TFCI, TPC, FBI and Pilotdata tokens are output according to the SlotFormat setting.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_DPCCHDeMux 4-3

Page 210: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Demultiplexers and Decoders

3GPPFDD_DPCHDeMux

Description Downlink DPCH de-multiplexingLibrary 3GPPFDD, PhyCH DeMultiplexers & DeCodersClass SDF3GPPFDD_DPCHDeMuxDerived From 3GPPFDD_DLPhyCHBase

Parameters

Pin Inputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

DPCHNum downlink DPCH number 1 int [1, 8] for othermodels; [1, 512] for3GPPFDD_OCNS and3GPPFDD_DPCHs

TFCIField TFCI field on/off switch:On, Off

Off enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 SlotIndex slot index int

2 DataIn multiplexed DPCH data multiple real

4-4 3GPPFDD_DPCHDeMux

Page 211: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model de-multiplexes the downlink DPCH signal to different fieldsincluding data, TFCI, TPC, and Pilot.

2. Each firing, the model consumes one slot of data; TFCI, TPC, and Pilot datatokens are output according to the SlotFormat setting.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

Pin Name Description Signal Type

3 TFCI TFCI bits/slot real

4 TPC TPC bits/slot real

5 Pilot Pilot bits/slot real

6 DataOut demultiplexed data multiple real

3GPPFDD_DPCHDeMux 4-5

Page 212: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Demultiplexers and Decoders

3GPPFDD_HS_DPCCH_DeMux

Description 3GPP HS-DPCCH De-multiplexerLibrary 3GPPFDD, PhyCH DeMultiplexers & DeCoders

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork separates the 30 bit-HS-DPCCH sub-frame (10 codedARQ-Ack bit stream and 20 coded CQI bits) for further processing.

2. The schematic for this subnetwork is shown in Figure 4-1,

Name Description Default Type

SpecVerHSDPA version of HSDPAspecifications:Version_09_03

Version_09_03 enum

Pin Name Description Signal Type

1 HS_DPCCH HS-DPCCH subframe real

Pin Name Description Signal Type

2 ACK coded HARQ Ack information real

3 CQI coded CQI information real

4-6 3GPPFDD_HS_DPCCH_DeMux

Page 213: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 4-1. 3GPPFDD_HS_DPCCH_DeMux Schematic

References

[1]3GPP Technical Specification TS 25.211 V5.5.0, “Physical channels andmapping of transport channels onto physical channels (FDD)” Release 5.

[2] 3GPP Technical Specification TS 25.212 V5.6.0 “Multiplexing and channelcoding (FDD)” Release 5.

[3] 3GPP Technical Specification TS 25.213 V5.4.0, “Spreading and modulation(FDD)” Release 5.

3GPPFDD_HS_DPCCH_DeMux 4-7

Page 214: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Demultiplexers and Decoders

3GPPFDD_PCCPCHDeMux

Description Downlink P-CCPCH de-multiplexingLibrary 3GPPFDD, PhyCH DeMultiplexers & DeCodersClass SDF3GPPFDD_PCCPCHDeMuxDerived From 3GPPFDD_DLPhyCHBase

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model de-multiplexes the downlink PCCPCH signal.

2. Each firing, one slot of data is consumed.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

Name Description Default Type

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

Pin Name Description Signal Type

1 DataIn multiplexed PCCPCH data real

Pin Name Description Signal Type

2 DataOut demultiplexed data real

4-8 3GPPFDD_PCCPCHDeMux

Page 215: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_PCCPCHDeMux 4-9

Page 216: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Demultiplexers and Decoders

3GPPFDD_PRACHDeMux

Description Uplink PRACH de-multiplexingLibrary 3GPPFDD, PhyCH DeMultiplexers & DeCodersClass SDF3GPPFDD_PRACHDeMuxDerived From 3GPPFDD_PhyCHBase

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model de-multiplexes the uplink PRACH signal to different fieldsincluding TFCI and Pilot.

2. Each firing, one slot of data, 10 tokens, is consumed; 2 TFCI tokens and 8 Pilottokens are output.

Name Description Default Type

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

Pin Name Description Signal Type

1 DPCCHin multiplexed DPCCH data real

Pin Name Description Signal Type

2 TFCI TFCI bits of a slot real

3 Pilot pilot bits/slot real

4-10 3GPPFDD_PRACHDeMux

Page 217: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_PRACHDeMux 4-11

Page 218: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Demultiplexers and Decoders

3GPPFDD_SCCPCHDeMux

Description Downlink S-CCPCH de-multiplexingLibrary 3GPPFDD, PhyCH DeMultiplexers & DeCodersClass SDF3GPPFDD_SCCPCHDeMuxDerived From 3GPPFDD_DLPhyCHBase

Parameters

Pin Inputs

Pin Outputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 DataIn multiplexed SCCPCH data real

Pin Name Description Signal Type

2 DataOut demultiplexed data real

3 TFCI TFCI bits/slot real

4 Pilot pilot bits/slot real

4-12 3GPPFDD_SCCPCHDeMux

Page 219: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model de-multiplexes the downlink SCCPCH signal to different fieldsincluding data, TFCI and Pilot.

2. Each firing, one slot of data is consumed; data, TFCI and Pilot tokens areoutput according to the SlotFormat setting.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_SCCPCHDeMux 4-13

Page 220: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Demultiplexers and Decoders

4-14

Page 221: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 5: 3GPPFDD Physical ChannelMultiplexers and Coders

5-1

Page 222: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_DLScrmb

Description Downlink scrambling code generatorLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_DLScrmbDerived From 3GPPFDD_PhyCHBase

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate downlink scrambling code.

2. Each firing, 1 token is produced. One scramble code is generated in 38400firings. The code repeats every 38400 firings.

3. If ScrambleType is normal, the scramble code index is equal toScrambleCode × 16 + ScrambleOffset. If ScrambleType is right, the index is

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble code offset 0 int [0, 15]

ScrambleType scramble code type:normal, right, left

normal enum

Pin Name Description Signal Type

1 out scrambling code sequence complex

5-2 3GPPFDD_DLScrmb

Page 223: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

ScrambleCode × 16 + ScrambleOffset + 16384. If ScrambleType is left, the indexis ScrambleCode × 16 + ScrambleOffset + 8192.

References

[1]3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

3GPPFDD_DLScrmb 5-3

Page 224: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_DPCCHMux

Description Uplink DPCCH multiplexingLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_DPCCHMuxDerived From 3GPPFDD_ULPhyCHBase

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 TPC TPC int

2 TFCI TFCI int

3 FBI FBI int

Pin Name Description Signal Type

4 out data int

5-4 3GPPFDD_DPCCHMux

Page 225: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

1. This model is used to multiplex dedicated uplink physical channels.

2. Each firing, 1 slot of DPCCH tokens is generated at pin out. The number oftokens consumed at pins TPC, TFCI and FBI are determined by the slot format.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_DPCCHMux 5-5

Page 226: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_DPCHMux

Description Downlink DPCH MultiplexingLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_DPCHMuxDerived From 3GPPFDD_DLPhyCHBase

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

DPCHNum downlink DPCH number 1 int [1, 8] for othermodels; [1, 512] for3GPPFDD_OCNS and3GPPFDD_DPCHs

TFCIField TFCI field on/off switch:On, Off

Off enum

PO1 power offset of TFCIrelative to the DPDCHspower

0.0 dB real

PO2 power offset of TPCrelative to the DPDCHspower

0.0 dB real

PO3 power offset of Pilotrelative to the DPDCHspower

0.0 dB real

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

5-6 3GPPFDD_DPCHMux

Page 227: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to multiplex dedicated downlink physical channels.

2. Each firing, 1 slot of DPCH tokens is generated. The number of tokensconsumed at TPC and TFCI is determined by the slot format selected.

3. The formatted bit stream is then coded by STTD encoder. STTD coded andnon-STTD coded bits are output separately.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

Pin Name Description Signal Type

1 TPC TPC int

2 TFCI TFCI int

3 DataIn input data multiple int

Pin Name Description Signal Type

4 NonSTTD non-STTD coded output data multiple real

5 STTD STTD coded output data multiple real

3GPPFDD_DPCHMux 5-7

Page 228: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_DataPattern

Description Data pattern generatorLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_DataPatternDerived From 3GPPFDD_3GPPBase

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate the bit pattern specified by DataPattern:

• random: generate the random bit stream

• PN9: PN code using generating polynomial x9+x4+1, seeded by 1234567

• PN15: PN code using generating polynomial x15+x+1, seeded by 1234567

• bits_repeat: convert the integer specified by RepBitValue as bit stream

• user_file: generate the data stream specified by UserFileName

2. The default data pattern period is:

Name Description Default Type Range

DataPattern source data pattern:random, PN9, PN15,bits_repeat, user_file

random enum

RepBitValue repeating data value 0xff int [0, 255]

UserFileName user-defined data file name datafile.txt filename

Pin Name Description Signal Type

1 out data pattern int

5-8 3GPPFDD_DataPattern

Page 229: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

• random: 1

• PN9: 511

• PN15: 32767

• bits_repeat: 8

• user_file: length of the file

3GPPFDD_DataPattern 5-9

Page 230: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_HS_DPCCH_Mux

Description 3GPP HS-DPCCH multiplexerLibrary 3GPPFDD, PhyCH Multiplexers & Coders

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork takes 10 coded ARQ-Ack bits and 20 coded CQI bits andmultiplexes the coded bit stream as a 30-bit HS-DPCCH sub-frame.

The schematic for this subnetwork is shown in Figure 5-1.

Name Description Default Type

SpecVerHSDPA version of HSDPAspecifications:Version_09_03

Version_09_03 enum

Pin Name Description Signal Type

1 ACK coded HARQ Ack information int

2 CQI coded CQI information int

Pin Name Description Signal Type

3 HS_DPCCH HS-DPCCH subframe int

5-10 3GPPFDD_HS_DPCCH_Mux

Page 231: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 5-1. 3GPPFDD_HS_DPCCH_Mux Schematic

References

[1]3GPP Technical Specification TS 25.211 V5.5.0, “Physical channels andmapping of transport channels onto physical channels (FDD)” Release 5.

[2] 3GPP Technical Specification TS 25.212 V5.6.0 “Multiplexing and channelcoding (FDD)” Release 5.

[3] 3GPP Technical Specification TS 25.213 V5.4.0, “Spreading and modulation(FDD)” Release 5.

3GPPFDD_HS_DPCCH_Mux 5-11

Page 232: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_HS_ULSpread

Description Uplink DPDCH/DPCCH/HS-DPCCH spreading and scramblingLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_HS_ULSpreadDerived From 3GPPFDD_ULSpread

Parameters

Pin Inputs

Name Description Default Type Range

SpecVerHSDPA version of HSDPAspecifications:Version_09_03

Version_09_03 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Scramble scramble code type:LONG, SHORT

LONG enum

Pin Name Description Signal Type

1 CtrlIn DPCCH part int

2 GainD gain factor of DPDCH real

3 GainC gain factor of DPCCH real

4 PCNin DPDCH channel number int

5 SltFin DPDCH slot format int

6 HS_DPCCH HS-DPCCH bits int

7 HS_Gain gain of HS-DPCCH real

8 DataIn DPDCH part multiple int

5-12 3GPPFDD_HS_ULSpread

Page 233: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. 3GPPFDD_HS_ULSpread provides spreading and scrambling functions forHS_DPCCH as well as DPCCH and DPDCH(s).

Each firing, 2560 out tokens are produced when 10 CtrlIn, 1 GainD, 1 GainC,1 PCNin, 1 SltFin, 10 HS_DPCCH, 1 HS_Gain, and 640 DataIn tokens areconsumed.

2. 3GPPFDD_ULSpread (uplink DPDCH/DPCCH(s) spreading and scrambling)functions are implemented in this model. Refer to 3GPPFDD_ULSpreaddocumentation for parameter information and details.

3. The HS-DPCCH is spread and modulated after DPCCH and DPDCH signalsare processed. The HS-DPCCH spreading and modulation scheme is defined in[3].

The HS-DPCCH is scaled by the HS-DPCCH gain (the product of gain forDPCCH (GainC) and the gain of HS_DPCCH over DPCCH (HS_Gain) ). If theHS_Gain input is 0, then no HS_DPCCH is transmitted (DTX is transmitted inHS_DPCCH).

References

[1]3GPP Technical Specification TS 25.211 V5.5.0, “Physical channels andmapping of transport channels onto physical channels (FDD)” Release 5.

[2] 3GPP Technical Specification TS 25.212 V5.6.0 “Multiplexing and channelcoding (FDD)” Release 5.

[3] 3GPP Technical Specification TS 25.213 V5.4.0, “Spreading and modulation(FDD)” Release 5.

Pin Name Description Signal Type

9 out data complex

3GPPFDD_HS_ULSpread 5-13

Page 234: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_OVSF

Description Orthogonal variable spreading factor codes generatorLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_OVSFDerived From 3GPPFDD_PhyCHBase

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate OVSF codes.

2. The length of OVSF code is equal to SpreadFactor. The index of OVSF code isspecified by SpreadCode.

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SpreadFactor spreading factor 64 int2n , n=1,...,9

SpreadCode index of spread code 0 int [0, SF-1]; SF can be setby SlotFormator equal toSpreadFactor; SF is 256 if forCPICH, PICHor uplinkDPCCH

Pin Name Description Signal Type

1 out OVSF code int

5-14 3GPPFDD_OVSF

Page 235: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

3GPPFDD_OVSF 5-15

Page 236: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_PCCPCHMux

Description Downlink P-CCPCH MultiplexingLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_PCCPCHMuxDerived From 3GPPFDD_DLPhyCHBase

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to multiplex primary common control physical channel(P-CCPCH).

2. Each firing, 18 × 15 tokens are consumed and 20 × 15 tokens are generated in adata frame. The first two bits of each slot are 0 and are reserved for SCH.

Name Description Default Type

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

Pin Name Description Signal Type

1 DataIn input data int

Pin Name Description Signal Type

2 NonSTTD non-STTD coded output data real

3 STTD STTD coded output data real

5-16 3GPPFDD_PCCPCHMux

Page 237: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

The formatted bit stream is coded by STTD encoder. STTD coded and non-STTDcoded bits are output separately.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_PCCPCHMux 5-17

Page 238: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_PCPCHMux

Description Uplink PCPCH control message multiplexingLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_PCPCHMuxDerived From 3GPPFDD_ULPhyCHBase

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 TPC TPC int

2 TFCI TFCI int

3 FBI FBI int

Pin Name Description Signal Type

4 out data int

5-18 3GPPFDD_PCPCHMux

Page 239: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

1. This model is used to multiplex the control part of the PCPCH message,including FBI, TFCI, TPC, and Pilot. The slot format is defined in [1].

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_PCPCHMux 5-19

Page 240: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_PCPCHPrmbl

Description PCPCH Preamble (AP or CD-P)Library 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_PCPCHPrmblDerived From 3GPPFDD_ULPhyCHBase

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate PCPCH preamble. Each preamble is 4096 chips.

2. The preamble code is a complex-valued sequence built from a preamblescrambling code and a preamble signature as defined in [2].

This model can simulate Access Preamble (resources shared with PRACH ornot) and Collision-Detection Preamble.

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

PrmblSgntr Preamble Signature 0 int [0, 15]

PRACHScrmblShared access resources sharedwith PRACH: Yes, No

Yes enum

Pin Name Description Signal Type

1 out output data complex

5-20 3GPPFDD_PCPCHPrmbl

Page 241: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3. This model outputs 1 token each firing. After 4096 firings, it outputs 0.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

3GPPFDD_PCPCHPrmbl 5-21

Page 242: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_PCPCHSprd

Description Uplink PCPCH spreading and scramblingLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_PCPCHSprdDerived From 3GPPFDD_ULPhyCHBase

Parameters

Pin Inputs

Pin Outputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 8192 int [0, 512] fordownlink; [0, 16777215]for uplink

Scramble scramble code type:LONG, SHORT

LONG enum

Pin Name Description Signal Type

1 CtrlIn DPCCH part int

2 GainD gain factor of DPDCH real

3 GainC gain factor of DPCCH real

4 SltFin DPDCH slot format int

5 Data data int

Pin Name Description Signal Type

6 out data out complex

5-22 3GPPFDD_PCPCHSprd

Page 243: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model is used to spread and scramble message part of PCPCH. Figure 5-2illustrates the process.

Figure 5-2. Spreading and Scrambling of PCPCH Message Part

2. For control and data parts:

• The control part is always spread by code cc=Cch,256,0.

• The data part is spread by code cd=Cch,SF,k where SF is the spreading factorof the data part and k=SF/4. The data part may use the code from spreadingfactor 4 to 256.

3. Long or short scrambling codes can be used to scramble the CPCH messagepart. There are 64 uplink scrambling codes defined per cell and 32768 differentPCPCH scrambling codes defined in the system.The nth PCPCH message partscrambling code, denoted Sc-msg,,n, where n = 8192,8193, … , 40959 is based onthe scrambling sequence as defined in [2].

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

cc βc

S

I + jQ

Sc-msg,nI

O

j

cd βd

PCPCH MessageData Part

PCPCH MessageControl Part

3GPPFDD_PCPCHSprd 5-23

Page 244: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_PRACHMux

Description Uplink PRACH control message multiplexingLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_PRACHMuxDerived From 3GPPFDD_ULPhyCHBase

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model multiplexes the control part of PRACH message that consists ofTFCI and Pilot. The slot format is defined in [1].

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

Name Description Default Type

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

Pin Name Description Signal Type

1 TFCI TFCI int

Pin Name Description Signal Type

2 out data int

5-24 3GPPFDD_PRACHMux

Page 245: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_PRACHMux 5-25

Page 246: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_PRACHPrmbl

Description PRACH PreambleLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_PRACHPrmblDerived From 3GPPFDD_ULPhyCHBase

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate PRACH preamble. The PRACH preambleconsists of 4096 chips.

2. The preamble code is a complex-valued sequence built from a preamblescrambling code and a preamble signature as defined in [2].

3. Each firing, 1 token is output. After 4096 firings, 0 is output.

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

PrmblSgntr Preamble Signature 0 int [0, 15]

Pin Name Description Signal Type

1 out output data complex

5-26 3GPPFDD_PRACHPrmbl

Page 247: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

3GPPFDD_PRACHPrmbl 5-27

Page 248: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_PRACHScrmb

Description Uplink PRACH scrambling code generatorLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_PRACHScrmbDerived From 3GPPFDD_ULPhyCHBase

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate the scrambling code of the PRACH message.

2. Each firing, 1 token is produced. The complete scrambling sequence can begenerated by 38400 firings. The sequence repeats every 38400 firings.

References

[1]3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Pin Name Description Signal Type

1 out scrambling code sequence complex

5-28 3GPPFDD_PRACHScrmb

Page 249: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_PRACHSprd

Description Uplink PRACH spreading and scramblingLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_PRACHSprdDerived From 3GPPFDD_ULPhyCHBase

Parameters

Pin Inputs

Pin Outputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

PrmblSgntr Preamble Signature 0 int [0, 15]

Pin Name Description Signal Type

1 CtrlIn DPCCH part int

2 GainD gain factor of DPDCH real

3 GainC gain factor of DPCCH real

4 SltFin DPDCH slot format int

5 Data data int

Pin Name Description Signal Type

6 out data complex

3GPPFDD_PRACHSprd 5-29

Page 250: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model is used to spread and scramble message part of PRACH. Figure 5-3illustrates the process.

Figure 5-3. Spreading and Scrambling of PRACH Message Part

2. The preamble signature s, 0 ≤ s ≤ 15, points to one of the 16 nodes in thecode-tree that corresponds to channelization codes of length 16. The sub-treebelow the specified node is used to spread the message part. The control part isspread with the channelization code cc of spreading factor 256 in the lowestbranch of the sub-tree, i.e. cc = Cch,256,m where m = 16 × s + 15. The data part isspread by channelization code cd =Cch,SF,m and SF is the spreading factor used

for the data part and m = SF × s/16.3. The nth PRACH message part scrambling code, denoted Sr-msg,n, where n = 0, 1,

… , 8191, is based on the long scrambling sequence as defined in [2].

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

[2] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

cc βc

S

I + jQ

Sr-msg,nI

O

j

cd βd

PRACH MessageData Part

PRACH MessageControl Part

5-30 3GPPFDD_PRACHSprd

Page 251: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_SCCPCHMux

Description Downlink S-CCPCH MultiplexingLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_SCCPCHMuxDerived From 3GPPFDD_DLPhyCHBase

Parameters

Pin Inputs

Pin Outputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

TFCIField TFCI field on/off switch:On, Off

Off enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 TFCI TFCI int

2 DataIn input data int

Pin Name Description Signal Type

3 NonSTTD non-STTD coded output data int

4 STTD STTD coded output data int

3GPPFDD_SCCPCHMux 5-31

Page 252: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model is used to multiplex secondary common control physical channel(S-CCPCH).

2. Each firing, a slot of data is generated; the number of tokens generated andconsumed is determined by the slot format selected.

The formatted bit stream is then coded by STTD encoder. STTD coded andnon-STTD coded bits are output separately.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

5-32 3GPPFDD_SCCPCHMux

Page 253: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULLongScrmb

Description Uplink long scrambling code generatorLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_ULLongScrmbDerived From 3GPPFDD_PhyCHBase

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate uplink long scrambling sequence.

2. Each firing, 1 token is produced. The 38400 sequence is generated by 38400firings. The sequence repeats every 38400 firings.

References

[1]3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Pin Name Description Signal Type

1 out scrambling code sequence complex

3GPPFDD_ULLongScrmb 5-33

Page 254: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULShortScrmb

Description Uplink short scrambling code generatorLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_ULShortScrmbDerived From 3GPPFDD_PhyCHBase

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate uplink short scrambling sequence.

2. Each fire, 256 tokens are produced. The code repeats.

References

[1]3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Pin Name Description Signal Type

1 out scrambling code sequence complex

5-34 3GPPFDD_ULShortScrmb

Page 255: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULSpread

Description Uplink DPDCH/DPCCH spreading and scramblingLibrary 3GPPFDD, PhyCH Multiplexers & CodersClass SDF3GPPFDD_ULSpreadDerived From 3GPPFDD_ULPhyCHBase

Parameters

Pin Inputs

Pin Outputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Scramble scramble code type:LONG, SHORT

LONG enum

Pin Name Description Signal Type

1 CtrlIn DPCCH part int

2 GainD gain factor of DPDCH real

3 GainC gain factor of DPCCH real

4 PCNin DPDCH channel number int

5 SltFin DPDCH slot format int

6 DataIn DPDCH part multiple int

Pin Name Description Signal Type

7 out data complex

3GPPFDD_ULSpread 5-35

Page 256: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model is used to spread and scramble the uplink signal.

Each firing, 2560 output tokens are produced when 10 CtrlIn, 1 GainD, 1GainC, 1 PCNin, 1 SltFin, and 640 DataIn tokens are consumed. DataIn is amulti-input port so 640 tokens are consumed from each port connected toDataIn.

2. CtrlIn data inputs are for pilot, TPC, TFCI, and FBI slot by slot.

3. GainD and GainC inputs are the gain factors for DPDCH and DPCCHdetermined according to [2] section 5.1.2.5. At least one of GainC and GainDmust be set to a non-zero value. When GainC is set to zero, only DPDCH(s) istransmitted; when GainD is set to zero, DPDCH is not transmitted.

4. PCNin input determines the number of DPDCH(s) transmitted in each slot. Thevalue of PCNin can vary during the simulation thus allowing the user todynamically change the number of DPDCH(s) transmitted on a slot-by-slotbasis. Therefore, the number of output ports connected to the DataInmulti-input port should be greater than or equal to the maximum value ofPCNin input during the simulation.

5. SltFin input determines the slot format of each transmitted slot when there isonly one DPDCH (PCNin = 1). When there are more than one DPDCH (PCNin >1), SltFin is ignored and the slot format used is 6. The slot format determinesthe spread factor and spread code that will be used. For example, if PCNininput is 1 and SltFin is 2, the spread factor and code will be 64 and 16,respectively.

The value of SltFin can vary during the simulation thus allowing the user todynamically change the slot format on a slot-by-slot basis. Since the number ofbits per slot depends on the slot format, the number of bits that needs to be readfrom the DataIn port may vary during the simulation.

ADS Ptolemy is an SDF (synchronous data flow) simulation engine, whichmeans that the number of input tokens consumed from each input port andproduced on each output port cannot change during the simulation. In order toaccommodate the highest data rate, the number of tokens read from InData isalways 640; if SltFin varies during the simulation, dummy bits must beappended after the information bits to the DPDCH bit stream. For example, ifslot format is 2 then the bits per slot is 40 and 600 dummy bits must beappended to the 40 DPDCH bits.

5-36 3GPPFDD_ULSpread

Page 257: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

[2] 3GPP Technical Specification TS 25.214 V3.2.0 “Physical Layer Procedures(FDD)” Release 1999.

5-37

Page 258: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Physical Channel Multiplexers and Coders

5-38

Page 259: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 6: 3GPPFDD Receivers

6-1

Page 260: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Receivers

3GPPFDD_DL_Rake

Description Downlink receiverLibrary 3GPPFDD, ReceiverClass SDF3GPPFDD_DL_RakeDerived From 3GPPFDD_DL_Receiver_Base

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleOffset scramble code offset 0 int [0, 15]

ScrambleType scramble code type:normal, right, left

normal enum

SampleRate sample rate 8 int [1, 256]

MaxDelaySample maximum delay boundary,in terms of samples

0 int [0, 2559] forRAKE receiver; [0, 102400] inother models

ChannelType select the channel type tobe processed:CH_GAUSSIAN,CH_FADING

CH_GAUSSIAN enum

ChannelInfo fading channel informationsource: Known, Estimated

Known enum

ChannelInfoOffset offset between spreadcode and channelinformation in terms ofsample

0 int [0,MaxDelaySample]

PathSearch path search frequency:EverySlot, Once

Once enum

6-2 3GPPFDD_DL_Rake

Page 261: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

SearchMethod path search method:Coherent, NonCoherent,Combined

Coherent enum

SearchSlotsNum number of slots for pathsearch

1 int [1, 6]

PathNum number of Rake fingers 1 int [1, 6]

PathDelaySample delay for each finger, interms of samples

0 int array [0,MaxDelaySample]; array size shallbe equal toPathNum

OutputSNR switch for SNR estimation:SNR_Active,SNR_Deactive

SNR_Deactive enum

CPICH select if CPICH ispresented: CPICH_Active,CPICH_Deactive

CPICH_Deactive enum

RxDPCH select if DPCH ispresented: DPCH_Active,DPCH_Deactive

DPCH_Active enum

DPCH_SlotFormat DPCH slot format 0 int [0, 16]

DPCH_SpreadCode DPCH spread code 3 int array [0,SpreadFactor-1];SpreadFactor isset byDPCH_SlotFormat

RxPCCPCH select if PCCPCH ispresented:PCCPCH_Active,PCCPCH_Deactive

PCCPCH_Deactive

enum

RxSCCPCH select if SCCPCH ispresented:SCCPCH_Active,SCCPCH_Deactive

SCCPCH_Deactive

enum

SCCPCH_SlotFormat SCCPCH slot format 0 int [0, 17]

SCCPCH_SpreadCode SCCPCH spread code 15 int [0,SpreadFactor-1];SpreadFactor isset bySCCPCH_SlotFormat

SCCPCH_Carrying common channel thatSCCPCH carries: PCH,NonPCH

NonPCH enum

Name Description Default Type Range

3GPPFDD_DL_Rake 6-3

Page 262: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Receivers

Pin Inputs

Pin Outputs

Notes/Equations

1. The main function of this model is to demodulate and despread UTRA/WCDMAdownlink signals with chip rate at 3.84MHz. These signals may have multipathfading channel and additive Gaussian noise corruption.

2. To despread and demodulate a CDMA signal, the channel information and pathdelay information must be determined. Errors in channel estimation and pathsearch deteriorate the receiver performance.

3. The signal processing flow inside the model is:

• Input data until slots specified by SearchSlotsNum are received

• Slot index identification

• SCH code index identification

• IQ offset correction, to eliminate any DC component

• Multipath search

• Channel estimate for each path

• Decoding and despreading of individual path

Pin Name Description Signal Type

1 inChip input data stream complex

2 inChM input known channel information multiple complex

Pin Name Description Signal Type

3 PCCPCH PCCPCH data stream real

4 SCCPCH SCCPCH data stream real

5 SCHindex secondary synchronization code index int

6 SlotIndex slot index int

7 SNR signal to noise ratio real

8 Delay path delay int

9 DPCH DPCH data stream multiple real

10 outChM estimated channel information multiple complex

6-4 3GPPFDD_DL_Rake

Page 263: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

• SNR estimate for individual path

• Multipath combining

• SNR estimate after multiple path combining

• Output decoded data, SCHIndex, and SlotIndex to align at the frameboundary

• Output SNR, Delay and channel information (slots delayed are specified bySearchSlotsNum).

4. This model can be configured to work under ideal conditions; in other words, thereal time channel information can be input from input pin and the path delayinformation can be set by PathDelaySample. ChannelInfo determines if channelinformation is pin input or estimated inside the model. The delay for each pathis expressed in terms of samples as individual elements in the array.

If path delay is known from the parameter, SearchSlotsNum is 1.

5. If the first element in PathDelaySample is zero, the search path is performedinside the receiver model. Otherwise, the numbers specified byPathDelaySample are taken as the delays for each path.

6. The search path is performed by correlating the received signals with thespreading code specified in a window whose size is set by MaxDelaySample. Thecorrelations at different offsets are ranked; the top ones are assumed to be theoffsets where the paths could occur.

7. If SearchMethod = Coherent, correlation will be performed at the pilot bits only.If the SearchMethod = NonCoherent, correlation will be performed on the datafield. Note that the coherent correlation obtained over pilot bits is unbiased,while the non-coherent correlation is biased. If SearchMethod = Combined, thecoherent and non-coherent correlations are summed as the matrix for pathresolution.

8. Another factor that impacts the correlation is the SearchSlotsNum parameter.This parameter sets the number of slots over which the correlation isaccumulated. More slots are necessary for a reliable path resolution for signalswith noise contamination. Usually, 6 slots are required if Eb/No is 2 dB. Theuser must determine the appropriate slot number and search method for thebest trade-off between accuracy and speed.

9. The estimated path delay is output from the pin Delay after slots specified bySearchSlotsNum are received.

3GPPFDD_DL_Rake 6-5

Page 264: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Receivers

10. If the path delay is fixed, the path search is necessary only at the start ofsimulation. In this case, set PathSearch=Once to save simulation time.Otherwise, the path search will be performed for each slot received to updatethe dynamic path delay information.

11. Channel estimation varies according to channel type.

• If ChannelType = CH_GAUSSIAN, the channel is assumed to betime-invariant and the IQ phase shift is estimated using the pilot field of thesignals received so far.

• If ChannelType = CH_FADING, channel characteristics are assumed to betime-variant and more complicated channel estimation must be used. Asimple channel estimation is used that takes the fading characteristicaveraged over the pilot field of the current slot as the channel information forthe entire slot.

12. Channel information that is estimated or known from input pins is output frompin outChM for reference. Each firing, 2560 tokens are produced as the channelinformation for the chips in the slot indicated by SlotIndex.

13. If the PCCPCH is enabled, the SCH index of current slot is identified andoutput from pin SCHIndex.

14. This model estimates the signal to noise power ratio (SNR) of different codechannels over different paths if OutputSNR is enabled. The SNR is performedover pilot bits so that the results are unbiased. The SNR is estimated overindividual paths and the overall SNR is estimated after multipath combination.The SNR is output in sequence:

CPICH after path combinationCPICH path 1...CPICH path nDPCH after path combinationDPCH path 1...DPCH path nSCCPCH after path combination

6-6 3GPPFDD_DL_Rake

Page 265: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

SCCPCH path 1...SCCPCH path n

15. All paths are combined assuming that all paths are useful for improving thedecoding reliability. In some cases, paths with low SNR are actually harmful tothe final SNR improvement. The user must set PathNum for better decodingperformance in multipath conditions.

16. The DPCH code channel number must be equal to the array size ofDPCH_SpreadCode.

17. This model can be used to decode SCCPCH, PCCPCH and multiple DPCHs.These coded channels are assumed to be time-aligned. If decoding of a specificchannel is not necessary, it can be disabled by relative parameters to reducesimulation time.

18. If SCCPCH_Carrying is PCH, the scramble code for SCCPCH is primary.Otherwise, the secondary scramble code must be used.

19. Each firing, the number of input tokens is 2560×SampleRate. There is a delayin terms of slots associated with the decoded information. The SNR results areoutput after the number of firings equals SearchSlotsNum. Other outputs arealigned at the frame boundary; for example, if the first received slot index iszero, the decoded bit stream will be output after 15 slots.

20. If the path delay is set, the SNR output delay is 1 slot and the other outputdelay is 15 slots.

21. If the 3GPP signal is S(t), this signal may be delayed t1 by some filters (such asthe Tx RC filters). So, the delayed signal is S(t-t1) and the signal from 0 to t1 iszero and the real 3GPP signal transmission starts from t1. When the delayedsignals pass through a fading channel, the fading factor is applied to the overallsignals starting from time 0. The offset t1 must be known if the receiver of thechannel information is input from outside; this offset is expressed in terms ofsamples.

References

[1] see the reference list in the introduction section.

3GPPFDD_DL_Rake 6-7

Page 266: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Receivers

3GPPFDD_HS_UL_Rake

Description 3GPP HSDPA Uplink receiverLibrary 3GPPFDD, ReceiverClass SDF3GPPFDD_HS_UL_RakeDerived From 3GPPFDD_UL_Rake

Parameters

Name Description Default Type Range

SpecVerHSDPA version of HSDPAspecifications:Version_09_03

Version_09_03 enum

SlotFormat slot format 0 int †

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Scramble scramble code type:LONG, SHORT

LONG enum

SampleRate sample rate 8 int [1, 256]

MaxDelaySample maximum delay boundary,in terms of samples

0 int [0, 2559] forRAKE receiver; [0, 102400] inother models

ChannelType select the channel type tobe processed:CH_GAUSSIAN,CH_FADING

CH_GAUSSIAN enum

ChannelInfo fading channel informationsource: Known, Estimated

Known enum

ChannelInfoOffset offset between spreadcode and channelinformation in terms ofsample

0 int [0,MaxDelaySample]

6-8 3GPPFDD_HS_UL_Rake

Page 267: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

PathSearch path search frequency:EverySlot, Once

Once enum

SearchMethod path search method:Coherent, NonCoherent,Combined

Coherent enum

SearchSlotsNum number of slots for pathsearch

1 int [1, 6]

PathNum number of Rake fingers 1 int [1, 6]

PathDelaySample delay for each finger, interms of samples

0 int array [0,MaxDelaySample]; array size shallbe equal toPathNum

OutputSNR switch for SNR estimation:SNR_Active,SNR_Deactive

SNR_Deactive enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 inChip input data stream complex

2 PCNin physical channel number int

3 SltFin slot format int

4 inChM input known channel information multiple complex

Pin Name Description Signal Type

5 Cout output DPCCH stream real

6 SNR signal to noise ratio real

7 SlotIndex slot number int

8 PCNout physical channel number int

9 SltFout slot format int

10 Delay path delay int

11 HS_DPCCH output HS-DPCCH real

12 HS_Gain HS-DPCCH amplitude ratio real

Name Description Default Type Range

3GPPFDD_HS_UL_Rake 6-9

Page 268: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Receivers

Notes/Equations

1. This 3GPPFDD_HS_UL_Rake model receiver provides HS-DPCCHde-spreading and de-modulation.

2. 3GPPFDD_UL_Rake (dedicated physical channel uplink receiver) functions areimplemented in this receiver. Refer to 3GPPFDD_UL_Rake documentation forparameter information and details.

3. The HS-DPCCH is de-spread and de-modulated after DPCCH and DPDCHsignals are processed.

4. The envelope ratio between HS-DPCCH and DPCCH is calculated for each slot.

References

[1]3GPP Technical Specification TS 25.211 V5.5.0, “Physical channels andmapping of transport channels onto physical channels (FDD)” Release 5.

[2] 3GPP Technical Specification TS 25.212 V5.6.0 “Multiplexing and channelcoding (FDD)” Release 5.

[3] 3GPP Technical Specification TS 25.213 V5.4.0, “Spreading and modulation(FDD)” Release 5.

13 DoutM output DPDCH stream multiple real

14 outChM output estimated channel information multiple complex

Pin Name Description Signal Type

6-10 3GPPFDD_HS_UL_Rake

Page 269: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_UL_Rake

Description Uplink receiver for dedicated physical channelLibrary 3GPPFDD, ReceiverClass SDF3GPPFDD_UL_RakeDerived From 3GPPFDD_UL_Receiver_Base

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Scramble scramble code type:LONG, SHORT

LONG enum

SampleRate sample rate 8 int [1, 256]

MaxDelaySample maximum delay boundary,in terms of samples

0 int [0, 2559] forRAKE receiver; [0, 102400] inother models

ChannelType select the channel type tobe processed:CH_GAUSSIAN,CH_FADING

CH_GAUSSIAN enum

ChannelInfo fading channel informationsource: Known, Estimated

Known enum

ChannelInfoOffset offset between spreadcode and channelinformation in terms ofsample

0 int [0,MaxDelaySample]

PathSearch path search frequency:EverySlot, Once

Once enum

3GPPFDD_UL_Rake 6-11

Page 270: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Receivers

Pin Inputs

Pin Outputs

SearchMethod path search method:Coherent, NonCoherent,Combined

Coherent enum

SearchSlotsNum number of slots for pathsearch

1 int [1, 6]

PathNum number of Rake fingers 1 int [1, 6]

PathDelaySample delay for each finger, interms of samples

0 int array [0,MaxDelaySample]; array size shallbe equal toPathNum

OutputSNR switch for SNR estimation:SNR_Active,SNR_Deactive

SNR_Deactive enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 inChip input data stream complex

2 PCNin physical channel number int

3 SltFin slot format int

4 inChM input known channel information multiple complex

Pin Name Description Signal Type

5 Cout output DPCCH stream real

6 SNR signal to noise ratio real

7 SlotIndex slot number int

8 PCNout physical channel number int

9 SltFout slot format int

10 Delay path delay int

11 DoutM output DPDCH stream multiple real

12 outChM output estimated channel information multiple complex

Name Description Default Type Range

6-12 3GPPFDD_UL_Rake

Page 271: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model demodulates and despreads UTRA/WCDMA uplink signals at a3.84MHz chip rate; such signals can be corrupted by multipath fading channeland additive Gaussian noise.

2. To despread and demodulate a CDMA signal, the channel information and pathdelay information must be determined. Errors in channel estimation and pathsearch deteriorate the receiver performance.

3. The signal processing flow inside the model is:

• Input data until slots specified by SearchSlotsNum are received

• Slot index identification

• IQ offset correction to eliminate any DC component.

• Multipath search

• Channel estimation for each path

• Decode and despread of individual path

• SNR estimation for individual path

• Multipath combination

• SNR estimation after multiple path combination

• Output decoded data and SlotIndex to align at the frame boundary

• Output SNR, Delay and channel information (slots delayed are specified bySearchSlotsNum)

4. This model can be configured to work under ideal conditions; in other words, thereal time channel information can be input from input pin and the path delayinformation can be set by the PathDelaySample parameter. The ChannelInfoparameter selects channel information source from input or estimated insidethe model. The delay for each path is expressed in terms of samples asindividual elements in the array.

5. If path delay is specified, the SearchSlotsNum is 1.

If the first element in PathDelaySample is 0, the path search is performedinside the receiver model. Otherwise, the numbers specified byPathDelaySample are taken as the delays for each path.

3GPPFDD_UL_Rake 6-13

Page 272: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Receivers

6. The path search is performed by correlating the received signals with thespreading code specified in a window whose size is set by MaxDelaySample. Thecorrelations at different offsets are ranked and the top ones are assumed to bethe offsets where the paths could occur.

7. If SearchMethod = Coherent, the correlation will be performed at the pilot bitsonly. If SearchMethod = NonCoherent, the correlation will be performed on thedata field. Note that the coherent correlation obtained over pilot bits isunbiased, while the non-coherent correlation is biased. If SearchMethod =Combined, the coherent and non-coherent correlations are summed as thematrix for path resolution.

8. Another factor that impacts the correlation is the SearchSlotsNum parameter.This parameter sets the number of slots over which the correlation isaccumulated. More slots are necessary for a reliable path resolution for signalswith noise contamination. Usually, 6 slots are required if Eb/No is 2 dB. Theuser must determine the appropriate slot number and search method for thebest trade-off between accuracy and speed.

9. The estimated path delay is output from the pin Delay after slots specified bySearchSlotsNum are received.

10. Because path search results could be biased when channel noise is large, thepath delay should be determined before simulation.

For example, if a path delay is 552 nsec and channel gain is -20dB, if channelnoise is large it could be difficult for the Rake receiver to correctly resolve thispath. In this case, simply increase channel gain to a larger value and decreasethe noise level to a very small level. (These changes do not change the channeldelay profile.)

The first value of PathDelaySample is set to 0. At start of simulation, the pathdelay is displayed in the simulation window.

The path delay determined by the Rake receiver is 145. This value has highcredibility because it is obtained under large signal to noise level. Specify thisdelay in PathDelaySample and the Rake receiver will use this value during

6-14 3GPPFDD_UL_Rake

Page 273: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

simulation. (Note that the channel gain and noise level will be restored to theoriginal level after the channel delay is fixed.)

11. If the path delay is fixed, the path search is necessary only at the start ofsimulation; in this case, set PathSearch to Once to save simulation time.Otherwise, PathSearch must be performed for each slot received to update thepath delay information that could be dynamic.

12. Channel estimation varies according to channel type.

• If ChannelType = CH_GAUSSIAN, the channel is assumed to betime-invariant and the IQ phase shift is estimated using the pilot field of thesignals received so far.

• If ChannelType = CH_FADING, channel characteristics are assumed to betime-variant and more complicated channel estimation must be used. Asimple channel estimation is used that takes the fading characteristicaveraged over the pilot field of the current slot as the channel information forthe entire slot.

13. Channel information that is estimated or known from input pins is output fromthe pin outChM for reference. Each firing, 2560 tokens are produced as thechannel information for the chips in the slot indicated by SlotIndex.

14. This model estimates the signal to noise power ratio (SNR) of DPCCH overdifferent paths if OutputSNR is enabled. The SNR is performed over pilot bitsof DPCCH so that the results are unbiased. The SNR is estimated overindividual paths, then the overall SNR is estimated after multipathcombination. The SNR is output in sequence:

DPCCH SNR after path combinationDPCCH SNR path 1...DPCCH SNR path n

15. All paths are combined assuming that all the paths are useful in improving thedecoding reliability. Some paths with low SNR are actually harmful to the finalSNR improvement. The user must determine the PathNum setting for betterdecoding performance in multipath conditions.

16. For uplink, the DPDCH slot format and DPDCH number varies with TFCI. Thenormal procedure is to decode DPCCH first for the TFCI information, then the

3GPPFDD_UL_Rake 6-15

Page 274: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Receivers

TFCI is used to select the transport format and the DPDCH number and slotformat are determined by rate match algorithm. To simplify, the DPDCHnumber and slot format are input from input ports available in the signalsource side. If the DPDCH slot format and DPDCH number are fixed, such asthe reference measurement channel, they can be set to constant.

For the reference measurement channel specified in 3GPP specifications, theDPDCH number and slot format are fixed numbers.

17. Each firing, input tokens is 2560 × SampleRate. There is a delay in terms ofslots associated with the decoded information. The SNR results are output afterfirings equal to SearchSlotsNum. Other outputs are aligned at the frameboundary; for example, if the first received slot index is 0, the decoded bitstream will be output after 15 slots.

18. If the path delay is set by parameter, the SNR output delay is 1 slot and theother output delay is 15 slots.

19. If the 3GPP signal is S(t), this signal may be delayed t1 by some filters (such asthe Tx RC filters). So, the delayed signal is S(t-t1) and the signal from 0 to t1 iszero and the real 3GPP signal transmission starts from t1. When the delayedsignals pass through a fading channel, the fading factor is applied to the overallsignals starting from time 0. The offset t1 must be known if the receiver of thechannel information is input from outside; this offset is expressed in terms ofsamples.

The following description provides more details.

Denote the signal source output as:

S1, S2, S3, ... , Si, ...

These signals are fed to the transmitter module, and the transmitter moduleintroduces delay (for example, the square root raised-cosine filter introduces thedelay that is related with the filter length); denote this delay as N.

The output signals from transmitter module are:

0, 0, 0, ... , 0, S1, S2, S3, ... , Si, ...

The number of 0s is N. These signals are fed to the fading channel model. Thefading channel module generates the fading factors, that can be denoted as

f1, f2, f3, ... , fi, ...

6-16 3GPPFDD_UL_Rake

Page 275: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

These factors will be applied to the input signals. They can also be input to theRake receiver as phase reference. The resultant faded signals are

f1 × 0, f2 × 0, f3 × 0, ... , fN × 0, ... , fN+1 × S1, fN+2 × S2

Note that the faded signal must pass the receiver module that introducesadditional delay; this does not impact the channel information offset setting.

The channel information being input to the Rake receiver is

f1, f2, f3, ... , fi, ...

The Rake receiver must know the offset between the faded signal and theknown channel information. In this case, the offset is N, and the Rake receiverwill take the Nth input from the channel information input and correlate itwith the signal start point. The signal start point is determined by thesynchronization module implemented inside the Rake receiver.

References

[1] see the reference listed in the introduction section.

3GPPFDD_UL_Rake 6-17

Page 276: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Receivers

6-18

Page 277: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 7: 3GPPFDD Transport ChannelDemultiplexers and Decoders

7-1

Page 278: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

3GPPFDD_ChannelDecoding

Description Channel decodingLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_ChannelDecodingDerived From 3GPPFDD_TrCHBase

Parameters

Pin Inputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

CRC number of CRC bits:No_CRC, CRC_8_bits,CRC_12_bits,CRC_16_bits,CRC_24_bits

CRC_16_bits enum

CHCodingType channel coding type:No_Coding, CC_HalfRate,CC_OneThirdRate,TurboCoding

CC_HalfRate enum

TC_Iterative TC decoder iterativenumbers

1 int [1, 10]

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

Pin Name Description Signal Type

1 TFIin transport format indicator int

2 sizeIn input size int

3 DataIn coded data real

7-2 3GPPFDD_ChannelDecoding

Page 279: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to perform channel decoding of code blocks. TheCHCodingType parameter determines the coding type. Four types aresupported including 1/2 and 1/3 rate of convolutional coding, 1/3 Turbo codingand no coding.

2. For convolutional decoding, the Viterbi algorithm [2] is used.

3. The schematic of Turbo coder in 3GPP is a parallel concatenated convolutionalcode (PCCC). A iterative Turbo decoder using modified BAHL et al. algorithm[3][4] is used in this model. The iterative number can be set from 6 through to10 through parameter setting.

4. Each Firing, the model consumes and output bit sequences of a TTI.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] G. D. Forney, “The Viterbi algorithm”, Proc. IEEE, vol. 61, pp. 268-278, Mar,1973.

[3] L.R. Bahl, J. Cocke, F. Jeinek and J. Raviv. “Optimal decoding of linear codes forminimizing symbol error rate.” IEEE Trans. Inform. Theory, vol. IT-20.pp.248-287, March 1974.

[4] C. Berrou and A. Glavieus. “Near optimum error correcting coding anddecoding: turbo-codes”, IEEE Trans. Comm., pp. 1261-1271, Oct. 1996.

Pin Name Description Signal Type

4 TFIout transport format indicator int

5 DataOut decoded data int

6 BlkSize block size int

7 BlkNum block number int

3GPPFDD_ChannelDecoding 7-3

Page 280: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

3GPPFDD_CodeBlkDeSeg

Description Code block de-segmentationLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_CodeBlkDeSegDerived From 3GPPFDD_TrCHBase

Parameters

Pin Inputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

CRC number of CRC bits:No_CRC, CRC_8_bits,CRC_12_bits,CRC_16_bits,CRC_24_bits

CRC_16_bits enum

CHCodingType channel coding type:No_Coding, CC_HalfRate,CC_OneThirdRate,TurboCoding

CC_HalfRate enum

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

Pin Name Description Signal Type

1 TFIin transport format indicator int

2 DataIn data from transport block concatenation int

3 BlkSize block size int

4 BlkNum block number int

7-4 3GPPFDD_CodeBlkDeSeg

Page 281: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to combine the code blocks after channel decoding. It’s aninverse processing of code block segmentation. The detailed segmentationmethods is referred to [1].

2. Each Firing, the model consumes and output bit sequences of a TTI.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

Pin Name Description Signal Type

5 TFIout transport format indicator int

6 DataOut data after code block segmentation int

3GPPFDD_CodeBlkDeSeg 7-5

Page 282: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

3GPPFDD_CRCDecoder

Description Perform CRC check to each transport blockLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_CRCDecoderDerived From 3GPPFDD_TrCHBase

Parameters

Pin Inputs

Pin Outputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

CRC number of CRC bits:No_CRC, CRC_8_bits,CRC_12_bits,CRC_16_bits,CRC_24_bits

CRC_16_bits enum

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

Pin Name Description Signal Type

1 TFIin transport format indicator int

2 DataIn transport block set with CRC int

Pin Name Description Signal Type

3 DataOut transport block set int

4 CRCout CRC error int

7-6 3GPPFDD_CRCDecoder

Page 283: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model is used to perform CRC check to each Transport Block. Thecalculation of the CRC parity bits is referred to [1].

2. Each Firing, the model consumes and output bit sequences of a TTI.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

3GPPFDD_CRCDecoder 7-7

Page 284: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

3GPPFDD_DLDeFirDTXInser

Description Donwlink first DTX deinsertionLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_DLDeFirDTXInserDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

TrCHNum number of TransportChannels

1 int [1, 32]

TrCHIndex index of Transport Channel 1 int [1, TrCHNum]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

7-8 3GPPFDD_DLDeFirDTXInser

Page 285: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHMulPos Transport Channelmultiplex position inCCTrCH: Fixed, Flexible

Fixed enum

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 TFCIin input TFCI int

2 InSize input size int

3 DataIn input data real

Name Description Default Type Range

3GPPFDD_DLDeFirDTXInser 7-9

Page 286: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

Pin Outputs

Notes/Equations

1. This model implements downlink first DTX de-insertion. Please refer to [1] fordownlink first DTX insertion processing.

2. This model fires once per TTI. Each firing, this model receives data block of oneTTI at input pin DataIn, and receives the size of that data block and TFI at pinsSizeIn and TFIin. This model then removes DTX symbol from that data block.

3. This model requires the information of all transport channels in the form ofarrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 7-1.

4. The length of almost all parameters in the form of array is equal to the value ofparameter TrCHNum, each element of a array stands for a certain transportchannel. The only exception is DynTFSetArray, the length of this array isvariable. For this array is used to provide all possible transport block size and

Pin Name Description Signal Type

4 TFCIout output TFCI int

5 OutSize output size int

6 DataOut output data real

Table 7-1.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10ms 0 No CRC 0 No Coding 0

20ms 1 8 bits 1 1/2 CC 1

40ms 2 12 bits 2 1/3 CC 2

80ms 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

7-10 3GPPFDD_DLDeFirDTXInser

Page 287: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

transport block set size for each transport channel. So another parameterTFSetSizeArray is used to indicate how many pairs of transport block size andtransport block set size are contained in a certain transport channel. Forexample, TFSetSizeArray=”3 2”means the first three pairs of transport blocksize and transport block set size belong to the first transport channel, and thenext two pairs belong to the second transport channel.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_DLDeFirDTXInser 7-11

Page 288: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

3GPPFDD_DLDeFirInterLv

Description Downlink first deinterleaverLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_DLDeFirInterLvDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

TrCHNum number of TransportChannels

1 int [1, 32]

TrCHIndex index of Transport Channel 1 int [1, TrCHNum]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

7-12 3GPPFDD_DLDeFirInterLv

Page 289: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHMulPos Transport Channelmultiplex position inCCTrCH: Fixed, Flexible

Fixed enum

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

DataCombine combine useful data blocksof input: Combine_Yes,Combine_No

Combine_No enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 TFCIin input TFCI int

Name Description Default Type Range

3GPPFDD_DLDeFirInterLv 7-13

Page 290: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

Pin Outputs

Notes/Equations

1. This model implements downlink first de-interleaving. Please refer to [1] fordownlink first interleaving processing.

2. This model fires once per TTI. Each firing, this model receives data block of oneTTI at input pin DataIn, and receives the size of that data block and TFI at pinsSizeIn and TFIin. This model then de-interleaves that data block.

3. This model requires the information of all transport channels in the form ofarrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 7-2.

2 InSize input size int

3 DataIn input data real

Pin Name Description Signal Type

4 TFCIout output TFCI int

5 OutSize output size int

6 DataOut output data real

Table 7-2.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10ms 0 No CRC 0 No Coding 0

20ms 1 8 bits 1 1/2 CC 1

40ms 2 12 bits 2 1/3 CC 2

80ms 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

Pin Name Description Signal Type

7-14 3GPPFDD_DLDeFirInterLv

Page 291: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

4. The DataCombine parameter changes the model’s behavior under differentinput conditions:

• when 3GPPFDD_DLDeRadioSeg is used, set its AdjustDelay parameter toNo and set DataCombine to Yes.

• when 3GPPFDD_DLDeRadioSeg is not used, set DataCombine to No.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_DLDeFirInterLv 7-15

Page 292: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

3GPPFDD_DLDePhyCHMap

Description Downlink physical channel demappingLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_DLDePhyCHMapDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Pin Inputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 TFCIin input TFCI int

2 DataIn input data multiple real

7-16 3GPPFDD_DLDePhyCHMap

Page 293: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model implements downlink physical channel de-mapping. Please refer to[1] for downlink physical channel mapping processing.

2. This model fires once per radio frame. Each firing, this model receives datablocks of each physical channel at multiple input pin DataIn, and receives slotTFCI at pin TFCIin. This model then collects the necessary bits from eachphysical channel.

3. DataIn will input data of one radio frame; the previous model will output datablocks of one slot. This means the previous model will fire 15 times when thismodel fires once. Note that TFCI will be generated once per radio frame, soTFCIin will input one data each firing.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

Pin Name Description Signal Type

3 TFCIout output TFCI int

4 DataOut output data multiple real

3GPPFDD_DLDePhyCHMap 7-17

Page 294: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

3GPPFDD_DLDePhyCHSeg

Description Downlink physical channel desegmentationLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_DLDePhyCHSegDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Pin Inputs

Pin Outputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

Pin Name Description Signal Type

1 TFCIin input TFCI int

2 DataIn input data multiple real

Pin Name Description Signal Type

3 TFCIout output TFCI int

4 DataOut output data real

7-18 3GPPFDD_DLDePhyCHSeg

Page 295: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model implements downlink physical channel de-segmentation. Pleaserefer to [1] for downlink physical channel segmentation processing.

2. This model fires once per radio frame. Each firing, this model receives datablocks of each physical channel at multiple input pin DataIn, then combines thedata blocks of each physical channel into one CCTrCH.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_DLDePhyCHSeg 7-19

Page 296: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

3GPPFDD_DLDeRadioSeg

Description Downlink radio frame desegmentationLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_DLDeRadioSegDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

TrCHNum number of TransportChannels

1 int [1, 32]

TrCHIndex index of Transport Channel 1 int [1, TrCHNum]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

7-20 3GPPFDD_DLDeRadioSeg

Page 297: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHMulPos Transport Channelmultiplex position inCCTrCH: Fixed, Flexible

Fixed enum

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

AdjustDelay adjust delay from oneframe to one TTI:Delay_Yes, Delay_No

Delay_Yes enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 TFCIin input TFCI int

2 InSize input size int

Name Description Default Type Range

3GPPFDD_DLDeRadioSeg 7-21

Page 298: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

Pin Outputs

Notes/Equations

1. This model implements downlink radio frame de-segmentation. Please refer to[1] for downlink radio frame segmentation processing.

2. This model fires once per radio frame. Each firing, this model receives datablock of one radio frame at input pin DataIn, and receives the size of that datablock and TFCI at pins SizeIn and TFCIin. The next model (firstde-interleaving) inputs a data block of one TTI, so this model will fire multipletimes as necessary. For example, if TTI=40ms, this model will fire 4 times whilethe next model fires once.

3. This model requires the information of all transport channels in the form ofarrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 7-3.

3 DataIn input data real

4 Index transport channel index int

Pin Name Description Signal Type

5 TFCIout output TFCI int

6 OutSize output size int

7 DataOut output data real

Table 7-3.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10ms 0 No CRC 0 No Coding 0

20ms 1 8 bits 1 1/2 CC 1

40ms 2 12 bits 2 1/3 CC 2

80ms 3 16 bits 3 1/3 TC 3

Pin Name Description Signal Type

7-22 3GPPFDD_DLDeRadioSeg

Page 299: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

4. The length of most parameters in the form of arrays is equal to the value ofparameter TrCHNum, each element of an array represents a certain transportchannel.

The DynTFSetArray array is variable and used to provide all possible transportblock size and transport block set size for each transport channel. Anotherparameter TFSetSizeArray is used to indicate how many pairs of transportblock size and transport block set size are contained in a certain transportchannel. For example, TFSetSizeArray= “3 2” means the first three pairs oftransport block size and transport block set size belong to the first transportchannel, and the next two pairs belong to the second transport channel.

5. The AdjustDelay parameter changes the model’s behavior under different inputconditions:

• When this model is placed after a rake receiver, because 3GPP design libraryrake receivers will induce a delay of one radio frame, this model will adjustthis delay from one radio frame to one TTI. In this case, set AdjustDelay toYes.

• When a rake receiver is not placed before this model (for example this modelis used separately or with 3GPPFDD_DLRadioSeg) there will be no delay ininput data stream. In this case, set AdjustDelay to No.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

24 bits 4

CC = convolutional coding; TC = turbo coding

Table 7-3.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

3GPPFDD_DLDeRadioSeg 7-23

Page 300: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

3GPPFDD_DLDeRateMatch

Description Downlink de-rate matchingLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_DLDeRateMatchDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

TrCHNum number of TransportChannels

1 int [1, 32]

TrCHIndex index of Transport Channel 1 int [1, TrCHNum]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

7-24 3GPPFDD_DLDeRateMatch

Page 301: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHMulPos Transport Channelmultiplex position inCCTrCH: Fixed, Flexible

Fixed enum

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 TFCIin input TFCI int

2 InSize input size int

3 DataIn input data real

Name Description Default Type Range

3GPPFDD_DLDeRateMatch 7-25

Page 302: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

Pin Outputs

Notes/Equations

1. This model implements downlink de-rate matching. Please refer to [1] fordownlink rate matching processing.

2. This model fires once per radio frame. Each firing, this model receives datablock at input pin DataIn, and receives the size of that data block and TFCI atpins SizeIn and TFCIin. This model then processes de-rate matching on thatdata block.

3. This model requires the information of all transport channels in the form ofarrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 7-4.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

Pin Name Description Signal Type

4 TFIout output TFI int

5 OutSize output size int

6 DataOut output data real

Table 7-4.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10ms 0 No CRC 0 No Coding 0

20ms 1 8 bits 1 1/2 CC 1

40ms 2 12 bits 2 1/3 CC 2

80ms 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

7-26 3GPPFDD_DLDeRateMatch

Page 303: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_DLDeRateMatch 7-27

Page 304: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

3GPPFDD_DLDeSecDTXInser

Description Downlink second DTX deinsersionLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_DLDeSecDTXInserDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

TrCHNum number of TransportChannels

1 int [1, 32]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

7-28 3GPPFDD_DLDeSecDTXInser

Page 305: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHMulPos Transport Channelmultiplex position inCCTrCH: Fixed, Flexible

Fixed enum

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 TFCIin input TFCI int

2 DataIn input data real

Pin Name Description Signal Type

3 TFCIout output TFCI int

4 OutSize output size int

5 DataOut output data real

Name Description Default Type Range

3GPPFDD_DLDeSecDTXInser 7-29

Page 306: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

Notes/Equations

1. This model implements downlink second DTX de-insertion. Please refer to [1]for downlink second DTX insertion processing.

2. This model fires once per radio frame. EACH firing, this model receives datablock of one CCTrCH at input pin DataIn, and receives the size of that datablock and TFCI at pins SizeIn and TFCIin. This model then removes DTXsymbol from that data block.

3. This model requires the information of all transport channels in the form ofarrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 7-5.

4. The length of most parameters in the form of arrays is equal to the value ofparameter TrCHNum, each element of an array represents a certain transportchannel.

The DynTFSetArray array is variable and used to provide all possible transportblock size and transport block set size for each transport channel. Anotherparameter TFSetSizeArray is used to indicate how many pairs of transportblock size and transport block set size are contained in a certain transportchannel. For example, TFSetSizeArray= “3 2” means the first three pairs oftransport block size and transport block set size belong to the first transportchannel, and the next two pairs belong to the second transport channel.

Table 7-5.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10ms 0 No CRC 0 No Coding 0

20ms 1 8 bits 1 1/2 CC 1

40ms 2 12 bits 2 1/3 CC 2

80ms 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

7-30 3GPPFDD_DLDeSecDTXInser

Page 307: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_DLDeSecDTXInser 7-31

Page 308: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

3GPPFDD_DLDeSecInterLv

Description Downlink second deinterleaverLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_DLDeSecInterLvDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Pin Inputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 TFCIin input TFCI int

2 DataIn input data from each physical channel multiple real

7-32 3GPPFDD_DLDeSecInterLv

Page 309: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model implements downlink second de-interleaving. Please refer to [1] fordownlink second interleaving processing.

2. This model fires once per radio frame. Each firing, this model receives datablocks of all physical channels at multiple input pin DataIn, then de-interleavesthe data blocks of each physical channel.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

Pin Name Description Signal Type

3 TFCIout output TFCI int

4 DataOut output data for each second interleaved physicalchannel

multiple real

3GPPFDD_DLDeSecInterLv 7-33

Page 310: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

3GPPFDD_DLDeTrCHMulti

Description Downlink TrCH demultiplexingLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_DLDeTrCHMultiDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

TrCHNum number of TransportChannels

1 int [1, 32]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

7-34 3GPPFDD_DLDeTrCHMulti

Page 311: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHMulPos Transport Channelmultiplex position inCCTrCH: Fixed, Flexible

Fixed enum

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 TFCIin input TFCI int

2 InSize input size int

3 DataIn input data from each transport channel real

Pin Name Description Signal Type

4 TFCIout output TFCI int

5 OutLen output data size of each transport channel multiple int

6 DataOut output data multiple real

7 Index transport channel index multiple int

Name Description Default Type Range

3GPPFDD_DLDeTrCHMulti 7-35

Page 312: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

Notes/Equations

1. This model implements downlink transport channel de-multiplexing. Pleaserefer to [1] for downlink transport channel multiplexing processing.

2. This model fires once per radio frame. Each firing, this model receives datablock of one CCTrCH at input pin DataIn, and receives the size of that datablock and TFCI at pins SizeIn and TFCIin. This model then separates datablocks of each transport channel from one CCTrCH.

3. This model requires the information of all transport channels in the form ofarrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 7-6.

4. The length of most parameters in the form of arrays is equal to the value ofparameter TrCHNum, each element of an array represents a certain transportchannel.

The DynTFSetArray array is variable and used to provide all possible transportblock size and transport block set size for each transport channel. Anotherparameter TFSetSizeArray is used to indicate how many pairs of transportblock size and transport block set size are contained in a certain transportchannel. For example, TFSetSizeArray= “3 2” means the first three pairs of

Table 7-6.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10ms 0 No CRC 0 No Coding 0

20ms 1 8 bits 1 1/2 CC 1

40ms 2 12 bits 2 1/3 CC 2

80ms 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

7-36 3GPPFDD_DLDeTrCHMulti

Page 313: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

transport block size and transport block set size belong to the first transportchannel, and the next two pairs belong to the second transport channel.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_DLDeTrCHMulti 7-37

Page 314: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

3GPPFDD_HS_CQI_Decoder

Description Channel decoder for channel quality informationLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_HS_CQI_DecoderDerived From 3GPPFDD_HS_CQI_Coding

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model decodes the channel quality information coded using a (20,5) code.

2. Each firing: if CQI_Type=Decimal, 1 CQI_B tokens produced when 20 CQI_Stokens are consumed; if CQI_Type=Binary, 5 CQI_B tokens are produced when20 CQI_S tokens are consumed.

3. The (20,5) code words are a linear combination of the 5 basis sequences denotedMi,n in Table 7-7.

Name Description Default Type

SpecVerHSDPA version of HSDPAspecifications:Version_09_03

Version_09_03 enum

CQI_Type CQI type: Decimal, Binary Binary enum

Pin Name Description Signal Type

1 CQI_S channel quality information bits real

Pin Name Description Signal Type

2 CQI_B channel quality information symbols int

7-38 3GPPFDD_HS_CQI_Decoder

Page 315: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

The CQI values 0 to 30 (defined in [2] ) are converted from decimal to binary tomap them to channel quality information bits (1 0 0 0 0) to (1 1 1 1 1),respectively. Information bit pattern (0 0 0 0 0) is not used. The channel qualityinformation bits are a0, a1, a2, a3, a4 (where a0 is LSB and a4 is MSB). Theoutput code word bits bi are given by:

where i = 0, …, 19.

4. The decoding algorithm is:

• Generate a set of 30 codes for all possible CQI (1 to 30, for example)

• Calculate the correlation of the received signal with each of the 30 codes.

Table 7-7. Basis Sequences for (20,5) Code

i Mi,0 Mi,1 Mi,2 Mi,3 Mi,4

0 1 0 0 0 1

1 0 1 0 0 1

2 1 1 0 0 1

3 0 0 1 0 1

4 1 0 1 0 1

5 0 1 1 0 1

6 1 1 1 0 1

7 0 0 0 1 1

8 1 0 0 1 1

9 0 1 0 1 1

10 1 1 0 1 1

11 0 0 1 1 1

12 1 0 1 1 1

13 0 1 1 1 1

14 1 1 1 1 1

15 0 0 0 0 1

16 0 0 0 0 1

17 0 0 0 0 1

18 0 0 0 0 1

19 0 0 0 0 1

bi an Mi n,×( )mod2n 0=

4

∑=

3GPPFDD_HS_CQI_Decoder 7-39

Page 316: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

• Search the one with the maximum correlation value.

• Convert to the decimal value to binary value if needed.

References

[1]3GPP Technical Specification TS 25.212 V5.6.0, “Multiplexing and channelcoding (FDD),” Release 5.

[2] 3GPP Technical Specification TS 25.214 V5.6.0, “Physical layer procedures(FDD),” Release 5.

7-40 3GPPFDD_HS_CQI_Decoder

Page 317: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_HS_DPCCH_Decoder

Description 3GPP HS-DPCCH decoderLibrary 3GPPFDD, TrCH DeMultiplexers & DeCoders

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork de-multiplexes coded HARQ-Ack and CQI bits from theHS-DPCCH subframe and decodes the coded bits stream as HARQ-Ack andCQI messages.

The schematic for this subnetwork is shown in Figure 7-1.

Name Description Default Type

SpecVerHSDPA version of HSDPAspecifications:Version_09_03

Version_09_03 enum

CQI_Type CQI type: Decimal, Binary Binary enum

Pin Name Description Signal Type

1 HS_DPCCH HS-DPCCH subframe real

Pin Name Description Signal Type

2 ACK HARQ Ack information int

3 CQI CQI input int

3GPPFDD_HS_DPCCH_Decoder 7-41

Page 318: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

Figure 7-1. 3GPPFDD_HS_DPCCH_Decoder Schematic

Important Post-2004A Information The HS_DPCCH physical channel mappingfunction must map input bits bk directly to the physical channel so that bits aretransmitted over the air in ascending order with respect to k.In this subnetwork, bits are transmitted over the air in descending order withrespect to k (where bk and k are described in section 4.7 of [2]).

The workaround is to add a Reverse component (ADS Numeric Control library)between 3GPPFDD_HS_DPCCH_DeMux and 3GPPFDD_HS_CQI_Decoder.Set the N parameter of the Reverse component to 20.

2. One HS-DPCCH sub-frame contains 30 bits, 10 are HARQ-Ack bits and 20 areCQI bits.

3. Each firing: if CQI_Type is Binary, 5 bits will be generated at CQI; if CQI_Typeis Decimal, 1 decimal number in the range of [1,31] will be generated at CQI.

References

[1]3GPP Technical Specification TS 25.211 V5.5.0, “Physical channels andmapping of transport channels onto physical channels (FDD)” Release 5.

[2] 3GPP Technical Specification TS 25.212 V5.6.0 “Multiplexing and channelcoding (FDD)” Release 5.

[3] 3GPP Technical Specification TS 25.213 V5.4.0, “Spreading and modulation(FDD)” Release 5.

7-42 3GPPFDD_HS_DPCCH_Decoder

Page 319: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_TFCIDecoder

Description TFCI decoderLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_TFCIDecoderDerived From 3GPPFDD_TFCIEncoder

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model decodes the TFCI code word to TFCI information value according tothe coding mode illustrated in Figure 7-2 and Figure 7-3.

Name Description Default Type

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

CodingMode TFCI coding mode:Normal, Split

Normal enum

CodeLength TFCI code length (120 fordownlink PHyCHs whoseSF< 128, 30 for otherPHyCHs): Short, Long

Short enum

Pin Name Description Signal Type

1 CodedTFCI coded TFCI real

Pin Name Description Signal Type

2 TFCIout TFCI multiple int

3GPPFDD_TFCIDecoder 7-43

Page 320: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

2. If the CodingMode parameter is set to Normal, one TFCI value is output; if theCodingMode parameter is set to Split, 2 TFCI values are output.

Figure 7-2. Channel Coding of 10 TFCI information Bits

Figure 7-3. Channel Coding of 5 TFCI Information Bits

3. For uplink physical channels (regardless of the SF and downlink physicalchannels) if SF > 64, the code word is 30 bits. For downlink physical channelswith SF < 128, the code word is 120 bits. The length is set by CodeLengthparameter.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

(32,10) Sub-Code ofSecond-OrderReed-Muller Code

TFCI Code Word

b0 ... , b31

TFCI (10 bits)a9 ... , a0

(16,5)Bi-Orthogonal Code

TFCI Code Word

b0, b2 ... , b30

TFCI (5 bits)a1,4 ... , a1,0

(16,5)Bi-Orthogonal Code

TFCI Code Word

b1, b3 ... , b31

TFCI (5 bits)a2,4 ... , a2,0

7-44 3GPPFDD_TFCIDecoder

Page 321: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULDeFirInterLv

Description Uplink first deinterleaverLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_ULDeFirInterLvDerived From 3GPPFDD_TrCHBase

Parameters

Pin Inputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

TTI Transmission TimeInterval: TTI_10ms,TTI_20ms, TTI_40ms,TTI_80ms

TTI_10ms enum

CRC number of CRC bits:No_CRC, CRC_8_bits,CRC_12_bits,CRC_16_bits,CRC_24_bits

CRC_16_bits enum

CHCodingType channel coding type:No_Coding, CC_HalfRate,CC_OneThirdRate,TurboCoding

CC_HalfRate enum

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

Pin Name Description Signal Type

1 TFIin input TFI int

2 InSize input size int

3 DataIn input data real

3GPPFDD_ULDeFirInterLv 7-45

Page 322: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

Pin Outputs

Notes/Equations

1. This model implements uplink first de-interleaving. Please refer to [1] foruplink first interleaving processing.

2. This model fires once per TTI. Each firing, this model receives the data block ofone TTI at input pin DataIn, and receives the size of that data block and TFI atpins SizeIn and TFIin. This model then de-interleaves that data block.

3. The DynTFSet parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

Pin Name Description Signal Type

4 TFIout output TFI int

5 OutSize output size int

6 DataOut output data real

7-46 3GPPFDD_ULDeFirInterLv

Page 323: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULDePhyCHMap

Description Uplink physical channel demappingLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_ULDePhyCHMapDerived From 3GPPFDD_ULCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

TrCHNum number of TransportChannels

1 int [1, 32]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

3GPPFDD_ULDePhyCHMap 7-47

Page 324: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model implements uplink physical channel de-mapping. Please refer to [1]for uplink physical channel mapping processing.

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

TrCHType transport channel type:RACH_Type, DCH_Type

DCH_Type enum

PuncLimit puncturing limit for uplink 0.8 real (0.0, 1]

MinSF minimum spreading factor:SF_256, SF_128, SF_64,SF_32, SF_16, SF_8,SF_4

SF_4 enum

Pin Name Description Signal Type

1 TFCIin input TFCI int

2 PCNin physical channel number int

3 SltFin slot format int

4 DataIn input data multiple real

Pin Name Description Signal Type

5 TFCIout output TFCI int

6 PCNout physical channel number int

7 SltFout slot format int

8 DataOut output data multiple real

Name Description Default Type Range

7-48 3GPPFDD_ULDePhyCHMap

Page 325: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. This model fires once per radio frame. Each firing, this model receives datablocks of each physical channel at multiple input pin DataIn, and receives slotformat and physical channel number at pins SltFin and PCNin. This modelthen collects the needed bits from each physical channel.

3. DataIn will input data of one radio frame; the previous model will output datablocks of one slot. This means the previous model will fire 15 times when thismodel fires once; therefore, PCNin and SltFin will input 15 repeated datagenerated by previous model. Note that TFCI will be generated once per radioframe, so TFCIin will input one data each firing.

4. This model requires the information of all transport channels in the form ofarrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 7-8.

5. The length of most parameters in the form of arrays is equal to the value ofparameter TrCHNum, each element of an array represents a certain transportchannel.

The DynTFSetArray array is variable and used to provide all possible transportblock size and transport block set size for each transport channel. Anotherparameter TFSetSizeArray is used to indicate how many pairs of transportblock size and transport block set size are contained in a certain transportchannel. For example, TFSetSizeArray= "3 2" means the first three pairs of

Table 7-8.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10ms 0 No CRC 0 No Coding 0

20ms 1 8 bits 1 1/2 CC 1

40ms 2 12 bits 2 1/3 CC 2

80ms 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

3GPPFDD_ULDePhyCHMap 7-49

Page 326: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

transport block size and transport block set size belong to the first transportchannel, and the next two pairs belong to the second transport channel.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

7-50 3GPPFDD_ULDePhyCHMap

Page 327: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULDePhyCHSeg

Description Uplink physical channel desegmentationLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_ULDePhyCHSegDerived From 3GPPFDD_ULCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

TrCHNum number of TransportChannels

1 int [1, 32]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

3GPPFDD_ULDePhyCHSeg 7-51

Page 328: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model implements uplink physical channel de-segmentation. Please referto [1] for uplink physical channel segmentation processing.

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

TrCHType transport channel type:RACH_Type, DCH_Type

DCH_Type enum

PuncLimit puncturing limit for uplink 0.8 real (0.0, 1]

MinSF minimum spreading factor:SF_256, SF_128, SF_64,SF_32, SF_16, SF_8,SF_4

SF_4 enum

Pin Name Description Signal Type

1 TFCIin input TFCI int

2 PCNin physical channel number int

3 SltFin slot format int

4 DataIn input data multiple real

Pin Name Description Signal Type

5 TFCIout output TFCI int

6 PCNout physical channel number int

7 SltFout slot format int

8 DataOut output data real

Name Description Default Type Range

7-52 3GPPFDD_ULDePhyCHSeg

Page 329: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. This model fires once per radio frame. Each firing, this model receives datablocks of each physical channel at multiple input pin DataIn, and receives slotformat and physical channel number at pins SltFin and PCNin. This modelthen combines the data blocks of each physical channel into one CCTrCH.

3. This model requires the information of all transport channels in the form ofarrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 7-9.

4. The length of most parameters in the form of arrays is equal to the value ofparameter TrCHNum, each element of an array represents a certain transportchannel.

The DynTFSetArray array is variable and used to provide all possible transportblock size and transport block set size for each transport channel. Anotherparameter TFSetSizeArray is used to indicate how many pairs of transportblock size and transport block set size are contained in a certain transportchannel. For example, TFSetSizeArray= "3 2" means the first three pairs oftransport block size and transport block set size belong to the first transportchannel, and the next two pairs belong to the second transport channel.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

Table 7-9.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10ms 0 No CRC 0 No Coding 0

20ms 1 8 bits 1 1/2 CC 1

40ms 2 12 bits 2 1/3 CC 2

80ms 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

3GPPFDD_ULDePhyCHSeg 7-53

Page 330: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

7-54 3GPPFDD_ULDePhyCHSeg

Page 331: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULDeRadioEqual

Description Uplink radio frame size deequalizationLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_ULDeRadioEqualDerived From 3GPPFDD_TrCHBase

Parameters

Pin Inputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

TTI Transmission TimeInterval: TTI_10ms,TTI_20ms, TTI_40ms,TTI_80ms

TTI_10ms enum

CRC number of CRC bits:No_CRC, CRC_8_bits,CRC_12_bits,CRC_16_bits,CRC_24_bits

CRC_16_bits enum

CHCodingType channel coding type:No_Coding, CC_HalfRate,CC_OneThirdRate,TurboCoding

CC_HalfRate enum

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

Pin Name Description Signal Type

1 TFIin input TFI int

2 InSize input size int

3 DataIn input data real

3GPPFDD_ULDeRadioEqual 7-55

Page 332: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

Pin Outputs

Notes/Equations

1. This model implements uplink radio de-equalization. Please refer to [1] foruplink radio equalization processing.

2. This model fires once per TTI. Each firing, this model receives data block of oneTTI at input pin DataIn, and receives the size of that data block and TFI at pinsSizeIn and TFIin. This model then removes inserted bits from that data block.

3. The DynTFSet parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

Pin Name Description Signal Type

4 TFIout output TFI int

5 OutSize output size int

6 DataOut output data real

7-56 3GPPFDD_ULDeRadioEqual

Page 333: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULDeRadioSeg

Description Uplink radio frame desegmentationLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_ULDeRadioSegDerived From 3GPPFDD_TrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

TTI Transmission TimeInterval: TTI_10ms,TTI_20ms, TTI_40ms,TTI_80ms

TTI_10ms enum

CRC number of CRC bits:No_CRC, CRC_8_bits,CRC_12_bits,CRC_16_bits,CRC_24_bits

CRC_16_bits enum

CHCodingType channel coding type:No_Coding, CC_HalfRate,CC_OneThirdRate,TurboCoding

CC_HalfRate enum

AdjustDelay adjust delay from oneframe to one TTI:Delay_Yes, Delay_No

Delay_Yes enum

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

3GPPFDD_ULDeRadioSeg 7-57

Page 334: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model implements uplink radio de-segmentation. Please refer to [1] foruplink radio segmentation processing.

2. This model fires once per TTI. Each firing, this model receives data block of oneTTI at input pin DataIn, and receives the size of that data block and TFCI atpins SizeIn and TFCIin. The previous model (rate matching) outputs a datablock of one radio frame, so the previous model will fire multiple times ifnecessary. For example, if TTI=40ms, the previous model will fire 4 times whilethis model fires once.

3. The DynTFSet parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

Pin Name Description Signal Type

1 TFIin input TFI int

2 InSize input size int

3 DataIn input data real

Pin Name Description Signal Type

4 TFIout output TFI int

5 OutSize output size int

6 DataOut output data real

7-58 3GPPFDD_ULDeRadioSeg

Page 335: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULDeRateMatch

Description Uplink rate dematchingLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_ULDeRateMatchDerived From 3GPPFDD_ULCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

TrCHNum number of TransportChannels

1 int [1, 32]

TrCHIndex index of Transport Channel 1 int [1, TrCHNum]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

3GPPFDD_ULDeRateMatch 7-59

Page 336: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model implements uplink de-rate matching. Please refer to [1] for uplinkrate matching processing.

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

TrCHType transport channel type:RACH_Type, DCH_Type

DCH_Type enum

PuncLimit puncturing limit for uplink 0.8 real (0.0, 1]

MinSF minimum spreading factor:SF_256, SF_128, SF_64,SF_32, SF_16, SF_8,SF_4

SF_4 enum

Pin Name Description Signal Type

1 TFCIin input TFCI int

2 InSize input size int

3 DataIn input data real

4 Index transport channel index int

Pin Name Description Signal Type

5 TFIout output TFI int

6 OutSize output size int

7 DataOut output data real

Name Description Default Type Range

7-60 3GPPFDD_ULDeRateMatch

Page 337: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. This model fires once per radio frame. Each firing, this model receives datablock at input pin DataIn, and receives the size of that data block and TFCI atpins SizeIn and TFCIin. This model then processes de-ratematching on thatdata block.

3. This model requires the information of all transport channels in the form ofarrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 7-10.

4. The length of most parameters in the form of arrays is equal to the value ofparameter TrCHNum, each element of an array represents a certain transportchannel.

The DynTFSetArray array is variable and used to provide all possible transportblock size and transport block set size for each transport channel. Anotherparameter TFSetSizeArray is used to indicate how many pairs of transportblock size and transport block set size are contained in a certain transportchannel. For example, TFSetSizeArray= “3 2” means the first three pairs oftransport block size and transport block set size belong to the first transportchannel, and the next two pairs belong to the second transport channel.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

Table 7-10.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10ms 0 No CRC 0 No Coding 0

20ms 1 8 bits 1 1/2 CC 1

40ms 2 12 bits 2 1/3 CC 2

80ms 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

3GPPFDD_ULDeRateMatch 7-61

Page 338: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

7-62 3GPPFDD_ULDeRateMatch

Page 339: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULDeSecInterLv

Description Uplink second deinterleaverLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_ULDeSecInterLvDerived From 3GPPFDD_ULCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

TrCHNum number of TransportChannels

1 int [1, 32]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

3GPPFDD_ULDeSecInterLv 7-63

Page 340: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model implements uplink second de-interleaving. Please refer to [1] foruplink second interleaving processing.

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

TrCHType transport channel type:RACH_Type, DCH_Type

DCH_Type enum

PuncLimit puncturing limit for uplink 0.8 real (0.0, 1]

MinSF minimum spreading factor:SF_256, SF_128, SF_64,SF_32, SF_16, SF_8,SF_4

SF_4 enum

Pin Name Description Signal Type

1 TFCIin input TFCI int

2 PCNin physical channel number int

3 SltFin slot format int

4 DataIn input data multiple real

Pin Name Description Signal Type

5 TFCIout output TFCI int

6 PCNout physical channel number int

7 SltFout slot format int

8 DataOut output data multiple real

Name Description Default Type Range

7-64 3GPPFDD_ULDeSecInterLv

Page 341: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. This model fires once per radio frame. Each firing, this model receives datablocks of each physical channel at multiple input pin DataIn, and receives slotformat and physical channel number at pins SltFin and PCNin. This modelthen de-interleaves the data blocks of each physical channel.

3. This model requires the information of all transport channels in the form ofarrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 7-11.

4. The length of most parameters in the form of arrays is equal to the value ofparameter TrCHNum, each element of an array represents a certain transportchannel.

The DynTFSetArray array is variable and used to provide all possible transportblock size and transport block set size for each transport channel. Anotherparameter TFSetSizeArray is used to indicate how many pairs of transportblock size and transport block set size are contained in a certain transportchannel. For example, TFSetSizeArray= "3 2" means the first three pairs oftransport block size and transport block set size belong to the first transportchannel, and the next two pairs belong to the second transport channel.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

Table 7-11.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10ms 0 No CRC 0 No Coding 0

20ms 1 8 bits 1 1/2 CC 1

40ms 2 12 bits 2 1/3 CC 2

80ms 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

3GPPFDD_ULDeSecInterLv 7-65

Page 342: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

7-66 3GPPFDD_ULDeSecInterLv

Page 343: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULDeTrCHMulti

Description Uplink TrCH demultiplexingLibrary 3GPPFDD, TrCH DeMultiplexers & DeCodersClass SDF3GPPFDD_ULDeTrCHMultiDerived From 3GPPFDD_ULCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

TrCHNum number of TransportChannels

1 int [1, 32]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

3GPPFDD_ULDeTrCHMulti 7-67

Page 344: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model implements uplink transport channel de-multiplexing. Please referto [1] for uplink transport channel multiplexing processing.

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

TrCHType transport channel type:RACH_Type, DCH_Type

DCH_Type enum

PuncLimit puncturing limit for uplink 0.8 real (0.0, 1]

MinSF minimum spreading factor:SF_256, SF_128, SF_64,SF_32, SF_16, SF_8,SF_4

SF_4 enum

Pin Name Description Signal Type

1 TFCIin input TFCI int

2 PCNin physical channel number int

3 SltFin slot format int

4 DataIn input data real

Pin Name Description Signal Type

5 TFCIout output TFCI int

6 OutLen output data size of each transport channel multiple int

7 DataOut output data multiple real

8 Index transport channel index multiple int

Name Description Default Type Range

7-68 3GPPFDD_ULDeTrCHMulti

Page 345: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. This model fires once per radio frame. Each firing, this model receives datablock of one CCTrCH at input pin DataIn, and receives slot format and physicalchannel number at pins SltFin and PCNin. This model then separates datablocks of each transport channel from one CCTrCH.

3. This model requires the information of all transport channels in the form ofarrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 7-12.

4. The length of most parameters in the form of arrays is equal to the value ofparameter TrCHNum, each element of an array represents a certain transportchannel.

The DynTFSetArray array is variable and used to provide all possible transportblock size and transport block set size for each transport channel. Anotherparameter TFSetSizeArray is used to indicate how many pairs of transportblock size and transport block set size are contained in a certain transportchannel. For example, TFSetSizeArray= "3 2" means the first three pairs oftransport block size and transport block set size belong to the first transportchannel, and the next two pairs belong to the second transport channel.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

Table 7-12.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10ms 0 No CRC 0 No Coding 0

20ms 1 8 bits 1 1/2 CC 1

40ms 2 12 bits 2 1/3 CC 2

80ms 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

3GPPFDD_ULDeTrCHMulti 7-69

Page 346: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Demultiplexers and Decoders

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

7-70 3GPPFDD_ULDeTrCHMulti

Page 347: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 8: 3GPPFDD Transport ChannelMultiplexers and Coders

8-1

Page 348: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_CRCEncoder

Description Add CRC to each Transport BlockLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_CRCEncoderDerived From 3GPPFDD_TrCHBase

Parameters

Pin Inputs

Pin Outputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

CRC number of CRC bits:No_CRC, CRC_8_bits,CRC_12_bits,CRC_16_bits,CRC_24_bits

CRC_16_bits enum

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

Pin Name Description Signal Type

1 TFIin transport format indicator int

2 DataIn transport block set int

Pin Name Description Signal Type

3 TFIout transport format indicator int

4 DataOut transport block set with CRC attached int

8-2 3GPPFDD_CRCEncoder

Page 349: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model is used to add CRC bits to each transport block.

2. Each firing, one transport format indicator token is consumed at TFIin. Thisvalue is used to select the transport block size and transport block set size fromthe transport format set, as specified by DynTFSet.

3. The TFI value is output at TFIout.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

3GPPFDD_CRCEncoder 8-3

Page 350: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_ChannelCoding

Description Channel codingLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_ChannelCodingDerived From 3GPPFDD_TrCHBase

Parameters

Pin Inputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

CRC number of CRC bits:No_CRC, CRC_8_bits,CRC_12_bits,CRC_16_bits,CRC_24_bits

CRC_16_bits enum

CHCodingType channel coding type:No_Coding, CC_HalfRate,CC_OneThirdRate,TurboCoding

CC_HalfRate enum

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

Pin Name Description Signal Type

1 DataIn Data from code block segmentation int

2 BlkSize Size of code blocks int

3 BlkNum Number of code blocks int

8-4 3GPPFDD_ChannelCoding

Page 351: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement channel coding.

Each firing, one token of block size and block number is consumed at BlkSizeand BlkNum pins. DataIn consumes block size times block number tokens. Thisbit stream is then segmented as code blocks. Each code block is channel coded;the coded blocks are concatenated as specified in section 4.2.3.3 of [1].

2. The coded data is output at DataOut; SizeOut indicates the size of coded data.

3. The CHCodingType parameter determines the type of channel coding. Thisparameter, in conjunction with CRC and DynTFSet, consists of the formatcharacteristics of the transport channel being processed.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

Pin Name Description Signal Type

4 SizeOut output size int

5 DataOut channel coded data int

3GPPFDD_ChannelCoding 8-5

Page 352: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_CodeBlkSeg

Description Code block segmentationLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_CodeBlkSegDerived From 3GPPFDD_TrCHBase

Parameters

Pin Inputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

CRC number of CRC bits:No_CRC, CRC_8_bits,CRC_12_bits,CRC_16_bits,CRC_24_bits

CRC_16_bits enum

CHCodingType channel coding type:No_Coding, CC_HalfRate,CC_OneThirdRate,TurboCoding

CC_HalfRate enum

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

Pin Name Description Signal Type

1 TFIin transport format indicator int

2 DataIn data from transport block concatenation int

8-6 3GPPFDD_CodeBlkSeg

Page 353: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement transport block concatenation and code blocksegmentation.

2. Each firing, one transport format indicator token is consumed at TFIin. Thisvalue is used to select the transport block size and transport block set size fromthe transport format set, as specified by DynTFSet. CRC bits are attached toeach transport block.

3. Each firing, the number of tokens consumed at DataIn must be equal to theCRC encoded transport block set size.

4. The segmented block number and block size is the output at BlkNum andBlkSize. The data stream is output at DataOut.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

Pin Name Description Signal Type

3 DataOut data after code block segmentation int

4 BlkSize size of code blocks int

5 BlkNum number of code blocks int

3GPPFDD_CodeBlkSeg 8-7

Page 354: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_DLFirDTXInser

Description First insertion of DTX indication bitsLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_DLFirDTXInserDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

TrCHNum number of TransportChannels

1 int [1, 32]

TrCHIndex index of Transport Channel 1 int [1, TrCHNum]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

8-8 3GPPFDD_DLFirDTXInser

Page 355: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHMulPos Transport Channelmultiplex position inCCTrCH: Fixed, Flexible

Fixed enum

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 SizeIn input size int

2 DataIn input data int

Name Description Default Type Range

3GPPFDD_DLFirDTXInser 8-9

Page 356: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement first DTX insertion. This step of inserting DTXindication bits is used only if the positions of the TrCHs in the radio frame arefixed. With fixed position scheme a fixed number of bits is reserved for eachTrCH in the radio frame.

The bits from rate matching are denoted by gi1, gi2, gi3, ... , giGi where Gi is the

number of bits in one TTI of TrCH i. Denote the number of bits in one radioframe of TrCH i by Hi. Denote Di the number of bits output of the first DTXinsertion block.

In normal or compressed mode by spreading factor reduction, Hi is constant andcorresponds to the maximum number of bits from TrCH i in one radio frame forany transport format of TrCH i. and Di = Fi × Hi.

In compressed mode by puncturing, additional puncturing is performed in therate matching block. The empty positions resulting from the additionalpuncturing are used to insert p-bits in the first interleaving block, the DTXinsertion is therefore limited to allow for later insertion of p-bits. DTX bits aretherefore inserted until the total number of bits is Di where Di = Fi × Hi,+ ∆NTTI

cm, i, max , and Hi = Ni + ∆Ni.

The bits output from the DTX insertion are denoted by hi1, hi2, hi3, ... , hiDi.

Note that these bits are triple valued. They are defined by the followingrelations:

hik = gik k = 1, 2, 3, ... , Gi

hik = δ k = Gi + 1, Gi + 2, Gi + 3, ... , Di

where DTX indication bits are denoted by δ. Here gik ∈{0, 1} and δ ∉{0, 1}.

2. This model fires once per TTI. Each firing, one token is consumed by pin SizeIn,this token indicates the effective length of data block input at pin DataIn. Thenthis model will insert DTX bits into data block if necessary, and the data block

Pin Name Description Signal Type

3 SizeOut output size int

4 DataOut output data int

8-10 3GPPFDD_DLFirDTXInser

Page 357: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

is output at pin DataOut. A token is generated by pin SizeOut to indicate theeffective length of the output data block.

3. All transport channel information must be in the form of arrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

TFSetSizeArray indicates how many pairs of transport block and transportblock set sizes are contained in a certain transport channel. For example:

• TFSetSizeArray = 3 2 means the first three pairs of transport block size andtransport block set size belong to the first transport channel, and the nexttwo pairs belong to the second transport channel.

• TFSetSizeArray = 2 2 2 means the first two pairs of transport block size andtransport block set size belong to the first transport channel, the next twopairs belong to the second transport channel and the last two pairs belong tothe third transport channel.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 8-1.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

Table 8-1.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10 msec 0 No CRC 0 No Coding 0

20 msec 1 8 bits 1 1/2 CC 1

40 msec 2 12 bits 2 1/3 CC 2

80 msec 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

3GPPFDD_DLFirDTXInser 8-11

Page 358: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_DLFirInterLv

Description Downlink first interleaverLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_DLFirInterLvDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

TrCHNum number of TransportChannels

1 int [1, 32]

TrCHIndex index of Transport Channel 1 int [1, TrCHNum]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

8-12 3GPPFDD_DLFirInterLv

Page 359: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHMulPos Transport Channelmultiplex position inCCTrCH: Fixed, Flexible

Fixed enum

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 SizeIn input size int

2 DataIn input data int

Name Description Default Type Range

3GPPFDD_DLFirInterLv 8-13

Page 360: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement first interleaving, which is a block interleaverwith inter-column permutations. Refer to [1].

2. This model fires once per TTI. Each firing, one token is consumed by pin SizeIn;this token indicates the effective length of data block input at pin DataIn. Thismodel will then interleave bits into the data block, and output the data block atpin DataOut. A token is generated by pin SizeOut to indicate the effectivelength of the output data block.

3. All transport channel information must be in the form of arrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

TFSetSizeArray indicates how many pairs of transport block and transportblock set sizes are contained in a certain transport channel. For example:

• TFSetSizeArray = 3 2 means the first three pairs of transport block size andtransport block set size belong to the first transport channel, and the nexttwo pairs belong to the second transport channel.

• TFSetSizeArray = 2 2 2 means the first two pairs of transport block size andtransport block set size belong to the first transport channel, the next twopairs belong to the second transport channel and the last two pairs belong tothe third transport channel.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 8-2.

Pin Name Description Signal Type

3 SizeOut output size int

4 DataOut output data int

8-14 3GPPFDD_DLFirInterLv

Page 361: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

Table 8-2.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10 msec 0 No CRC 0 No Coding 0

20 msec 1 8 bits 1 1/2 CC 1

40 msec 2 12 bits 2 1/3 CC 2

80 msec 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

3GPPFDD_DLFirInterLv 8-15

Page 362: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_DLPhCHMap

Description Physical channel mapping of downlinkLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_DLPhCHMap

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to implement physical channel mapping. The PhCH foruplink and downlink is defined in [2]. The bits input to the physical channelmapping are denoted by vp1, vp2, ... , vpU where p is the PhCH number and U is

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

Pin Name Description Signal Type

1 DataIn input data multiple int

Pin Name Description Signal Type

2 DataOut output data multiple int

8-16 3GPPFDD_DLPhCHMap

Page 363: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

the number of bits in one radio frame for one PhCH. The bits vpk are mapped tothe PhCHs so that the bits for each PhCH are transmitted over the air inascending order with respect to k.

In uplink, the PhCHs used during a radio frame are either completely filledwith bits that are transmitted over the air or not used at all. The only exceptionis when the UE is in compressed mode; the transmission can then be turned offduring consecutive slots of the radio frame.

2. This model fires once per radio frame.

Each firing, this model receives data blocks of all physical channels at a pinDataIn, then maps those data blocks onto each physical channel.

DataOut will output data of one radio frame, and next model will input datablock of one slot. This means the next model will fire 15 times when this modelfires once.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

3GPPFDD_DLPhCHMap 8-17

Page 364: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_DLPhCHSeg

Description Physical channel segmentation of downlinkLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_DLPhCHSeg

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to implement physical channel segmentation. When morethan one PhCH is used, physical channel segmentation divides the bits amongthe different PhCHs. The bits input to the physical channel segmentation are

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

Pin Name Description Signal Type

1 DataIn input data int

Pin Name Description Signal Type

2 DataOut output data multiple int

8-18 3GPPFDD_DLPhCHSeg

Page 365: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

denoted by x1, x2, x3, ... , xY where Y is the number of bits input to the physicalchannel segmentation block. The number of PhCHs is denoted by P.

The bits after physical channel segmentation are denoted by uP1, uP2, uP3, ... ,upU where p is PhCH number and U is the number of bits in one radio frame foreach PhCH, i.e.

.

The relation between xk and upk is given next.

For all modes, some bits of the input flow are mapped to each code until thenumber of bits on the code is V. For modes other than compressed mode bypuncturing, all input flow bits are taken to be mapped to the codes. Forcompressed mode by puncturing, only the bits of the input flow notcorresponding to bits p are taken to be mapped to the codes, each bit p isremoved to ensure creation of the gap required by the compressed mode, asdescribed next.

Bits on first PhCH after physical channel segmentation:

u1,k = xi,k k = 1, 2, ... , U

Bits on second PhCH after physical channel segmentation:

u1,k = xi,k+U k = 1, 2, ... , U...

Bits on the Pth PhCH after physical channel segmentation:

uP,k = xi,k + (P-1)U k = 1, 2, ... , U

2. This model fires once per radio frame. Each firing, this model receives a datablock of one CCTrCH at pin DataIn. This model will divide the input data blockif the physical channel number is more than one, then output the resulting datablocks through multiple pin DataOut.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

U YP----=

3GPPFDD_DLPhCHSeg 8-19

Page 366: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_DLRadioSeg

Description Radio frame segmentationLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_DLRadioSegDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

TrCHNum number of TransportChannels

1 int [1, 32]

TrCHIndex index of Transport Channel 1 int [1, TrCHNum]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

8-20 3GPPFDD_DLRadioSeg

Page 367: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHMulPos Transport Channelmultiplex position inCCTrCH: Fixed, Flexible

Fixed enum

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 SizeIn input size int

2 DataIn input data int

Name Description Default Type Range

3GPPFDD_DLRadioSeg 8-21

Page 368: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement radio frame segmentation. When thetransmission time interval is longer than 10 msec, the input bit sequence issegmented and mapped onto consecutive Fi radio frames. Following ratematching in the DL the input bit sequence length is guaranteed to be an integermultiple of Fi.

The input bit sequence is denoted by xi1, xi2, xi3, ... , xiXi. where i is the TrCH

number and Xi is the number bits. The Fi output bit sequences per TTI aredenoted by yi,ni1, yi,ni2, yi,ni3, ... , yi,niXi where ni is the radio frame number in

current TTI and Yi is the number of bits per radio frame for TrCH i. The outputsequences are defined as follows:

, ,

where

Yi = (Xi/Fi) is the number of bits per segment.

The nith segment is mapped to the nith radio frame of the transmission timeinterval.

2. Each firing, one token is consumed by pin SizeIn; this token indicates theeffective length of data block input at pin DataIn. After radio framesegmentation, the data block is output at pin DataOut; a token is generated bypin DataOut to indicate the effective length of the output data block.

3. All transport channel information must be in the form of arrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

Pin Name Description Signal Type

3 SizeOut output size int

4 DataOut output data int

5 Index transport channel index int

yi nik, xi ni 1–( ) Yi×( ) k+,= ni 1…Fi= k 1…Yi=

8-22 3GPPFDD_DLRadioSeg

Page 369: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

TFSetSizeArray indicates how many pairs of transport block and transportblock set sizes are contained in a certain transport channel. For example:

• TFSetSizeArray = 3 2 means the first three pairs of transport block size andtransport block set size belong to the first transport channel, and the nexttwo pairs belong to the second transport channel.

• TFSetSizeArray = 2 2 2 means the first two pairs of transport block size andtransport block set size belong to the first transport channel, the next twopairs belong to the second transport channel and the last two pairs belong tothe third transport channel.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 8-3.

4. This model fires once per radio frame. Each firing, this model inputs a datablock of one radio frame, and the previous model (first interleaving) inputs adata block of one TTI. ADS will automatically fire this model multiple times ifnecessary; for example, if TTI=40msec, this model will fire 4 times while theprevious model fires once.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

Table 8-3.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10 msec 0 No CRC 0 No Coding 0

20 msec 1 8 bits 1 1/2 CC 1

40 msec 2 12 bits 2 1/3 CC 2

80 msec 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

3GPPFDD_DLRadioSeg 8-23

Page 370: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_DLRateMatch

Description Downlink Rate MatchingLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_DLRateMatchDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

TrCHNum number of TransportChannels

1 int [1, 32]

TrCHIndex index of Transport Channel 1 int [1, TrCHNum]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

8-24 3GPPFDD_DLRateMatch

Page 371: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHMulPos Transport Channelmultiplex position inCCTrCH: Fixed, Flexible

Fixed enum

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 SizeIn input size int

2 DataIn input data int

3 TFCIin TFCI int

Name Description Default Type Range

3GPPFDD_DLRateMatch 8-25

Page 372: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement downlink rate matching. Rate matching meansthat bits on a transport channel are repeated or punctured. Higher layersassign a rate-matching attribute for each transport channel. This attribute issemi-static and can only be changed through higher layer signalling. Therate-matching attribute is used when the number of bits to be repeated orpunctured is calculated. This model provides an RMArray parameter so userscan set the semi-static attributes for each transport channel.

The number of bits on a transport channel can vary between differenttransmission time intervals. When the number of bits between differenttransmission time intervals in uplink is changed, bits are repeated orpunctured to ensure that the total bit rate after TrCH multiplexing is identicalto the total channel bit rate of the allocated dedicated physical channels.

Refer to [1] for details of rate matching algorithm.

2. This model fires once per TTI. Each firing, one token is consumed by pin SizeIn,this token indicates the effective length of data block input at pin DataIn. Afterrate matching, the data block is output at pin DataOut; a token is generated bypin DataOut to indicate the effective length of the output data block.

3. All transport channel information must be in the form of arrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 8-4.

Pin Name Description Signal Type

4 SizeOut output size int

5 DataOut output data int

8-26 3GPPFDD_DLRateMatch

Page 373: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

4. Parameter TrCHIndex indicates the index of current transport channel; itsvalue range is 1 to the value of TrCHNum.

5. The length of most array parameters is equal to the value of TrCHNum; eachelement of an array represents a certain transport channel. The only exceptionis DynTFSetArray that has a variable array that provides all possible transportblock and transport block set sizes for each transport channel.

TFSetSizeArray indicates how many pairs of transport block and transportblock set sizes are contained in a certain transport channel. For example:

• TFSetSizeArray = 3 2 means the first three pairs of transport block size andtransport block set size belong to the first transport channel, and the nexttwo pairs belong to the second transport channel.

• TFSetSizeArray = 2 2 2 means the first two pairs of transport block size andtransport block set size belong to the first transport channel, the next twopairs belong to the second transport channel and the last two pairs belong tothe third transport channel.

6. The following formulas, defined in [1], are the core algorithm of rate matching.

Table 8-4.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10 msec 0 No CRC 0 No Coding 0

20 msec 1 8 bits 1 1/2 CC 1

40 msec 2 12 bits 2 1/3 CC 2

80 msec 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

Z0 0=

Zij

RMm Nmj⋅m 1=

i

Ndata j,⋅

RMm Nmj⋅m 1=

I

∑--------------------------------------------------------------------------------=

Nij∆ Zij Zi 1– j,– Nij–=

3GPPFDD_DLRateMatch 8-27

Page 374: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

Example (12.2 kbps downlink reference measurement channel defined in [2])

DTCH: N1,0 = 804/1 = 402 RM1 = 1.0

DCCH:

Higher layers have assigned a slot format 11.

SlotFormat=11 => Ndata,0 = (6 + 22) × 15 = 420 bits

Results of above formulas are:

Z1 = 343

∆N1,0 = -59

Z2 =420

∆N2,0 = -13

The bits number of DTCH in a physical frame can be calculated by Z1 - Z0 =343, and that number of DCCH can be calculated by Z2 - Z1 = 77. There is alsoanother method of calculation: N1,0 - ∆N1,0 = 343 and N2,0 - ∆N2,0 = 77.

7. Flexible and fixed position techniques are used in downlink rate matching.Figure 8-1 and Figure 8-2 illustrate these conditions.

Figure 8-1. Transport Channel Structure Before Rate Matching

N1 0, 804 2⁄ 402= = RM1 1.0=

N2 0, 360 4⁄ 90= = RM2 1.0=

Tr Block 1

Tr Block 1

Tr Block 1

Tr Block 1

N11 bits

Tr Block 1

Tr Block 1

Tr Block 1

Tr Block 1

N12 bits

10 msec 20 msec 30 msec 40 msec

Transmission Time Interval

Tr Block 21

N21 bits

Tr Block 27

N22 bits

Tr Block 21

10 msec 20 msec 30 msec 40 msec

Transmission Time Interval

TrCH2

TrCH1

8-28 3GPPFDD_DLRateMatch

Page 375: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 8-2. Radio Frame Structure After Rate Matching

Rate matching in downlink is calculated for the case when the CCTrCH uses itsmaximum bit rate. However, when flexible positions are used, this does notnecessarily mean that each TrCH uses its maximum bit rate. This is illustratedin Figure 8-2, where higher layers have the restriction that two transportblocks from TrCH 1 can only be transmitted when the smaller transport blocksize is used on TrCH 2. Code resources can then be saved if the positions of theTrCHs in the radio frame are flexible. Figure 8-2 illustrates flexible and fixedpositions. The number of bits on TrCH i and transport format combination j isdenoted by Nij and the number of repeated or punctured bits by DNij. For thecase with flexible positions, both DN21 and DN22 must be calculated and usedfor generating the rate-matching patterns for TrCH 2. With fix positions therewill only be one DNij for each TrCH since the rate-matching pattern mustremain constant.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

[3] TSGR1#6 (99)849, “Rate matching signalling”

Tr Block 1 Tr Block 1 Tr Block 1Radio Frame 1

Tr Block 1 Tr Block 1 Tr Block 1Radio Frame 2

(N11+∆N11) / 2 bits N21+∆N21 bits

(N12+∆N12) / 2 bits

Tr Block 1 Tr Block 27 Tr Block 1Radio Frame 3

(N11+∆N11) / 2 bits

N22+∆N22 bits

Tr Block 1 Tr Block 21 Tr Block 1Radio Frame 4

(N12+∆N12) / 2 bits N21+∆N21 bits

Flexible Positions

Tr Block 1 Tr Block 1 Tr Block 21

(N11+∆N11) / 2 bits N22+∆N22 bits

Tr Block 1 Tr Block 1 Tr Block 1

(N11+∆N11) / 2 bits

Tr Block 1 Tr Block 27

Tr Block 1 Tr Block 21 Tr Block 21

N11+∆N11 / 2 bits

(N11+∆N11) / 2 bits N22+∆N22 bits

N22+∆N22 bits

Fixed Positions

...

3GPPFDD_DLRateMatch 8-29

Page 376: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_DLSecDTXInser

Description Second insertion of DTX indication bitsLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_DLSecDTXInserDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Pin Inputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 SizeIn input size int

2 DataIn input data int

8-30 3GPPFDD_DLSecDTXInser

Page 377: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement second DTX insertion. The DTX indication bitsinserted in this step are placed at the end of the radio frame. The DTX will bedistributed over all slots after second interleaving.

The bits input to the DTX insertion block are denoted by s1, s2, s3, ... , sS, whereS is the number of bits from TrCH multiplexing. The number of PhCHs isdenoted by P and the number of bits in one radio frame, including DTXindication bits, for each PhCH is denoted by R.

In normal mode

,

where Ndata1 and Ndata2 and are defined in [2].

For compressed mode, N′data* is defined as N′data* = P(15N′data1 + 15N′data2).N′data1 and N′data2 are the number of bits in the data fields of the slot formatused for the current compressed mode, i.e. slot format A or B as defined in [2]corresponding to the spreading factor and the number of transmitted slots inuse.

The bits output from the DTX insertion block are denoted by w1, w2, w3, ... ,w(PR). Note that these bits are 4-valued for the compressed mode by puncturing,and 3-valued otherwise. They are defined by the following relations:

wk = sk k = 1, 2, 3, ... , S

wk = δ

k = S + 1, S + 2, S + 3, ... , PR

where δ denotes DTX indication bits

Here sk ∈{0,1} and δ ∉{0,1}.

Pin Name Description Signal Type

3 DataOut output data int

RNdata∗

P------------------ 15Ndata1 15Ndata2+= =

3GPPFDD_DLSecDTXInser 8-31

Page 378: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

2. This model fires once per radio frame. Each firing, one token is consumed by pinSizeIn; this token indicates the effective length of data block input at pinDataIn. This model will then insert DTX bits into the data block if necessary;the data block is output at pin DataOut.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

8-32 3GPPFDD_DLSecDTXInser

Page 379: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_DLSecInterLv

Description Downlink second interleaverLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_DLSecInterLvDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Pin Inputs

Pin Outputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 DataIn input data from each physical channel multiple int

Pin Name Description Signal Type

2 DataOut output data for each second interleaved physicalchannel

multiple int

3GPPFDD_DLSecInterLv 8-33

Page 380: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

Notes/Equations

1. This model is used to implement second interleaving, which is a blockinterleaver with inter-column permutations. Refer to [1].

2. This model fires once per radio frame. Each firing, this model receives datablocks of all physical channels at DataIn, then interleaves the data blocks ofeach physical channel.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

8-34 3GPPFDD_DLSecInterLv

Page 381: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_DLTrCHMulti

Description Downlink TrCH multiplexingLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_DLTrCHMultiDerived From 3GPPFDD_DLCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

SlotFormat slot format 0 int †

TrCHNum number of TransportChannels

1 int [1, 32]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

3GPPFDD_DLTrCHMulti 8-35

Page 382: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

PhyCHNum downlink physical channelnumber

1 int [1, 8]

TrCHMulPos Transport Channelmultiplex position inCCTrCH: Fixed, Flexible

Fixed enum

TrCHType transport channel type:DCH_Type, BCH_Type,PCH_FACH_Type

DCH_Type enum

† [0:5] for uplink DPCCH; [0:16] for downlink DPCH; [0:17] for downlink SCCPCH; [0:5] for uplink PCPCH (Ver 03_00); [0:2] for uplink PCPCH (Ver 12_00); [0:1] for uplink PCPCH (Ver 03_02).

Pin Name Description Signal Type

1 InLen input data size of each transport channel multiple int

2 DataIn input data from each transport channel multiple int

3 Index transport channel index multiple int

Pin Name Description Signal Type

4 SizeOut output size int

5 DataOut output data int

Name Description Default Type Range

8-36 3GPPFDD_DLTrCHMulti

Page 383: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

1. This model is used to implement downlink transport channel multiplexing.Every 10 msec, one radio frame from each TrCH is delivered to the TrCHmultiplexing. These radio frames are serially multiplexed into a codedcomposite transport channel (CCTrCH).

TrCH multiplexing inputs bits are denoted by fi1, fi2, fi3, ... , fiVi, where i is theTrCH number and Vi is the number of bits in the radio frame of TrCH i. Idenotes the number of TrCHs. TrCH multiplexing output bits are denoted by s1,s2, s3, ... , sS, where S is the number of bits, that is,

.

TrCH multiplexing is defined by the following relations:

Sk = f1k k = 1, 2, 3, ... , V1Sk = f2,(k-V1) k = V1 + 1, V1 + 2, ... , V1 + V2

Sk = f3,(k-(V1 + V2)) k = (V1 + V2) + 1, (V1 + V2) + 2, ... , (V1 + V2) + V3

.

.

.Sk = fI,(k-(V1 + V2 + ... + VI-1))

k = (V1 + V2 +...+ VI-1) + 1, (V1 + V2 +...+ VI-1) + 2 ... , (V1 + V2 +...+ VI-1) + VI

2. This model fires once per radio frame. Each firing, this model receives transportchannel index and effective length of each transport channel at the Index andInLen pins. This model receives a block of data from each transport channel,merges them into one block of CCTrCH data and outputs this block of data; onetoken is generated by SizeOut to indicate the output data block length.

3. All transport channel information must be in the form of arrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

TFSetSizeArray indicates how many pairs of transport block and transportblock set sizes are contained in a certain transport channel. For example:

S Vii

∑=

3GPPFDD_DLTrCHMulti 8-37

Page 384: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

• TFSetSizeArray = "3 2" means the first three pairs of transport block size andtransport block set size belong to the first transport channel, and the nexttwo pairs belong to the second transport channel.

• TFSetSizeArray = "2 2 2" means the first two pairs of transport block sizeand transport block set size belong to the first transport channel, the secondtwo pairs belong to the second, and the third two pairs belong to the third.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 8-5.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

Table 8-5.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10 msec 0 No CRC 0 No Coding 0

20 msec 1 8 bits 1 1/2 CC 1

40 msec 2 12 bits 2 1/3 CC 2

80 msec 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

8-38 3GPPFDD_DLTrCHMulti

Page 385: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_HS_CQI_Encoder

Description Channel encoder for channel quality informationLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_HS_CQI_EncoderDerived From 3GPPFDD_HS_CQI_Coding

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model codes the channel quality information using a (20,5) code.

2. Each firing, if CQI_Type is Decimal, 20 CQI_S tokens are produced when 1CQI_B token consumed; if CQI_Type is Binary, 20 CQI_S tokens are producedwhen 5 CQI_B tokens consumed.

3. The (20,5) code words are a linear combination of the 5 basis sequences denotedMi,n defined in Table 8-6.

Name Description Default Type

SpecVerHSDPA version of HSDPAspecifications:Version_09_03

Version_09_03 enum

CQI_Type CQI type: Decimal, Binary Binary enum

Pin Name Description Signal Type

1 CQI_B channel quality information bits int

Pin Name Description Signal Type

2 CQI_S channel quality information symbols int

3GPPFDD_HS_CQI_Encoder 8-39

Page 386: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

The CQI values 0 to 30 (defined in [2]) are converted from decimal to binary tomap them to the channel quality information bits (1 0 0 0 0) to (1 1 1 1 1)respectively. (Information bit pattern (0 0 0 0 0) is not used.) The channelquality information bits are a0, a1, a2, a3, a4 (where a0 is LSB and a4 is MSB).The output code word bits bi are given by:

where i = 0, …, 19.

References

[1]3GPP Technical Specification TS 25.212 V5.6.0, “Multiplexing and channelcoding (FDD),” Release 5.

Table 8-6. Basis Sequences for (20,5) Code

i Mi,0 Mi,1 Mi,2 Mi,3 Mi,4

0 1 0 0 0 1

1 0 1 0 0 1

2 1 1 0 0 1

3 0 0 1 0 1

4 1 0 1 0 1

5 0 1 1 0 1

6 1 1 1 0 1

7 0 0 0 1 1

8 1 0 0 1 1

9 0 1 0 1 1

10 1 1 0 1 1

11 0 0 1 1 1

12 1 0 1 1 1

13 0 1 1 1 1

14 1 1 1 1 1

15 0 0 0 0 1

16 0 0 0 0 1

17 0 0 0 0 1

18 0 0 0 0 1

19 0 0 0 0 1

bi an Mi n,×( )mod2n 0=

4

∑=

8-40 3GPPFDD_HS_CQI_Encoder

Page 387: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

[2] 3GPP Technical Specification TS 25.214 V5.6.0, “Physical layer procedures(FDD),” Release 5.

3GPPFDD_HS_CQI_Encoder 8-41

Page 388: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_HS_DPCCH_Encoder

Description 3GPP HS-DPCCH encoderLibrary 3GPPFDD, TrCH Multiplexers & Coders

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork encodes the HARQ-Ack and CQI message and multiplexes thecoded bits stream as a HS-DPCCH sub-frame.

2. The schematic for this subnetwork is shown in Figure 8-3.

Name Description Default Type

SpecVerHSDPA version of HSDPAspecifications:Version_09_03

Version_09_03 enum

CQI_Type CQI type: Decimal, Binary Binary enum

Pin Name Description Signal Type

1 ACK HARQ Ack information int

2 CQI CQI input int

Pin Name Description Signal Type

3 HS_DPCCH HS-DPCCH subframe int

8-42 3GPPFDD_HS_DPCCH_Encoder

Page 389: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 8-3. 3GPPFDD_HS_DPCCH_Encoder Schematic

Important Post-2004A Information The HS_DPCCH physical channel mappingfunction must map input bits bk directly to the physical channel so that bits aretransmitted over the air in ascending order with respect to k.In this subnetwork, bits are transmitted over the air in descending order withrespect to k (where bk and k are described in section 4.7 of [2]).

The workaround is to add a Reverse component (ADS Numeric Control library)between 3GPPFDD_HS_CQI_Encoder and 3GPPFDD_HS_DPCCH_Mux. Setthe N parameter of the Reverse component to 20.

3. One HS-DPCCH sub-frame contains 30 bits. Each HARQ-Ack bit is repeated 10times [2]. The 5 bits of CQI information are protected by a (5, 20) coding scheme[2]; the 30 bits are used to form the HS-DPCCH frame.

4. Each firing: if CQI_Type is Binary, 5 bits will be consumed at CQI; if CQI_Typeis Decimal, 1 decimal number will be consumed at CQI and converted to 5binary bits.

References

[1]3GPP Technical Specification TS 25.211 V5.5.0, “Physical channels andmapping of transport channels onto physical channels (FDD)” Release 5.

[2] 3GPP Technical Specification TS 25.212 V5.6.0 “Multiplexing and channelcoding (FDD)” Release 5.

[3] 3GPP Technical Specification TS 25.213 V5.4.0, “Spreading and modulation(FDD)” Release 5.

3GPPFDD_HS_DPCCH_Encoder 8-43

Page 390: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_TFCIComb

Description Combine TFIs into TFCILibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_TFCICombDerived From 3GPPFDD_CCTrCHBase

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used for TFCI combining. The TFCI combination model combineTFIs of TrCHs that are multiplexed into a CCTrCH. The algorithm of TFCIcombination is described in [1].

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

TrCHNum number of TransportChannels

1 int [1, 32]

Pin Name Description Signal Type

1 TFI Transport format indicator multiple int

2 TFSetSize Number of TF(s) in a TF set multiple int

Pin Name Description Signal Type

3 TFSetSizeOut Output TFSetSize in sequence int

4 TFCI Mapped TFCI int

8-44 3GPPFDD_TFCIComb

Page 391: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. TFSetSize and TFI are multi-port input. Each TrCH consists of a group ofTFSetSize and TFI. TrCHNum determines the number of groups connected tothe model.

3. The TFSetSizeOut pin outputs TFSetSize serially.

The calculated TFCI cannot exceed 1023.

For example:

• TrCH1: TFSetSize = 3, TFI = 2

• TrCH2: TFSetSize = 4, TFI = 3

The TFCI output will be (0 × 3+2) × 4+3 = 11; the TFSetSizeOut output will be"3 4".

References

[1]3GPP Technical Specification TS 25.331 V3.2.0, “RRC Protocol Specification”Release 1999.

3GPPFDD_TFCIComb 8-45

Page 392: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_TFCIDeComb

Description Decompose TFCI into TFIsLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_TFCIDeCombDerived From 3GPPFDD_CCTrCHBase

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to implement TFCI de-combining. The TFCI de-combining isan inverse process of TFCI combining. It outputs TFI and TFSetSize of each

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

TrCHNum number of TransportChannels

1 int [1, 32]

Pin Name Description Signal Type

1 TFSetSize Number of TF(s) in a TF set int

2 TFCI Mapped TFCI int

Pin Name Description Signal Type

3 TFI Transport format indicator multiple int

4 TFSetSizeOut Output number of TF(s) in a TF set multiple int

8-46 3GPPFDD_TFCIDeComb

Page 393: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

transport channel. TrCHNum determines the number of transport channelsconnected to the model.

References

[1]3GPP Technical Specification TS 25.331 V3.2.0, “RRC Protocol Specification”Release 1999.

3GPPFDD_TFCIDeComb 8-47

Page 394: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_TFCIEncoder

Description TFCI encoderLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_TFCIEncoderDerived From 3GPPFDD_CCTrCHBase

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to implement TFCI encoding. The TFCI encoder modelencodes the TFCI data using Reed-Muller code. It supports normal and splitmode coding.

Name Description Default Type

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

CodingMode TFCI coding mode:Normal, Split

Normal enum

CodeLength TFCI code length (120 fordownlink PHyCHs whoseSF< 128, 30 for otherPHyCHs): Short, Long

Short enum

Pin Name Description Signal Type

1 TFCI transport format indicator multiple int

Pin Name Description Signal Type

2 TFCICode coded TFCI int

8-48 3GPPFDD_TFCIEncoder

Page 395: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

When set to Normal mode, the input is one TFCI data, a (32,10) second-orderReed-Muller code is used. Input TFCI is converted to 10-bit binary sequence ai(i=0, … , 9), then encoded to 32-bit binary sequence bk (k=0,…,31).

When a DCH is associated with a DSCH, the TFCI code can be split, the inputsare 2 TFCI data, a (16, 5) first-order Reed-Muller code is used on the 2 TFCIwords ai1 (i=0, … , 4) and ai2 (k=0,…,4). The two 16-bit binary sequences arethen merged into a 32-bit sequence bk (k=0, … , 31).

The length of output TFCI code dk is determined by the CodeLength parameter.

• For uplink physical channel, regardless of the SF and downlink physicalchannel of SF>=128, CodeLength must be set to 30 bits, which means onlythe 30 LSB bits are transmitted.

• For downlink physical channel whose SF<128, CodeLength must be set to120 bits, which means bit 0 to bit 23 will repeat 4 times and bit 24 to bit 31will repeat 3 times. The mapping rule of dk and bk is given in the formula:

dk = bk mod32 (k=0, … , CodeLength-1)

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

3GPPFDD_TFCIEncoder 8-49

Page 396: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_TFIGenerator

Description TFI generatorLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_TFIGeneratorDerived From 3GPPFDD_CCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

TrCHNum number of TransportChannels

1 int [1, 32]

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

TFCSArray Transport FormatCombination Set array

0 int array

8-50 3GPPFDD_TFIGenerator

Page 397: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to generate TFI sets and TFCI, given transport formatcombination set (TFCS) array. TFSetSizeArray is an array of allowed TFCS. Forexample, if there are 3 transport channels, TrCHNum=3. The allowed TFCS is(TF0, TF0, TF1), (TF1, TF0, TF1), (TF1, TF1, TF0)..., TFSetSizeArray should beset as “0 0 1, 1 0 1, 1 1 0,...”. Section 6 of [2] gives some examples of TFCS.

2. At each maximum TTI of TTIArray, a random set of transport formatcombinations is selected. The TFIs and TFCI are output at each frame (10msec).

References

[1]3GPP Technical Specification TS 25.302, “Service Provided by Physical Layer.”

[2] 3GPP Technical Specification TS 34.108 “Common Test Environments for UserEquipment (UE) Conformance Testing.”

Pin Name Description Signal Type

1 TFCI output TFCI every frame int

2 TFI TFI of each tranport channel multiple int

3GPPFDD_TFIGenerator 8-51

Page 398: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_TrCHSrc

Description Transport channel signal sourceLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_TrCHSrcDerived From 3GPPFDD_TrCHBase

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate the transport channel signal source.

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DataPattern source data pattern:random, PN9, PN15,bits_repeat, user_file

random enum

RepBitValue repeating data value 0xff int [0, 255]

UserFileName user-defined data file name datafile.txt filename

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

Pin Name Description Signal Type

1 TFSetSize number of TF(s) in a TF set int

2 TFIout transport format indicator int

3 DataOut information data int

8-52 3GPPFDD_TrCHSrc

Page 399: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

This model performs the same as the Agilent signal generator instrumentESG-D Option 100.

2. The transport channel source serves as a bit source, the rate of which isdetermined by the DynTFSet parameter. The content is determined byDataPattern.

3. DynTFSet consists of transport block size and transport block set size groups.The transport block set size is a multiple of transport block size. The maximumtransport block set size cannot exceed 32767.

For example, if a transport channel has a transport format set:

{10 bits, 20 bits}; {10 bits, 40 bits}

The DynTFSet should be set as “10 20 10 40". DataOut will output 40 (themaximum transport block set size) tokens each firing. The output of TFSetSizewill be 2, because it has 2 TFs in the set.

TFIout can be 0 or 1 randomly; if 0, the valid output data is 20 bits long, and theremaining bits will be filled with 0; if 1, the valid output data is 40 bits long.

4. This model supports 5 patterns of data including random, PN9, PN15, fixedrepeated 8-bits, and user-defined file.

If the data pattern is 8-bits repeating, the bits to be repeated is set byRepBitValue. For example if the RepBitValue is set as 0x7a, the bit sequence 0,1, 1, 1, 1, 0, 1, 0 will be output repeatedly.

If the data is from user-defined file, the file name is defined by UserFileName.The user can edit the file with any text editor. The separator between bits canbe a space, comma, or any other separator. If the bit sequence is shorter thanthe output length, data will be output repeatedly.

References

[1]3GPP Technical Specification TS 25.302 V3.4.0, “Service Provided by PhysicalLayer” Release 1999.

3GPPFDD_TrCHSrc 8-53

Page 400: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_TrCH_Cal

Description Transport channel parameter calculatorLibrary 3GPPFDD, TrCH Multiplexers & Coders

Parameters

Notes/Equations

1. Relations between parameters for transport channel processing and transportchannel format are not straightforward; this tool is provided to aid in the use oftransport channel models.

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

TTI Transmission TimeInterval: TTI_10ms,TTI_20ms, TTI_40ms,TTI_80ms

TTI_10ms enum

CRC number of CRC bits:No_CRC, CRC_8_bits,CRC_12_bits,CRC_16_bits,CRC_24_bits

CRC_16_bits enum

CHCodingType channel coding type:No_Coding, CC_HalfRate,CC_OneThirdRate,TurboCoding

CC_HalfRate enum

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

8-54 3GPPFDD_TrCH_Cal

Page 401: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

The basic function of this transport channel parameter calculator is to convertthe transport format to other transport channel parameters defined in the3GPP technical specification. These parameters include:

• channel coding block size

• channel coding block number

• radio frame size

• padded bits for channel coding

• radio frame number

• CRC encoder output size

• channel coding input size

• channel coding output size

The schematic for this hierarchical example is shown in Figure 8-4.

3GPPFDD_TrCH_Cal 8-55

Page 402: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

Figure 8-4. 3GPPFDD_TrCH_Cal Schematic

References

[1]See the reference listed in the Introduction section.

8-56 3GPPFDD_TrCH_Cal

Page 403: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_TrCHSrcWithTFIin

Description Transport channel signal source with TFI inLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_TrCHSrcWithTFIinDerived From 3GPPFDD_TrCHBase

Parameters

Pin Inputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DataPattern source data pattern:random, PN9, PN15,bits_repeat, user_file

random enum

RepBitValue repeating data value 0xff int [0, 255]

UserFileName user-defined data file name datafile.txt filename

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

TTI Transmission TimeInterval: TTI_10ms,TTI_20ms, TTI_40ms,TTI_80ms

TTI_10ms enum

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

Pin Name Description Signal Type

1 TFIin transport format indicator in int

3GPPFDD_TrCHSrcWithTFIin 8-57

Page 404: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to generate the transport channel signal source with TFIinput.

2. The transport channel source serves as a bit source, the rate of which isdetermined by the DynTFSet parameter. The content is determined byDataPattern, which offers 5 data patterns.

DynTFSet consists of transport block size and transport block set size groups.The transport block set size is a multiple of transport block size. For example, ifa transport channel has a transport format set:

{10 bits, 20 bits}; {10 bits, 40 bits}

The DynTFSet should be set as "10 20 10 40". DataOut will output 40 tokens(the maximum transport block set size) each firing.

3. If the data pattern is 8-bits repeating, the bits to be repeated is set byRepBitValue. For example if the RepBitValue is set as 0x7a, the bit sequence 0,1, 1, 1, 1, 0, 1, 0 will be output repeatedly.

If the data is from user-defined file, the file name is specified by UserFileName.The user can edit the file with any text editor. The separator between bits canbe a space, comma, or any other separator. If the bit sequence is shorter thanthe output length, output data will be repeated.

References

[1]3GPP Technical Specification TS 25.302, “Service Provided by Physical Layer.”

Pin Name Description Signal Type

2 TFIout transport format indicator out int

3 DataOut information data int

8-58 3GPPFDD_TrCHSrcWithTFIin

Page 405: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULFirInterLv

Description Uplink first interleaverLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_ULFirInterLvDerived From 3GPPFDD_TrCHBase

Parameters

Pin Inputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

TTI Transmission TimeInterval: TTI_10ms,TTI_20ms, TTI_40ms,TTI_80ms

TTI_10ms enum

CRC number of CRC bits:No_CRC, CRC_8_bits,CRC_12_bits,CRC_16_bits,CRC_24_bits

CRC_16_bits enum

CHCodingType channel coding type:No_Coding, CC_HalfRate,CC_OneThirdRate,TurboCoding

CC_HalfRate enum

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

Pin Name Description Signal Type

1 SizeIn input size int

2 DataIn input data int

3GPPFDD_ULFirInterLv 8-59

Page 406: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement the first interleaving of uplink. The firstinterleaving is a block interleaver with inter-column permutations according to[1].

2. This model fires once per TTI. Each firing, one token is consumed by pin SizeIn;this token indicates the effective length of data block input at pin DataIn. Afterpadding necessary bits, the data block is output at DataOut, and a tokengenerated by DataOut to indicate the effective length of the output data block.

3. The DynTFSet parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

Pin Name Description Signal Type

3 SizeOut output size int

4 DataOut output data int

8-60 3GPPFDD_ULFirInterLv

Page 407: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULGainFactor

Description Uplink gain factor computingLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_ULGainFactorDerived From 3GPPFDD_ULCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

TrCHNum number of TransportChannels

1 int [1, 32]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

3GPPFDD_ULGainFactor 8-61

Page 408: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to calculate DPDCH and DPCCH gain factors. The uplinkDPCCH and DPDCH(s) are transmitted on different codes as defined insubclause 4.2.1 of [3]. Gain factors βc and βd may vary for each TFC. There are

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

PuncLimit puncturing limit for uplink 0.8 real (0.0, 1]

MinSF minimum spreading factor:SF_256, SF_128, SF_64,SF_32, SF_16, SF_8,SF_4

SF_4 enum

RefTFCI TFCI of signalled gainfactors

0 int [0, MaxTFCI-1]; MaxTFCI iscalculatedaccording toTFSetSizeArray

SigValue signalling values 15 int [0, 15]

Pin Name Description Signal Type

1 TFCIin TFCI int

Pin Name Description Signal Type

2 Bd gain factor of DPDCH real

3 Bc gain factor of DPCCH real

Name Description Default Type Range

8-62 3GPPFDD_ULGainFactor

Page 409: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

two ways of controlling gain factors of the DPCCH and DPDCH codes fordifferent TFCs in normal (non-compressed) frames:

• βc and βd are signalled for the TFC

• βc and βd are calculated for the TFC based on the signal settings for areference TFC.

Combinations of these methods can be used to associate βc and βd values to allTFCs in the TFCS. The two methods are described in subclauses 5.1.2.5.2 and5.1.2.5.3 of [4]. Several reference TFCs can be signalled from higher layers.

Gain factors may vary based on the radio frame depending on the current TFCused. Further, the setting of gain factors is independent of the inner loop powercontrol.

The UE will scale the total transmit power of the DPCCH and DPDCH(s), suchthat the DPCCH output power follows the changes required by the powercontrol process with power adjustments of ∆DPCCH dB. If this results in a UEtransmit power above the maximum allowed power, the UE will scale the totaltransmit power so that it is equal to the maximum allowed power.

2. This model fires once per radio frame and the next model fires once per slot. So,pin Bc and Bd will output 15 equal values for each slot.

3. Each firing, this model receives the TFCI of current radio frame at pin TFCIin,then calculates Bc and Bd of current TFCI according to reference TFCI and itssignalled ratio. The results are output at pin Bc and Bd.

4. All transport channel information must be in the form of arrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

TFSetSizeArray indicates how many pairs of transport block and transportblock set sizes are contained in a certain transport channel. For example:

• TFSetSizeArray = "3 2" means the first three pairs of transport block size andtransport block set size belong to the first transport channel, and the nexttwo pairs belong to the second transport channel.

3GPPFDD_ULGainFactor 8-63

Page 410: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

• TFSetSizeArray = "2 2 2" means the first two pairs of transport block sizeand transport block set size belong to the first transport channel, the secondtwo pairs belong to the second, and the third two pairs belong to the third.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 8-7.

5. The PuncLimit parameter denotes the variable PL defined in [1]. Refer to [1] forthe details regarding this variable in rate matching algorithm.

6. Refer to [3] for the SigValue parameter setting.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[3] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

[4] 3GPP Technical Specification TS 25.214 V3.2.0, “Physical layer procedures(FDD)” Release 1999.

Table 8-7.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10 msec 0 No CRC 0 No Coding 0

20 msec 1 8 bits 1 1/2 CC 1

40 msec 2 12 bits 2 1/3 CC 2

80 msec 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

8-64 3GPPFDD_ULGainFactor

Page 411: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULPhyCHMap

Description Uplink physical channel mappingLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_ULPhyCHMapDerived From 3GPPFDD_ULCCTrCHBase

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

Name Description Default Type

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

TrCHType transport channel type:RACH_Type, DCH_Type

DCH_Type enum

Pin Name Description Signal Type

1 PCNin physical channel number int

2 SltFin slot format int

3 DataIn input data multiple int

Pin Name Description Signal Type

4 PCNout physical channel number int

5 SltFout slot format int

6 DataOut output data multiple int

3GPPFDD_ULPhyCHMap 8-65

Page 412: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

1. This model is used to implement uplink physical channel mapping. The PhCHfor both uplink and downlink is defined in [2]. The bits input to the physicalchannel mapping are denoted by vp1, vp2, ... , vpU, where p is the PhCH numberand U is the number of bits in one radio frame for one PhCH. The bits vpk aremapped to the PhCHs so that the bits for each PhCH are transmitted over theair in ascending order with respect to k.

In uplink, the PhCHs used during a radio frame are either completely filledwith bits that are transmitted over the air or not used at all. The only exceptionis when the UE is in compressed mode. The transmission can then be turned offduring consecutive slots of the radio frame.

2. This model fires once per radio frame. Each firing, this model receives datablocks of all physical channels at multiple input pin DataIn, and receives slotformat and physical channel number at pins SltFin and PCNin. This modelthen maps those data blocks onto each physical channel.

3. DataOut will output data of one radio frame; the next model will input datablocks of one slot. This means the next model will fire 15 times when this modelfires once. PCNout and SltFout will output 15 repeated data to avoidmismatching.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

8-66 3GPPFDD_ULPhyCHMap

Page 413: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULPhyCHSeg

Description Uplink physical channel segmentationLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_ULPhyCHSegDerived From 3GPPFDD_ULCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

TrCHNum number of TransportChannels

1 int [1, 32]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

3GPPFDD_ULPhyCHSeg 8-67

Page 414: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to implement uplink physical channel segmentation. Whenmore than one PhCH is used, physical channel segmentation divides the bitsamong the different PhCHs. Bits input to the physical channel segmentation

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

TrCHType transport channel type:RACH_Type, DCH_Type

DCH_Type enum

PuncLimit puncturing limit for uplink 0.8 real (0.0, 1]

MinSF minimum spreading factor:SF_256, SF_128, SF_64,SF_32, SF_16, SF_8,SF_4

SF_4 enum

Pin Name Description Signal Type

1 DataIn input data int

2 PCNin physical channel number int

3 SltFin slot format int

Pin Name Description Signal Type

4 PCNout physical channel number int

5 SltFout slot format int

6 DataOut output data multiple int

Name Description Default Type Range

8-68 3GPPFDD_ULPhyCHSeg

Page 415: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

are denoted by x1, x2, x3, ... , xY, where Y is the number of bits input to thephysical channel segmentation block. The number of PhCHs is denoted by P.

The bits after physical channel segmentation are denoted up1, up2, up3, ... , upU,where p is PhCH number and U is the number of bits in one radio frame foreach PhCH, i.e.

.

The relation between xk and upk is given next.

For all modes, some bits of the input flow are mapped to each code until thenumber of bits on the code is V. For modes other than compressed mode bypuncturing, all bits of the input flow are taken to be mapped to the codes. Forcompressed mode by puncturing, only the bits of the input flow notcorresponding to bits p are taken to be mapped to the codes, each bit p isremoved to ensure creation the gap required by the compressed mode, asdescribed next.

U YP----=

3GPPFDD_ULPhyCHSeg 8-69

Page 416: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

Bits on first PhCH after physical channel segmentation:

u1,k = xi,k k = 1, 2, ... , U

Bits on second PhCH after physical channel segmentation:

u2,k = xi,k+U k = 1, 2, ... , U...

Bits on the Pth PhCH after physical channel segmentation:

uP,k = xi,k + (P-1)U k = 1, 2, ... , U

2. This model fires once per radio frame. Each firing, this model receives a datablock of one CCTrCH at pin DataIn, and receives slot format and physicalchannel number at pins SltFin and PCNin. This model will divide the inputdata block if physical channel number is more than one, then output resultingdata blocks through multiple output pin DataOut. Slot format and physicalchannel number will be output through pin SltFout and PCNout.

3. All transport channel information must be in the form of arrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

TFSetSizeArray indicates how many pairs of transport block and transportblock set sizes are contained in a certain transport channel. For example:

• TFSetSizeArray = "3 2" means the first three pairs of transport block size andtransport block set size belong to the first transport channel, and the nexttwo pairs belong to the second transport channel.

• TFSetSizeArray = "2 2 2" means the first two pairs of transport block sizeand transport block set size belong to the first transport channel, the nexttwo pairs belong to the second transport channel and the last two pairsbelong to the third transport channel.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 8-8.

8-70 3GPPFDD_ULPhyCHSeg

Page 417: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

4. The PuncLimit parameter denotes the variable PL defined in [1]. Refer to [1] forthe details regarding the use of this variable in rate matching algorithm.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

Table 8-8.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10 msec 0 No CRC 0 No Coding 0

20 msec 1 8 bits 1 1/2 CC 1

40 msec 2 12 bits 2 1/3 CC 2

80 msec 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

3GPPFDD_ULPhyCHSeg 8-71

Page 418: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_ULRadioEqual

Description Radio frame size equalizationLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_ULRadioEqualDerived From 3GPPFDD_TrCHBase

Parameters

Pin Inputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

TTI Transmission TimeInterval: TTI_10ms,TTI_20ms, TTI_40ms,TTI_80ms

TTI_10ms enum

CRC number of CRC bits:No_CRC, CRC_8_bits,CRC_12_bits,CRC_16_bits,CRC_24_bits

CRC_16_bits enum

CHCodingType channel coding type:No_Coding, CC_HalfRate,CC_OneThirdRate,TurboCoding

CC_HalfRate enum

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

Pin Name Description Signal Type

1 SizeIn input size int

2 DataIn input data int

8-72 3GPPFDD_ULRadioEqual

Page 419: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement uplink radio frame equalization. Radio framesize equalization means the input bit sequence is padded to ensure the outputcan be segmented in Fi data segments of the same size. Radio frame sizeequalization is only performed in the UL (DL rate matching output block lengthis always an integer multiple of Fi).

The input bit sequence to the radio frame size equalization is denoted by ci1, ci2,ci3, ... , ciEi , where i is TrCH number and Ei is the number of bits. The output

bit sequence is denoted by ti1, ti2, ti3, ... , tiT , where Ti is the number of bits. Theoutput bit sequence is derived as follows:

tik = cik for k = 1 ... Ei; andtik = {0, 1} for k = Ei + 1 ... Ti, if Ei < Ti

where

Ti = Fi × Ni; andNi = Ei / Fi is the number of bits per segment after size equalization.

2. This model fires once per TTI. Each firing, one token is consumed by pin SizeIn,this token indicates the effective length of data block input at DataIn. Afterpadding necessary bits, the data block is output at DataOut, and a token isgenerated by DataOut to indicate the effective length of the output data block.

3. The DynTFSet parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

Pin Name Description Signal Type

3 SizeOut output size int

4 DataOut output data int

3GPPFDD_ULRadioEqual 8-73

Page 420: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_ULRadioSeg

Description Radio frame segmentationLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_ULRadioSegDerived From 3GPPFDD_TrCHBase

Parameters

Pin Inputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DynTFSet dynamic part of TransportFormat Set

244 976 int array †

TTI Transmission TimeInterval: TTI_10ms,TTI_20ms, TTI_40ms,TTI_80ms

TTI_10ms enum

CRC number of CRC bits:No_CRC, CRC_8_bits,CRC_12_bits,CRC_16_bits,CRC_24_bits

CRC_16_bits enum

CHCodingType channel coding type:No_Coding, CC_HalfRate,CC_OneThirdRate,TurboCoding

CC_HalfRate enum

† The range for each element must be in [0:164480]; elements shall be paired integers; the first of the pair is thetransport block size; the second one is the transport block set size; the second shall be multiple of the first.

Pin Name Description Signal Type

1 SizeIn input size int

2 DataIn input data int

8-74 3GPPFDD_ULRadioSeg

Page 421: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement uplink radio frame segmentation. When thetransmission time interval is longer than 10 msec, the input bit sequence issegmented and mapped onto consecutive Fi radio frames. Following ratematching in the DL the input bit sequence length is guaranteed to be an integermultiple of Fi.

The input bit sequence is denoted by xi1, xi2, xi3, ... , xiXi where i is the TrCH

number and Xi is the number bits. The Fi output bit sequences per TTI aredenoted by yi,ni1, yi,ni2, yi,ni3, ... , yi,niXi, where ni is the radio frame number in

current TTI and Yi is the number of bits per radio frame for TrCH i. The outputsequences are defined as follows:

yi,n,k = xi,((ni - 1) × Yi) + k, ni = 1 ... Fi, k = 1 ... Yi

where

Yi = (Xi / Fi) is the number of bits per segment.

The nith segment is mapped to the nith radio frame of the transmission timeinterval.

2. This model fires once per radio frame. Each firing, this model inputs a datablock of one radio frame, and previous model (first interleaving) inputs a datablock of one TTI. ADS will automatically fire this model multiple times, ifnecessary. For example, if TTI=40msec, this model will fire 4 times while theprevious model fires once. To avoid mismatch, the pin SizeIn buffer is setaccording to TTI.

Each firing, one token is consumed by pin SizeIn; this token indicates theeffective length of data block input at pin DataIn. After radio framesegmentation, the data block is output at pin DataOut, and a token is generatedby pin DataOut to indicate the effective length of the output data block.

Pin Name Description Signal Type

3 SizeOut output size int

4 DataOut output data int

3GPPFDD_ULRadioSeg 8-75

Page 422: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3. The DynTFSet parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

8-76 3GPPFDD_ULRadioSeg

Page 423: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_ULRateMatch

Description Uplink Rate MatchingLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_ULRateMatchDerived From 3GPPFDD_ULCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

TrCHNum number of TransportChannels

1 int [1, 32]

TrCHIndex index of Transport Channel 1 int [1, TrCHNum]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

3GPPFDD_ULRateMatch 8-77

Page 424: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to implement uplink rate matching. Rate matching meansthat bits on a transport channel are repeated or punctured.

Higher layers assign a rate-matching attribute for each transport channel. Thisattribute is semi-static and can only be changed through higher layer

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

TrCHType transport channel type:RACH_Type, DCH_Type

DCH_Type enum

PuncLimit puncturing limit for uplink 0.8 real (0.0, 1]

MinSF minimum spreading factor:SF_256, SF_128, SF_64,SF_32, SF_16, SF_8,SF_4

SF_4 enum

Pin Name Description Signal Type

1 SizeIn input size int

2 DataIn input data int

3 TFCIin TFCI input int

Pin Name Description Signal Type

4 SizeOut output size int

5 DataOut output data int

6 Index transport channel index int

Name Description Default Type Range

8-78 3GPPFDD_ULRateMatch

Page 425: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

signalling. The rate-matching attribute is used when the number of bits to berepeated or punctured is calculated. The RMArray parameter is provided sousers can set the semi-static attributes for each transport channel.

The number of bits on a transport channel can vary between differenttransmission time intervals. When the number of bits between differenttransmission time intervals in uplink is changed, bits are repeated orpunctured to ensure that the total bit rate after TrCH multiplexing is identicalto the total channel bit rate of the allocated dedicated physical channels.

Refer to [1] for details of rate matching algorithm.

2. This model fires once per radio frame. Each firing, one token is consumed by pinSizeIn; this token indicates the effective length of data block input at pinDataIn. One token at pin TFCIin indicates the current transport formatcombination. After rate matching, the data block is output at pin DataOut; atoken will be generated by pin SizeOut to indicate the effective length of theoutput data block. A token will be generated by pin Index to indicate transportchannel index.

3. All transport channel information must be in the form of arrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

When setting TTIArray, CRCArray and CHCodingTypeArray values, refer toTable 8-9.

Table 8-9.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10 msec 0 No CRC 0 No Coding 0

20 msec 1 8 bits 1 1/2 CC 1

40 msec 2 12 bits 2 1/3 CC 2

80 msec 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

3GPPFDD_ULRateMatch 8-79

Page 426: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

4. The PuncLimit parameter denotes the variable PL defined in [1]. Refer to [1] fordetails regarding this variable in rate matching algorithm.

5. Parameter TrCHIndex indicates the index of current transport channel, itsvalue range is from 1 to the value of parameter TrCHNum.

6. The length of most parameters in the form of arrays is equal to the value ofparameter TrCHNum, each element of an array represents a certain transportchannel. The only exception is DynTFSetArray, the length of this array isvariable and provides all possible transport block size and transport block setsize for each transport channel.

TFSetSizeArray indicates how many pairs of transport block and transportblock set sizes are contained in a certain transport channel. For example:

• TFSetSizeArray = "3 2" means the first three pairs of transport block size andtransport block set size belong to the first transport channel, and the nexttwo pairs belong to the second transport channel.

• TFSetSizeArray = "2 2 2" means the first two pairs of transport block sizeand transport block set size belong to the first transport channel, the nexttwo pairs belong to the second transport channel and the last two pairsbelong to the third transport channel.

7. The following core algorithm rate matching formulas are defined in [1].

Z0 = 0

∆Nij = Zij - Zi-1, j - Nij

Example (12.2 kbps uplink reference measurement channel defined in [2])

DTCH: N1,0 = 402 RM1 = 1.0DCCH: N2,0 = 90 RM2 = 1.0

In this case, uplink rate matching algorithm will auto select a slot format 2.

SlotFormat=2 => Ndata,0 = 40 × 15 = 600 bits

Results of above formulas are:

Zij

RMm Nmj×m 1=

i

Ndata j,×

RMm Nmj×m 1=

I

∑------------------------------------------------------------------------------------=

8-80 3GPPFDD_ULRateMatch

Page 427: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Z1 = 490∆N1,0 = 88Z2 = 600∆N2,0 = 20

The bits number of DTCH in a physical frame can be calculated by Z1-Z0=490,and that number of DCCH can be calculated by Z2-Z1=110. There is alsoanother method of calculation: N1.0 + ∆N1.0 = 490 and N2.0 +∆N2.0 = 110.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[2] 3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

[3] TSGR1#6 (99)849, “Rate matching signalling”

3GPPFDD_ULRateMatch 8-81

Page 428: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_ULSecInterLv

Description Uplink second interleaverLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_ULSecInterLvDerived From 3GPPFDD_ULCCTrCHBase

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

Name Description Default Type

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

TrCHType transport channel type:RACH_Type, DCH_Type

DCH_Type enum

Pin Name Description Signal Type

1 PCNin physical channel number int

2 SltFin slot format int

3 DataIn input data from each physical channel multiple int

Pin Name Description Signal Type

4 PCNout physical channel number int

5 SltFout slot format int

6 DataOut output data for each second interleaved physicalchannel

multiple int

8-82 3GPPFDD_ULSecInterLv

Page 429: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

1. This model is used to implement the second interleaving of uplink. Secondinterleaving is a block interleaver with inter-column permutations. Refer to [1].

2. This model fires once per radio frame. Each firing, this model receives datablocks of all physical channels at pin DataIn, and receives slot format andphysical channel number at pins SltFin and PCNin. This model interleaves thedata blocks of each physical channel.

References

[1]3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

3GPPFDD_ULSecInterLv 8-83

Page 430: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

3GPPFDD_ULTrCHMulti

Description Uplink TrCH multiplexingLibrary 3GPPFDD, TrCH Multiplexers & CodersClass SDF3GPPFDD_ULTrCHMultiDerived From 3GPPFDD_ULCCTrCHBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

TrCHNum number of TransportChannels

1 int [1, 32]

RMArray rate matching attributes ofall Transport Channels

1.0 real array (0.0, 1.0] ifSpecVersion=Version_03_00; [1, 256] ifSpecVersion=others; array size shallbe equal toTrCHNum

DynTFSetArray dynamic part of TF set ofall Transport Channels

244 976 int array range is thesame asDynTFSet in3GPPFDD_CRCEncoder

TFSetSizeArray Transport Format set sizeof all Transport Channels

1 int array [1, ∞) for eachelement; sum of theelements shallbe equal to thenumber of pairsinDynTFSetArray; array size shallbe equal toTrCHNum

8-84 3GPPFDD_ULTrCHMulti

Page 431: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to implement uplink transport channel multiplexing. Every10 msec, one radio frame from each TrCH is delivered to the TrCHmultiplexing. These radio frames are serially multiplexed into a codedcomposite transport channel (CCTrCH).

TTIArray Transmission Time Intervalof all Transport Channels

0 int array [0, 1,2,3] foreach element; array size shallbe equal toTrCHNum

CRCArray number of CRC bits of allTransport Channels

3 int array [0, 1,2,3,4] foreach element; array size shallbe equal toTrCHNum

CHCodingTypeArray channel coding type of allTransport Channels

1 int array [0, 1,2] for eachelement; array size shallbe equal toTrCHNum

TrCHType transport channel type:RACH_Type, DCH_Type

DCH_Type enum

PuncLimit puncturing limit for uplink 0.8 real (0.0, 1]

MinSF minimum spreading factor:SF_256, SF_128, SF_64,SF_32, SF_16, SF_8,SF_4

SF_4 enum

Pin Name Description Signal Type

1 InLen input data size of each transport channel multiple int

2 DataIn input data from each transport channel multiple int

3 Index transport channel index multiple int

Pin Name Description Signal Type

4 DataOut output data int

5 PCNout physical channel number int

6 SltFout slot format int

Name Description Default Type Range

3GPPFDD_ULTrCHMulti 8-85

Page 432: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

The bits input to the TrCH multiplexing are denoted by fi1, fi2, fi3, ... , fiV. wherei is the TrCH number and Vi is the number of bits in the radio frame of TrCH i.The number of TrCHs is denoted by I. The bits output from TrCH multiplexingare denoted by s1, s2, s3, ... , sS, where S is the number of bits, that is,

.

The TrCH multiplexing is defined by the following relations:

Sk = f1k k = 1, 2, ... , V1Sk = f2,(k-V1) k = V1 + 1, V1 + 2, ... , V1 + V2Sk = f3,(k-(V1 + V2)) k = (V1 + V2) + 1, (V1 + V2) + 2, ... , (V1 + V2) + V3

.

.

.Sk = fI,(k-(V1 + V2 + ... + VI-1))

k = (V1 + V2 +...+ VI-1) + 1, (V1 + V2 +...+ VI-1) + 2 ... , (V1 + V2 +...+ VI-1) + VI

2. This model fires once per radio frame. Each firing, this model receives transportchannel index and effective length of each transport channel at pins Index andInLen. This model receives a block of data from each transport channelaccording to those inputs, then merges them into one data block of CCTrCH andoutputs this data block. This model outputs the physical channel number at pinPCNout, and outputs slot format at pin SltFout.

3. All transport channel information must be in the form of arrays.

The DynTFSetArray parameter requires an integer array. The correct format istransport block size 1, transport block set size 1, transport block size 2, transportblock set size 2, etc. The size of this array must be a multiple of 2, and thetransport block set size must be a multiple of the relative transport block size.

TFSetSizeArray indicates how many pairs of transport block and transportblock set sizes are contained in a certain transport channel. For example:

• TFSetSizeArray = "3 2" means the first three pairs of transport block size andtransport block set size belong to the first transport channel, and the nexttwo pairs belong to the second transport channel.

• TFSetSizeArray = "2 2 2" means the first two pairs of transport block sizeand transport block set size belong to the first transport channel, the next

S Vii

∑=

8-86 3GPPFDD_ULTrCHMulti

Page 433: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

two pairs belong to the second transport channel and the last two pairsbelong to the third transport channel.

When setting TTIArray, CRCArray and CHCodingTypeArray, refer toTable 8-10.

4. The PuncLimit parameter denotes the variable PL defined in [1]. Refer to [1] fordetails regarding this variable in rate matching algorithm.

References

[1]3GPP Technical Specification TS 25.212 V3.2.0, “Multiplexing and channelcoding (FDD)” Release 1999.

Table 8-10.

TTIArray CRCArray CHCodingTypeArray

Time Value Coding Value Coding Value

10 msec 0 No CRC 0 No Coding 0

20 msec 1 8 bits 1 1/2 CC 1

40 msec 2 12 bits 2 1/3 CC 2

80 msec 3 16 bits 3 1/3 TC 3

24 bits 4

CC = convolutional coding; TC = turbo coding

3GPPFDD_ULTrCHMulti 8-87

Page 434: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD Transport Channel Multiplexers and Coders

8-88 3GPPFDD_ULTrCHMulti

Page 435: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 9: 3GPPFDD User Equipment

9-1

Page 436: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

3GPPFDD_DL_Rx_RefCH

Description Downlink integrated reference measurement channel receiverLibrary 3GPPFDD, User Equipment

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

RefCh reference measurementchannel: DL_REF_12_2,DL_REF_64,DL_REF_144,DL_REF_384

DL_REF_12_2 enum

SampleRate sample rate 8 int [1, 256]

ScrambleCode index of scramble code 0 int [0, 512] foruplink; [0, 16777215]for uplink

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

ScrambleType scramble type: Normal,RightAlternate,LeftAlternate

Normal enum

MaxDelaySample maximum delay boundary,in terms of samples

1 int [0, 2559]

ChannelType select the channel type tobe processed:CH_GAUSSIAN,CH_FADING

CH_GAUSSIAN enum

ChannelInfo fading channel informationsource: Known, Estimated

Known enum

ChannelInfoOffset offset between spreadcode and channelinformation in terms ofsample

0 int [0,MaxDelaySample]

9-2 3GPPFDD_DL_Rx_RefCH

Page 437: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

PathSearch path search frequency:EverySlot, Once

Once enum

SearchMethod path search method:Coherent, NonCoherent,Combined

Coherent enum

SearchSlotsNum number of slots for pathsearch

1 int [1, 6]

PathNum number of Rake fingers 1 int [1, 6]

PathDelaySample delay for each finger, interms of samples

0 int array [0,MaxDelaySample]; array size shallbe equal toPathNum

DPCH_SpreadCode spread code index ofDPCH

127 int [0, 127] for12.2kbps; [0, 31] for64kbps; [0, 15] for144kbps; [0, 7] for384kbps

CPICH select if CPICH ispresented: CPICH_Active,CPICH_Deactive

CPICH_Deactive enum

RxPCCPCH select if PCCPCH ispresented:PCCPCH_Active,PCCPCH_Deactive

PCCPCH_Deactive

enum

RxSCCPCH select if SCCPCH ispresented:SCCPCH_Active,SCCPCH_Deactive

SCCPCH_Deactive

enum

SCCPCH_SlotFormat SCCPCH slot format 0 int [0, 17]

SCCPCH_SpreadCode SCCPCH spread code 15 int [0,SpreadFactor-1];Spread factor isset bySCCPCH_SlotFormat

SCCPCH_Carrying common channel thatSCCPCH carries: PCH,NonPCH

NonPCH enum

Name Description Default Type Range

3GPPFDD_DL_Rx_RefCH 9-3

Page 438: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork model is the integrated receiver for UTRA/WCDMA 3GPPdownlink. The basic function is to decode the downlink reference measurementchannel as defined in the 3GPP specification. The signal processing flow coversthe full 3GPP physical layer; it is symmetric to, but in reverse order of, thesignal source. (To view the schematic, push into this model in the schematicwindow.)

Pin Name Description Signal Type

1 inChip input data stream complex

2 inRefDTCH reference DTCH int

3 inRefDCCH reference DCCH int

4 inRefDTCHCoder reference DTCH after channel coding int

5 inRefDCCHCoder reference DCCH after channel coding int

6 inRefDPCHSym reference DPCH symbol real

7 inChM channel information multiple complex

Pin Name Description Signal Type

8 DTCH DTCH data int

9 RefDTCH synchronized reference DTCH int

10 DTCH_CRC DTCH CRC int

11 DCCH DCCH data int

12 RefDCCH synchronized reference DCCH int

13 DCCH_CRC DCCH CRC int

14 DTCHCoder DTCH before channel decoding int

15 RefDTCHCoder synchronized reference DTCH before channeldecoding

int

16 DCCHCoder DCCH before channel decoding int

17 RefDCCHCoder synchronized reference DCCH before channeldecoding

int

18 DPCH DPCH data int

19 RefDPCH synchronized reference DPCH int

9-4 3GPPFDD_DL_Rx_RefCH

Page 439: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. The despread and demodulated bits obtained from the 3GPPFDD_DL_Rakemodel are fed to transport channel processing models (rate de-match, channeldecoding, etc.).

3. The physical channel bit stream is delayed 1 frame (15 slots or 10 msec). Thedelay for each of the two transport channels is equal to the TTI for theassociated transport channel. Therefore, the reference outputs from the sourceare taken as inputs and are delayed in order to align with the decoded bitstream. The delayed data will be discarded for BER/FER measurement.

4. This design can be a template to set up integrated receivers for othermultiplexed services.

5. The TFCI is set as a constant to avoid propagating the TFCI decoding error tofor the final BER performance. There will be a degradation of approximately1dB in BER performance if the TFCI is input from the TFCI decoder. In case theTFCI is variable, it’s better to get the error-free TFCI from the signal source.

6. If the 3GPP signal is S(t), this signal may be delayed t1 by some filters (such asthe Tx RC filters). So, the delayed signal is S(t-t1) and the signal from 0 to t1 iszero and the real 3GPP signal transmission starts from t1. When the delayedsignals pass through a fading channel, the fading factor is applied to the overallsignals starting at time 0. Offset t1 must be known if the receiver of the channelinformation is input from outside; this offset is expressed in terms of samples.

References

[1] see the introduction section.

3GPPFDD_DL_Rx_RefCH 9-5

Page 440: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

3GPPFDD_DPCCH

Description Uplink DPCCH simulationLibrary 3GPPFDD, User EquipmentClass SDF3GPPFDD_DPCCHDerived From 3GPPFDD_ULPCodeSrcBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Scramble scramble code type:LONG, SHORT

LONG enum

SpreadCode index of spread code 0 int [0, SF-1]; SF can be setby SlotFormator equal toSpreadFactor; SF is 256 if forCPICH, PICHor uplinkDPCCH

TFCIField TFCI field on/off switch:On, Off

Off enum

TFCIValue TFCI value 0 int [0, 1023]

TPCValue transmit power controlvalue in hexadecimal

0x5555 int [0, 0x7ffff]

FBIBitsNum number of FBI bits inchannel: FBI0, FBI1, FBI2

FBI1 enum

FBIValue value for FBI bits 1 int [1, 3]

9-6 3GPPFDD_DPCCH

Page 441: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used for uplink DPCCH simulation. This model performs thesame as the Agilent signal generator instrument ESG-D Option 100.

2. Each firing, 2560 tokens are output. The complex output data sequence is thespread and scrambled chips where SpreadCode and ScrambleCode specify thespread and scramble codes. The output sequence is repeated on aframe-by-frame basis.

3. The combined parameters, such as number of FBI bits, TFCI field switch areconverted to the slot format as defined in [1].

4. Hexadecimal TPC values are converted to their binary equivalent. For example,if the TPCValue is set to 0x7F80, it becomes 111 1111 1000 0000. Note thatthere are 15 digits in the binary TPC value. Because one frame contains 15 timeslots, one binary digit is assigned to each time slot (see Figure 9-1). Theassigned bit is then repeated to fill the TPC bit field. Since the example inFigure 9-1 uses two TPC bits per time slot, the values are either 11 or 00.

Figure 9-1. TPC Bits per Time Slot

5. The FBI values are converted into a binary equivalent and filled in each slot.

6. If TFCIField is on, the TFCI value is converted into a 10-bit binary equivalentand coded to 32 bits, then filled in the TFCI field of each slot.

Pin Name Description Signal Type

1 out output data complex

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

11 11 11 11 11 11 11 11 00 00 00 00 00 00 00

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

Binary Value = 111 1111 1000 0000

Hexadecimal Value = 7F80

TimeSlot

TPC Bits

Two Identical TPC Bits per Slot

Frame

3GPPFDD_DPCCH 9-7

Page 442: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

7. DPCCH is always channelized on Q branch.

References

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[3] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

9-8 3GPPFDD_DPCCH

Page 443: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_DPDCH

Description Uplink DPDCH simulationLibrary 3GPPFDD, User EquipmentClass SDF3GPPFDD_DPDCHDerived From 3GPPFDD_ULPCodeSrcBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DataPattern source data pattern:random, PN9, PN15,bits_repeat, user_file

random enum

RepBitValue repeating data value 0xff int [0, 255]

UserFileName user-defined data file name datafile.txt filename

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Scramble scramble code type:LONG, SHORT

LONG enum

SpreadCode index of spread code 0 int [0, SF-1]; SF can be setby SlotFormator equal toSpreadFactor; SF is 256 if forCPICH, PICHor uplinkDPCCH

3GPPFDD_DPDCH 9-9

Page 444: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Pin Outputs

Notes/Equations

1. This model is used to simulate uplink DPDCH.

This model performs the same as the Agilent signal generator instrumentESG-D Option 100.

2. 2560 tokens are output each firing. DPDCH can be channelized on the I branchor the Q branch. The complex output data sequence is the spread and scrambledchips where SpreadCode and ScrambleCode specify the spread and scramblecodes. The output sequence is repeated on a frame-by-frame basis.

3. This model supports 5 data patterns: random, PN9, PN15, fixed repeated 8-bits,and from a user-defined file.

If the data pattern is 8-bits repeating, the bits to be repeated is set byRepBitValue. For example, if RepBitValue is set as 0x7a, bit sequence 0, 1, 1, 1,1, 0, 1, 0 will be output repeatedly.

If data is from a user file, the user file name is specified by UserFileName. Thefile can be edited with any text editor. Separators between bits can be a space,comma, or any other separator. If the bit sequence is shorter than the outputlength, data will be output repeatedly.

References

SymbolRate channel symbol rate:DPDCH_15ksps,DPDCH_30ksps,DPDCH_60ksps,DPDCH_120ksps,DPDCH_240ksps,DPDCH_480ksps,DPDCH_960ksps

DPDCH_15ksps enum

IQbranch I/Q branch that channelmaps on: I, Q

I enum

Pin Name Description Signal Type

1 out output data complex

Name Description Default Type Range

9-10 3GPPFDD_DPDCH

Page 445: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

[3] “Users and Programming Guide, Agilent Technologies ESG Family SignalGenerators Option 100- Volume 2, WCDMA(3GPP 3.1 12-99) Personality”.

3GPPFDD_DPDCH 9-11

Page 446: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

3GPPFDD_HS_Uplink

Description 3GPP uplink integrated signal sourceLibrary 3GPPFDD, User Equipment

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork is an integrated uplink signal source with HS-DPCCH.

The schematic for this subnetwork is shown in Figure 9-2.

Name Description Default Type Range

SpecVerHSDPA version of HSDPAspecifications:Version_09_03

Version_09_03 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleType scramble type: Long, Short Long enum

CQI_Type CQI type: Decimal, Binary Binary enum

Pin Name Description Signal Type

1 ACK coded HARQ Ack information int

2 CQI coded CQI information int

3 HS_Gain gain of HS-DPCCH real

Pin Name Description Signal Type

4 out signal in chips complex

9-12 3GPPFDD_HS_Uplink

Page 447: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 9-2. 3GPPFDD_HS_Uplink Schematic

2. This uplink signal source includes 1 DPDCH, 1 DPCCH, and 1 HS-DPCCH.Slot formats for DPDCH and DPCCH are configured according to referencemeasurement channel 12.2 kbps so that the spread factor for DPDCH is fixed at64. Slot format for DPCCH is 0; gain values for DPDCH and DPCCH are fixedat 1 and 8/15, respectively.

3. Inputs of this source include HARQ-Ack and CQI messages that are channelcoded, modulated, and spread with DPDCH and DPCCH.

4. The HS_Gain input is the envelope ratio between HS-DPCCH and DPCCH.

5. The CQI input, controlled by CQI_Type, can be a decimal or a binary number.

References

[1]3GPP Technical Specification TS 25.211 V5.5.0, “Physical channels andmapping of transport channels onto physical channels (FDD)” Release 5.

[2] 3GPP Technical Specification TS 25.212 V5.6.0 “Multiplexing and channelcoding (FDD)” Release 5.

[3] 3GPP Technical Specification TS 25.213 V5.4.0, “Spreading and modulation(FDD)” Release 5.

3GPPFDD_HS_Uplink 9-13

Page 448: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

3GPPFDD_RF_Downlink_Receiver

Description 3GPP downlink RF receiverLibrary 3GPPFDD, User Equipment

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

RLoad input resistance DefaultROut Ohm real (0, ∞)

FCarrier frequency of carrier 2140e6 Hz real (0, ∞)

Phase demodulator referencephase in degrees

0 deg real (-∞, ∞)

VRef reference voltage foroutput power calibration

3.2921 V real (0, ∞ )

SamplesPerChip samples per chip 8 int [2, 32]

ExcessBW excess bandwidth of raisedcosine filters

0.22 real (0.0, 1.0)

FilterLength length of raised cosinefilters in number of symbols

16 int [2, 128]

RefCh reference measurmentchannel: DL_REF_12_2,DL_REF_64,DL_REF_144,DL_REF_384

DL_REF_12_2 enum

ScrambleCode index of scramble code 0 int [0, 511]

ScrambleOffset scramble offset in downlinkchannels

0 int [0, 15]

ScrambleType scramble type: Normal,RightAlternate,LeftAlternate

Normal enum

9-14 3GPPFDD_RF_Downlink_Receiver

Page 449: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

MaxDelaySample maximum delay boundary,in terms of samples

1 int [0, 2559]

ChannelType select the channel type tobe processed:CH_GAUSSIAN,CH_FADING

CH_GAUSSIAN enum

ChannelInfo fading channel informationsource: Known, Estimated

Known enum

ChannelInfoOffset offset between spreadcode and channelinformation in terms ofsample

0 int [0,MaxDelaySample]

PathSearch path search frequency:EverySlot, Once

Once enum

SearchMethod path search method:Coherent, NonCoherent,Combined

Coherent enum

SearchSlotsNum number of slots for pathsearch

6 int [1, 6]

PathNum number of Rake fingers 1 int [1, 6]

PathDelaySample delay for each finger, interms of samples

0 int array [0,MaxDelaySample]; array size shallbe equal toPathNum

DPCH_SpreadCode spread code index ofDPCH

127 int [0, DPCHSpread Factor-1 ]

CPICH select if CPICH ispresented: CPICH_Active,CPICH_Deactive

CPICH_Deactive enum

RxPCCPCH select if PCCPCH ispresented:PCCPCH_Active,PCCPCH_Deactive

PCCPCH_Deactive

enum

RxSCCPCH select if SCCPCH ispresented:SCCPCH_Active,SCCPCH_Deactive

SCCPCH_Deactive

enum

SCCPCH_SlotFormat SCCPCH slot format 0 int [0, 17]

SCCPCH_SpreadCode SCCPCH spread code 15 int [0, SCCPCHSpreadFactor-1]

SCCPCH_Carrying common channel thatSCCPCH carries: PCH,NonPCH

NonPCH enum

Name Description Default Unit Type Range

3GPPFDD_RF_Downlink_Receiver 9-15

Page 450: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork model is the downlink RF receiver for 3GPP FDD. Thissubnetwork consists of hierarchical models. The timed demodulator is at thefront of this subnetwork; the demodulated I/Q signal is sent to the basebandreceiver.

The schematic for this subnetwork is shown in Figure 9-3.

Pin Name Description Signal Type

1 RFin input RF signal timed

2 DTCH DTCH data int

3 DCCH DCCH data int

4 DPCH DPCH data real

5 inChM channel information multiple complex

Pin Name Description Signal Type

6 DTCHout DTCH data int

7 RefDTCHout synchronized reference DTCH int

8 DTCH_CRC DTCH CRC int

9 DCCHout DCCH data int

10 RefDCCHout synchronized reference DCCH int

11 DCCH_CRC DCCH CRC int

12 DPCHout DPCH data int

13 RefDPCHout synchronized reference DPCH int

9-16 3GPPFDD_RF_Downlink_Receiver

Page 451: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 9-3. 3GPPFDD_RF_Uplink_Receiver Schematic

2. Refer to “3GPPFDD_DL_Rx_RefCH” on page 9-2 and “3GPPFDD_UL_Rake” onpage 6-11 for further information.

3GPPFDD_RF_Downlink_Receiver 9-17

Page 452: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

3GPPFDD_RF_Uplink

Description 3GPP uplink RF signal sourceLibrary 3GPPFDD, User Equipment

Parameters

Name Description Default Unit Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ROut output resistance DefaultROut Ohm real (0, ∞)

FCarrier carrier frequency 1950e6 Hz real (0, ∞)

Power RF output power 0.01 W real [0, ∞)

PhasePolarity if set to Invert, Q channelsignal is inverted:DL_Normal, DL_Invert

DL_Normal enum

GainImbalance gain imbalance, I to Qchannel, in dB

0.0 real (-∞, ∞)

PhaseImbalance phase imbalance, I to Qchannel, in degrees

0.0 real (-∞, ∞)

I_OriginOffset I origin offset in percentwith respect to output rmsvoltage

0.0 real (-∞, ∞)

Q_OriginOffset Q origin offset in percentwith respect to output rmsvoltage

0.0 real (-∞, ∞)

IQ_Rotation IQ rotation in degress 0.0 real (-∞, ∞)

NDensity additive noise density indBm per Hz

-10000 real (-∞, ∞)

SamplesPerChip samples per chip 8 int [2, 32]

ExcessBW excess bandwidth of raisedcosine filters

0.22 real (0, 1)

FilterLength length of raised cosinefilters in number of symbols

16 int [2, 128]

9-18 3GPPFDD_RF_Uplink

Page 453: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This subnetwork model is the uplink RF source for 3GPP FDD. Thissubnetwork integrates the 3GPP FDD uplink baseband source with the timedRF modulator.

The output includes the RF uplink signal source, as well as reference basebandsignals for EVM and BER measurements.

The schematic for this subnetwork is shown in Figure 9-4.

RefCh reference measurementchannel: UL_REF_12_2,UL_REF_64,UL_REF_144,UL_REF_384_10,UL_REF_384_20,UL_REF_768,UL_REF_2048

UL_REF_12_2 enum

DPCCH_SltFmt DPCCH slot format 0 int [0, 5]

ScrambleType scramble type: Long, Short Long enum

ScrambleCode index of scramble code 0 int [0, 16777215]

GainIndex gain index 11 int [0, 15]

Pin Name Description Signal Type

1 RFout output RF signal timed

2 EVMRef reference signal for EVM complex

3 DTCH DTCH data int

4 DCCH DCCH data int

5 DPDCH DPDCH data multiple int

Name Description Default Unit Type Range

3GPPFDD_RF_Uplink 9-19

Page 454: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Figure 9-4. 3GPPFDD_RF_Uplink Schematic

2. Refer to “3GPPFDD_UL_Source” on page 9-61 for more information.

9-20 3GPPFDD_RF_Uplink

Page 455: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_UL_12_2

Description 3GPP uplink reference measurement channel 12.2 kbpsLibrary 3GPPFDD, User Equipment

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

3GPPFDD_UL_12_2 9-21

Page 456: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Pin Outputs

Notes/Equations

1. This subnetwork model is used to provide fully coded source of uplink 12.2 kbpsreference measurement channel as is defined in [1]. The schematic for thissubnetwork is shown in Figure 9-5.

2. Parameters for the UL 12.2 kbps reference channel are listed in Table 9-1 andTable 9-2.

FBIDataPattern FBI source data pattern:FBI_random, FBI_PN9,FBI_PN15,FBI_bits_repeat,FBI_user_file

FBI_random enum

FBIRepBitValue FBI repeating data value 0xff int [0, 255]

FBIUserFileName FBI user-defined data filename

datafile.txt filename

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleType scramble type: Long, Short Long enum

DPCCH_SltFmt DPCCH slot format 0 int [0, 5]

Pin Name Description Signal Type

1 out signal in chips complex

2 DTCH DTCH data int

3 DCCH DCCH data int

Name Description Default Type Range

9-22 3GPPFDD_UL_12_2

Page 457: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 9-5. 3GPPFDD_UL_12_2 Schematic

Table 9-1. UL 12.2 kbps Reference Measurement ChannelPhysical Parameters

Parameter Unit Level

Information bit rate kbps 12.2

DPDCH kbps 60

DPCCH kbps 15

DPCCH Slot Format #i 0

DPCCH/DPDCH power ratio dB -5.46

TFCI On

Repetition % 23

Table 9-2. UL 12.2 kbps Reference Measurement Channel,Transport Channel Parameters

Parameters DTCH DCCH

Transport Channel Number 1 2

Transport Block Size 244 100

Transport Block Set Size 244 100

Transmission Time Interval 20 ms 40 ms

Type of Error Protection ConvolutionCoding

ConvolutionCoding

3GPPFDD_UL_12_2 9-23

Page 458: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

3. DTCH and DCCH data are generated by transport channel source model3GPPFDD_TrCHSrc. After channel coding, illustrated in Figure 9-6, thededicated physical data channel and dedicated physical control channel arespread and scrambled by 3GPPFDD_ULSpread. The scramble code isdetermined by the ScrambleCode and ScrambleType parameters. Theamplitude of complex output is normalized to 1. Reference DCCH and DTCHare output from the original transport channel source.

4. A group of parameters of data pattern are used to determine the contents ofDCCH and DTCH, and data filled in TPC and FBI fields. The DPCCH_SltFmtvalue determines the DPCCH slot format.

Figure 9-6. Channel Coding of UL Reference Measurement Channel (12.2 kbps)

Coding Rate 1/3 1/3

Static Rate Matching parameter 1.0 1.0

Size of CRC 16 12

Table 9-2. UL 12.2 kbps Reference Measurement Channel,Transport Channel Parameters

Parameters DTCH DCCH

9-24 3GPPFDD_UL_12_2

Page 459: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[3] 3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[4] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

3GPPFDD_UL_12_2 9-25

Page 460: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

3GPPFDD_UL_144

Description 3GPP uplink reference measurement channel 144 kbpsLibrary 3GPPFDD, User Equipment

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

9-26 3GPPFDD_UL_144

Page 461: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This subnetwork model is used to provide fully coded source of uplink 144 kbpsreference measurement channel that is defined in [1]. The schematic for thissubnetwork is shown in Figure 9-7.

2. Parameters for the UL 144 kbps reference channel are listed in Table 9-3 andTable 9-4.

FBIDataPattern FBI source data pattern:FBI_random, FBI_PN9,FBI_PN15,FBI_bits_repeat,FBI_user_file

FBI_random enum

FBIRepBitValue FBI repeating data value 0xff int [0, 255]

FBIUserFileName FBI user-defined data filename

datafile.txt filename

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleType scramble type: Long, Short Long enum

DPCCH_SltFmt DPCCH slot format 0 int [0, 5]

Pin Name Description Signal Type

1 out signal in chips complex

2 DTCH DTCH data int

3 DCCH DCCH data int

Name Description Default Type Range

3GPPFDD_UL_144 9-27

Page 462: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Figure 9-7. 3GPPFDD_UL_144 Schematic

Table 9-3. UL 144 kbps Reference Measurement Channel,Physical Parameters

Parameter Unit Level

Information bit rate kbps 144

DPDCH kbps 480

DPCCH kbps 15

DPCCH slot format #i 0

DPCCH/DPDCH power ratio dB -11.48

TFCI On

Repetition % 8

Table 9-4. UL 144 kbps Reference Measurement Channel,Transport Channel Parameters

Parameters DTCH DCCH

Transport channel number 1 2

Transport block size 2880 100

transport block set size 2880 100

Transmission time interval 20 ms 40 ms

Type of error protection Turbo Coding Convolution Coding

Coding rate 1/3 1/3

9-28 3GPPFDD_UL_144

Page 463: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3. DTCH and DCCH data are generated by transport channel source model3GPPFDD_TrCHSrc. After channel coding, illustrated in Figure 9-8, thededicated physical data channel and dedicated physical control channel arespread and scrambled by 3GPPFDD_ULSpread. The scramble code isdetermined by the ScrambleCode and ScrambleType parameters. Theamplitude of complex output is normalized to 1. Reference DCCH and DTCHare output from the original transport channel source.

4. A group of parameters of data pattern are used to determine the contents ofDCCH and DTCH, and data filled in TPC and FBI fields. The DPCCH_SltFmtvalue determines the DPCCH slot format.

Figure 9-8. Channel Coding of UL 144 kbps Reference Measurement Channel

References

Static rate matching parameter 1.0 1.0

Size of CRC 16 12

Table 9-4. UL 144 kbps Reference Measurement Channel,Transport Channel Parameters

Parameters DTCH DCCH

3GPPFDD_UL_144 9-29

Page 464: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

[1]3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[3] 3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[4] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

9-30 3GPPFDD_UL_144

Page 465: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_UL_2M

Description 3GPP uplink reference measurement channel 2048 kbpsLibrary 3GPPFDD, User Equipment

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

3GPPFDD_UL_2M 9-31

Page 466: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Pin Outputs

Notes/Equations

1. This subnetwork model is used to provide fully coded source of an uplink 2048kbps reference measurement channel that is defined in [1]. The schematic forthis subnetwork, shown in Figure 9-9, is the same as for other uplink referencemeasurement channels.

2. Parameters for the UL 2048 kbps reference channel are listed in Table 9-5 andTable 9-6.

3. DTCH and DCCH data are generated by transport channel source model3GPPFDD_TrCHSrc. After channel coding (illustrated in Figure 9-10) thededicated physical data channel and dedicated physical control channel arespread and scrambled by 3GPPFDD_ULSpread. The scramble code isdetermined by the ScrambleCode and ScrambleType parameters. Theamplitude of complex output is normalized to 1. Reference DCCH and DTCHare output from the original transport channel source.

FBIDataPattern FBI source data pattern:FBI_random, FBI_PN9,FBI_PN15,FBI_bits_repeat,FBI_user_file

FBI_random enum

FBIRepBitValue FBI repeating data value 0xff int [0, 255]

FBIUserFileName FBI user-defined data filename

datafile.txt filename

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleType scramble type: Long, Short Long enum

DPCCH_SltFmt DPCCH slot format 0 int [0, 5]

Pin Name Description Signal Type

1 out signal in chips complex

2 DTCH DTCH data int

3 DCCH DCCH data int

Name Description Default Type Range

9-32 3GPPFDD_UL_2M

Page 467: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

A group of parameters of data pattern are used to determine the contents ofDCCH and DTCH, and data filled in TPC and FBI fields. The DPCCH_SltFmtvalue determines the DPCCH slot format.

Please note, some numbers listed in Annex A.6 of [1] are different than thoseused in Figure 9-10. The Turbo coding input size must be 164505; therefore, theTurbo coding output is 493911. The DTCH radio frame size must be 61739;consequently the puncturing rate must be 7% instead of 1%. These numbers arecorrected in [2].

Figure 9-9. 3GPPFDD_UL_2M Schematic

Table 9-5. UL 2048 kbps Reference Measurement Channel,Physical Parameters

Parameter Unit Level

Information bit rate kbps 2048

DPDCH kbps 960*6

DPCCH kbps 15

DPCCH/DPDCH power ratio dB -9.54

TFCI On

Puncturing % 7

3GPPFDD_UL_2M 9-33

Page 468: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Table 9-6. UL 2048 kbps Reference Measurement Channel,Transport Channel Parameters

Parameters DTCH DCCH

Transport channel number 1 2

Transport block size 4096 100

Transport block set size 4096*40 100

Transmission time interval 80 ms 40 ms

Type of error protection Turbo Coding Convolution Coding

Coding rate 1/3 1/3

Static rate matching parameter 1.0 1.0

Size of CRC 16 12

9-34 3GPPFDD_UL_2M

Page 469: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 9-10. Uplink 2048 kbps Channel Coding

References

[1]3GPP Technical Specification TS 25.141 V3.9.0, Base station conformancetesting (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25141-390.zip

3GPPFDD_UL_2M 9-35

Page 470: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

3GPPFDD_UL_384_TTI10

Description 3GPP uplink reference measurement channel 384 kbps, TTI=10msLibrary 3GPPFDD, User Equipment

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

9-36 3GPPFDD_UL_384_TTI10

Page 471: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This subnetwork model is used to provide fully coded source of uplink 384 kbps,10 ms TTI reference measurement channel that is defined in [1]. The schematicfor this subnetwork is shown in Figure 9-11.

2. Parameters for the UL 384 kbps, 10 ms TTI reference channel are listed inTable 9-7 and Table 9-8.

3. DTCH and DCCH data are generated by transport channel source model3GPPFDD_TrCHSrc. After channel coding, illustrated in Figure 9-12, thededicated physical data channel and dedicated physical control channel arespread and scrambled by 3GPPFDD_ULSpread. The scramble code isdetermined by the ScrambleCode and ScrambleType parameters. Theamplitude of complex output is normalized to 1. Reference DCCH and DTCHare output from the original transport channel source.

A group of parameters of data pattern are used to determine the contents ofDCCH and DTCH, and data filled in TPC and FBI fields. The DPCCH_SltFmtvalue determines the DPCCH slot format.

FBIDataPattern FBI source data pattern:FBI_random, FBI_PN9,FBI_PN15,FBI_bits_repeat,FBI_user_file

FBI_random enum

FBIRepBitValue FBI repeating data value 0xff int [0, 255]

FBIUserFileName FBI user-defined data filename

datafile.txt filename

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleType scramble type: Long, Short Long enum

DPCCH_SltFmt DPCCH slot format 0 int [0, 5]

Pin Name Description Signal Type

1 out signal in chips complex

2 DTCH DTCH data int

3 DCCH DCCH data int

Name Description Default Type Range

3GPPFDD_UL_384_TTI10 9-37

Page 472: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Figure 9-11. 3GPPFDD_UL_384_TTI10 Schematic

Table 9-7. UL 384 kbps, 10 ms TTI Reference Measurement Channel,Physical Parameters

Parameter Unit Level

Information bit rate kbps 384

DPDCH kbps 960

DPCCH kbps 15

DPCCH/DPDCH power ratio dB -11.48

TFCI On

Puncturing % 18

Table 9-8. UL 384 kbps, 10ms TTI Reference Measurement Channel,Transport Channel Parameters

Parameter DTCH DCCH

Transport Channel Number 1 2

Transport Block Size 3840 100

Transport Block Set Size 3840 100

Transmission Time Interval 10 ms 40 ms

Type of Error Protection Turbo Coding Convolution Coding

Coding Rate 1/3 1/3

9-38 3GPPFDD_UL_384_TTI10

Page 473: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 9-12. Channel Coding of UL 384 kbps, 10 ms TTI Reference MeasurementChannel

References

[1]3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

Static Rate Matching parameter 1.0 1.0

Size of CRC 16 12

Table 9-8. UL 384 kbps, 10ms TTI Reference Measurement Channel,Transport Channel Parameters (continued)

Parameter DTCH DCCH

3GPPFDD_UL_384_TTI10 9-39

Page 474: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

[3] 3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[4] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

9-40 3GPPFDD_UL_384_TTI10

Page 475: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_UL_384_TTI20

Description 3GPP uplink reference measurement channel 384 kbps, TTI=20msLibrary 3GPPFDD, User Equipment

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

3GPPFDD_UL_384_TTI20 9-41

Page 476: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Pin Outputs

Notes/Equations

1. This subnetwork model is used to provide fully coded source of uplink 384 kbps,20 ms TTI reference measurement channel that is defined in [1]. The schematicfor this subnetwork is shown in Figure 9-13.

2. Parameters for the UL 384 kbps, 20ms TTI reference channel are listed inTable 9-9 and Table 9-10.

3. DTCH and DCCH data are generated by transport channel source model3GPPFDD_TrCHSrc. After channel coding, illustrated in Figure 9-14, thededicated physical data channel and dedicated physical control channel arespread and scrambled by 3GPPFDD_ULSpread. The scramble code isdetermined by the ScrambleCode and ScrambleType parameters. Theamplitude of complex output is normalized to 1. Reference DCCH and DTCHare output from the original transport channel source.

A group of parameters of data pattern are used to determine the contents ofDCCH and DTCH, and data filled in TPC and FBI fields. The DPCCH_SltFmtvalue determines the DPCCH slot format.

FBIDataPattern FBI source data pattern:FBI_random, FBI_PN9,FBI_PN15,FBI_bits_repeat,FBI_user_file

FBI_random enum

FBIRepBitValue FBI repeating data value 0xff int [0, 255]

FBIUserFileName FBI user-defined data filename

datafile.txt filename

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleType scramble type: Long, Short Long enum

DPCCH_SltFmt DPCCH slot format 0 int [0, 5]

Pin Name Description Signal Type

1 out signal in chips complex

2 DTCH DTCH data int

3 DCCH DCCH data int

Name Description Default Type Range

9-42 3GPPFDD_UL_384_TTI20

Page 477: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 9-13. 3GPPFDD_UL_384_TTI20 Schematic

Table 9-9. UL 384 kbps, 20 ms TTI Reference Measurement Channel,Physical Parameters

Parameter Unit Level

Information bit rate kbps 384

DPDCH kbps 960

DPCCH kbps 15

DPCCH Slot Format #i 0

DPCCH/DPDCH power ratio dB -11.48

TFCI On

Puncturing % 18

Table 9-10. UL 384 kbps, 20 ms TTI Reference Measurement Channel,Transport Channel Parameters

Parameter DTCH DCCH

Transport channel number 1 2

Transport block size 3840 100

Transport block set size 7680 100

Transmission time interval 20 ms 40 ms

Type of error protection Turbo Coding Convolution Coding

Coding rate 1/3 1/3

3GPPFDD_UL_384_TTI20 9-43

Page 478: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Figure 9-14. UL 384 kbps, 20ms TTI Reference Measurement Channel Coding

References

[1]3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[3] 3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

Static rate matching parameter 1.0 1.0

Size of CRC 16 12

Table 9-10. UL 384 kbps, 20 ms TTI Reference Measurement Channel,Transport Channel Parameters (continued)

Parameter DTCH DCCH

9-44 3GPPFDD_UL_384_TTI20

Page 479: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[4] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

3GPPFDD_UL_384_TTI20 9-45

Page 480: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

3GPPFDD_UL_64

Description 3GPP uplink reference measurement channel 64 kbpsLibrary 3GPPFDD, User Equipment

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

9-46 3GPPFDD_UL_64

Page 481: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This subnetwork model is used to provide fully-coded source of uplink 64 kbpsreference measurement channel that is defined in [1]. The schematic for thissubnetwork is shown in Figure 9-15.

2. Parameters for the UL 64 kbps reference channel are listed in Table 9-11 andTable 9-12.

3. DTCH and DCCH data are generated by transport channel source model3GPPFDD_TrCHSrc. After channel coding, illustrated in Figure 9-16, thededicated physical data channel and dedicated physical control channel arespread and scrambled by 3GPPFDD_ULSpread. The scramble code isdetermined by ScrambleCode and ScrambleType parameters. The amplitude ofcomplex output is normalized to 1. Reference DCCH and DTCH are output fromthe original transport channel source.

A group of parameters of data pattern are used to determine the contents ofDCCH and DTCH, and data filled in TPC and FBI fields. The DPCCH_SltFmtvalue determines the DPCCH slot format.

FBIDataPattern FBI source data pattern:FBI_random, FBI_PN9,FBI_PN15,FBI_bits_repeat,FBI_user_file

FBI_random enum

FBIRepBitValue FBI repeating data value 0xff int [0, 255]

FBIUserFileName FBI user-defined data filename

datafile.txt filename

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleType scramble type: Long, Short Long enum

DPCCH_SltFmt DPCCH slot format 0 int [0, 5]

Pin Name Description Signal Type

1 out signal in chips complex

2 DTCH DTCH data int

3 DCCH DCCH data int

Name Description Default Type Range

3GPPFDD_UL_64 9-47

Page 482: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Figure 9-15. 3GPPFDD_UL_64 Schematic

Table 9-11. UL 64 kbps Reference Measurement Channel,Physical Parameters

Parameter Unit Level

Information bit rate kbps 64

DPDCH kbps 240

DPCCH kbps 15

DPCCH Slot Format #i 0

DPCCH/DPDCH power ratio dB -9.54

TFCI On

Repetition % 18

Table 9-12. UL 64 kbps Reference Measurement Channel,Transport Channel Parameters

Parameter DTCH DCCH

Transport Channel Number 1 2

Transport Block Size 1280 100

Transport Block Set Size 1280 100

Transmission Time Interval 20 ms 40 ms

Type of Error Protection Turbo Coding Convolution Coding

Coding Rate 1/3 1/3

9-48 3GPPFDD_UL_64

Page 483: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 9-16. UL 64 kbps Reference Measurement Channel Coding

References

[1]3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[3] 3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

Static Rate Matching parameter 1.0 1.0

Size of CRC 16 12

Table 9-12. UL 64 kbps Reference Measurement Channel,Transport Channel Parameters (continued)

Parameter DTCH DCCH

3GPPFDD_UL_64 9-49

Page 484: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[4] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

9-50 3GPPFDD_UL_64

Page 485: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_UL_768

Description 3GPP uplink reference measurement channel 768 kbpsLibrary 3GPPFDD, User Equipment

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

3GPPFDD_UL_768 9-51

Page 486: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Pin Outputs

Notes/Equations

1. This subnetwork model is used to provide fully coded source of uplink 768 kbpsreference measurement channel that is defined in [1]. The schematic for thissubnetwork is shown in Figure 9-17.

2. Parameters for the UL 768 kbps reference channel are listed in Table 9-13 andTable 9-14.

3. DTCH and DCCH data are generated by transport channel source model3GPPFDD_TrCHSrc. After channel coding, the dedicated physical data channeland dedicated physical control channel are spread and scrambled by3GPPFDD_ULSpread. The scramble code is determined by the ScrambleCodeand ScrambleType parameters. The amplitude of complex output is normalizedto 1. Reference DCCH and DTCH are output from the original transportchannel source.

A group of parameters of data pattern are used to determine the contents ofDCCH and DTCH, and data filled in TPC and FBI fields. The DPCCH_SltFmtvalue determines the DPCCH slot format.

FBIDataPattern FBI source data pattern:FBI_random, FBI_PN9,FBI_PN15,FBI_bits_repeat,FBI_user_file

FBI_random enum

FBIRepBitValue FBI repeating data value 0xff int [0, 255]

FBIUserFileName FBI user-defined data filename

datafile.txt filename

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleType scramble type: Long, Short Long enum

DPCCH_SltFmt DPCCH slot format 0 int [0, 5]

Pin Name Description Signal Type

1 out signal in chips complex

2 DTCH DTCH data int

3 DCCH DCCH data int

Name Description Default Type Range

9-52 3GPPFDD_UL_768

Page 487: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 9-17. 3GPPFDD_UL_768 Schematic

Table 9-13. UL 768 kbps Reference Measurement Channel,Physical Parameters

Parameter Unit Level

Information bit rate kbps 2 × 384

DPDCH1 kbps 960

DPDCH2 kbps 960

DPCCH kbps 15

DPCCH/DPDCH power ratio dB -11.48

TFCI On

Puncturing % 18

Table 9-14. UL 768 kbps Reference Measurement Channel,Transport Channel Parameters

Parameter DTCH DCCH

Transport Channel Number 1 2

Transport Block Size 3840 100

Transport Block Set Size 7680 100

Transmission Time Interval 10 ms 40 ms

Type of Error Protection Turbo Coding Convolution Coding

3GPPFDD_UL_768 9-53

Page 488: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

References

[1]3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[3] 3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[4] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

Coding Rate 1/3 1/3

Static Rate Matching parameter 1.0 1.0

Size of CRC 16 12

Table 9-14. UL 768 kbps Reference Measurement Channel,Transport Channel Parameters (continued)

Parameter DTCH DCCH

9-54 3GPPFDD_UL_768

Page 489: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_UL_RACH

Description 3GPP uplink RACHLibrary 3GPPFDD, User Equipment

Parameters

Pin Outputs

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

RACHDataPattern RACH source data pattern:RACH_random,RACH_PN9, RACH_PN15,RACH_bits_repeat,RACH_user_file

RACH_random enum

RACHRepBitValue RACH repeating data value 0xff int [0, 255]

RACHUserFileName RACH user-defined datafile name

datafile.txt filename

RACHBlockSize RACH transport block size:RACH_168, RACH_360

RACH_168 enum

PrmblSgntr Preamble Signature 0 int [0, 15]

DPDCHGain DPDCH gain 1.0 real (-∞, ∞)

DPCCHGain DPCCH gain 1.0 real (-∞, ∞)

Pin Name Description Signal Type

1 out signal in chips complex

2 RACH RACH data out int

3GPPFDD_UL_RACH 9-55

Page 490: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Notes/Equations

1. This subnetwork model provides the RACH signal source. The actual values oftransport channel characteristics are obtained from [2]. The schematic for thissubnetwork is shown in Figure 9-18.

Figure 9-18. 3GPPFDD_UL_RACH Schematic

2. The transport channel parameters are:

Transport block size: NRACH=168 or 360 bitsCRC: 16 bitsCoding: CC, coding rate = 1/2TTI: 20 msMinimum spreading factor: 32

3. The transport channel coding is illustrated in Figure 9-19.

4. The DPDCH bit rates are 30 and 60 kbps for transport block size of 168 and 360bits, respectively. The repeat rate is 56.25% after rate matching.

9-56 3GPPFDD_UL_RACH

Page 491: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 9-19. UL RACH Channel Coding

References

[1]3GPP Technical Specification TS 25.944 V3.0.0 “Multiplexing and channelcoding (FDD)” Release 1999.

[2] 3GPP Technical Specification TS 25.944 V3.3.0 “Multiplexing and channelcoding (FDD)” Release 1999.

Transport Block

CRC Attachment

TrBk Concatenation

Tail Bit Attachment

ConvolutionalCoding R=1/3

First Interleaving

Radio FrameSegmentation

Rate Matching

148

148

CRC

Tail

164

164 × B 8 × B

516 × B

516 × B

129 × B 129 × B 129 × B 129 × B

129 × B + NRM1 129 × B + NRM2 129 × B + NRM3 129 × B + NRM4

B TrBks (B=0,1)

16

#1 #2 #3 #4

#1 #2 #3 #4

To TrCh Multiplexing

3GPPFDD_UL_RACH 9-57

Page 492: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

3GPPFDD_UL_RefCh

Description 3GPP uplink integrated reference measurement channelLibrary 3GPPFDD, User Equipment

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

9-58 3GPPFDD_UL_RefCh

Page 493: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This subnetwork model is used to provide an integrated signal source. Userscan select the reference measurement channel; output is identical to theindependent reference measurement channel. The schematic for thissubnetwork is shown in Figure 9-20.

FBIDataPattern FBI source data pattern:FBI_random, FBI_PN9,FBI_PN15,FBI_bits_repeat,FBI_user_file

FBI_random enum

FBIRepBitValue FBI repeating data value 0xff int [0, 255]

FBIUserFileName FBI user-defined data filename

datafile.txt filename

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleType scramble type: Long, Short Long enum

DPCCH_SltFmt DPCCH slot format 0 int [0, 5]

RefCh reference measurementchannel: UL_REF_12_2,UL_REF_64,UL_REF_144,UL_REF_384_10,UL_REF_384_20,UL_REF_768,UL_REF_2048

UL_REF_12_2 enum

Pin Name Description Signal Type

1 out signal in chips complex

2 DTCH DTCH data int

3 DCCH DCCH data int

Name Description Default Type Range

3GPPFDD_UL_RefCh 9-59

Page 494: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Figure 9-20. 3GPPFDD_UL_RefCh Schematic

References

[1]3GPP Technical Specification TS 25.101 V3.10.0, UE Radio transmission andreception (FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

[2] 3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[3] 3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[4] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

9-60 3GPPFDD_UL_RefCh

Page 495: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_UL_Source

Description 3GPP uplink integrated signal sourceLibrary 3GPPFDD, User Equipment

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

DTCHDataPattern DTCH source data pattern:DTCH_random,DTCH_PN9, DTCH_PN15,DTCH_bits_repeat,DTCH_user_file

DTCH_random enum

DTCHRepBitValue DTCH repeating data value 0xff int [0, 255]

DTCHUserFileName DTCH user-defined datafile name

datafile.txt filename

DCCHDataPattern DCCH source data pattern:DCCH_random,DCCH_PN9,DCCH_PN15,DCCH_bits_repeat,DCCH_user_file

DCCH_random enum

DCCHRepBitValue DCCH repeating datavalue

0xff int [0, 255]

DCCHUserFileName DCCH user-defined datafile name

datafile.txt filename

TPCDataPattern source data pattern:TPC_random, TPC_PN9,TPC_PN15,TPC_bits_repeat,TPC_user_file

TPC_random enum

TPCRepBitValue TPC repeating data value 0xff int [0, 255]

TPCUserFileName TPC user-defined data filename

datafile.txt filename

3GPPFDD_UL_Source 9-61

Page 496: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Pin Outputs

FBIDataPattern FBI source data pattern:FBI_random, FBI_PN9,FBI_PN15,FBI_bits_repeat,FBI_user_file

FBI_random enum

FBIRepBitValue FBI repeating data value 0xff int [0, 255]

FBIUserFileName FBI user-defined data filename

datafile.txt filename

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

ScrambleType scramble type: Long, Short Long enum

DPCCH_SltFmt DPCCH slot format 0 int [0, 5]

RefCh reference measurmentchannel: UL_REF_12_2,UL_REF_64,UL_REF_144,UL_REF_384_10,UL_REF_384_20,UL_REF_768,UL_REF_2048

UL_REF_12_2 enum

GainUnit gain unit in index [0,15] ormanually set value: Index,Value

Index enum

GainIndex gain index 15 int [0, 15]

DPDCHGainFactor gain factor forDPDCH(used whileGainUnit=Value)

1.0 real (-∞, ∞)

DPCCHGainFactor gain factor forDPCCH(used whileGainUnit=Value)

1.0 real (-∞, ∞)

Pin Name Description Signal Type

1 out signal in chips complex

2 DTCH DTCH data int

3 DCCH DCCH data int

4 DTCHCoderOut coded bits of DTCH int

5 DCCHCoderOut coded bits of DCCH int

6 DPDCHData DPDCH data fields bits multiple int

Name Description Default Type Range

9-62 3GPPFDD_UL_Source

Page 497: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This subnetwork model is used to simulate integrated user equipment signalsource. With this subnetwork model, a reference measurement channel signalas defined in 3GPP TS 25.101 can be generated.

(To view the schematic for this subnetwork, push into the component symbol inthe schematic window.)

2. Users can set the DPDCH/DPCCH power ratio with this subnetwork. GainUnitis used to specify the method for calculating the DPDCH/DPCCH power ratio.When GainUnit = Index, the gain factors of DPDCH and DPCCH are calculatedaccording to the value of GainIndex. When GainUnit = Value, the gain factors ofDPDCH and DPCCH are calculated according to the values ofDPDCHGainFactor and DPCCHGainFactor. Note that if referencemeasurement channels defined in TS 25.101 are required, GainIndex must beset according to Table 9-15.

3. DPDCHData pin 6 outputs bits of each DPDCH; the width of this multi-pin iscontrolled by the DPDCHNum parameter in this subnetwork. The real DPDCHnumber is determined by the rate matching algorithm (maximum is 6); ifDPDCHNum is set to a larger value, the additional DPDCH will be filled with0; if DPDCHNum is set to a smaller value, simulation will not be successful.

The real DPDCH number may change from 1 to 6 when channel parameterssuch as block size and block set size are modified. In order for users to modifythose parameters without calculating the real DPDCH number manually,DPDCHNum is set to 6 in this subnetwork.

Table 9-15. GainIndex Value

Reference Measurement Channel GainIndex Value

12.2 kbps 8

64 kbps 5

144 kbps 4

384 kbps, 20ms TTI 4

384 kbps, 10ms TTI 4

768 kbps 4

3GPPFDD_UL_Source 9-63

Page 498: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

4. Pins DCCHCoderOut and DTCHCoderOut output DCCH and DTCH bits afterchannel coding. Pins DCCH and DTCH output the original DCCH and DTCHbits.

5. DCCH, DTCH, FBI and TPC data patterns parameters can be modified by theuser.

Refer to “3GPPFDD_DataPattern” on page 5-8 regarding setting theseparameters.

6. In uplink, the slot format of DTCH will be determined by rate matchingalgorithm, while the slot format of DCCH is be given by higher layers. In thismodel, DPCCH_SltFmt is used to specify the DCCH slot format.

References

[1]3GPP Technical Specification TS 34.101 V3.2.0 “UE Radio transmission andReception (FDD),” March 2000.

9-64 3GPPFDD_UL_Source

Page 499: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_UpLinkRF

Description 3GPP FDD uplink signal sourceLibrary 3GPPFDD, User Equipment

Parameters

Name Description Default Sym Unit Type Range

ROut Source resistance DefaultROut Ohm real (0, ∞)

RTemp Temperature DefaultRTemp Celsius real [-273.15, ∞)

TStep Expression showing howTStep is related to theother source parameters

1/3.84MHz/SamplesPerChip

string

FCarrier Carrier frequency 1950 MHz Hz real (0, ∞)

Power Power dbmtow(24.0) W real [0, ∞)

MirrorSpectrum Mirror spectrum aboutcarrier? NO, YES

NO enum

GainImbalance Gain imbalance, Q vs I(dB)

0.0 dB real (-∞, ∞)

PhaseImbalance Phase imbalance, Q vs I 0.0 deg real (-∞, ∞)

I_OriginOffset I origin offset (percent) 0.0 real (-∞, ∞)

Q_OriginOffset Q origin offset (percent) 0.0 real (-∞, ∞)

IQ_Rotation IQ rotation 0.0 deg real (-∞, ∞)

SamplesPerChip Samples per chip 8 S int [2, 32]

RRC_FilterLength RRC filter length (chips) 16 int [2, 128]

SpecVersion Specification version:Version 03_00, Version12_00, Version 03_02

Version 12_00 enum

SourceType Source type: UL_12_2,UL_768

UL_12_2 enum

3GPPFDD_UpLinkRF 9-65

Page 500: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Pin Outputs

Notes/Equations

1. This 3GPP FDD uplink signal source generates a 12.2 and 768 kbps uplink RFsignal with one dedicated transport channel (DTCH) and one dedicated controlchannel (DCCH). The RF signal has a chip rate of 3.84 MHz. The uplink is fromthe user equipment to the base station.

To use this source RF carrier frequency (FCarrier) and power (Power) must beset.

RF impairments can be introduced by setting the ROut, RTemp,MirrorSpectrum, GainImbalance, PhaseImbalance, I_OriginOffset,Q_OriginOffset, and IQ_Rotation parameters.

3GPP FDD signal characteristics can be specified by setting theRRC_FilterLength, SpecVersion, and SourceType parameters.

Note While the function of this model is similar to 3GPPFDD_RF_Uplink.some parameter and output pins are different.

2. This signal source includes a DSP block, an RF modulator, and RF outputresistance as illustrated in Figure 9-21.

Figure 9-21. Signal Source Block Diagram

The ROut and RTemp parameters are used by the RF output resistance. TheFCarrier, Power, MirrorSpectrum, GainImbalance, PhaseImbalance,I_OriginOffset, Q_OriginOffset, and IQ_Rotation parameters are used by the

Pin Name Description Signal Type

1 RF RF output timed

2 I I symbols real

3 Q Q symbols real

DSPRFModulator

RF OutputResistance

RFOutput

Q Chips

I Chips

9-66 3GPPFDD_UpLinkRF

Page 501: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

RF modulator. The remaining signal source parameters are used by the DSPblock.

The RF output from the signal source is at the frequency specified (FCarrier),with the specified source resistance (ROut) and with power (Power) deliveredinto a matched load of resistance ROut. The RF signal has additive Gaussiannoise power set by the resistor temperature (RTemp).

The I and Q outputs are baseband outputs with zero source resistance andcontain the unfiltered I and Q chips available at the RF modulator input.Because the I And Q outputs are from the RF modulator inputs, the RF outputsignal has a time delay relative to the I and Q chips. This RF time delay(RF_Delay) is related to the RRC_FilterLength parameter value.

RF_Delay = RRC_FilterLength/(3.84e6)/2 sec.

3. This 3GPP FDD signal source model is compatible with Agilent E4438C ESGVector Signal Generator, Option 400 (3GPP W-CDMA Firmware Option for theE4438C ESG Vector Signal Generator).

Details regarding Agilent E4438C ESG for 3GPP FDD are included at thewebsite http://www.agilent.com/find/esg

4. Regarding the 3GPP uplink signal frame structure, one frame has a timeduration of 10 msec and consists of 15 slots. Each slot corresponds to one powercontrol period and contains 2560 chips.

There are two types of uplink dedicated physical channels - uplink dedicatedphysical data channel (uplink DPDCH) and uplink dedicated physical controlchannel (uplink DPCCH). These channels are I/Q code multiplexed within eachradio frame.

Uplink DPDCH is used to carry the DCH transport channel. There may be zero,one, or several uplink DPDCHs on each radio link.

Uplink DPCCH is used to carry control information generated at Layer 1. TheLayer 1 control information consists of known pilot bits to support channelestimation for coherent detection, transmit power-control (TPC) commands,feedback information (FBI), and an optional transport-format combinationindicator (TFCI). The TFCI informs the receiver about the instantaneoustransport format combination of the transport channels mapped to thesimultaneously transmitted uplink DPDCH radio frame. There is only oneuplink DPCCH on each radio link.

3GPPFDD_UpLinkRF 9-67

Page 502: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

The frame structure of the uplink dedicated physical channels is illustrated inFigure 9-22 illustrates. Table 9-17, Table 9-18, Table 9-21, and Table 9-22provide more information about each field.

Figure 9-22. 12.2 kbps Uplink Channel Frame Structure

5. Parameter Details

• ROut is the RF output source resistance.

• RTemp is the RF output source resistance temperature in Celsius and setsthe noise density in the RF output signal to (k(RTemp+273.15)) Watts/Hz,where k is Boltzmann’s constant.

• FCarrier is the RF output signal frequency.

• Power is the RF output signal power delivered into a matched load ofresistance ROut.

• MirrorSpectrum is used to mirror the RF_out signal spectrum about thecarrier. This is equivalent to conjugating the complex RF envelope voltage.

Depending on the configuration and number of mixers in an RF transmitter,the RF output signal from hardware RF generators can be inverted. If suchan RF signal is desired, set this parameter to YES.

• GainImbalance, PhaseImbalance, I_OriginOffset, Q_OriginOffset, andIQ_Rotation are used to add certain impairments to the ideal output RFsignal. Impairments are added in the order described here.

The unimpaired RF I and Q envelope voltages have gain and phaseimbalance applied. The RF is given by:

TPCNTPC bits

Tslot = 2560 chips, 10 bits

Slot #0 Slot #1 Slot #i Slot #14

One Radio Frame, Tf = 10 msec

PilotNpilot bits

TFCINTFCI bits

FBINFBI bitsDPCCH

DataNdata bits

Tslot = 2560 chips, Ndata = 10 × 2k bits (k = 0, ... , 6)

DPDCH

9-68 3GPPFDD_UpLinkRF

Page 503: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

where A is a scaling factor based on the Power and ROut parametersspecified by the user, VI(t) is the in-phase RF envelope, VQ(t) is thequadrature phase RF envelope, g is the gain imbalance

and, φ (in degrees) is the phase imbalance.

Next, the signal VRF(t) is rotated by IQ_Rotation degrees. The I_OriginOffsetand Q_OriginOffset are then applied to the rotated signal. Note that theamounts specified are percentages with respect to the output rms voltage.The output rms voltage is given by sqrt(2 × ROut × Power).

• SamplesPerChip is used to set the number of samples in a chip.

The default value is set to 8 to display settings according to the 3GPPstandard. It can be set to a larger value for a simulation frequencybandwidth wider than 8 × 3.84 MHz. It can be set to a smaller value for fastersimulation times; however, this will result in lower signal fidelity. IfSamplesPerChip = 8, the simulation RF bandwidth is larger than the signalbandwidth by a factor of 8 (e.g., simulation RF bandwidth = 8 × 3.84 MHz).

• RRC_FilterLength is used to set root raised-cosine (RRC) filter length inchips.

The default value is set to 16 to transmit a 3GPP FDD uplink signal in timeand frequency domains based on the 3GPP standard [4]. It can be set to asmaller value for faster simulation times; however, this will result in lowersignal fidelity.

• SpecVersion is used to specify the 3GPP specification versions (2000-03,2000-12 and 2002-03).

• SourceType is used to specify the type of baseband signal. Referencemeasurement channels (RMC) 12.2 and 768 kbps as defined in [4] and [5] areavailable.

Basic parameters of 12.2 kbps RMC (SourceType = UL_12_2) are listed inTable 9-16 through Table 9-19.

V RF t( ) A V I t( ) ωct( )cos gVQ t( ) ωct φπ180---------+

sin– =

g 10

GainImbalance20

-----------------------------------------------=

3GPPFDD_UpLinkRF 9-69

Page 504: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Basic parameters of 768 kbps RMC (SourceType = UL_768) are listed inTable 9-20 through Table 9-23.

Table 9-16. Uplink 12.2 kbps Reference Measurement Channel,Physical Parameters

Parameter Unit Level

Information bit rate kbps 12.2

DPDCH kbps 60

DPCCH kbps 15

DPCCH Slot Format 0

DPCCH/DPDCH power ratio dB -5.46

TFCI On

Repetition % 23

Table 9-17. Uplink 12.2 kbps Reference Measurement Channel,DPDCH Fields

Channel Bit Rate (kbps)Channel Symbol Rate(ksps) SF Bits / Frame Bits / Slot Ndata

60 60 64 600 40 40

Table 9-18. Uplink 12.2 kbps Reference Measurement Channel,DPCCH Fields

Channel Bit Rate (kbps)Channel Symbol Rate(ksps) SF Bits / Frame Bits / Slot Npilot NTPC NTFCI NFBI

15 15 256 150 10 6 2 2 0

Table 9-19. Uplink 12.2 kbps Reference Measurement Channel,Transport Channel Parameters

Parameter DTCH DCCH

Transport Channel Number 1 2

Transport Block Size 244 100

Transport Block Set Size 244 100

Transmission Time Interval 20 ms 40 ms

Type of Error Protection Convolution Coding Convolution Coding

Coding Rate 1/3 1/3

9-70 3GPPFDD_UpLinkRF

Page 505: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Rate Matching attribute 256 256

Size of CRC 16 12

Table 9-20. Uplink 768 kbps Reference Measurement Channel,Physical Parameters

Parameter Unit Level

Information bit rate kbps 2*384

DPDCH1 kbps 960

DPDCH2 kbps 960

DPCCH kbps 15

DPCCH Slot Format 0

DPCCH/DPDCH power ratio dB -11.48

TFCI On

Puncturing % 18

Table 9-21. Uplink 768 kbps Reference Measurement Channel,Transport Channel Parameters

Parameter DTCH DCCH

Transport Channel Number 1 2

Transport Block Size 3840 100

Transport Block Set Size 7680 100

Transmission Time Interval 10 ms 40 ms

Type of Error Protection Turbo Coding Convolution Coding

Coding Rate 1/3 1/3

Rate Matching attribute 256 256

Size of CRC 16 12

Table 9-19. Uplink 12.2 kbps Reference Measurement Channel,Transport Channel Parameters

Parameter DTCH DCCH

3GPPFDD_UpLinkRF 9-71

Page 506: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

References

[1]3GPP Technical Specification TS 25.211, “Physical channels and mapping oftransport channels onto physical channels (FDD)” Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.212, “Multiplexing and Channel Coding(FDD)” Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[3] 3GPP Technical Specification TS 25.213, “Spreading and modulation (FDD)”Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

[4] 3GPP Technical Specification TS 25.101, “UE Radio Transmission andReception (FDD)” Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25101-3a0.zip

[5] 3GPP Technical Specification TS 25.104, “BS Radio transmission and (FDD)”Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25104-3a0.zip

Table 9-22. Uplink 768 kbps Reference Measurement Channel,DPDCH Fields†

Channel Bit Rate (kbps)Channel Symbol Rate(ksps) SF Bits / Frame Bits / Slot Ndata

960 960 4 9600 640 640

† There are two DPDCHs in uplink 768 kbps RMC.

Table 9-23. Uplink 768 kbps Reference Measurement Channel,DPCCH Fields

Channel Bit Rate (kbps)Channel Symbol Rate(ksps) SF Bits / Frame Bits / Slot Npilot NTPC NTFCI NFBI

15 15 256 150 10 6 2 2 0

9-72 3GPPFDD_UpLinkRF

Page 507: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_UpLk

Description ESG compatible Uplink channelsLibrary 3GPPFDD, User EquipmentClass SDF3GPPFDD_UpLkDerived From 3GPPFDD_ULPCodeSrcBase

Parameters

Name Description Default Type Range

SpecVersion version of specifications:Version_03_00,Version_12_00,Version_03_02

Version_12_00 enum

ScrambleCode index of scramble code 0 int [0, 512] fordownlink; [0, 16777215]for uplink

Scramble scramble code type:LONG, SHORT

LONG enum

TFCIField TFCI field on/off switch:On, Off

Off enum

TFCIValue TFCI value 0 int [0, 1023]

TPCValue transmit power controlvalue in hexadecimal

0x5555 int [0, 0x7ffff]

SpreadCodeArray index array of spreadcodes

0 int array the ith element

shall be in [0,SpreadFactor[i]-1]; array size shallbe equal tocode channelnumber; codes shall bein differentOVSF codebranch

3GPPFDD_UpLk 9-73

Page 508: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Pin Outputs

Notes/Equations

1. This model is used to simulate uplink channels.

This model performs the same as the Agilent signal generator instrumentESG-D Option 100.

2. Each firing, 2560 tokens are output. The complex output data sequence is thespread and scrambled chips where SpreadCode and ScrambleCode specify the

DataPatternArray data pattern array:0-random, 1-PN9, 2-PN15,3-Repeat Bits

0 int array [0, 1,2,3]; array size shallbe equal tocode channelnumber

RepBitValueArray bits value array to be filledin data sequence

0x55 int array [0, 255]; array size shallbe equal tocode channelnumber

UpLkChannelSelect uplink channel select:DPCCH,DPCCH_1DPDCH,DPCCH_2DPDCH,DPCCH_3DPDCH,DPCCH_4DPDCH,DPCCH_5DPDCH,PDCCH_6DPDCH

DPCCH enum

FBIBitsNum number of FBI bits inchannel: FBI0, FBI1, FBI2

FBI1 enum

FBIValue value for FBI bits 1 int [1, 3]

DPDCH1SymbolRate DPDCH1 symbol rate,optional when only oneDPDCH is transmitted:DPDCH_15ksps,DPDCH_30ksps,DPDCH_60ksps,DPDCH_120ksps,DPDCH_240ksps,DPDCH_480ksps,DPDCH_960ksps

DPDCH_960ksps enum

GainFactorIndexArray DPCCH and DPDCH gainfactor index array

15 int array [0, 15]

Pin Name Description Signal Type

1 out output data complex

Name Description Default Type Range

9-74 3GPPFDD_UpLk

Page 509: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

spread and scramble codes. The output sequence is repeated on aframe-by-frame basis. Figure 9-23 shows the uplink channel structure.

The binary DPCCH and DPDCHs to be spread are represented by real-valuedsequences. The DPCCH is spread to the chip rate by the channelization code cc ,while the nth DPDCH called DPDCHn is spread to the chip rate by thechannelization code cd,n . One DPCCH and up to 6 parallel DPDCHs can betransmitted simultaneously, i.e. 1 ≤ n ≤ 6.

Figure 9-23. Uplink Channel Structure

3. Hexadecimal TPC values are converted to their binary equivalent. For example,if the TPCValue is set to 0x7F80, it becomes 111 1111 1000 0000. Note thatthere are 15 digits in the binary TPC value. Because one frame contains 15 timeslots, one binary digit is assigned to each time slot (see Figure 9-24). Theassigned bit is then repeated to fill the TPC bit field. Since the example inFigure 9-24 uses two TPC bits per time slot, the values are either 11 or 00.

j

cd,1 βd

Sdpch,n

I+jQ

DPDCH1

Q

cd,3 βd

DPDCH3

cd,5 βd

DPDCH5

cd,2 βd

DPDCH2

cd,4 βd

DPDCH4

cd,6 βd

DPDCH6

cc βc

DPCCH

Σ

S

3GPPFDD_UpLk 9-75

Page 510: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

Figure 9-24. TPC Bits per Time Slot

4. If TFCIField is set to On, the TFCI value is converted to binary equivalent andencoded using a (32, 10) sub-code of the second order Reed-Muller code.

5. For the DPCCH and DPDCHs OVSF codes the following applies:

• The DPCCH is always spread by code cc = Cch,256,0.

• When only one DPDCH is to be transmitted, DPDCH1 is spread by code cd,1= Cch,SF,k, where SF is the spreading factor of DPDCH1 and k= SF / 4.

• When more than one DPDCH is to be transmitted, all DPDCHs havespreading factors equal to 4. DPDCHn is spread by the code cd,n = Cch,4,k ,where k = 1 if n ∈ {1, 2}, k = 3 if n ∈ {3, 4}, and k = 2 if n ∈{5, 6}.

So, the parameter DPDCH1SymbolRate is valid only when UpLkChannelSelectis set to DPCCH_1DPDCH.

6. DataPatternArray sets the data pattern of different DPDCHs. Four patternsare supported: 0=random, 1=PN9, 2=PN15, 3=Repeat Bits.

7. The SpreadCodeArray and GainFactorIndexArray arrays concern all DPCCHand DPDCH channels, while the DataPatternArray and RepBitValueArrayarrays concern only DPDCHs. Users must ensure the consistency of the arraysize and setting of UpLkChannelSelect. The gain value quantization steps aredescribed in [3].

References

9-76 3GPPFDD_UpLk

Page 511: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

[1]3GPP Technical Specification TS 25.211 V3.10.0, Physical channels andmapping of transport channels onto physical channels (FDD), March 2003,Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25211-3a0.zip

[2] 3GPP Technical Specification TS 25.212 V3.9.0, Multiplexing and ChannelCoding (FDD) 2002-03, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25212-390.zip

[3] 3GPP Technical Specification TS 25.213 V3.7.0, Spreading and modulation(FDD), March 2003, Release 1999.

http://www.3gpp.org/ftp/Specs/2002-03/R1999/25_series/25213-370.zip

[4] “Users and Programming Guide, Agilent Technologies ESG Family SignalGenerators Option 100- Volume 2, WCDMA(3GPP 3.1 12-99) Personality”.

3GPPFDD_UpLk 9-77

Page 512: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD User Equipment

9-78 3GPPFDD_UpLk

Page 513: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 10: 3GPPFDD 10-99 Base StationComponents

10-1

Page 514: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

WCDMA3G_BS_FixedRateDemod

Description Uplink demodulation for measurement channelsLibrary 3GPPFDD 10-99, Base Station

Parameters

Name Description Default Sym Type Range

DataType measurement channeltype: DTCH_12_2_kbps,DTCH_64_kbps,DTCH_144_kbps,DTCH_384_kbps

DTCH_12_2_kbps

enum

UL_DPCCHType uplink dedicated physicalcontrol channel type:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

ScramblingCodeType type of scrambling code:Long_Scrambling_Code,Short_Scrambling_Code

Long_Scrambling_Code

enum

ScramblingCodeIndex scrambling code index 0 int [0, 16777215]

SampleRate number of samples perchip

8 S int [1, 32]

PathNum number of paths 1 L int [1, 16]

MaxDelay maximum path delay interms of chips

20 D int [1, 1280]

SearchDir search path directionbased on current timing:Forward, Backward,Bidirection

Backward enum

10-2 WCDMA3G_BS_FixedRateDemod

Page 515: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork model is used to demodulate the input complex symbol tocalculate the physical channel BER (bit error rate) for the referencemeasurement channels 12.2/64/144/384 kbps[1] of the base station in uplink.

The schematic for this subnetwork is shown in Figure 10-1. It includes the Rakereceiver, spreading code and scrambling code generation, and BERmeasurement. This subnetwork model takes the input symbol from pin In inchips and reference DPDCH data from pin DPDCHDataIn in radio frame (15slots), outputs the demodulation data in radio frames and the physical channelBER once every radio frame (15 slots).

EstMethod channel estimationmethod: Averaging,Interpolation, WMSA,NoEst

Interpolation enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 In input data complex

2 DPDCHDataIn input bits for DPDCH data fields int

Pin Name Description Signal Type

3 Out output data real

4 PhyCHBER output physical channel BER value real

Name Description Default Sym Type Range

WCDMA3G_BS_FixedRateDemod 10-3

Page 516: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

Figure 10-1. WCDMA3G_BS_FixedRateDemod Schematic

References

[1]3GPP Technical Specification TS 25.104 V3.2.0 “UTRA(BS) FDD: Radiotransmission and Reception,” March 2000.

[2] 3GPP Technical Specification TS 25.141 V3.0.0 “Base station conformancetesting (FDD),” December 1999.

10-4 WCDMA3G_BS_FixedRateDemod

Page 517: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_BS_FixedRateReceiver

Description Uplink receiver for measurement channelsLibrary 3GPPFDD 10-99, Base Station

Parameters

Name Description Default Sym Type Range

DataType measurement channeltype: DTCH_12_2_kbps,DTCH_64_kbps,DTCH_144_kbps,DTCH_384_kbps

DTCH_12_2_kbps

enum

UL_DPCCHType uplink dedicated physicalcontrol channel type:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

ScramblingCodeType type of scrambling code:Long_Scrambling_Code,Short_Scrambling_Code

Long_Scrambling_Code

enum

ScramblingCodeIndex scrambling code index 0 int [0, 16777215]

SampleRate number of samples perchip

8 S int [1, 32]

PathNum number of paths 1 L int [1, 16]

MaxDelay maximum path delay interms of chips

20 D int [1, 1280]

SearchDir search path directionbased on current timing:Forward, Backward,Bidirection

Backward enum

WCDMA3G_BS_FixedRateReceiver 10-5

Page 518: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork model is used to demodulate and decode the input complexsymbol to calculate the physical channel BER (bit error rate), transport channelBER/BLER (block error rate) for DTCH (dedicated transport channel) andDCCH (dedicated control channel) for reference measurement channels12.2/64/144/384 kbps [1] of the base station in an uplink.

EstMethod channel estimationmethod: Averaging,Interpolation, WMSA,NoEst

Interpolation enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 In input data complex

2 TFMaxIn input TFMax value int

3 RefDataIn1 reference data bits from source1 int

4 RefDataIn2 reference data bits from source2 int

5 DPDCHDataIn input bits for DPDCH data fields int

Pin Name Description Signal Type

6 DCCH_Out output data for DCCH int

7 DCCH_BER output BER value for DCCH real

8 DCCH_BLER output BLER value for DCCH real

9 DTCH_Out output data for DTCH int

10 DTCH_BER output BER value for DTCH real

11 DTCH_BLER output BLER value for DTCH real

12 PhyCHBER output physical channel BER value real

Name Description Default Sym Type Range

10-6 WCDMA3G_BS_FixedRateReceiver

Page 519: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

The schematic for this subnetwork is shown in Figure 10-2. It includes the Rakereceiver, spreading code and scrambling code generation, transport channelde-multiplexing, channel decoding and BER measurements.

This subnetwork model takes the input symbol from pin In in chips, referencesource data from pins RefDataSrc1 and RefDataSrc2 in transport blocks,reference DPDCH data from pin DPDCHDataIn in radio frames, TFMax valuefrom pin TFMaxIn every 10 msec. It outputs the physical channel BER onceevery radio frame (15 slots), outputs data for DCCH/DTCH in transport blocks,and outputs DCCH_BER/DCCH_BLER and DTCH_BER/ DTCH_BLER onceevery transport block according to the TTI (transmit time interval) of eachtransport channel.

Figure 10-2. WCDMA3G_BS_FixedRateReceiver Schematic

References

[1]3GPP Technical Specification TS 25.104 V3.2.0 “UTRA(BS) FDD: Radiotransmission and Reception,” March 2000.

[2] 3GPP Technical Specification TS 25.141 V3.0.0 “Base station conformancetesting (FDD),” December 1999.

WCDMA3G_BS_FixedRateReceiver 10-7

Page 520: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

WCDMA3G_BS_FixedRateReceiver_2M

Description Uplink Receiver for Measurement Channel DTCH2048kbpsLibrary 3GPPFDD 10-99, Base Station

Parameters

Name Description Default Sym Type Range

DataType measurement channeltype: DTCH_2048_kbps

DTCH_2048_kbps

enum

UL_DPCCHType uplink dedicated physicalcontrol channel type:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

ScramblingCodeType Type of scrambling code:Long_Scrambling_Code,Short_Scrambling_Code

Long_Scrambling_Code

enum

ScramblingCodeIndex scrambling code index 0 int [0, 16777215]

SampleRate number of samples perchip

8 S int [1, 32]

PathNum number of paths 1 L int [1, 16]

MaxDelay maximum path delay interms of chips

20 D int [1, 1280]

SearchDir search path directionbased on current timing:Forward, Backward,Bidirection

Backward enum

10-8 WCDMA3G_BS_FixedRateReceiver_2M

Page 521: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork model is used to demodulate and decode the input complexsymbol in order to calculate the physical channel BER (bit error rate), transportchannel BER/ BLER (block error rate) for DTCH (dedicated transport channel)and DCCH (dedicated control channel) for the reference measurement channels2048kbps [1] of the base station in an uplink.

The schematic for this subnetwork is shown in Figure 10-3. It includes the Rakereceiver for multiple code channels, spreading code and scrambling code

EstMethod channel estimationmethod: Averaging,Interpolation, WMSA,NoEst

Interpolation enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 In input data complex

2 TFMaxIn Input TFMax int

3 RefDataIn1 reference data bits from source1 int

4 RefDataIn2 reference data bits from source2 int

5 DPDCH1DataIn input bits for DPDCH#1 data fields int

Pin Name Description Signal Type

6 DCCH_Out output data for DCCH int

7 DCCH_BER output BER value for DCCH real

8 DCCH_BLER output BLER value for DCCH real

9 DTCH_Out output data for DTCH int

10 DTCH_BER output BER value for DTCH real

11 DTCH_BLER output BLER value for DTCH real

12 PhyCHBER output physical channel BER value real

Name Description Default Sym Type Range

WCDMA3G_BS_FixedRateReceiver_2M 10-9

Page 522: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

generation, transport channel de-multiplexing, channel decoding, and BERmeasurements.

This subnetwork model takes the input symbol from pin In in chips, referencesource data from RefDataSrc1/RefDataSrc2 in transport blocks, referenceDPDCH data from DPDCHDataIn in radio frames, TFMax value fromTFMaxIn every 10 msec. It outputs the physical channel BER once every radioframe (15 slots) and outputs data for DCCH/DTCH in transport blocks, outputsDCCH_BER/DCCH_BLER and DTCH_BER/DTCH_BLER once every transportblock according to the TTI (transmit time interval) of each transport channel.Note that output PhyCHBER is the BER for the first of the 6 physical channels.

Figure 10-3. WCDMA3G_BS_FixedRateReceiver_2M Schematic

References

[1]3GPP Technical Specification TS 25.104 V3.2.0 “UTRA(BS) FDD: Radiotransmission and Reception,” March 2000.

[2] 3GPP Technical Specification TS 25.141 V3.0.0 “Base station conformancetesting (FDD),” December 1999.

10-10 WCDMA3G_BS_FixedRateReceiver_2M

Page 523: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_BS_FixedRateSrc

Description Downlink signal source for measurement channelsLibrary 3GPPFDD 10-99, Base Station

Parameters

Name Description Default Type Range

DataType measurement channeltype: DTCH_12_2_kbps,DTCH_64_kbps,DTCH_144_kbps,DTCH_384_kbps

DTCH_12_2_kbps

enum

ScramblingCodeIndex scrambling code index 0 int [0, 8191]

DPCHGainFactor gain factor for DPCH 1.0 real [0.0, ∞)

PCCPCHGainFactor gain factor for PCCPCH 1.0 real [0.0, ∞)

SCHGainFactor gain factor for SCH 1.0 real [0.0, ∞)

CPICHGainFactor gain factor for CPICH 1.0 real [0.0, ∞)

OCNS_UserNum simulated user number 4 int [0, 4]

SF1 spreading factor for user1:SF1_4 , SF1_8 , SF1_16,SF1_32, SF1_64,SF1_128, SF1_256,SF1_512

SF1_256 enum

SF2 spreading factor for user2:SF2_4 , SF2_8 , SF2_16,SF2_32, SF2_64,SF2_128, SF2_256,SF2_512

SF2_256 enum

SF3 spreading factor for user3:SF3_4 , SF3_8 , SF3_16,SF3_32, SF3_64,SF3_128, SF3_256,SF3_512

SF3_256 enum

WCDMA3G_BS_FixedRateSrc 10-11

Page 524: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

Pin Outputs

Notes/Equations

1. This subnetwork model is used to provide signal source for the referencemeasurement channels 12.2/64/144/384 kbps [1] of the base station in adownlink.

The schematic for this subnetwork is shown in Figure 10-4. It includes the datasource for measurement transport channel, channel coding, transport channelmultiplexing, physical channel mapping, spreading and scrambling for DPCH(dedicated physical channel), common control channels including PCCPCH(primary common control channel), SCH (synchronization channel, primary andsecondary), CPICH (common pilot channel), and the OCNS (orthogonal channelnoise simulator) that can simulate up to 4 users (orthogonal code channels).

This subnetwork model outputs the combined complex symbols from pin outand the DPCH only complex symbol from DPCHOut in chips, and outputsTFMax once every 10 msec. The reference data source is output fromRef_DataSrc1/Ref_DataSrc2 every transport block according to the TTI settingof each transport channel. The results for channel coding are output fromCoderOutput1/ CoderOutput2 for measurement of BER (bit error rate) before

SF4 spreading factor for user4:SF4_4 , SF4_8 , SF4_16,SF4_32, SF4_64,SF4_128, SF4_256,SF4_512

SF4_256 enum

OCNS_GainFactors gain factors for OCNSusers

1.0 1.0 1.0 1.0 real array [0.0, ∞)

Pin Name Description Signal Type

1 Out output data complex

2 DPCHOut output DPCH data complex

3 TFMax Ouput TFMax int

4 Ref_DataSrc1 reference data bits from source1 int

5 Ref_DataSrc2 reference data bits from source2 int

6 CoderOutput1 coder output data bits from TrCH1 int

7 CoderOutput2 Coder output data bits from TrCH2 int

8 DPCHData output bits for DPCH data fields int

Name Description Default Type Range

10-12 WCDMA3G_BS_FixedRateSrc

Page 525: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

channel coding in coding frames or blocks. The DPCH data bits are output fromDPCHData for physical channel BER measurement in radio frames (15 slots).

Figure 10-4. WCDMA3G_BS_FixedRateSrc Schematic

References

[1]3GPP Technical Specification TS 25.101 V3.1.0 “UE Radio transmission andReception FDD,” December 1999.

[2] 3GPP Technical Specification TS 34.121 V3.0.0 “Terminal conformanceSpecification: Radio transmission and reception (FDD),” March 2000.

WCDMA3G_BS_FixedRateSrc 10-13

Page 526: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

WCDMA3G_BS_VariableRateDemod

Description Uplink demodulation for variable-rate sourceLibrary 3GPPFDD 10-99, Base Station

Parameters

Name Description Default Sym Type Range

DataType information rate type:INFO_8_kbps,INFO_16_kbps,INFO_32_kbps,INFO_64_kbps,INFO_128_kbps,INFO_256_kbps

INFO_8_kbps enum

UL_DPCCHType uplink dedicated physicalcontrol channel:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

ScramblingCodeType type of scrambling code:Long_Scrambling_Code,Short_Scrambling_Code

Long_Scrambling_Code

enum

ScramblingCodeIndex scrambling code index 0 int [0, 16777215]

SampleRate number of samples perchip

8 S int [1, 32]

PathNum number of paths 1 L int [1, 16]

MaxDelay maximum path delay interms of chips

20 D int [1, 1280]

SearchDir search path directionbased on current timing:Forward, Backward,Bidirection

Backward enum

10-14 WCDMA3G_BS_VariableRateDemod

Page 527: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork model is used to demodulate the complex input symbol tocalculate the physical channel BER (bit error rate) for variable-rate sourcesranging from 8 to 256 kbps of the base station in an uplink.

The schematic for this subnetwork is shown in Figure 10-5. It includes the Rakereceiver, spreading code and scrambling code generation, and BERmeasurement.

This subnetwork model takes the input symbol from pin In in chips andreference DPDCH data from pin DPDCHDataIn in radio frame (15 slots). Itoutputs the demodulation data in radio frames and the physical channel BERonce every radio frame (15 slots).

EstMethod channel estimationmethod: Averaging,Interpolation, WMSA,NoEst

Interpolation enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 In input data complex

2 DPDCHDataIn input bits for DPDCH data fields int

Pin Name Description Signal Type

3 Out output data real

4 PhyCHBER output physical channel BER value real

Name Description Default Sym Type Range

WCDMA3G_BS_VariableRateDemod 10-15

Page 528: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

Figure 10-5. WCDMA3G_BS_VariableRateDemod Schematic

References

[1]3GPP Technical Specification TS 25.104 V3.2.0 “UTRA(BS) FDD: Radiotransmission and Reception,” March 2000.

[2] 3GPP Technical Specification TS 25.141 V3.0.0 “Base station conformancetesting (FDD),” December 1999.

10-16 WCDMA3G_BS_VariableRateDemod

Page 529: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_BS_VariableRateReceiver

Description Uplink receiver for variable-rate sourceLibrary 3GPPFDD 10-99, Base Station

Parameters

Name Description Default Sym Type Range

DataType information rate type:INFO_8_kbps,INFO_16_kbps,INFO_32_kbps,INFO_64_kbps,INFO_128_kbps,INFO_256_kbps

INFO_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

UL_DPCCHType uplink dedicated physicalcontrol channel:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

ScramblingCodeType type of scrambling code:Long_Scrambling_Code,Short_Scrambling_Code

Long_Scrambling_Code

enum

ScramblingCodeIndex scrambling code index 0 int [0, 16777215]

SampleRate number of samples perchip

8 S int [1, 32]

PathNum number of paths 1 L int [1, 16]

MaxDelay maximum path delay interms of chips

20 D int [1, 1280]

WCDMA3G_BS_VariableRateReceiver 10-17

Page 530: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork model is used to demodulate and decode the input complexsymbol in order to calculate the physical channel BER (bit error rate), transportchannel BER/ BLER (block error rate) for the variable-rate data source rangingfrom 8 to 256 kbps of the base station in an uplink.

SearchDir search path directionbased on current timing:Forward, Backward,Bidirection

Backward enum

EstMethod channel estimationmethod: Averaging,Interpolation, WMSA,NoEst

Interpolation enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 In input data complex

2 TFMaxIn input TFMax value int

3 RefDataIn reference data bits from source int

4 CoderOutput coder output data bits from TrCH int

5 DPDCHDataIn input bits for DPDCH data fields int

Pin Name Description Signal Type

6 Out output data int

7 TrCHBER output BER value for transport channel real

8 TrCHBLER output BLER value for transport channel real

9 PhyCHBER_before_Decoding output BER value before decoding real

10 PhyCHBER output physical channel BER value real

Name Description Default Sym Type Range

10-18 WCDMA3G_BS_VariableRateReceiver

Page 531: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

The schematic for this subnetwork is shown in Figure 10-6. It includes the Rakereceiver, spreading code and scrambling code generation, transport channelde-multiplexing, channel decoding, and BER measurements.

This subnetwork model takes the input symbol from In in chips, referencesource data from RefDataIn in transport blocks, reference DPDCH data fromDPDCHDataIn in radio frames, TFMax value from TFMaxIn every 10msec. Itoutputs the physical channel BER once every radio frame (15 slots) and outputsdata in transport blocks, outputs TrCHBER/TrCHBLER once every transportblock according to the TTI (transmission time interval) of each transportchannel; PhyCHBER_before_Decoding is used to measure the BER beforechannel coding every coding block.

Figure 10-6. WCDMA3G_BS_VariableRateReceiver Schematic

References

[1]3GPP Technical Specification TS 25.104 V3.2.0 “UTRA(BS) FDD: Radiotransmission and Reception,” March 2000.

[2] 3GPP Technical Specification TS 25.141 V3.0.0 “Base station conformancetesting (FDD),” December 1999.

WCDMA3G_BS_VariableRateReceiver 10-19

Page 532: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

WCDMA3G_BS_VariableRateSrc

Description Downlink signal source for variable-rate sourceLibrary 3GPPFDD 10-99, Base Station

Parameters

Name Description Default Type Range

DataType information rate type:INFO_8_kbps,INFO_16_kbps,INFO_32_kbps,INFO_64_kbps,INFO_128_kbps,INFO_256_kbps,INFO_512_kbps

INFO_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

VariableRate indicate presence ofvariable rates: Yes, No

Yes enum

10-20 WCDMA3G_BS_VariableRateSrc

Page 533: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16

DPCH_30kbps_TF2_T2_P8

enum †

ScramblingCodeIndex scrambling code index 0 int [0, 8191]

DPCHGainFactor gain factor for DPCH 1.0 real [0.0, ∞)

PCCPCHGainFactor gain factor for PCCPCH 1.0 real [0.0, ∞)

SCHGainFactor gain factor for SCH 1.0 real [0.0, ∞)

CPICHGainFactor gain factor for CPICH 1.0 real [0.0, ∞)

OCNS_UserNum simulated user number 4 int [0, 4]

Name Description Default Type Range

WCDMA3G_BS_VariableRateSrc 10-21

Page 534: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

Pin Outputs

Notes/Equations

1. This subnetwork model is used to provide a signal source for the variable-ratesource ranging from 8 to 512 kbps of the base station in a downlink.

The schematic for this subnetwork is shown in Figure 10-7. It includes the datasource for measurement transport channel, channel coding, transport channel

SF1 spreading factor for user1:SF1_4 , SF1_8 , SF1_16,SF1_32, SF1_64,SF1_128, SF1_256,SF1_512

SF1_256 enum

SF2 spreading factor for user2:SF2_4 , SF2_8 , SF2_16,SF2_32, SF2_64,SF2_128, SF2_256,SF2_512

SF2_256 enum

SF3 spreading factor for user3:SF3_4 , SF3_8 , SF3_16,SF3_32, SF3_64,SF3_128, SF3_256,SF3_512

SF3_256 enum

SF4 spreading factor for user4:SF4_4 , SF4_8 , SF4_16,SF4_32, SF4_64,SF4_128, SF4_256,SF4_512

SF4_256 enum

OCNS_GainFactors gain factors for OCNSusers

1.0 1.0 1.0 1.0 real array [0.0, ∞)

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 Out output data complex

2 DPCHOut output DPCH data complex

3 TFMax ouput TFMax value int

4 Ref_DataSrc reference data bits from source int

5 CoderOutput coder output data bits from TrCH int

6 DPCHData output bits for DPCH data fields int

Name Description Default Type Range

10-22 WCDMA3G_BS_VariableRateSrc

Page 535: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

multiplexing, physical channel mapping, spreading and scrambling for DPCH(dedicated physical channel), common control channels including PCCPCH(primary common control channel), SCH (synchronization channel, primary andsecondary), CPICH (common pilot channel), and the OCNS (orthogonal channelnoise simulator) that can simulate up to 4 users (orthogonal code channels).

This subnetwork model outputs the combined complex symbols from out andthe DPCH only complex symbol from DPCHOut in chips, and outputs TFMaxonce every 10 msec. The reference data source is output from Ref_DataSrcevery transport block according to the TTI setting of each transport channel.The results for channel coding are output from CoderOutput for measurementof BER (bit error rate) before channel coding in coding frames or blocks. TheDPCH data bits are output from DPCHData for physical channel BERmeasurement in radio frames (15 slots).

Figure 10-7. WCDMA3G_BS_VariableRateSrc Schematic

References

[1]3GPP Technical Specification TS 25.104 V3.2.0 “UTRA(BS) FDD: Radiotransmission and Reception,” March 2000.

[2] 3GPP Technical Specification TS 25.141 V3.0.0 “Base station conformancetesting (FDD),” December 1999.

WCDMA3G_BS_VariableRateSrc 10-23

Page 536: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

WCDMA3G_DnLkCPICH

Description Downlink common pilot channelLibrary 3GPPFDD 10-99, Base Station

Parameters

Pin Outputs

Notes/Equations

1. This subnetwork model is used to generate the modulated signal of commonpilot channel (CPICH).

The schematic for this subnetwork is shown in Figure 10-8. The data source ofCPICH, the pilot patterns on downlink CPICH, is generated by modelWCDMA3G_DnLkCPICHGen. Then this data stream is spread by spreadingcode Cch,256,0 generated by WCDMA3G_OVSF. WCDMA3G_DnLkScramblergenerates the scrambling code that is the primary scrambling code with indexof int (Id/16). The spread data is multiplied by the scrambling code, thenweighted by gain factor G.

Name Description Default Sym Type Range

ScramblingCodeIndex scrambling code index 0 Id int [0, 8191]

CPICHGainFactor gain factor for CPICH 1.0 G real [0, ∞)

Pin Name Description Signal Type

1 Out output data complex

10-24 WCDMA3G_DnLkCPICH

Page 537: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 10-8. WCDMA3G_DnLkCPICH Schematic

References

[1]3GPP Technical Specification TS 25.213 V3.0.0 “Spreading and Modulation(FDD),” October 1999.

[2] 3GPP Technical Specification TS 25.211 V3.0.0 “Physical channels and mappingof transport channels onto physical channels (FDD),” October 1999.

WCDMA3G_DnLkCPICH 10-25

Page 538: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

WCDMA3G_DnLkDPCH

Description Downlink signal source for one DPCHLibrary 3GPPFDD 10-99, Base Station

Parameters

Pin Inputs

Pin Outputs

Name Description Default Type

DPCHRate downlink DPCH rate:DPCH_15kbps,DPCH_30kbps,DPCH_60kbps,DPCH_120kbps,DPCH_240kbps,DPCH_480kbps,DPCH_960kbps,DPCH_1920kbps

DPCH_15kbps enum

TFCIOn with TFCI: No, Yes Yes enum

Pilot number of pilot bits for rate30kbps and 60kbps:Pilot_2Bits, Pilot_4Bits,Pilot_8Bits

Pilot_2Bits enum

Pin Name Description Signal Type

1 TPC transmit power control value int

2 DataIn input data int

3 TFCI TFCI input int

4 OVSF spreading code int

Pin Name Description Signal Type

5 ChipOut spreaded signal complex

6 DataOut DPCH data output int

10-26 WCDMA3G_DnLkDPCH

Page 539: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This subnetwork model is used to generate the signal for one DPCH channel.Systems with more than one DPCH channel can also be set up.

The parameters required by this subnetwork model were transformed usingVAR equations.

The schematic for this subnetwork is shown in Figure 10-9.

Figure 10-9. WCDMA3G_DnLkDPCH Schematic

References

[1]3GPP Technical Specification TS25.213 V3.0.0,“Spreading and modulation(FDD),” October 1999.

WCDMA3G_DnLkDPCH 10-27

Page 540: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

WCDMA3G_DnLkDPCHMux

Description Downlink dedicated physical channel multiplexingLibrary 3GPPFDD 10-99, Base Station

10-28 WCDMA3G_DnLkDPCHMux

Page 541: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Parameters

Name Description Default Type Range

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16

DPCH_30kbps_TF2_T2_P8

enum †

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

WCDMA3G_DnLkDPCHMux 10-29

Page 542: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork model is used to perform dedicated physical channel (DPCH)multiplexing in downlink, including the second interleaving, QPSK datamapping, space time transmit diversity (STTD) encoding and multiplexing.

The schematic for this subnetwork is shown in Figure 10-10. Data of dedicatedphysical data channel (DPDCH) input by pin In is second-interleaved byWCDMA3G_SecondIntlvr. Then it and transmit power control (TPC) bits,transport format combination indicator (TFCI) bits are multiplexed inWCDMA3G_DnLkMux to make up the frame structure of DPCH. DPCH data isQPSK mapped by WCMA3G_QPSKDataMap. After data is STTD coded,corresponding pilot symbols are inserted by WCDMA3G_STTDMux.

Figure 10-10. WCDMA3G_DnLkDPCHMux Schematic

Pin Name Description Signal Type

1 TPC input TPC bits int

2 In input data int

3 TFCI input TFCI int

Pin Name Description Signal Type

4 DataOut output data before multiplexing int

5 Ant1Out output symbol to antenna1 complex

6 Ant2Out output symbol to antenna2 complex

10-30 WCDMA3G_DnLkDPCHMux

Page 543: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.211 V3.0.0 “Physical channels and mappingof transport channels onto physical channels (FDD),” October 1999.

[2] 3GPP Technical Specification TS 25.212 V3.0.0 “Multiplexing and channelcoding (FDD),” October 1999.

WCDMA3G_DnLkDPCHMux 10-31

Page 544: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

WCDMA3G_DnLkOCNS

Description Downlink orthogonal channel noise simulatorLibrary 3GPPFDD 10-99, Base Station

Parameters

Pin Inputs

Name Description Default Type Range

UserNum simulated user number 4 int [1, 4]

ScramblingCodeIndex scrambling code index 0 int [0, 8191]

SF1 spreading factor for user1:SF1_4 , SF1_8 , SF1_16,SF1_32, SF1_64,SF1_128, SF1_256,SF1_512

SF1_256 enum

SF2 spreading factor for user2:SF2_4 , SF2_8 , SF2_16,SF2_32, SF2_64,SF2_128, SF2_256,SF2_512

SF2_256 enum

SF3 spreading factor for user3:SF3_4 , SF3_8 , SF3_16,SF3_32, SF3_64,SF3_128, SF3_256,SF3_512

SF3_256 enum

SF4 spreading factor for user4:SF4_4 , SF4_8 , SF4_16,SF4_32, SF4_64,SF4_128, SF4_256,SF4_512

SF4_256 enum

GainFactors gain factors for OCNSusers

1.0 1.0 1.0 1.0 real array

Pin Name Description Signal Type

1 SpreadingCodes input spreading codes multiple int

10-32 WCDMA3G_DnLkOCNS

Page 545: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This subnetwork model is used to generate up to 4 dedicated physical channel(DPCH) modulated data streams in downlink.

The schematic for this subnetwork is shown in Figure 10-11. Data sources of4 DPCHs (generated by 4 random bit sources) are QPSK data mapped, spreadby their spreading codes input by pin SpreadingCodes, then multiplied by theirscrambling codes generated by WCDMA3G_DnLkScrambler.

Pin Name Description Signal Type

2 Out output data complex

WCDMA3G_DnLkOCNS 10-33

Page 546: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

Figure 10-11. WCDMA3G_DnLkOCNS Schematic

References

[1]3GPP Technical Specification TS 25.213 V3.0.0 “Spreading and modulation(FDD),” October 1999.

[2] 3GPP Technical Specification TS 25.211 V3.0.0 “Physical channels and mappingof transport channels onto physical channels (FDD),” October 1999.

10-34 WCDMA3G_DnLkOCNS

Page 547: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_DnLkPCCPCH_SCH

Description Dnlk Primary Common Control Physical & Synch ChannelsLibrary 3GPPFDD 10-99, Base Station

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork model is used to generate primary common control physicalchannel (PCCPCH) modulated data that is time multiplexed withsynchronization channel (SCH) data.

The schematic for this subnetwork is shown in Figure 10-12. Input data frompin PCCPCHIn is QPSK data mapped, then spread by spreading code Cch,256,1

Name Description Default Type Range

ScramblingCodeIndex scrambling code index 0 int [0, 8191]

PCCPCHGainFactor gain factor for PCCPCH 1.0 real [0.0, ∞)

PSCHGainFactor gain factor for P-SCH 1.0 real [0.0, ∞)

SSCHGainFactor gain factor for S-SCH 1.0 real [0.0, ∞)

Pin Name Description Signal Type

1 PCCPCHIn input PCCPCH data bits int

Pin Name Description Signal Type

2 Ant1Out output at antenna1 complex

3 Ant2Out output at antenna2 complex

WCDMA3G_DnLkPCCPCH_SCH 10-35

Page 548: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

generated by WCDMA3G_OVSF and multiplied by the primary scramblingcode (generated by WCDMA3G_DnLkScrambler) to get PCCPCH modulateddata. Primary synchronization code (PSC) is generated by WCDMA3G_PSCode;secondary synchronization code (SSC) is generated by WCDMA3G_SSCode.PSC and SSC are added on synchronization channel (SCH). PCCPCHmodulated data and SCH data are periodically time multiplexed byWCDMA3G_TimeSwitch.

Figure 10-12. WCDMA3G_DnLkPCCPCH_SCH Schematic

References

[1]3GPP Technical Specification TS 25.213 V3.0.0 “Spreading and modulation(FDD),” October 1999.

[2] 3GPP Technical Specification TS 25.211 V3.0.0 “Physical channels and mappingof transport channels onto physical channels (FDD),” October 1999.

10-36 WCDMA3G_DnLkPCCPCH_SCH

Page 549: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_DnLkSpreading

Description Downlink spreading and scramblingLibrary 3GPPFDD 10-99, Base Station

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork model is used to perform spreading and scrambling indownlink.

The schematic for this subnetwork is shown in Figure 10-13. Input data isspread by the spreading code generated by WCDMA3G_OVSF or input by pin

Name Description Default Sym Type Range

SF spreading factor: SF_4 ,SF_8 , SF_16, SF_32,SF_64, SF_128, SF_256,SF_512

SF_256 NSF enum

UseExtSpreadingCode use external spreadingcode: Yes, No

No enum

SpreadingCodeIndex spreading code index 0 int [0, NSF -1]

ScramblingCodeIndex scrambling code index 0 int [0, 8191]

Pin Name Description Signal Type

1 In input data complex

2 SpreadingCodeExt external spreading code int

Pin Name Description Signal Type

3 Out output data complex

WCDMA3G_DnLkSpreading 10-37

Page 550: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

SpreadingCodeExt; data is then multiplied by the scrambling code generated byWCDMA3G_DnLkScrambling.

When UseExtSpreadingCode = Yes, the spreading code is input through pinSpreadingCodeExt; otherwise, WCDMA3G_OVSF generates the spreadingcode.

Refer to Table 10-1 for the values of NSF.

Figure 10-13. WCDMA3G_DnLkSpreading Schematic

Table 10-1. NSF Values

SF Parameter NSF

SF_4 4

SF_8 8

SF_16 16

SF_32 32

SF_64 64

SF_128 128

SF_256 256

SF_512 512

10-38 WCDMA3G_DnLkSpreading

Page 551: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.213 V3.0.0 “Spreading and Modulation(FDD),” October 1999.

WCDMA3G_DnLkSpreading 10-39

Page 552: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

WCDMA3G_DnLkTrCHCoding

Description Downlink transport channel codingLibrary 3GPPFDD 10-99, Base Station

Parameters

Name Description Default Sym Type Range

TrCHNum number of transportchannels to be multiplexedin one CCTrCH

1 Nt int [1, ∞)

TrCHNo current transport channelnumber

1 int [1, Nt -1]

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

TrCHPosInCCTrCH transport channel positionindicator in one frame ofCCTrCH: Fixed, Flexible

Fixed enum

PhyCHNum number of physicalchannels

1 Nd int [1, ∞)

10-40 WCDMA3G_DnLkTrCHCoding

Page 553: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

RM semi-static rate matchingattribute for all transportchannels

1 real array [0, ∞)

Name Description Default Sym Type Range

WCDMA3G_DnLkTrCHCoding 10-41

Page 554: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork model is used to perform downlink transport channel coding.

The schematic for this subnetwork is shown in Figure 10-14. It includes CRCencoding, code block segmentation, channel coding, rate matching, firstinterleaving, and radio frame segmentation.

CRC bits are added to each transport block to perform error detection. Alltransport blocks in a TTI are serially concatenated. If the number of bits in aTTI is greater than 504 when convolutional coding is used or greater than 5114when turbo coding is used, code block segmentation is performed afterconcatenation of the transport blocks. Code blocks are then delivered to thechannel coding block, and a rate match model is used to implement ratematching of transport channel. The bit number of current TrCH data ischanged to the bit number required by the relevant CCTrCH and DTX

OptimisticTrCHSizes A set of frame sizes forflexible position oftransport channels

0 real array [0, ∞)

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 TFMax maximum transport format for current service int

2 in information symbol int

3 TF input transport format int

4 TFCI input TFCI information int

Pin Name Description Signal Type

5 CoderOutput encoded data int

6 Out output data int

7 OutSize size of current input block int

Name Description Default Sym Type Range

10-42 WCDMA3G_DnLkTrCHCoding

Page 555: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

indications with fixed positions of TrCHs inserted. The first interleaving is ablock interleaver with inter-column permutations, and the radio framesegmentation used to segment one transport channel data block in TTI into thenumber of radio frames determined by TTI. Each radio frame has the samenumber of bits.

Figure 10-14. WCDMA3G_DnLkTrCHCoding Schematic

References

[1]3GPP Technical Specification TS 25.212 V3.0.0, “Multiplexing and channelcoding (FDD),” October 1999.

[2] 3GPP Technical Specification TS 34.121 V3.0.0 “Terminal conformanceSpecification: Radio transmission and reception (FDD),” March 2000.

WCDMA3G_DnLkTrCHCoding 10-43

Page 556: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

WCDMA3G_ESG_DnLkDPCH

Description ESG compatible DPCH signal generatorLibrary 3GPPFDD 10-99, Base StationClass SDFWCDMA3G_ESG_DnLkDPCH

Parameters

Name Description Default Sym Type Range

DPCHRate downlink physical channelsymbol rate:DPCH_7_5ksps,DPCH_15ksps,DPCH_30ksps,DPCH_60ksps,DPCH_120ksps,DPCH_240ksps,DPCH_480ksps,DPCH_960ksps

DPCH_15ksps N enum

TFCIOn with TFCI: Yes, No Yes enum

TFCIValue value of TFCI inhexadecimal

0x5555 0x5555 int array (-∞, ∞)

TFCIPowerOffset power offset of TFCIdomain in dB

0 real (-∞, ∞)

PilotBitsCount number of pilot bits: P2,P4, P8, P16

P2 enum

PilotPowerOffset power offset of pilotdomain in dB

0 real (-∞, ∞)

TPCBitsCount number of TPC bits: TPC2,TPC4, TPC8

TPC2 enum

TPCValue value of TPC inhexadecimal

0x5555 int (-∞, ∞)

TPCPowerOffset power offset of TPCdomain in dB

0 real (-∞, ∞)

SpreadCode index of spread code 0 int[0, 29-N -1]

SignalPower data transmit power in dB 0 real (-∞, ∞)

10-44 WCDMA3G_ESG_DnLkDPCH

Page 557: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to generate signals that are totally compatible with theAgilent ESG family signal generator, as described in [2]. The frame structuresare defined in [1]. Each fire, a slot of symbols (2560) are generated.

2. The hexadecimal TPC values are converted to their binary equivalent. Thelower 15 binary bits represent the TPC bit for the 15 slots within one frame thatis repeated according to the number of TPC bits within each slot.

3. The two hexadecimal TFCI values are converted to their binary equivalent. Thetotal 32 binary bits represent the TFCI bits for the 15 slots within one frame.Rules for multiplexing these TFCI bits onto one frame are defined in [3].

4. The TFCI, TPC and Pilot power offset are relative to the transmit power fordata channel. The real transmitted power of the TFCI, TPC and Pilot signals istheir power offset plus SignalPower.

References

[1]3GPP Technical Specification TS25.211 V3.1.0,“Physical channels and mappingof transport channels onto physical channels (FDD),” December 1999.

[2] User’s and Programming Guide, Agilent Technologies, ESG Family SignalGenerators, Option 100 - Volume 2, W-CDMA (3GPP 3.1 12-99) Personality.

[3] 3GPP Technical Specification TS25.212 V3.1.0,“Multiplexing and channelcoding,” December 1999.

Pin Name Description Signal Type

1 output one slot of complex signals complex

WCDMA3G_ESG_DnLkDPCH 10-45

Page 558: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

WCDMA3G_UpLkTrCHDecoding

Description Uplink transport channel decodingLibrary 3GPPFDD 10-99, Base Station

Parameters

Name Description Default Sym Type Range

TrCHNum number of transportchannels to be multiplexedin one CCTrCH

1 Nt int [1, ∞)

TrCHNo current transport channelnumber

1 int [1, Nt -1]

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

TrCHPosInCCTrCH transport channel positionindicator in one frame ofCCTrCH: Fixed, Flexible

Fixed enum

PhyCHNum number of physicalchannels

1 int [1, ∞)

10-46 WCDMA3G_UpLkTrCHDecoding

Page 559: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork model is used to perform downlink transport channeldecoding.

The schematic for this subnetwork is shown in Figure 10-15. It includes radioframe delay, rate dematching, radio frame desegmentation, firstde-interleaving, radio frame de-equalization, channel decoding, code blockconcatenation, and CRC checking.

This subnetwork model performs the inverse function of theWCDMA3G_UnLkTrCHCoding subnetwork model.

UL_DPDCHType uplink dedicated physicaldata channel type:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

RadioFrameDelayOn radio frame delay on: Yes,No

Yes enum

Pin Name Description Signal Type

1 TFMax maximum transport format for current service int

2 in input data real

3 InSize size of current input block int

4 TF input transport format int

5 TFCI input TFCI information int

Pin Name Description Signal Type

6 DecoderInput decoder input data real

7 Out output data int

8 CRCError CRC error indicator int

9 TFOut output transport format int

Name Description Default Sym Type Range

WCDMA3G_UpLkTrCHDecoding 10-47

Page 560: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Base Station Components

Figure 10-15. WCDMA3G_UpLkTrCHDecoding Schematic

References

[1]3GPP Technical Specification TS 25.212 V3.0.0, “Multiplexing and channelcoding (FDD),” October 1999.

[2] 3GPP Technical Specification TS 34.121 V3.0.0 “Terminal conformanceSpecification: Radio transmission and reception (FDD),” March 2000.

10-48 WCDMA3G_UpLkTrCHDecoding

Page 561: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 11: 3GPPFDD 10-99 Channel CodingComponents

11-1

Page 562: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

WCDMA3G_CC

Description Convolutional encoderLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_CC

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

CodeType convolutional code type:rate 1/2 K 9 g0 0561 g10753, rate 1/3 K 9 g0 0557g1 0663 g2 0711

rate 1/2 K 9 g00561 g1 0753

enum

TrCHType transport channeltype(8kbps for no coding indownlink): DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

Pin Name Description Signal Type

1 In input code block data int

2 TF input transport format int

11-2 WCDMA3G_CC

Page 563: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement convolutional coding (or no coding). Coding isperformed block-by-block; at the end of each input block, K-1 tail bits (value 0,K is constraint length) are padded while convolutional coding is performed.

Coding schemes are listed in Table 11-1. The number of input and outputtokens are listed in Table 11-2.

Pin Name Description Signal Type

3 Out output data after coding int

Table 11-1. Convolutional Coding Schemes

TrCHType LinkDir CodeType Coding

DCH_8_kbps Downlink rate 1/2 K 9 g0 0561 g1 0753 no coding

Uplink rate 1/3 K 9 g0 0557 g1 0663 g2 0711 rate 1/3 coding

DCH_16_kbps Downlink rate 1/2 K 9 g0 0561 g1 0753 rate 1/2 coding

Uplink rate 1/3 K 9 g0 0557 g1 0663 g2 0711 rate 1/3 coding

DCH_32_kbps Downlink rate 1/2 K 9 g0 0561 g1 0753 rate 1/2 coding

Uplink rate 1/3 K 9 g0 0557 g1 0663 g2 0711 rate 1/3 coding

DCH_64_kbps any any zero output

DCH_128_kbps any any zero output

DCH_256_kbps any any zero output

DCH_512_kbps any any zero output

DMCH_2_4_kpbs any rate 1/3 K 9 g0 0557 g1 0663 g2 0711 rate 1/3 coding

DMCH_12_2_kpbs any rate 1/3 K 9 g0 0557 g1 0663 g2 0711 rate 1/3 coding

DMCH_64_kbps any any zero output

DMCH_144_kbps any any zero output

DMCH_384_kbps any any zero output

DMCH_2048_kbps Uplink any zero output

BCH_11_1_kbps Downlink rate 1/2 K 9 g0 0561 g1 0753 rate 1/2 coding

BCH_12_3_kbps Downlink rate 1/2 K 9 g0 0561 g1 0753 rate 1/2 coding

WCDMA3G_CC 11-3

Page 564: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

References

[1]3GPP Technical Specification TS25.212 V3.0.0,“Multiplexing and ChannelCoding (FDD),” October 1999.

[2] 3GPP Technical Specification TS25.101 V3.0.0,“UE Radio transmission andReception (FDD),” October 1999.

Table 11-2. Input and Output Tokens

LinkDir TrCHType TTI Input Tokens Output Tokens

Downlink DCH_8_kbps (No Coding) 10ms 96 96

20ms 176 176

40ms 336 336

80ms 656 656

Downlink DCH_16_kbps (1/2 CC) 10ms 184 368

20ms 344 688

40ms 672 1344

80ms 1320 2640

Downlink DCH_32_kbps (1/2 CC) 10ms 344 688

20ms 672 1344

40ms 1320 2640

80ms 2628 5256

Uplink DCH_8_kbps (1/3 CC) 10ms 104 312

20ms 184 552

40ms 344 1032

80ms 672 2016

Uplink DCH_16_kbps (1/3 CC) 10ms 184 552

20ms 344 1032

40ms 672 2016

80ms 1320 3960

Uplink DCH_32_kbps (1/3 CC) 10ms 344 1032

20ms 672 2016

40ms 1320 3960

80ms 2628 7884

Downlink/Uplink DMCH_2_4_kbps (1/3 CC) 40ms 120 360

Downlink/Uplink DMCH_12_2_kbps (1/3 CC) 20ms 268 804

Downlink BCH_11_1_kbps (1/2 CC) 10ms 135 270

Downlink BCH_12_3_kbps (1/2 CC) 20ms 270 540

11-4 WCDMA3G_CC

Page 565: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

[3] 3GPP Technical Specification TS25.104 V3.0.0,“UTRA(BS) FDD: transmissionand Reception,” October 1999.

WCDMA3G_CC 11-5

Page 566: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

WCDMA3G_ChannelCoding

Description Channel codingLibrary 3GPPFDD 10-99, Channel Coding

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

Pin Name Description Signal Type

1 in input code block int

2 TF input transport format int

3 CurSize size of current input block int

11-6 WCDMA3G_ChannelCoding

Page 567: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This subnetwork model is used to perform channel coding; the schematic isshown in Figure 11-1.

• when LinkDir is set to DownLink and TrCHType is set to DCH_8_kbps, nocoding is used

• when LinkDir is set to UpLink and TrCHType is set to DCH_8kbps,convolutional coding is used

• when TrCHType is set to DCH_16_kbps, DCH_32_kbps, DMCH_2_4_kbps,DMCH_12_2_kbps, BCH_11_1_kbps or BCH_12_3_kbps, convolutionalcoding is used

• when TrCHType is set to DCH_64_kbps, DCH_128_kbps, DCH_256_kbps,DCH_512_kbps, DMCH_64_kbps, DMCH_144_kbps, DMCH_384_kbps, turbocoding is used

Figure 11-1. WCDMA3G_ChannelCoding Schematic

References

[1]3GPP Technical Specification TS 25.101 V3.1.0 “UE Radio transmission andReception FDD,” December 1999.

Pin Name Description Signal Type

4 out output encoded code block int

WCDMA3G_ChannelCoding 11-7

Page 568: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

[2] 3GPP Technical Specification TS 34.121 V3.0.0 “Terminal conformanceSpecification: Radio transmission and reception (FDD),” March 2000.

11-8 WCDMA3G_ChannelCoding

Page 569: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_ChannelDecoding

Description Channel decodingLibrary 3GPPFDD 10-99, Channel Coding

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

Pin Name Description Signal Type

1 in input code block real

2 TF input transport format int

3 CurSize size of current input block int

WCDMA3G_ChannelDecoding 11-9

Page 570: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Pin Outputs

Notes/Equations

1. This subnetwork model is used to perform channel decoding.

• when LinkDir is set to DownLink and TrCHType is set to DCH_8_kbps, nocoding is decoded

• when LinkDir is set to UpLink and TrCHType is set to DCH_8kbps,convolutional coding is decoded

• when TrCHType is set to DCH_16_kbps, DCH_32_kbps, DMCH_2_4_kbps,DMCH_12_2_kbps, BCH_11_1_kbps or BCH_12_3_kbps, convolutionalcoding is decoded

• when TrCHType is set to DCH_64_kbps, DCH_128_kbps, DCH_256_kbps,DCH_512_kbps, DMCH_64_kbps, DMCH_144_kbps, DMCH_384_kbps, turbocoding is decoded

The schematic for this subnetwork is shown in Figure 11-2.

Figure 11-2. WCDMA3G_ChannelDecoding Schematic

References

Pin Name Description Signal Type

4 out output encoded code block int

11-10 WCDMA3G_ChannelDecoding

Page 571: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

[1]3GPP Technical Specification TS 25.101 V3.1.0 “UE Radio transmission andReception FDD,” December 1999.

[2] 3GPP Technical Specification TS 34.121 V3.0.0 “Terminal conformanceSpecification: Radio transmission and reception (FDD),” March 2000.

WCDMA3G_ChannelDecoding 11-11

Page 572: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

WCDMA3G_CodeBlkDeSeg

Description Transport Block de-concatenation and code block de-segmentationLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_CodeBlkDeSeg

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

Pin Name Description Signal Type

1 in input code block data int

2 TF Input transport format int

11-12 WCDMA3G_CodeBlkDeSeg

Page 573: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement transport block de-concatenation and codeblock de-segmentation. Data of multiple code blocks are concatenated seriallyand filler bits at the end are punctured. The bit sequence is then segmented intotransport blocks according to TTI. Input and output tokens are listed inTable 11-3.

Pin Name Description Signal Type

3 out output data after deconcatenation anddesegmentation

int

Table 11-3. Input and Output Tokens

DCHType TTI

In Input TokensTF InputTokens

Out OutputTokensDownlink Uplink

DCH_8_kbps 10ms 96 104 1 96

20ms 176 184 2 176

40ms 336 344 4 336

80ms 656 672 8 656

DCH_16_kbps 10ms 184 184 1 176

20ms 344 344 2 336

40ms 672 672 4 656

80ms 1320 1320 8 1296

DCH_32_kbps 10ms 344 344 1 336

20ms 672 672 2 656

40ms 1320 1320 4 1296

80ms 2628 2628 8 2576

DCH_64_kbps 10ms 656 656 1 656

20ms 1296 1296 2 1296

40ms 2576 2576 4 2576

80ms 5136 5136 8 5136

DCH_128_kbps 10ms 1296 1296 1 1296

20ms 2576 2576 2 2576

40ms 5136 5136 4 5136

80ms 10257 10257 8 10256

WCDMA3G_CodeBlkDeSeg 11-13

Page 574: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

2. Model functions

Input bits are read from the input buffer. The input transport format is read todetermine which coding scheme is to be used.

Multiple input code blocks are concatenated serially according to the calculatednumber and size of the code block. The last filler bits are punctured. Figure 11-3illustrates the code block position for different coding schemes.

Bits sequences after concatenation are de-segmented into transport blocks. In aW-CDMA system, only one transport block is produced within one TTI, sode-segmentation is performed on one transport block code only.

All data is output into the output buffer.

DCH_256_kbps 10ms 2576 2576 1 2576

20ms 5136 5136 2 5136

40ms 10257 10257 4 10256

80ms 20500 20500 8 20496

DCH_512_kbps 10ms 5136 5136 1 5136

20ms 10257 10257 2 10256

40ms 20500 20500 4 20496

80ms 40977 40977 8 40976

DMCH_2_4_kbps 40ms 120 120 4 112

DMCH_12_2_kbps 20ms 268 268 2 260

DMCH_64_kbps 20ms 1296 1296 2 1296

DMCH_144_kbps 20ms 2896 2896 2 2896

DMCH_384_kbps 20ms 7696 7696 2 7696

DMCH_2048_kbps 20ms 40977 2 40976

BCH_11_1_kbps 10ms 135 1 127

BCH_12_3_kbps 20ms 270 2 262

Table 11-3. Input and Output Tokens (continued)

DCHType TTI

In Input TokensTF InputTokens

Out OutputTokensDownlink Uplink

11-14 WCDMA3G_CodeBlkDeSeg

Page 575: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 11-3. Position of Code Blocks for Different Channel Coding Schemes

References

[1]3GPP Technical Specification TS25.212 V3.0.0,“Multiplexing and ChannelCoding (FDD),” October 1999.

[2] 3GPP Technical Specification TS25.101 V3.0.0,“UE Radio transmission andReception (FDD),” October 1999.

[3] 3GPP Technical Specification TS25.104 V3.0.0,“UTRA(BS) FDD: transmissionand Reception,” October 1999.

No Coding: Ci = 1

Convolutional Coding: Ci = 1, ... , 6

Turbo Coding: Ci = 1, ... , 9

Code Block #1 Unused data

Code Block #1 Code Block #2 Code Block #N..... Unused data

Code Block #1 Unused data Code Block #N Unused data.....

WCDMA3G_CodeBlkDeSeg 11-15

Page 576: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

WCDMA3G_CodeBlkSeg

Description Transport block concatenation and code block segmentationLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_CodeBlkSeg

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

Pin Name Description Signal Type

1 in input transport block data int

2 TF input transport format int

11-16 WCDMA3G_CodeBlkSeg

Page 577: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement transport block concatenation and code blocksegmentation. All transport blocks in one transmission time interval areserially concatenated. If the number of bits in one TTI is larger than themaximum size of code block, the code block segmentation is performed after theconcatenation of all transport blocks. The maximum size of the code blocksdepend on the channel coding scheme (convolutional coding, turbo coding, nocoding) used for transport channel in downlink and uplink. The number ofinput and output tokens are listed in Table 11-4.

Pin Name Description Signal Type

3 out output data after concatenation and segmentation int

4 CurSize code block size after concatenation andsegmentation

int

Table 11-4. Input and Output Tokens

DCHType TTI

Input Tokens Output Tokens

in TF out Downlink out Uplink CurSize Tokens

DCH_8_kbps 10ms 96 1 96 104 1

20ms 176 2 176 184 1

40ms 336 4 336 344 1

80ms 656 8 656 672 1

DCH_16_kbps 10ms 176 1 184 184 1

20ms 336 2 344 344 1

40ms 656 4 672 672 2

80ms 1296 8 1320 1320 3

DCH_32_kbps 10ms 336 1 344 344 1

20ms 656 2 672 672 2

40ms 1296 4 1320 1320 3

80ms 2576 8 2628 2628 6

DCH_64_kbps 10ms 656 1 656 656 1

20ms 1296 2 1296 1296 1

40ms 2576 4 2576 2576 1

80ms 5136 8 5136 5136 2

WCDMA3G_CodeBlkSeg 11-17

Page 578: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

2. Model functions

Input bits are read from the input buffer. The input transport format is read todetermine which coding scheme to use.

Concatenation of transport blocks is performed.

Bits input to the transport block concatenation are denoted bybim1,bim2,...bimBi, where i is the TrCH number, m is the transport block number,Bi is the number of bits in each block (including CRC). The number of transportblock on TrCH i is denoted by Mi. Bits after concatenation are denoted by xi1,xi2, ..., xiXi, where i is the TrCH number and Xi = MiBi. They are defined by thefollowing relations:

xik = bi1k, k = 1,2,...,Bi

DCH_128_kbps 10ms 1296 1 1296 1296 1

20ms 2576 2 2576 2576 1

40ms 5136 4 5136 5136 2

80ms 10256 8 10257 10257 3

DCH_256_kbps 10ms 2576 1 2576 2576 1

20ms 5136 2 5136 5136 2

40ms 10256 4 10257 10257 3

80ms 20496 8 20500 20500 5

DCH_512_kbps 10ms 5136 1 5136 5136 2

20ms 10256 2 10257 10257 3

40ms 20496 4 20500 20500 5

80ms 40976 8 40977 40977 9

DMCH_2_4_kbps 40ms 112 4 120 120 1

DMCH_12_2_kbps 20ms 260 2 268 268 1

DMCH_64_kbps 20ms 1296 2 1296 1296 1

DMCH_144_kbps 20ms 2896 2 2896 2896 1

DMCH_384_kbps 20ms 7696 2 7696 7696 2

DMCH_2048_kbps 20ms 40976 2 40977 9

BCH_11_1_kbps 10ms 127 1 135 1

BCH_12_3_kbps 20ms 262 2 270 1

Table 11-4. Input and Output Tokens (continued)

DCHType TTI

Input Tokens Output Tokens

in TF out Downlink out Uplink CurSize Tokens

11-18 WCDMA3G_CodeBlkSeg

Page 579: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

xik = bi,2,(k-Bi), k = Bi+1,Bi+2,...,2Bi...

xik = bi,Mi,(k-(Mi-1)Bi), k = (Mi-1)Bi+1,(Mi-1)Bi+2, ... , MiBi

In a W-CDMA system, only one transport block is produced within one TTI, soconcatenation is only performed while Mi = 1.

If data size Xi after concatenation is larger than the maximum code block sizeZ, the segmentation of bit sequence is performed. The code blocks aftersegmentation are of the same size. The number of code blocks on TrCH i isdenoted by Ci . If the number of bits input to the segmentation Xi is not amultiple of Ci , filler bits are added to the last block. The filler bits aretransmitted and they are always set to 0. The maximum code block size are:

convolutional coding: Z = 504turbo coding: Z = 5114no coding: Z = unlimited

Bits output from code block segmentation are denoted by Oir1,Oir2,...,OirKi,where i is TrCH number, r is code block number, Ki is number of bits.

Number of code blocks: Ci = [ Xi / Z ]Number of bits in each code block: Ki = [ Xi / Ci ]Number of filler bits: Yi = CiKi - Xi

If Xi <= Z, then Oi1k=Xik , and Ki =XiIf Xi > Z, then

Oi1k = xik, k = 1,2,...,KiOi2k = xi,(k+Ki) , k = 1,2,...,Ki...

OiCik = xi,(k+(Ci-1)Ki) , k = 1,2,...,Ki - YiOiCik = 0 , k = Ki - Yi + 1, ..., Ki

WCDMA3G_CodeBlkSeg 11-19

Page 580: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

In W-CDMA systems, while convolutional coding scheme is used, (K-1) tails bitsare added to the end of every code block for convenience, K is the constraintlength of convolutional code.

Figure 11-4 illustrates the position of the code block for the coding schemes.

All data and current valid data size are output into the output buffer.

Figure 11-4. Position of Code Blocks for Different Channel Coding Schemes

References

[1]3GPP Technical Specification TS25.212 V3.0.0,“Multiplexing and ChannelCoding (FDD),” October 1999.

[2] 3GPP Technical Specification TS25.101 V3.0.0,“UE Radio transmission andReception (FDD),” October 1999.

[3] 3GPP Technical Specification TS25.104 V3.0.0,“UTRA(BS) FDD: transmissionand Reception,” October 1999.

No Coding: Ci = 1 (Ci: index of code block)

Convolutional Coding: Ci = 1, ... , 6

Turbo Coding: Ci = 1, ... , 9

Code Block #1 Unused data

Code Block #1 Code Block #2 Code Block #N..... Unused data

Code Block #1 Unused data Code Block #N Unused data.....

11-20 WCDMA3G_CodeBlkSeg

Page 581: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_CRCDecoder

Description CRC check of transport blockLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_CRCDecoder

Parameters

Pin Inputs

Name Description Default Type

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

CRC number of CRC bits to beadded: NoCRC,CRC_8_bits,CRC_12_bits,CRC_16_bits,CRC_24_bits

CRC_16_bits enum

Pin Name Description Signal Type

1 DataIn transport block with CRC bits attached in tail int

2 TF transport format int

WCDMA3G_CRCDecoder 11-21

Page 582: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Pin Outputs

Notes/Equations

1. The model is used to perform CRC checking of a block of transport channeldata. The signal processing procedure follows the CRC checking algorithmsdescribed in [1].

Since the length of the transport block could dynamically change, the number oftokens consumed at DataIn is set to the maximum block length plus thenumber of CRC parity bits attached, and the number of tokens produced atDataOut is set to the maximum block length. The maximum block length isdetermined by the TrCHType and TTI parameters.

2. Each firing, a block of data with the CRC parity bits attached in reversed orderis input for CRC checking, and the output block is the data block while the CRCparity bits have been removed. 1 token is consumed at pin TF, which acts as theinstantaneous service rate indicator. So, the number of useful bits, or the lengthof input data block for CRC coding, is determined by TF. For details regardingtransport formats, refer to “General Signal Processing” on page 1-7.

1 token is produced at pin CRCError: 0 indicates the result is correct; 1indicates an error.

References

[1]3GPP Technical Specification, TS 25.211, V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October, 1999.

Pin Name Description Signal Type

3 DataOut transport block after removing the CRC bits int

4 CRCError CRC checking error indicator int

11-22 WCDMA3G_CRCDecoder

Page 583: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_CRCEncoder

Description Add CRC to each transport blockLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_CRCEncoder

Parameters

Pin Inputs

Name Description Default Type

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

CRC number of CRC bits to beadded: NoCRC,CRC_8_bits,CRC_12_bits,CRC_16_bits,CRC_24_bits

CRC_16_bits enum

Pin Name Description Signal Type

1 DataIn one transport block without CRC bits int

2 TF transport format int

WCDMA3G_CRCEncoder 11-23

Page 584: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Pin Outputs

Notes/Equations

1. The model is used to add CRC parity bits to a block of transport channel data.

Signal processing follows the CRC checking algorithms described in [1] section.

2. Since the length of the transport block could be dynamically changing, thenumber of tokens consumed at DataIn is set to be the maximum block length,and the number of tokens produced at DataOut is set to be the maximum blocklength plus the number of CRC parity bits attached.

The maximum block length is determined by the TrCHType and TTIparameters.

Each firing, a block of data is input for CRC checking; the output block consistsof the input data block and the parity bits attached in reversed order. 1 token isconsumed at pin TF, which acts as the instantaneous service rate indicator. So,the number of useful bits, or the length of input data block for CRC coding, isdetermined by TF. For details regarding transport formats, refer to “GeneralSignal Processing” on page 1-7.

References

[1]3GPP Technical Specification, TS 25.211, V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October, 1999.

Pin Name Description Signal Type

3 DataOut one transport block with CRC attatched int

11-24 WCDMA3G_CRCEncoder

Page 585: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_FirstDeintlvr

Description First de-interleaverLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_FirstDeintlvr

Parameters

Name Description Default Sym Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channeltype(used in uplink only):DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

WCDMA3G_FirstDeintlvr 11-25

Page 586: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

PhyCHNum physical channel number 1 Nd int [1, ∞)

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Name Description Default Sym Type Range

11-26 WCDMA3G_FirstDeintlvr

Page 587: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to implement first de-interleaving. First de-interleaving is ablock de-interleaver with inter-column permutations before the ratede-matching in downlink or radio frame de-equalization in uplink.

In the downlink, M×Nd×NTTI tokens of Out and one token of outSize areproduced when M×Nd×NTTI tokens of In and one token of inSize are consumed,where NTTI equals 1, 2, 4, or 8 when TTI is 10ms, 20ms, 40ms, or 80ms,respectively. Refer to Table 11-5 for the value of M.

In the uplink, M tokens of Out and one token of outSize are produced when Mtokens of pin In and one token of pin inSize are consumed. Refer to Table 11-6for the value of M.

Pin Name Description Signal Type

1 In input data real

2 inSize input data length int

Pin Name Description Signal Type

3 Out ouput data after deinterleaving real

4 outSize output data length int

Table 11-5. Downlink M Values

DL_PhyCHTypeM=PhyCH Interleaving BlockLength (Bits)

DPCH_15kbps_TF0_T2_P4 60

DPCH_15kbps_TF2_T2_P4 30

DPCH_30kbps_TF0_T2_P2 240

DPCH_30kbps_TF2_T2_P2 210

DPCH_30kbps_TF0_T2_P4 210

DPCH_30kbps_TF2_T2_P4 180

DPCH_30kbps_TF0_T2_P8 150

DPCH_30kbps_TF2_T2_P8 120

DPCH_60kbps_TF0_T2_P4 510

WCDMA3G_FirstDeintlvr 11-27

Page 588: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

References

DPCH_60kbps_TF2_T2_P4 480

DPCH_60kbps_TF0_T2_P8 450

DPCH_60kbps_TF2_T2_P8 420

DPCH_120kbps_TF8_T4_P8 900

DPCH_120kbps_TF0_T4_P8 900

DPCH_240kbps_TF8_T4_P8 2100

DPCH_240kbps_TF0_T4_P8 2100

DPCH_480kbps_TF8_T8_P16 4320

DPCH_480kbps_TF0_T8_P16 4320

DPCH_960kbps_TF8_T8_P16 9120

DPCH_960kbps_TF0_T8_P16 9120

DPCH_1920kbps_TF8_T8_P16 18720

DPCH_1920kbps_TF0_T8_P16 18720

PCCPCH 270

Table 11-6. Uplink M Values

TrCHType

M=TrCH Interleaving Block Length (Bits)

TTI=10ms TTI=20ms TTI=40ms TTI=80ms

DCH_8_kpbs 312 552 1032 2016

DCH_16_kpbs 552 1032 2016 3960

DCH_32_kbps 1032 2016 3960 7888

DCH_64_kbps 1980 3900 7740 15432

DCH_128_kbps 3900 7740 15432 30808

DCH_256_kbps 7740 15432 30808 61560

DCH_512_kbps 15432 30808 61560 123040

DMCH_2_4_kbps 360

DMCH_12_2_kbps 804

DMCH_64_kbps 3900

DMCH_144_kbps 8700

DMCH_384_kbps 23112

DMCH_2048_kbps 123040

Table 11-5. Downlink M Values (continued)

DL_PhyCHTypeM=PhyCH Interleaving BlockLength (Bits)

11-28 WCDMA3G_FirstDeintlvr

Page 589: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

[1]3GPP Technical Specification TS25.212 V3.0.0,“Multiplexing and ChannelCoding (FDD),” October 1999.

[2] 3GPP Technical Specification TS25.101 V3.0.0,“UE Radio Transmission andReception (FDD),” October 1999.

[3] 3GPP Technical Specification TS25.104 V3.0.0,“UTRA (BS) FDD: Transmissionand Reception,” October 1999.

WCDMA3G_FirstDeintlvr 11-29

Page 590: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

WCDMA3G_FirstIntlvr

Description First interleaverLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_FirstIntlvr

Parameters

Name Description Default Sym Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channeltype(used in uplink only):DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

11-30 WCDMA3G_FirstIntlvr

Page 591: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

PhyCHNum physical channel number 1 Nd int [1, ∞)

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Name Description Default Sym Type Range

WCDMA3G_FirstIntlvr 11-31

Page 592: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used for first interleaving. First interleaving is a block interleaverwith inter-column permutations after rate matching in a downlink or radioframe equalization in an uplink.

In a downlink, M×Nd×NTTI tokens of Out and one token of outSize are producedwhen M×Nd×NTTI tokens of pin In and one token of inSize are consumed, whereNTTI equals 1, 2, 4, or 8 when TTI is set to 10ms, 20ms, 40ms, or 80ms,respectively. Refer to Table 11-7 for the value of M.

In an uplink, M tokens of Out and one token of outSize are produced when Mtokens of pin In and one token of pin inSize are consumed. Refer to Table 11-8for the value of M.

Pin Name Description Signal Type

1 In input data int

2 inSize input data length int

Pin Name Description Signal Type

3 Out ouput data after interleaving int

4 outSize output data length int

Table 11-7. Downlink M Values

DL_PhyCHTypeM=PhyCH Interleaving BlockLength (Bits)

DPCH_15kbps_TF0_T2_P4 60

DPCH_15kbps_TF2_T2_P4 30

DPCH_30kbps_TF0_T2_P2 240

DPCH_30kbps_TF2_T2_P2 210

DPCH_30kbps_TF0_T2_P4 210

DPCH_30kbps_TF2_T2_P4 180

DPCH_30kbps_TF0_T2_P8 150

DPCH_30kbps_TF2_T2_P8 120

DPCH_60kbps_TF0_T2_P4 510

DPCH_60kbps_TF2_T2_P4 480

11-32 WCDMA3G_FirstIntlvr

Page 593: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. Model functions

DPCH_60kbps_TF0_T2_P8 450

DPCH_60kbps_TF2_T2_P8 420

DPCH_120kbps_TF8_T4_P8 900

DPCH_120kbps_TF0_T4_P8 900

DPCH_240kbps_TF8_T4_P8 2100

DPCH_240kbps_TF0_T4_P8 2100

DPCH_480kbps_TF8_T8_P16 4320

DPCH_480kbps_TF0_T8_P16 4320

DPCH_960kbps_TF8_T8_P16 9120

DPCH_960kbps_TF0_T8_P16 9120

DPCH_1920kbps_TF8_T8_P16 18720

DPCH_1920kbps_TF0_T8_P16 18720

PCCPCH 270

Table 11-8. Uplink M Values

TrCHType

M=TrCH Interleaving Block Length (Bits)

TTI=10ms TTI=20ms TTI=40ms TTI=80ms

DCH_8_kpbs 312 552 1032 2016

DCH_16_kpbs 552 1032 2016 3960

DCH_32_kbps 1032 2016 3960 7888

DCH_64_kbps 1980 3900 7740 15432

DCH_128_kbps 3900 7740 15432 30808

DCH_256_kbps 7740 15432 30808 61560

DCH_512_kbps 15432 30808 61560 123040

DMCH_2_4_kbps 360

DMCH_12_2_kbps 804

DMCH_64_kbps 3900

DMCH_144_kbps 8700

DMCH_384_kbps 23112

DMCH_2048_kbps 123040

Table 11-7. Downlink M Values (continued)

DL_PhyCHTypeM=PhyCH Interleaving BlockLength (Bits)

WCDMA3G_FirstIntlvr 11-33

Page 594: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Input bits and data length are loaded from the input buffer. The input bits fromthe beginning to the input data length are valid data for the first interleavingand are denoted as xi1, xi2, ... , xiXi, where i is the TrCH number and Xi is thenumber of bits (at this stage Xi is assumed and guaranteed to be an integermultiple of TTI).

The number of columns Ci are selected (see Table 11-9).

The number of rows (Ri) are determined.

Ri = Xi / Ci

Input bit sequence is placed into the Ri x Ci rectangular matrix row-by-rowstarting with bit xi1 in the first column of the first row and ending with bitxi,(Ri,Ci) in column Ci of row Ri:

Inter-column permutation is performed based on the pattern {P1(j)} (j=0,1, ... ,Ci-1) shown in Table 11-9, where P1(j) is the original column position of the jthpermuted column. After permutation f columns, bits are denoted by yik :

Table 11-9. Permutation Patterns for First Interleaving

TTI

Number of

ColumnsInter-column PermutationPatterns

10ms 1 {0}

20ms 2 {0,1}

40ms 4 {0,2,1,3}

80ms 8 {0,4,2,6,1,5,3,7}

Ci

xi1xi2 xi3 ... xi,Ci

xi,(Ci+1)

.

.

.

xi,(Ci+2) xi,(Ci+3) ... xi,(2Ci)

xi,((Ri-1)Ci+1) xi,((Ri-1)Ci+2) xi,((Ri-1)Ci+3) ... xi,(RiCi)

11-34 WCDMA3G_FirstIntlvr

Page 595: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Output bit sequence yik of the first interleaving is read column-by-column fromthe inter-column permuted Ri x Ci matrix. Bit yi,1 corresponds to the first row ofthe first column and bit yi,(RiCi) corresponds to row of column Ci.

Data is output after interleaving and pad all zero if the valid length is smallerthan the buffer size, the value of outSize is output equal to inSize.

References

[1]3GPP Technical Specification TS25.212 V3.0.0, “Multiplexing and ChannelCoding (FDD),” October 1999.

[2] 3GPP Technical Specification TS25.101 V3.0.0, “UE Radio Transmission andReception (FDD),” October 1999.

[3] 3GPP Technical Specification TS25.104 V3.0.0, “UTRA(BS) FDD: Transmissionand Reception,” October 1999.

yi1 yi,(Ri+1) yi,(2Ri+1) ... yi,((Ci-1)Ri+1)

yi2...

yi,(Ri+2) yi,(2Ri+2) ... yi,((Ci-1)Ri+2)

yi,Ri yi,(2Ri) yi,(3Ri) ... yi,(CiRi)

WCDMA3G_FirstIntlvr 11-35

Page 596: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

WCDMA3G_SecondDeintlvr

Description Second de-interleaverLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_SecondDeintlvr

11-36 WCDMA3G_SecondDeintlvr

Page 597: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Parameters

Name Description Default Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

WCDMA3G_SecondDeintlvr 11-37

Page 598: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to implement the second de-interleaving. The secondde-interleaving is a block de-interleaver with inter-column permutations beforethe physical channel segmentation.

M tokens of Out are produced when M tokens of pin In are consumed. Refer toTable 11-10 for the value of M.

UL_DPDCHType uplink dedicated physicaldata channel type:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 In input data real

Pin Name Description Signal Type

2 Out ouput data after deinterleaving real

Table 11-10. M Values

Physical Channel TypeM=PhyCH Interleaving BlockLength (Bits)

DL_PhyCHType

DPCH_15kbps_TF0_T2_P4 60

DPCH_15kbps_TF2_T2_P4 30

DPCH_30kbps_TF0_T2_P2 240

DPCH_30kbps_TF2_T2_P2 210

Name Description Default Type Range

11-38 WCDMA3G_SecondDeintlvr

Page 599: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. Model functions

Input bits and data length are loaded from the input buffer. The input bitsequence for second de-interleaving is denoted as yp1, yp2, ... , ypU, where p isthe PhyCH number and U is the number of bits in one radio frame for onePhyCH.

DPCH_30kbps_TF0_T2_P4 210

DPCH_30kbps_TF2_T2_P4 180

DPCH_30kbps_TF0_T2_P8 150

DPCH_30kbps_TF2_T2_P8 120

DPCH_60kbps_TF0_T2_P4 510

DPCH_60kbps_TF2_T2_P4 480

DPCH_60kbps_TF0_T2_P8 450

DPCH_60kbps_TF2_T2_P8 420

DPCH_120kbps_TF8_T4_P8 900

DPCH_120kbps_TF0_T4_P8 900

DPCH_240kbps_TF8_T4_P8 2100

DPCH_240kbps_TF0_T4_P8 2100

DPCH_480kbps_TF8_T8_P16 4320

DPCH_480kbps_TF0_T8_P16 4320

DPCH_960kbps_TF8_T8_P16 9120

DPCH_960kbps_TF0_T8_P16 9120

DPCH_1920kbps_TF8_T8_P16 18720

DPCH_1920kbps_TF0_T8_P16 18720

UL_DPDCHType

DPDCH_15kbps 150

DPDCH_30kbps 300

DPDCH_60kbps 600

DPDCH_120kbps 1200

DPDCH_240kbps 2400

DPDCH_480kbps 4800

DPDCH_960kbps 9600

Table 11-10. M Values (continued)

Physical Channel TypeM=PhyCH Interleaving BlockLength (Bits)

WCDMA3G_SecondDeintlvr 11-39

Page 600: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Interleaving pattern {P(j)}(j=1,2, ... , R2C2) is calculated before pruning underthe current settings, where P(j) is the original position of the jth interleavingbit.

The data pruning index array {Index(j)}(j=1,2, ... , R2C2) is determined:

Index(j) = j if P(j) ≤ UIndex(j) = -1 if P(j) > U

De-interleaving pattern {R(j)}(j=1,2, ... , R2C2) is determined:

R(P(j)) = j

Output data up,k is written according to the rule:

if Index(R(j)) = -1 this step is not performed,

else

output up,R(j)

that is, after de-interleaving the first bit up,1 is the bit in yp,k that satisfies thecondition P(n)=k and R(k)=n, where n is the smallest index that makesIndex(n) ≠ −1.

Data is output after de-interleaving.

References

[1]3GPP Technical Specification TS25.212 V3.0.0,“Multiplexing and ChannelCoding (FDD),” October 1999.

[2] 3GPP Technical Specification TS25.101 V3.0.0,“UE Radio transmission andReception (FDD),” October 1999.

[3] 3GPP Technical Specification TS25.104 V3.0.0,“UTRA(BS) FDD: transmissionand Reception,” October 1999.

11-40 WCDMA3G_SecondDeintlvr

Page 601: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_SecondIntlvr

Description Second interleaverLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_SecondIntlvr

WCDMA3G_SecondIntlvr 11-41

Page 602: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Parameters

Name Description Default Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

11-42 WCDMA3G_SecondIntlvr

Page 603: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to implement the second interleaving. The secondinterleaving is a block interleaver with inter-column permutations after thephysical channel segmentation.

Each firing, M tokens are produced when M tokens are consumed; refer toTable 11-11 for the value of M.

UL_DPDCHType uplink dedicated physicaldata channel type:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 In input data int

Pin Name Description Signal Type

2 Out ouput data after interleaving int

Table 11-11. M Values

Physical Channel TypeM=PhyCH Interleaving BlockLength (Bits)

DL_PhyCHType

DPCH_15kbps_TF0_T2_P4 60

DPCH_15kbps_TF2_T2_P4 30

DPCH_30kbps_TF0_T2_P2 240

DPCH_30kbps_TF2_T2_P2 210

Name Description Default Type Range

WCDMA3G_SecondIntlvr 11-43

Page 604: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

2. Model functions

Input bits and data length are read from the input buffer. The input bitsequence for second interleaving is denoted as up1, up2, ... , upU, where p is thePhyCH number and U is the number of bits in one radio frame for one PhyCH.

The number of columns is set to C2 = 30. Columns are numbered 0,1,2, ... , C2-1left to right.

DPCH_30kbps_TF0_T2_P4 210

DPCH_30kbps_TF2_T2_P4 180

DPCH_30kbps_TF0_T2_P8 150

DPCH_30kbps_TF2_T2_P8 120

DPCH_60kbps_TF0_T2_P4 510

DPCH_60kbps_TF2_T2_P4 480

DPCH_60kbps_TF0_T2_P8 450

DPCH_60kbps_TF2_T2_P8 420

DPCH_120kbps_TF8_T4_P8 900

DPCH_120kbps_TF0_T4_P8 900

DPCH_240kbps_TF8_T4_P8 2100

DPCH_240kbps_TF0_T4_P8 2100

DPCH_480kbps_TF8_T8_P16 4320

DPCH_480kbps_TF0_T8_P16 4320

DPCH_960kbps_TF8_T8_P16 9120

DPCH_960kbps_TF0_T8_P16 9120

DPCH_1920kbps_TF8_T8_P16 18720

DPCH_1920kbps_TF0_T8_P16 18720

UL_DPDCHType

DPDCH_15kbps 150

DPDCH_30kbps 300

DPDCH_60kbps 600

DPDCH_120kbps 1200

DPDCH_240kbps 2400

DPDCH_480kbps 4800

DPDCH_960kbps 9600

Table 11-11. M Values (continued)

Physical Channel TypeM=PhyCH Interleaving BlockLength (Bits)

11-44 WCDMA3G_SecondIntlvr

Page 605: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

The number of rows R2 is determined by finding the minimum integer R2 suchthat

U <= R2C2

Bits input to the second interleaving are written into the R2 x C2 rectangularmatrix row by row:

Inter-column permutation is performed based on the pattern {P2(j)}(j=0,1, ... ,C2-1) shown in Table 11-12, where P2(j) is the original column position of the jthpermuted column.

After permutation f the columns, the bits are denoted by ypk :

Output bit sequence ypk of the second interleaving is read column by columnfrom the inter-column permuted R2 x C2 matrix. The output is pruned bydeleting bits that were not present in the input bit sequence, that is, bit yp,k thatcorresponds to bits up,k with k > U are removed form the output. The bits after

Table 11-12. Permutation Patterns for Second Interleaving

Number ofColumns Inter-column Permutation Pattern

30 {0,20,10,5,15,25,3,13,23,8,18,28,1,11,21,6,16,26,4,14,24,19,9,29,12,2,7,22,27,17}

up1 up2 up3 ... up,C2

up,(C2+1)...

up,(C2+2) up,(C2+3) ... up,2C2

up,((R2-1)C2+1) up,((R2-1)C2+2) up,((R2-1)C2+3) ... up,R2C2

yp1 yp,(R2+1) yp,(2R2+1) ... yp,((C2-1)R2+1)

yp2...

yp,(R2+2) yp,(2R2+2) ... yp,((C2-1)R2+2)

yp,Ri yp,(2R2) yp,(3R2) ... yp,(C2R2)

WCDMA3G_SecondIntlvr 11-45

Page 606: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

the second interleaving are denoted by vp1, vp2, ... , vpU,where vp1 corresponds tothe bit ypk with smallest index k after pruning, vp2 to the bit ypk with secondsmallest index k after pruning, and so on.

Data is output after interleaving.

References

[1]3GPP Technical Specification TS25.212 V3.0.0,“Multiplexing and ChannelCoding (FDD),” October 1999.

[2] 3GPP Technical Specification TS25.101 V3.0.0,“UE Radio Transmission andReception (FDD),” October 1999.

[3] 3GPP Technical Specification TS25.104 V3.0.0,“UTRA (BS) FDD: Transmissionand Reception,” October 1999.

11-46 WCDMA3G_SecondIntlvr

Page 607: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TCDecoder

Description Turbo code decoderLibrary 3GPPFDD 10-99, Channel Coding

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_64_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

TurboCodeType turbo code type: k 4 g1 013g2 015 Rate One Third

k 4 g1 013 g2 015Rate One Third

enum

Pin Name Description Signal Type

1 in input encoded code block real

2 CurSize size of current input block int

WCDMA3G_TCDecoder 11-47

Page 608: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Pin Outputs

Notes/Equations

1. This model is used to implement turbo code MAP decoding iteration process. Itdecodes input bit streams in block sizes according to TrCHType and TTI (whichis compliant with [1]).

Coding schemes are listed in Table 11-13.

Each firing, BlockSize tokens are produced continuously at each output whenBlockSize×3+12 in tokens and 1 CurSize token are consumed. Refer toTable 11-14 for the value of BlockSize.

Pin Name Description Signal Type

3 Iterative6 output final decision at 6-step iteration int

4 Iterative7 output final decision at 7-step iteration int

5 Iterative8 output final decision at 8-step iteration int

6 Iterative9 output final decision at 9-step iteration int

Table 11-13. Turbo Coding Schemes

TrCHType LinkDir CodeType Coding

DCH_8_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_16_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_32_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_128_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_256_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_512_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2_4_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_12_2_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_144_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_384_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2048_kbps Uplink k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

BCH_11_1_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

BCH_12_3_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

11-48 WCDMA3G_TCDecoder

Page 609: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. The schematic for this subnetwork is shown in Figure 11-5.

Figure 11-5. WCDMA3G_TCDecoder Schematic

References

[1]3GPP Technical Specification TS 25.212 V3.0.0 “Multiplexing and channelcoding (FDD),” October 1999.

[2] L. R. Bahl, J. Cocke, F. Jeinek and J. Raviv. “Optimal decoding of linear codesfor minimizing symbol error rate.” IEEE Trans. Inform. Theory, vol. IT-20.pp.248-287, March 1974.

[3] C. Berrou, A. Glavieux, and P. Thitiumjshima, “Near Shannon limit errorcorrecting coding: Turbo codes,” IEEE International Conference onCommunications, pp. 1064-1070, May 1993.

Table 11-14. BlockSize Values

Downlink/Uplink Data Source

BlockSize

TTI_10ms TTI_20ms TTI_40ms TTI_80ms

DCH_64kbps 656 1296 2576 2568

DCH_128kbps 1296 2576 2576 3419

DCH_256kbps 2576 2576 3419 4100

DCH_512kbps 2576 3419 4100 4553

DMCH_64_kbps 1296

DMCH_144_kbps 2896

DMCH_384_kbps 3848

DMCH_2048_kbps (uplink only) 4553

WCDMA3G_TCDecoder 11-49

Page 610: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

WCDMA3G_TCDecoder_Base

Description Turbo code sub-decoderLibrary 3GPPFDD 10-99, Channel Coding

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_64_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

TurboCodeType turbo code type: k 4 g1 013g2 015 Rate One Third

k 4 g1 013 g2 015Rate One Third

enum

Pin Name Description Signal Type

1 in input encoded code block real

2 Priori priori probability real

3 CurSize size of current input block int

11-50 WCDMA3G_TCDecoder_Base

Page 611: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This subnetwork model is used to implement one-step turbo code MAP decodingiteration process.

The schematic for this subnetwork is shown in Figure 11-6.

Figure 11-6. WCDMA3G_TCDecoder_Base Schematic

2. Coding schemes are listed in Table 11-15.

Input bits stream are decoded to block sizes according to TrCHType and TTI(which is compliant with [1]).

Each firing, BlockSize tokens are produced continuously at out, BlockSize+3tokens are produced at post when BlockSize×3+12 in, BlockSize+3 Priori, and 1CurSize tokens are consumed. Table 11-16 lists BlockSize values.

Pin Name Description Signal Type

4 out output decision int

5 Post log a posterior probability real

Table 11-15. Turbo Coding Schemes

DCHType LinkDir CodeType Coding

DCH_8_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_16_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_32_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_128_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_256_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_512_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

WCDMA3G_TCDecoder_Base 11-51

Page 612: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

References

[1]3GPP Technical Specification TS 25.212 V3.0.0 “Multiplexing and ChannelCoding (FDD),” October 1999.

[2] L.R. Bahl, J. Cocke, F. Jeinek and J. Raviv. “Optimal decoding of linear codes forminimizing symbol error rate.” IEEE Trans. Inform. Theory, vol. IT-20.pp.248-287, March 1974.

[3] C.Berrou, A.Glavieux, and P. Thitiumjshima, “Near Shannon limit errorcorrecting coding: Turbo codes,” IEEE International Conference onCommunications, pp. 1064-1070, May 1993.

DMCH_2_4_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_12_2_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_144_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_384_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2048_kbps Uplink k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

BCH_11_1_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

BCH_12_3_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

Table 11-16. BlockSize Values

Downlink/Uplink Data Source

BlockSize

TTI_10ms TTI_20ms TTI_40ms TTI_80ms

DCH_64kbps 656 1296 2576 2568

DCH_128kbps 1296 2576 2576 3419

DCH_256kbps 2576 2576 3419 4100

DCH_512kbps 2576 3419 4100 4553

DMCH_64_kbps 1296

DMCH_144_kbps 2896

DMCH_384_kbps 3848

DMCH_2048_kbps (uplink only) 4553

Table 11-15. Turbo Coding Schemes

DCHType LinkDir CodeType Coding

11-52 WCDMA3G_TCDecoder_Base

Page 613: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TCEncoder

Description Turbo code encoderLibrary 3GPPFDD 10-99, Channel Coding

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_64_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

TurboCodeType turbo code type: k 4 g1 013g2 015 Rate One Third

k 4 g1 013 g2 015Rate One Third

enum

Pin Name Description Signal Type

1 in input code block int

2 CurSize size of current input block int

WCDMA3G_TCEncoder 11-53

Page 614: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Pin Outputs

Notes/Equations

1. This model is used to implement turbo code encoding. See Figure 11-7.

The schematic for this subnetwork is shown in Figure 11-8.

2. Coding schemes are listed in Table 11-17.

Input bits stream are encoded in block sizes according to TrCHType and TTI(which is compliant with [1]).

The processing unit of the turbo code encoder is one block. Each firing,BlockSize ×3 + 12 tokens are produced when BlockSize in and 1 CurSize tokensare consumed. Table 11-18 lists BlockSize values.

Figure 11-7. Encoder Diagram

Figure 11-8. WCDMA3G_TCEncoder Schematic

Pin Name Description Signal Type

3 out output encoded code block int

11-54 WCDMA3G_TCEncoder

Page 615: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.212 V3.0.0 “Multiplexing and channelcoding (FDD),” October 1999.

Table 11-17. Turbo Coding Schemes

DCHType LinkDir CodeType Coding

DCH_8_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_16_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_32_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_128_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_256_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_512_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2_4_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_12_2_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_144_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_384_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2048_kbps Uplink k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

BCH_11_1_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

BCH_12_3_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

Table 11-18. BlockSize Values

Downlink or Uplink Data Source

BlockSize

TTI_10ms TTI_20ms TTI_40ms TTI_80ms

DCH_64kbps 656 1296 2576 2568

DCH_128kbps 1296 2576 2576 3419

DCH_256kbps 2576 2576 3419 4100

DCH_512kbps 2576 3419 4100 4553

DMCH_64_kbps 1296

DMCH_144_kbps 2896

DMCH_384_kbps 3848

DMCH_2048_kbps (uplink only) 4553

WCDMA3G_TCEncoder 11-55

Page 616: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

[2] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limiterror-correcting coding and decoding: Turbo-codes,” Ecole Nationale Superieuredes Telecommunivations de Bretagne, France.

11-56 WCDMA3G_TCEncoder

Page 617: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TC_Adjust

Description Adjust data sequence for turbo codeLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_TC_Adjust

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_64_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

TurboCodeType turbo code type: k 4 g1 013g2 015 Rate One Third

k 4 g1 013 g2 015Rate One Third

enum

Pin Name Description Signal Type

1 input0 information bits int

2 input1 subencoder1 output sequence int

3 input2 subencoder2 output sequence int

4 CurSize size of current input block int

WCDMA3G_TC_Adjust 11-57

Page 618: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Pin Outputs

Notes/Equations

1. This model is used to adjust three sequences of turbo code encoder into onesequence. The three sequences are: information bits Xk; subencoder1 outputYk1; and, subencoder 2 output Yk2. The output sequence Y is xk(0), yk1(0),yk2(0), xk(1), yk1(1), yk2(1), etc., as shown in Figure 11-9.

2. Coding schemes are listed in Table 11-19.

Each firing BlockSize×3+12 tokens are produced when BlockSize input0,BlockSize+6 input1, and BlockSize+6 input2 tokens and one CurSize token areconsumed. Table 11-20 lists BlockSize values.

Figure 11-9. Encoder Diagram

Pin Name Description Signal Type

5 out turbo code encoder output data int

Table 11-19. Turbo Coding Schemes

TrCHType LinkDir CodeType Coding

DCH_8_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_16_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_32_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_128_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_256_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_512_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2_4_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

11-58 WCDMA3G_TC_Adjust

Page 619: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.212 v3.0.0 “Multiplexing and ChannelCoding (FDD),” October1999.

DMCH_12_2_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_144_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_384_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2048_kbps Uplink k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

BCH_11_1_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

BCH_12_3_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

Table 11-20. BlockSize Values

Downlink or Uplink Data Source

BlockSize

TTI_10ms TTI_20ms TTI_40ms TTI_80ms

DCH_64kbps 656 1296 2576 2568

DCH_128kbps 1296 2576 2576 3419

DCH_256kbps 2576 2576 3419 4100

DCH_512kbps 2576 3419 4100 4553

DMCH_64_kbps 1296

DMCH_144_kbps 2896

DMCH_384_kbps 3848

DMCH_2048_kbps (uplink only) 4553

Table 11-19. Turbo Coding Schemes (continued)

TrCHType LinkDir CodeType Coding

WCDMA3G_TC_Adjust 11-59

Page 620: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

WCDMA3G_TC_Deintlvr

Description Turbo code internal de-interleaverLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_TC_Deintlvr

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_64_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

Pin Name Description Signal Type

1 In input data real

2 CurSize input data size int

11-60 WCDMA3G_TC_Deintlvr

Page 621: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement the turbo code internal de-interleaving used indecoding.

Coding schemes are listed in Table 11-21.

The de-interleaver is fired in the code block that is segmented by the formermodel. Input and output tokens are listed in Table 11-22.

Pin Name Description Signal Type

3 Out ouput data after deinterleaving real

Table 11-21. Turbo Coding Scheme

TrCHType LinkDir CodeType Coding

DCH_8_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_16_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_32_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_128_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_256_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_512_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2_4_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_12_2_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_144_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_384_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2048_kbps Uplink k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

BCH_11_1_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

BCH_12_3_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

WCDMA3G_TC_Deintlvr 11-61

Page 622: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

2. Model functions

Input bits and data length are read from the input buffer. The input bitsequence for de-interleaving is denoted as yi1, yi2, ..., yiU, where i is the codeblock number and U is the number of bits in one code block.

The interleaving pattern {P(j)}(j=1,2, ... , R×C) is calculated before pruningunder the current settings, where P(j) is the original position of the jthinterleaving bit. Refer to “WCDMA3G_TC_Intlvr” on page 11-64.

The index array of data pruning {Index(j)}(j=1,2, ... , R×C) is determined:

Index(j) = j if P(j) ≤ UIndex(j) = −1 if P(j) > U

The de-interleaving pattern {R(j)}(j=1,2, ... , R×C) is determined:

Table 11-22. Input and Output Tokens

TrCHTypeDownlink or Uplink TTI

InTokens

inSizeTokens OutTokens

DCH_64_kbps 10ms 656 1 656

20ms 1296 1 1296

40ms 2576 1 2576

80ms 2568 1 2568

DCH_128_kbps 10ms 1296 1 1296

20ms 2576 1 2576

40ms 2568 1 2568

80ms 3419 1 3419

DCH_256_kbps 10ms 2576 1 2576

20ms 2568 1 2568

40ms 3419 1 3419

80ms 4100 1 4100

DCH_512_kbps 10ms 2568 1 2568

20ms 3419 1 3419

40ms 4100 1 4100

80ms 4553 1 4553

DMCH_64_kbps 20ms 1296 1 1296

DMCH_144_kbps 20ms 2896 1 2896

DMCH_384_kbps 20ms 3848 1 3848

DMCH_384_kbps (uplink only) 20ms 4553 1 4553

11-62 WCDMA3G_TC_Deintlvr

Page 623: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

R(P(j)) = j

Output data xi,k is written according to the rule.

if Index(R(j)) = -1, this step is not performed

else

output xi,R(j)

that is, the first bit after de-interleaving xi,1 is the bit in yi,k that satisfies thecondition P(n)=k and R(k)=n, where n is the smallest index that makesIndex(n) ≠ −1.

Data is output after de-interleaving.

References

[1]3GPP Technical Specification TS25.212 V3.0.0,“Multiplexing and ChannelCoding (FDD),” October 1999.

[2] 3GPP Technical Specification TS25.101 V3.0.0,“UE Radio Transmission andReception (FDD),” October 1999.

[3] 3GPP Technical Specification TS25.104 V3.0.0,“UTRA(BS) FDD: Transmissionand Reception,” October 1999.

WCDMA3G_TC_Deintlvr 11-63

Page 624: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

WCDMA3G_TC_Intlvr

Description Turbo code internal interleaverLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_TC_Intlvr

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_64_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

Pin Name Description Signal Type

1 In input data int

2 CurSize input data size int

11-64 WCDMA3G_TC_Intlvr

Page 625: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement turbo code internal interleaving.

The turbo code internal interleaving consists of mother interleaver generationand pruning, as illustrated in Figure 11-10. The interleaver is fired in a codeblock that is segmented by the former model.

Coding schemes are listed in Table 11-23.

Input token and output tokens are listed in Table 11-24.

Figure 11-10. Turbo Coding with Internal Interleaver

Pin Name Description Signal Type

3 Out ouput data after interleaving int

Table 11-23. Turbo Coding Schemes

TrCHType LinkDir CodeType Coding Scheme

DCH_8_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_16_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_32_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_128_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_256_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_512_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2_4_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_12_2_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_144_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

WCDMA3G_TC_Intlvr 11-65

Page 626: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

2. Model functions

Input bits and data length are read from the input buffer. Input bits from thebeginning to the input data length are valid data for turbo code internalinterleaving.

Interleaving consists of three stages:

DMCH_384_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2048_kbps Uplink k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

BCH_11_1_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

BCH_12_3_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

Table 11-24. Input and Output Tokens

DCHType (Uplink or Downlink) TTI In Tokens inSize Tokens Out Tokens

DCH_64_kbps 10ms 656 1 656

20ms 1296 1 1296

40ms 2576 1 2576

80ms 2568 1 2568

DCH_128_kbps 10ms 1296 1 1296

20ms 2576 1 2576

40ms 2568 1 2568

80ms 3419 1 3419

DCH_256_kbps 10ms 2576 1 2576

20ms 2568 1 2568

40ms 3419 1 3419

80ms 4100 1 4100

DCH_512_kbps 10ms 2568 1 2568

20ms 3419 1 3419

40ms 4100 1 4100

80ms 4553 1 4553

DMCH_64_kbps 20ms 1296 1 1296

DMCH_144_kbps 20ms 2896 1 2896

DMCH_384_kbps 20ms 3848 1 3848

DMCH_384_kbps (uplink only) 20ms 4553 1 4553

Table 11-23. Turbo Coding Schemes

TrCHType LinkDir CodeType Coding Scheme

11-66 WCDMA3G_TC_Intlvr

Page 627: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

• input sequence is written into the rectangular matrix row by row

• intra-row permutation

• inter-row permutation

The three-stage permutations are described here; input block length is assumedto be K(320 to 5114 bits).

First Stage

Determine row number R such that

• R = 10 ( K = 481 to 530 bits ) Case 1

• R = 20 ( K = any other block length except 481 to 530 bits) Case 2

Determine column number C such that

• Case 1: C = p = 53

• Case-2:

find minimum prime p such that

0 =< (p+1)- K/R

if ( 0 =< p- K/R ) then go to the next if, else

C = (p+1)

if ( 0 =< p-1- K/R ) then C = (p-1), else

C = p

The input sequence of the interleaver is written into the R × C rectangularmatrix row by row.

Second Stage

If C = p

Select a primitive root g0 (Table 11-25).

Construct the base sequence c(i) for intra-row permutation as:

c(i) = [ g0 × c(i-1) ] mod p, i = 1,2, ... , (p-2), c(0)=1

Select the minimum prime integer set {qj } such that

WCDMA3G_TC_Intlvr 11-67

Page 628: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

g.c.d. { qj , p-1 } = 1qj > 6qj > q(j-1)

where g.c.d is the greatest common divider. And q0 =1.

The set {qj } is permuted to make a new set {pj} such that

pP(j) = qj , j= 1,2, ... , R-1

where P(j) is the inter-row permutation pattern defined in the third stage.

Perform the jth (j=0,1,2, ... , R-1) intra-row permutation as:

cj (i) = c([ i × pj ] mod (p-1)), i = 1,2, ... , (p-2), cj(p-1)=0,

where cj (i) is the input bit position of ith output after permutation of jth row.

If C = p +1

Select a primitive root g0 (Table 11-25).

Construct the base sequence c(i) for intra-row permutation as:

c(i) = [ g0 × c(i-1) ] mod p, i = 1,2, ... , (p-2), c(0)=1

Select the minimum prime integer set {qj} such that

Table 11-25. Prime p and Associated Primitive Rootp g0 p g0 p g0 p g0 p g0

17 3 59 2 103 5 157 5 211 2

19 2 61 2 107 2 163 2 223 3

23 5 67 2 109 6 167 5 227 2

29 2 71 7 113 3 173 2 229 6

31 3 73 5 127 3 179 2 233 3

37 2 79 3 131 2 181 2 239 7

41 6 83 2 137 3 191 19 241 7

43 3 89 3 139 2 193 5 251 6

47 5 97 5 149 2 197 2 257 3

53 2 101 2 151 6 199 3

11-68 WCDMA3G_TC_Intlvr

Page 629: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

g.c.d. { qj , p-1 } = 1qj > 6qj > q(j-1)

where g.c.d is the greatest common divider. And q0 =1.

The set {qj } is permuted to make a new set {pj } such that

pP(j) = qj , j= 1,2, ... , R-1

where P(j) is the inter-row permutation pattern defined in the third stage.

Perform the jth (j=0,1,2, ... , R-1) intra-row permutation as:

cj (i) = c([ i × pj ] mod (p-1)), i = 1,2, ... , (p-2), cj (p-1)=0 and cj (p)=p,

If ( K= C × R ) then exchange cR-1(p) and cR-1(0)

where cj (i) is the input bit position of ith output after permutation of jth row.

If C = p - 1

Select a primitive root g0 (Table 11-25).

Construct the base sequence c(i) for intra-row permutation as:

c(i) = [ g0 x c(i-1) ] mod p, i = 1,2, ... , (p-2), c(0)=1

Select the minimum prime integer set {qj } such that

g.c.d. {qj , p-1 } = 1qj > 6qj > q(j-1)

where g.c.d is the greatest common divider. And q0 =1.

The set {qj } is permuted to make a new set {pj } such that

pP(j) = qj , j= 1,2, ... , R-1

where P(j) is the inter-row permutation pattern defined in the third stage.

Perform the jth (j=0,1,2, ... , R-1) intra-row permutation as:

cj (i) = c([ i × pj ] mod (p-1))-1, i = 1,2, ... , (p-2),

where cj (i) is the input bit position of ith output after permutation of jth row.

WCDMA3G_TC_Intlvr 11-69

Page 630: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Third Stage

Perform inter-row permutation based on the following P(j) (j=0,1,2, ... , R-1),where P(j) is the original row position of the jth permuted row.

PA: {19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,16,6,15,11} for R=20

PB: {19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10} for R=20

PC: {9,8,7,6,5,4,3,2,1,0} for R=10

Pattern usage is as follows:

Block length K: P(j)320 to 480 bits: PA481 to 530 bits: PC531 to 2280 bits: PA2281 to 2480 bits: PB2481 to 3160 bits: PA3161 to 3210 bits: PB3211 to 5114 bits: PA

The output of the mother interleaver is the sequence read outcolumn-by-column from the permuted R × C matrix.

The output of the mother interleaver is pruned by deleting l-bits in order toadjust the mother interleaver to block length K, where the deleted bits arenon-existent bits in the input sequence. The pruning bits number l is definedas:

l = R × C - K,

where R is the row number and C is the column number.

Data is output after interleaving and all-zero padded if the valid length issmaller than the buffer size.

References

[1]3GPP Technical Specification TS25.212 V3.0.0, “Multiplexing and ChannelCoding (FDD),” October 1999.

[2] 3GPP Technical Specification TS25.101 V3.0.0, “UE Radio transmission andReception (FDD),” October 1999.

11-70 WCDMA3G_TC_Intlvr

Page 631: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

[3] 3GPP Technical Specification TS25.104 V3.0.0, “UTRA(BS) FDD: transmissionand Reception,” October 1999.

WCDMA3G_TC_Intlvr 11-71

Page 632: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

WCDMA3G_TC_Intlvr_f

Description Turbo code internal interleaver for decoderLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_TC_Intlvr_f

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_64_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

Pin Name Description Signal Type

1 In input data real

2 CurSize input data size int

11-72 WCDMA3G_TC_Intlvr_f

Page 633: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to implement turbo code internal interleaving used in turbocoding decoding.

Turbo code internal interleaving consists of mother interleaver generation andpruning, as illustrated in Figure 11-11. The interleaver is fired in a code blocksegmented by the former model. Coding schemes are listed in Table 11-26.

Input and output tokens are listed in Table 11-27.

Figure 11-11. Turbo Coding with Internal Interleaver

Pin Name Description Signal Type

3 Out output data after interleaving real

Table 11-26. Turbo Coding Schemes

TrCHType LinkDir CodeType Coding

DCH_8_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_16_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_32_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_128_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_256_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_512_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2_4_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_12_2_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_144_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_384_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

WCDMA3G_TC_Intlvr_f 11-73

Page 634: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

2. Model functions

Input bits and data length are read from the input buffer. Input bits from thebeginning to the input data length are valid data for turbo code internalinterleaving.

Interleaving consists of three stages:

• input sequence is written into the rectangular matrix row by row

DMCH_2048_kbps Uplink k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

BCH_11_1_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

BCH_12_3_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

Table 11-27. Input and Output Tokens

DCHType (Uplink or Downlink) TTI In Tokens inSize Tokens Out Tokens

DCH_64_kbps 10ms 656 1 656

20ms 1296 1 1296

40ms 2576 1 2576

80ms 2568 1 2568

DCH_128_kbps 10ms 1296 1 1296

20ms 2576 1 2576

40ms 2568 1 2568

80ms 3419 1 3419

DCH_256_kbps 10ms 2576 1 2576

20ms 2568 1 2568

40ms 3419 1 3419

80ms 4100 1 4100

DCH_512_kbps 10ms 2568 1 2568

20ms 3419 1 3419

40ms 4100 1 4100

80ms 4553 1 4553

DMCH_64_kbps 20ms 1296 1 1296

DMCH_144_kbps 20ms 2896 1 2896

DMCH_384_kbps 20ms 3848 1 3848

DMCH_384_kbps (uplink only) 20ms 4553 1 4553

Table 11-26. Turbo Coding Schemes (continued)

TrCHType LinkDir CodeType Coding

11-74 WCDMA3G_TC_Intlvr_f

Page 635: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

• intra-row permutation

• inter-row permutation

The three-stage permutations are described here; input block length is assumedto be K(320 to 5114 bits).

First Stage

Determine row number R such that

• R = 10 ( K = 481 to 530 bits ) Case 1

• R = 20 ( K = any other block length except 481 to 530 bits) Case 2

Determine column number C such that

• Case 1: C = p = 53

• Case-2:

find minimum prime p such that

0 =< (p+1)- K/R

if ( 0 =< p- K/R ) then go to the next if, else

C = (p+1)

if ( 0 =< p-1- K/R ) then C = (p-1), else

C = p

The input sequence of the interleaver is written into the R × C rectangularmatrix row by row.

Second Stage

If C = p

Select a primitive root g0 (Table 11-28).

Construct the base sequence c(i) for intra-row permutation as:

c(i) = [ g0 × c(i-1) ] mod p, i = 1,2, ... , (p-2), c(0)=1

Select the minimum prime integer set {qj } such that

g.c.d. { qj , p-1 } = 1qj > 6qj > q(j-1)

WCDMA3G_TC_Intlvr_f 11-75

Page 636: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

where g.c.d is the greatest common divider. And q0 =1.

The set {qj } is permuted to make a new set {pj} such that

pP(j) = qj , j= 1,2, ... , R-1

where P(j) is the inter-row permutation pattern defined in the third stage.

Perform the jth (j=0,1,2, ... , R-1) intra-row permutation as:

cj (i) = c([ i × pj ] mod (p-1)), i = 1,2, ... , (p-2), cj(p-1)=0,

where cj (i) is the input bit position of ith output after permutation of jth row.

If C = p +1

Select a primitive root g0 (Table 11-28).

Construct the base sequence c(i) for intra-row permutation as:

c(i) = [ g0 × c(i-1) ] mod p, i = 1,2, ... , (p-2), c(0)=1

Select the minimum prime integer set {qj} such that

g.c.d. { qj , p-1 } = 1qj > 6qj > q(j-1)

where g.c.d is the greatest common divider. And q0 =1.

Table 11-28. Prime p and Associated Primitive Rootp g0 p g0 p g0 p g0 p g0

17 3 59 2 103 5 157 5 211 2

19 2 61 2 107 2 163 2 223 3

23 5 67 2 109 6 167 5 227 2

29 2 71 7 113 3 173 2 229 6

31 3 73 5 127 3 179 2 233 3

37 2 79 3 131 2 181 2 239 7

41 6 83 2 137 3 191 19 241 7

43 3 89 3 139 2 193 5 251 6

47 5 97 5 149 2 197 2 257 3

53 2 101 2 151 6 199 3

11-76 WCDMA3G_TC_Intlvr_f

Page 637: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

The set {qj } is permuted to make a new set {pj } such that

pP(j) = qj , j= 1,2, ... , R-1

where P(j) is the inter-row permutation pattern defined in the third stage.

Perform the jth (j=0,1,2, ... , R-1) intra-row permutation as:

cj (i) = c([ i × pj ] mod (p-1)), i = 1,2, ... , (p-2), cj (p-1)=0 and cj (p)=p,

If ( K= C × R ) then exchange cR-1(p) and cR-1(0)

where cj (i) is the input bit position of ith output after permutation of jth row.

If C = p - 1

Select a primitive root g0 (Table 11-28).

Construct the base sequence c(i) for intra-row permutation as:

c(i) = [ g0 x c(i-1) ] mod p, i = 1,2, ... , (p-2), c(0)=1

Select the minimum prime integer set {qj } such that

g.c.d. {qj , p-1 } = 1qj > 6qj > q(j-1)

where g.c.d is the greatest common divider. And q0 =1.

The set {qj } is permuted to make a new set {pj } such that

pP(j) = qj , j= 1,2, ... , R-1

where P(j) is the inter-row permutation pattern defined in the third stage.

Perform the jth (j=0,1,2, ... , R-1) intra-row permutation as:

cj (i) = c([ i × pj ] mod (p-1))-1, i = 1,2, ... , (p-2),

where cj (i) is the input bit position of ith output after permutation of jth row.

Third Stage

Perform inter-row permutation based on the following P(j) (j=0,1,2, ... , R-1),where P(j) is the original row position of the jth permuted row.

PA: {19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,16,6,15,11} for R=20

WCDMA3G_TC_Intlvr_f 11-77

Page 638: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

PB: {19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10} for R=20

PC: {9,8,7,6,5,4,3,2,1,0} for R=10

Pattern usage is as follows:

Block length K: P(j)320 to 480 bits: PA481 to 530 bits: PC531 to 2280 bits: PA2281 to 2480 bits: PB2481 to 3160 bits: PA3161 to 3210 bits: PB3211 to 5114 bits: PA

The output of the mother interleaver is the sequence read outcolumn-by-column from the permuted R × C matrix.

The output of the mother interleaver is pruned by deleting l-bits in order toadjust the mother interleaver to block length K, where the deleted bits arenon-existent bits in the input sequence. The pruning bits number l is definedas:

l = R × C - K,

where R is the row number and C is the column number.

Data is output after interleaving and all-zero padded if the valid length issmaller than the buffer size.

References

[1]3GPP Technical Specification TS25.212 V3.0.0,“Multiplexing and ChannelCoding (FDD),” October 1999.

[2] 3GPP Technical Specification TS25.101 V3.0.0,“UE Radio Transmission andReception (FDD),” October 1999.

[3] 3GPP Technical Specification TS25.104 V3.0.0,“UTRA(BS) FDD: Transmissionand Reception,” October 1999.

11-78 WCDMA3G_TC_Intlvr_f

Page 639: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TC_Map

Description Demultiplex encoded data for turbo codeLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_TC_Map

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_64_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

TurboCodeType turbo code type: k 4 g1 013g2 015 Rate One Third

k 4 g1 013 g2 015Rate One Third

enum

Pin Name Description Signal Type

1 in input encoded code block real

2 CurSize size of current input block int

WCDMA3G_TC_Map 11-79

Page 640: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Pin Outputs

Notes/Equations

1. This model is used to MAP turbo code encoded data into five sequences:information data, parity bits from the first encoder, parity bits from the secondencoder, first three tail bits, and second three tail bits.

Coding schemes are listed in Table 11-29.

Each firing, BlockSize×3+12 in tokens and 1 CurSize token are consumed,BlockSize+3 infm1, p1, p2 tokens and 3 tailbit1 and tailbit2 tokens areproduced. Refer to Table 11-30 for the value of BlockSize.

Pin Name Description Signal Type

3 infm1 information bits real

4 tailbit1 first three tail bits real

5 tailbit2 second three tail bits real

6 p1 parity bits from the first encoder real

7 p2 parity bits from the second encoder real

Table 11-29. Turbo Coding Schemes

TrCHType LinkDir CodeType Coding

DCH_8_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_16_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_32_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_128_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_256_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_512_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2_4_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_12_2_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_144_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_384_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2048_kbps Uplink k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

BCH_11_1_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

BCH_12_3_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

11-80 WCDMA3G_TC_Map

Page 641: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.212 v3.0.0 “Multiplexing and ChannelCoding (FDD),” October1999.

Table 11-30. BlockSize Values

Downlink/Uplink Data Source

BlockSize

TTI_10ms TTI_20ms TTI_40ms TTI_80ms

DCH_64kbps 656 1296 2576 2568

DCH_128kbps 1296 2576 2576 3419

DCH_256kbps 2576 2576 3419 4100

DCH_512kbps 2576 3419 4100 4553

DMCH_64_kbps 1296

DMCH_144_kbps 2896

DMCH_384_kbps 3848

DMCH_2048_kbps (uplink only) 4553

WCDMA3G_TC_Map 11-81

Page 642: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

WCDMA3G_TC_MAPDecoder1

Description First MAP sub-decoderLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_TC_MAPDecoder1

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_64_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

TurboCodeType turbo code type: k 4 g1 013g2 015 Rate One Third

k 4 g1 013 g2 015Rate One Third

enum

Pin Name Description Signal Type

1 inX information bits real

2 inY parity bits real

3 inZ priori probability information real

4 CurSize size of current input block int

11-82 WCDMA3G_TC_MAPDecoder1

Page 643: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to perform maximum a posteriori (MAP) decoding. Twoserial concatenated MAP decoders constitute the decoder of turbo code. It is amodified BAHL et al. algorithm for RSC codes.

Coding schemes are listed in Table 11-31.

Each firing, BlockSize+3 tokens are produced per BlockSize+3 input tokensfrom inX, inY and inZ. One token is consumed by CurSize. Refer to Table 11-32for the value of BlockSize The length of tail bits is 3.

Pin Name Description Signal Type

5 out log a posteriori probability real

Table 11-31. Turbo Coding Schemes

TrCHType LinkDir CodeType Coding

DCH_8_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_16_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_32_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_128_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_256_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_512_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2_4_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_12_2_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_144_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_384_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2048_kbps Uplink k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

BCH_11_1_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

BCH_12_3_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

WCDMA3G_TC_MAPDecoder1 11-83

Page 644: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

References

[1]L.R. Bahl, J. Cocke, F. Jeinek and J. Raviv. “Optimal decoding of linear codes forminimizing symbol error rate.” IEEE Trans. Inform. Theory, vol. IT-20.pp.248-287, March 1974.

[2] C.Berrou, A.Glavieux, and P. Thitiumjshima, “Near Shannon limit errorcorrecting coding: Turbo codes,” IEEE International Conference onCommunications, pp. 1064-1070, May 1993.

Table 11-32. BlockSize Values

Downlink/Uplink Data Source

BlockSize

TTI_10ms TTI_20ms TTI_40ms TTI_80ms

DCH_64kbps 656 1296 2576 2568

DCH_128kbps 1296 2576 2576 3419

DCH_256kbps 2576 2576 3419 4100

DCH_512kbps 2576 3419 4100 4553

DMCH_64_kbps 1296

DMCH_144_kbps 2896

DMCH_384_kbps 3848

DMCH_2048_kbps (uplink only) 4553

11-84 WCDMA3G_TC_MAPDecoder1

Page 645: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TC_MAPDecoder2

Description Second MAP sub-decoderLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_TC_MAPDecoder2

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_64_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

TurboCodeType turbo code type: k 4 g1 013g2 015 Rate One Third

k 4 g1 013 g2 015Rate One Third

enum

Pin Name Description Signal Type

1 inY parity bits real

2 inZ priori probability bits real

3 CurSize size of current input block int

WCDMA3G_TC_MAPDecoder2 11-85

Page 646: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Pin Outputs

Notes/Equations

1. This model is used to perform maximum a posteriori (MAP) decoding.

The outputs of the first decoder are interleaved before being sent to this seconddecoder; tail bits are also sent but cannot be interleaved, so the tail bits arepunctured before this interleaver and then padded.

The second decoder generates the extrinsic information to provide a priori forthe first decoder. Outputs are de-interleaved before being sent to decoder 1, tailbits are punctured before de-interleaving and padded afterward.

Table 11-33 lists coding schemes.

Each firing, BlockSize+3 tokens are produced per BlockSize+3 input tokensfrom inY and inZ. One token is consumed by CurSize. Refer to Table 11-34 forthe value of BlockSize. The length of tail bits is 3.

Pin Name Description Signal Type

4 post log a posterior probability real

5 pri priori probability to sub-decoder1 real

Table 11-33. Turbo Coding Schemes

TrCHType LinkDir CodeType Coding

DCH_8_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_16_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_32_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_128_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_256_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_512_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2_4_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_12_2_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_144_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_384_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2048_kbps Uplink k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

11-86 WCDMA3G_TC_MAPDecoder2

Page 647: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]L.R. Bahl, J. Cocke, F. Jeinek and J. Raviv. “Optimal decoding of linear codes forminimizing symbol error rate.” IEEE Trans. Inform. Theory, vol. IT-20.pp.248-287, March 1974.

[2] C.Berrou, A.Glavieux, and P. Thitiumjshima, “Near Shannon limit errorcorrecting coding: Turbo codes,” IEEE International Conference onCommunications, pp. 1064-1070, May 1993.

BCH_11_1_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

BCH_12_3_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

Table 11-34. BlockSize Values

TrCHType(Downlink or Uplink)

BlockSize

TTI_10ms TTI_20ms TTI_40ms TTI_80ms

DCH_64kbps 656 1296 2576 2568

DCH_128kbps 1296 2576 2576 3419

DCH_256kbps 2576 2576 3419 4100

DCH_512kbps 2576 3419 4100 4553

DMCH_64_kbps 1296

DMCH_144_kbps 2896

DMCH_384_kbps 3848

DMCH_2048_kbps (uplink only) 4553

Table 11-33. Turbo Coding Schemes

TrCHType LinkDir CodeType Coding

WCDMA3G_TC_MAPDecoder2 11-87

Page 648: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

WCDMA3G_TC_PadTail

Description Pad tail bits in information sequence for turbo codeLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_TC_PadTail

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_64_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

TurboCodeType turbo code type: k 4 g1 013g2 015 Rate One Third

k 4 g1 013 g2 015Rate One Third

enum

Pin Name Description Signal Type

1 in information data without tail bits real

2 tailbit tail bits real

3 CurSize size of current input block int

11-88 WCDMA3G_TC_PadTail

Page 649: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to pad tail bits in the information sequence for turbo codedecoding.

Coding schemes are listed in Table 11-35.

Each firing BlockSize+3 out tokens are produced when BlockSize in tokens, 3tailbit tokens and 1 CurSize token are consumed. The length of tail bits is 3.Refer to Table 11-36 for the value of BlockSize.

Pin Name Description Signal Type

4 out information data with tail bits real

Table 11-35. Turbo Coding Schemes

TrCHType LinkDir CodeType Coding

DCH_8_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_16_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_32_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_128_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_256_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_512_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2_4_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_12_2_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_144_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_384_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2048_kbps Uplink k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

BCH_11_1_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

BCH_12_3_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

WCDMA3G_TC_PadTail 11-89

Page 650: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

References

[1]3GPP Technical Specification TS 25.212 v3.0.0 “Multiplexing and ChannelCoding (FDD),” October1999.

Table 11-36. BlockSize Values

TrCHType(Downlink or Uplink)

BlockSize

TTI_10ms TTI_20ms TTI_40ms TTI_80ms

DCH_64kbps 656 1296 2576 2568

DCH_128kbps 1296 2576 2576 3419

DCH_256kbps 2576 2576 3419 4100

DCH_512kbps 2576 3419 4100 4553

DMCH_64_kbps 1296

DMCH_144_kbps 2896

DMCH_384_kbps 3848

DMCH_2048_kbps (uplink only) 4553

11-90 WCDMA3G_TC_PadTail

Page 651: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TC_PunctureTail

Description Puncture tailbits in information sequence for turbo codeLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_TC_PunctureTail

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_64_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

TurboCodeType turbo code type: k 4 g1 013g2 015 Rate One Third

k 4 g1 013 g2 015Rate One Third

enum

Pin Name Description Signal Type

1 in information data with tail bits real

2 CurSize size of current input block int

WCDMA3G_TC_PunctureTail 11-91

Page 652: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Pin Outputs

Notes/Equations

1. This model is used to puncture tail bits in the information sequence.

Coding schemes are listed in Table 11-37.

Each firing, BlockSize out tokens are produced when BlockSize+3 in tokens and1 CurSize token are consumed. Refer to Table 11-38 for the value of BlockSize.The length of tail bits is 3.

Pin Name Description Signal Type

3 out information data without tail bits real

Table 11-37. Turbo Coding Schemes

TrCHType LinkDir CodeType Coding

DCH_8_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_16_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_32_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_128_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_256_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_512_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2_4_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_12_2_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_144_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_384_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2048_kbps Uplink k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

BCH_11_1_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

BCH_12_3_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

11-92 WCDMA3G_TC_PunctureTail

Page 653: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.212 v3.0.0 “Multiplexing and ChannelCoding (FDD),” October 1999.

Table 11-38. BlockSize Values

TrCHType(Downlink/Uplink)

BlockSize

TTI_10ms TTI_20ms TTI_40ms TTI_80ms

DCH_64kbps 656 1296 2576 2568

DCH_128kbps 1296 2576 2576 3419

DCH_256kbps 2576 2576 3419 4100

DCH_512kbps 2576 3419 4100 4553

DMCH_64_kbps 1296

DMCH_144_kbps 2896

DMCH_384_kbps 3848

DMCH_2048_kbps (uplink only) 4553

WCDMA3G_TC_PunctureTail 11-93

Page 654: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

WCDMA3G_TC_RSCEncoder

Description Turbo code sub-encoderLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_TC_RSCEncoder

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_64_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

TurboCodeType turbo code type: k 4 g1 013g2 015 Rate One Third

k 4 g1 013 g2 015Rate One Third

enum

Pin Name Description Signal Type

1 in input code block int

2 CurSize size of current input block int

11-94 WCDMA3G_TC_RSCEncoder

Page 655: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is a recursive systematic code encoder, the sub-encoder for turbocode encoding. It encodes input bit streams in block sizes according toTrCHType and TTI (which is compliant with [1]).

Coding schemes are listed in Table 11-39.

The processing unit of the turbo code encoder is one block. Each firing,BlockSize + 6 tokens are produced when BlockSize in tokens and 1 CurSizetoken are consumed. Refer to Table 11-40 for the value of BlockSize.

Pin Name Description Signal Type

3 out output encoded block int

Table 11-39. Turbo Coding Scheme

TrCHType LinkDir CodeType Coding Scheme

DCH_8_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_16_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_32_kbps any k 4 g1 013 g2 015 Rate One Third zero output

DCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_128_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_256_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DCH_512_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2_4_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_12_2_kpbs any k 4 g1 013 g2 015 Rate One Third zero output

DMCH_64_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_144_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_384_kbps any k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

DMCH_2048_kbps Uplink k 4 g1 013 g2 015 Rate One Third rate 1/3 coding

BCH_11_1_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

BCH_12_3_kbps Downlink k 4 g1 013 g2 015 Rate One Third zero output

WCDMA3G_TC_RSCEncoder 11-95

Page 656: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

References

[1]3GPP Technical Specification TS 25.212 V3.0.0 “Multiplexing and ChannelCoding (FDD),” October 1999.

Table 11-40. Block Size Values

TrCHType(Downlink and Uplink)

BlockSize

TTI_10ms TTI_20ms TTI_40ms TTI_80ms

DCH_64kbps 656 1296 2576 2568

DCH_128kbps 1296 2576 2576 3419

DCH_256kbps 2576 2576 3419 4100

DCH_512kbps 2576 3419 4100 4553

DMCH_64_kbps 1296

DMCH_144_kbps 2896

DMCH_384_kbps 3848

DMCH_2048_kbps (uplink only) 4553

11-96 WCDMA3G_TC_RSCEncoder

Page 657: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TC_SigDecision

Description Hard decision for turbo code decoderLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_TC_SigDecision

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to make hard decision for turbo-code decoder according tothe logarithm a posteriori probability (LAPP) value. Each firing, one token isproduced and one token is consumed.

References

[1]3GPP Technical Specification TS 25.212 v3.0.0 “Multiplexing and ChannelCoding (FDD),” October1999.

Pin Name Description Signal Type

1 in LAPP from the decoder real

Pin Name Description Signal Type

2 out decoded signal int

WCDMA3G_TC_SigDecision 11-97

Page 658: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

WCDMA3G_TFCIDecoder

Description TFCI decoderLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_TFCIDecoder

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

Name Description Default Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

TFCIBitsNum number of TFCI bits 6 int [1, 10]

DPCHType dedicated physical channeltype: DPCH_15_kbps,DPCH_30_kbps,DPCH_60_kbps,DPCH_120_kbps,DPCH_240_kbps,DPCH_480_kbps,DPCH_960_kbps,DPCH_1920_kbps

DPCH_15_kbps enum

Pin Name Description Signal Type

1 TFCI input TFCI information real

Pin Name Description Signal Type

2 TFCIOut decoded TFCI information int

11-98 WCDMA3G_TFCIDecoder

Page 659: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

1. This model is used to implement transport format combination indicator (TFCI)decoding. The TFCI decoder decodes a (30,10) punctured sub-code of thesecond-order Reed-Muller code into a TFCI information value.

Each firing, one TFCIOut token is produced when 30 or 120 TFCI tokens areconsumed depending on DCHType. The default value for TFCIBitsNum is 6and default value for DCHType is DPCH_15_kbps.

2. Model functions

Input TFCI information is read from the input buffer.

A determination is made for repeating input TFCI information. In downlink,when the SF is lower than 128 the encoded and punctured TFCI code words arerepeated four times yielding 120 output bits. Two kinds of output code wordsare:

• TFCIOut information without repetition:

• TFCIOut information with repetition:

If the repetition is used, the 30 average values bi are taken from the input 120TFCI bits as follows:

bi = (bi1 +bi

2 +bi3 +bi

4)/4 i = 0, 1, ... , 29

If TFCIBitsNum ≤ 6, calculating the coherent value between the 32 input bitswith the possible code words C32,0, C32,1, ..., C32,31, refer toWCDMA3G_TFCIEncoder. Assume the nth coherent value has the greatestabsolute value, then if the nth coherent value is positive, the decimal value ofTFCI is 2n, otherwise is (2n+1).

b29 b28 b27 b0...TFCI Code Word

MSB LSB

b291

.

.

.

b292 b29

3 b294 b28

1 b282 b28

3 b284

b11 b1

2 b13 b1

4 b01 b0

2 b03 b0

4

TFCI Code Word

MSB LSB

WCDMA3G_TFCIDecoder 11-99

Page 660: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

If TFCIBitsNum > 6, up to 4 masks are used. The decoding scheme, illustratedin Figure 11-12, is described:

• multiply the input 32 bits by the possible masks (0 to 15) and calculate thecoherent value

• store the maximum absolute coherent value and TFCI value for this mask

• after storing all possible masks, find the maximum coherent value under allmasks. Assume the nth coherent value has the greatest absolute value; thenth TFCI value is the decoded value.

Figure 11-12. Decoder structure while masks are used

The decoded TFCI bits are output to the output buffer.

References

[1]3GPP Technical Specification TS25.212 V3.0.0,“Multiplexing and ChannelCoding (FDD),” October 1999

Calculate thecoherent value

Storage andComparison

MASK(N=32) up to 16 repetitions

11-100 WCDMA3G_TFCIDecoder

Page 661: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TFCIDemap

Description TFCI demappingLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_TFCIDemap

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to implement transport format combination indicator (TFCI)demapping in the receiving side. Each firing, NS tokens of TF and NS tokens ofTFMax are produced when NS tokens of TFMaxIn and one token of TFCI areconsumed. The default value for ServNum is 1.

2. Model functions

TFMaxIn and TFCI information is read from the input buffer.

Name Description Default Sym Type Range

ServNum service number 1 NS int [1, ∞)

Pin Name Description Signal Type

1 TFMaxIn input maximum transport format int

2 TFCI input TFCI int

Pin Name Description Signal Type

3 TFMax output maximum transport format int

4 TF output transport format multiple int

WCDMA3G_TFCIDemap 11-101

Page 662: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

The TFCI demapping rule in the receiving side is as follows.

If several variable-rate services S1, S2, ..., Sk are included within one CCTrCH(code composite transport channel), each service Si has a set of possibletransport format combination indicators TFi,1, TFi,2, ..., TFi,Li:

S1: TF1,1, TF1,2, ..., TF1,L1S2: TF2,1, TF2,2, ..., TF2,L2...Sk: TFk,1, TFk,2, ..., TFk,Lk

This gives L=L1xL2x...xLk service rate combinations, therefore L must be ≤1024since the maximum TFCIBitsNum is 10.

Given a certain service rate combination number (TFCI value m) the currentTF of these services can be derived as follows:

for j=K to 1 step -1

SRCj = m MOD Ljm = m DIV Ljend

where the service rate combinations SRCj corresponds to one of TFjs and shallbe the integer from 0 to Lj-1.

TFMax values are set as the values of read TFMaxIn.

Multiple TF and TFMax are read into the output buffer.

References

[1]3GPP Technical Specification TS25.302 V3.1.0,“Services provided by thePhysical Layer,” October 1999.

[2] 3GPP Technical Specification TS25.212 V3.0.0,“Multiplexing and ChannelCoding (FDD),” October 1999.

[3] ETRI, “TSGR1#5(99)582 TFCI mapping rule in the transmitting side,” June1999.

11-102 WCDMA3G_TFCIDemap

Page 663: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TFCIEncoder

Description TFCI encoderLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_TFCIEncoder

Parameters

Pin Inputs

Pin Outputs

Pin Inputs

Name Description Default Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

TFCIBitsNum number of TFCI bits 6 int [1, 10]

DPCHType dedicated physical channeltype: DPCH_15_kbps,DPCH_30_kbps,DPCH_60_kbps,DPCH_120_kbps,DPCH_240_kbps,DPCH_480_kbps,DPCH_960_kbps,DPCH_1920_kbps

DPCH_15_kbps enum

Pin Name Description Signal Type

1 TFCI input TFCI information int

Pin Name Description Signal Type

2 TFCIOut encoded TFCI information int

Pin No. Name Description Signal Type

1 TFCI TFCI information int

WCDMA3G_TFCIEncoder 11-103

Page 664: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Pin Outputs

Notes/Equations

1. This model is used to implement transport format combination indicator (TFCI)coding. The TFCI encoder uses a (30,10) punctured sub-code of the second-orderReed-Muller code for the input TFCI information, as illustrated inFigure 11-13.

Each firing, 30 or 120 (depending on DCHType) TFCIOut tokens are producedwhen one TFCI token is consumed. The default value for TFCIBitsNum is 6; thedefault for DCHType is DPCH_15_kbps. The value of TFCI token should be inthe range of [0, 2TFCIBitsNum - 1].

Figure 11-13. TFCI Encoder

2. Model functions

TFCI information is read from the input buffer.

TFCI information is encoded by the (32,10) sub-code of second-orderReed-Muller code. The code words of the (32,10) sub-code of second-orderReed-Muller code are linear combination of 10 basis sequences: all 1s; 5 OVSFcodes (C32,1, C32,2, C32,4, C32,8, C32,16); and, 4 masks (Mask1, Mask2, Mask3,Mask4). The four mask sequences are:

Mask1: 00101000011000111111000001110111Mask2: 00000001110011010110110111000111Mask3: 00001010111110010001101100101011Mask4: 00011100001101110010111101010001

For information bits a0, a1, a2, a3, a4, a5, a6, a7, a8, a9 (a0=LSB and a9=MSB),the encoder structure is shown in Figure 11-14.

Pin No. Name Description Signal Type

2 TFCIOut encoded TFCI information int

11-104 WCDMA3G_TFCIEncoder

Page 665: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Code words of the (32,10) sub-code of second-order Reed-Muller code arepunctured into length 30 by puncturing the 1st and the 17th bits; the remainingbits are denoted by bk, k=0,1,2, ... , 29 (k=29 corresponds to MSB).

Figure 11-14. Encoder Structure for (32,10) Sub-code ofSecond-Order Reed-Muller Code

In downlink, when the SF is lower than 128 the encoded and punctured TFCI,code words are repeated four times yielding 120 output bits. There are twokinds of output code words.

• TFCIOut information without repetition:

• TFCIOut information with repetition:

Encoded TFCI bits are output into the output buffer.

b29 b28 b27 b0...TFCI Code Word

MSB LSB

b291

.

.

.

b292 b29

3 b294 b28

1 b282 b28

3 b284

b11 b1

2 b13 b1

4 b01 b0

2 b03 b0

4

TFCI Code Word

MSB LSB

WCDMA3G_TFCIEncoder 11-105

Page 666: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

References

[1]3GPP Technical Specification TS25.212 V3.0.0, “Multiplexing and ChannelCoding (FDD),” October 1999.

11-106 WCDMA3G_TFCIEncoder

Page 667: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TFCIMap

Description TFCI mappingLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_TFCIMap

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to implement transport format combination indicator (TFCI)mapping in the transmitting side. Each firing, one token of TFCI and NS tokensof TFMaxOut are produced when NS tokens of TF and NS tokens of TFMax areconsumed. The default value for ServNum is 1.

2. Model functions

TF and TFMax information is read from the input buffer.

Name Description Default Sym Type Range

ServNum service number 1 NS int [1, ∞)

Pin Name Description Signal Type

1 TF input transport format multiple int

2 TFMax input maximum transport format multiple int

Pin Name Description Signal Type

3 TFMaxOut output maximum transport format int

4 TFCI output TFCI int

WCDMA3G_TFCIMap 11-107

Page 668: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

TFCI mapping rule in the transmitting side is as follows:

If several variable-rate services S1, S2, ... , Sk are included within one CCTrCH(code composite transport channel). Each service Si has a set of possibletransport format combination indicators TFi,1, TFi,2, ..., TFi,Li.

S1: TF1,1, TF1,2, ..., TF1,L1S2: TF2,1, TF2,2, ..., TF2,L2...Sk: TFk,1, TFk,2, ..., TFk,Lk

This gives L=L1xL2x...xLk service rate combinations; therefore, L must be>1024 since the maximum TFCIBitsNum is 10.

These service rate combinations are mapped to a certain service ratecombination number, TFCI value m, in the following way:

L=L1xL2x...xLkm=0for j=1 to K step 1m = m x Lj + SRCjend

where the service rate combinations SRCj corresponds to one TFjs and will bethe integer from 0 to Lj-1.

Value of TFMaxOut is set as the value of read TFMax.

TFCI and TFMaxOut are read into the output buffer.

References

[1]3GPP Technical Specification TS25.302 V3.1.0,“Services provided by thePhysical Layer,” October 1999.

[2] 3GPP Technical Specification TS25.212 V3.0.0,“Multiplexing and ChannelCoding (FDD),” October 1999.

[3] ETRI, “TSGR1#5(99)582 TFCI Mapping Rule in the Transmitting Side,” June1999.

11-108 WCDMA3G_TFCIMap

Page 669: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_ViterbiDCC

Description Viterbi decoder for convolutional codeLibrary 3GPPFDD 10-99, Channel CodingClass SDFWCDMA3G_ViterbiDCC

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Downlink enum

CodeType convolutional code type:rate 1/2 K 9 g0 0561 g10753, rate 1/3 K 9 g0 0557g1 0663 g2 0711

rate 1/2 K 9 g00561 g1 0753

enum

TrCHType transport channeltype(8kbps for no coding indownlink): DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

Pin Name Description Signal Type

1 In input coded block data real

2 TF input transport format int

WCDMA3G_ViterbiDCC 11-109

Page 670: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

Pin Outputs

Notes/Equations

1. This model is used to implement Viterbi decoding for convolutional coding, orhard decision for no coding. Decoding is performed block-by-block.

Coding schemes are listed in Table 11-41.

Input and output tokens are listed in Table 11-42.

Pin Name Description Signal Type

3 Out output data after decoding int

Table 11-41. Convolutional Coding Schemes

TrCHType LinkDir CodeType Coding

DCH_8_kbps Downlink rate 1/2 K 9 g0 0561 g1 0753 no coding

Uplink rate 1/3 K 9 g0 0557 g1 0663 g2 0711 rate 1/3 coding

DCH_16_kbps Downlink rate 1/2 K 9 g0 0561 g1 0753 rate 1/2 coding

Uplink rate 1/3 K 9 g0 0557 g1 0663 g2 0711 rate 1/3 coding

DCH_32_kbps Downlink rate 1/2 K 9 g0 0561 g1 0753 rate 1/2 coding

Uplink rate 1/3 K 9 g0 0557 g1 0663 g2 0711 rate 1/3 coding

DCH_64_kbps any any zero output

DCH_128_kbps any any zero output

DCH_256_kbps any any zero output

DCH_512_kbps any any zero output

DMCH_2_4_kpbs any rate 1/3 K 9 g0 0557 g1 0663 g2 0711 rate 1/3 coding

DMCH_12_2_kpbs any rate 1/3 K 9 g0 0557 g1 0663 g2 0711 rate 1/3 coding

DMCH_64_kbps any any zero output

DMCH_144_kbps any any zero output

DMCH_384_kbps any any zero output

DMCH_2048_kbps Uplink any zero output

BCH_11_1_kbps Downlink rate 1/2 K 9 g0 0561 g1 0753 rate 1/2 coding

BCH_12_3_kbps Downlink rate 1/2 K 9 g0 0561 g1 0753 rate 1/2 coding

11-110 WCDMA3G_ViterbiDCC

Page 671: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Table 11-42. Input and Output Tokens

LinkDir TrCHType TTI No. Input Tokens No. Output Tokens

Downlink DCH_8_kbps (No Coding) 10ms 96 96

20ms 176 176

40ms 336 336

80ms 656 656

Downlink DCH_16_kbps (1/2 CC) 10ms 368 184

20ms 688 344

40ms 1344 672

80ms 2640 1320

Downlink DCH_32_kbps (1/2 CC) 10ms 688 344

20ms 1344 672

40ms 2640 1320

80ms 5256 2628

Uplink DCH_8_kbps (1/3 CC) 10ms 312 104

20ms 552 184

40ms 1032 344

80ms 2016 672

Uplink DCH_16_kbps (1/3 CC) 10ms 552 184

20ms 1032 344

40ms 2016 672

80ms 3960 1320

Uplink DCH_32_kbps (1/3 CC) 10ms 1032 344

20ms 2016 672

40ms 3960 1320

80ms 7884 2628

Downlink/Uplink DMCH_2_4_kbps (1/3 CC) 40ms 360 120

Downlink/Uplink DMCH_12_2_kbps (1/3 CC) 20ms 804 268

Downlink BCH_11_1_kbps (1/2 CC) 10ms 135 270

Downlink BCH_12_3_kbps (1/2 CC) 20ms 270 540

WCDMA3G_ViterbiDCC 11-111

Page 672: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Coding Components

2. Model functions

Input bits are read from the input buffer.

The input transport format is read; current block number and valid length ofevery block is calculated. If no coding is selected, data is output directly withhard decision, otherwise Viterbi decoding is performed to every data block.

Viterbi decoding

The initial state of register is used to decode since the initial state of encoder isall 0. Not all states can be reached in the first K-1(K is constraint length ofconvolutional encoder) steps; this feature can be used to calculate the metrics ofevery possible state and store the paths.

The metrics and the survivor paths are calculated until the present decoding bitindex equals parameter L(L=5K). In this period no output is given.

The metrics and the survivor path calculations continue and export theprevious Lth decoding bit until the present decoding bit is the Kth bit to the endof the block.

Tail bit information is used to decode and export the previous Lth decoding bit.Since the last K-1 bits of input block are known as all zeros, not all states can bereached in the last few steps. This feature is used to calculate the metrics ofevery possible state and the survival paths of those states.

Decoding of the last bit and exporting of all bits in this block. Since the laststate is 0 in this block, there is only one survivor after decoding the last bit. Allbits in this path as the decoding bits can then be exported.

All decoded data is output into the output buffer.

References

[1]3GPP Technical Specification TS25.212 V3.0.0,“Multiplexing and ChannelCoding (FDD),” October 1999.

[2] 3GPP Technical Specification TS25.101 V3.0.0,“UE Radio Transmission andReception (FDD),” October 1999.

[3] 3GPP Technical Specification TS25.104 V3.0.0,“UTRA(BS) FDD: Transmissionand Reception,” October 1999.

11-112 WCDMA3G_ViterbiDCC

Page 673: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 12: 3GPPFDD 10-99 Channel ModelComponents

12-1

Page 674: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Model Components

WCDMA3G_CHDelay

Description Signal delay based on channel tapped-delay line modelLibrary 3GPPFDD 10-99, Channel ModelClass SDFWCDMA3G_CHDelay

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to delay the input signal by a certain time interval set by theDelay parameter. It is used in channel impulse response model based on atapped-delay line model.

Each firing, Max(64, int(Delay/Tstep)+1) SigOut tokens are produced when thesame number of SigIn tokens are consumed, where Tstep is sampling period1/fs.

References

[1] IS2000.2, “Physical Layer Standard for cdma2000 Spread Spectrum Systems,”April 1999.

Name Description Default Sym Unit Type Range

SamplingRate sampling rate 3840000 fs int [1, ∞)

Delay delay time 50n τ sec real (-∞, ∞)

Pin Name Description Signal Type

1 SigIn input signals complex

Pin Name Description Signal Type

2 SigOut output signals after delay complex

12-2 WCDMA3G_CHDelay

Page 675: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

[2] John G. Proakis, “Digital Communications,” Third Edition, Publishing House ofElectronics Industry.

WCDMA3G_CHDelay 12-3

Page 676: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Model Components

WCDMA3G_CHInterpolate

Description Lagrange interpolationLibrary 3GPPFDD 10-99, Channel ModelClass SDFWCDMA3G_CHInterpolate

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used as Lagrange interpolation.

OutputSamples D_out tokens are produced when Round(OutputSamples/M)D_in tokens are consumed.

Name Description Default Sym Type Range

InterpolRate interpolation rate 2 M int [1, ∞)

InterpolOrder interpolation polynomialorder

2 N int [2, ∞)

OutputSamples output samples in eachfiring

2560 X int [M, ∞)

Pin Name Description Signal Type

1 D_in input data complex

Pin Name Description Signal Type

2 D_out interpolated data complex

12-4 WCDMA3G_CHInterpolate

Page 677: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_CHModel

Description 3GPP channel model for antenna arrayLibrary 3GPPFDD 10-99, Channel ModelClass SDFWCDMA3G_CHModel

Parameters

Pin Inputs

Name Description Default Sym Type Range

ChannelModel test environment (Delay,Power, and DopplerSpectrum of each path):Indoor A, Indoor B,Pedestrian A, PedestrianB, Vehicular A, Vehicular B

Vehicular B enum

Carrier carrier frequency in GHz. 2.0 fc real (0, ∞)

ChipRate chip rate of system 3840000 int [1, ∞)

SampleRate samples per chip. 4 int [1, ∞)

Velocity mobile velocity in km/hour. 100.0 V real (0, ∞)

N 2N + 1 is the number ofsine wave that form acomplex Gaussianprocess.

100 int [1, ∞)

AntennaNumber number of antennas 1 int [1, ∞)

AntennaSpace interval between twoantenna elements inmeters

0.075 real (0, ∞)

ArrivingAngle arriving angle in degreesfor each path.

75.0 45.0 15.0-15.0 -45.0 -75.0

A real array (-∞, ∞)

Pin Name Description Signal Type

1 in input signal to channel. complex

WCDMA3G_CHModel 12-5

Page 678: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Model Components

Pin Outputs

Notes/Equations

1. This model is used to simulate a multi-path fading channel based ontapped-delay line model [1]. Each firing, one token is consumed at the input,and one token is produced at the output.There is no path loss or gain in thismodel.

2. Figure 12-1 shows the functional block diagram. In the diagram, tap delay,multi-path power distribution, and Doppler spectrum (used by Jakes model) isdefined in [1].

Figure 12-1. Block Diagram of Channel Model based on Tapped-Delay Line

Tables 12-1 through Table 12-3 describe the tapped-delay-line parameters. Foreach tap of the channels three parameters are given: the time delay relative tothe first tap, the average power relative to the strongest tap, and the Dopplerspectrum of each tap.

Jakes model uses N0 low-frequency oscillators with frequencies equal to theDoppler shifts ωn=ωmcos(2πn/N) (n=1,2, ... , N0) plus one with frequency ωm to

Pin Name Description Signal Type

2 out output signal from channel. multiple complex

Delay Delay Delay DelayDelay

12 M12 M12 M

1 2 M

Power

PhaseShift

In

Out

Distribution

JakesModel

12-6 WCDMA3G_CHModel

Page 679: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

generate signals frequency-shifted from a carrier frequency 2πfc, whereωm=2πV/λ, λ denotes wave-length of carrier and N0=8, N=2×(2×N0+1) is used inthe component. The amplitudes of all the components are made equal to unityexcept for the one with frequency ωm, which is set equal to , as illustratedin Figure 12-2. For more information about Jakes model, refer to [2].

Antenna array is also considered in the channel model. Multi-path signal issummed and coupled to the output multi-port after phase shift using D and A.

Figure 12-2.

Table 12-1. Indoor Office Test Environment Tapped-Delay-Line Parameters

Tap

Channel A Channel B

DopplerSpectrum

Relative Delay(nSec)

Average Power(dB)

Relative Delay(nSec) Average Power (dB)

1 0 0 0 0 FLAT

2 50 -3.0 100 -3.6 FLAT

3 110 -10.0 200 -7.2 FLAT

4 170 -18.0 300 -10.8 FLAT

5 290 -26.0 500 -18.0 FLAT

6 310 -32.0 700 -25.2 FLAT

Table 12-2. Outdoor to Indoor and Pedestrian Test EnvironmentTapped-Delay-Line Parameters

Tap

Channel A Channel B

DopplerSpectrum

Relative Delay(nSec)

Average Power(dB)

Relative Delay(nSec)

Average Power(dB)

1 0 0 0 0 CLASSIC

2 110 -9.7 200 -0.9 CLASSIC

3 190 -19.2 800 -4.9 CLASSIC

4 410 -22.8 1200 -8.0 CLASSIC

1 2⁄

1.00

Amp1.0

1 2⁄

ωn ωm⁄

WCDMA3G_CHModel 12-7

Page 680: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Model Components

References

[1]Draft New Recommendation ITU-R M.[FPLMT.REVAL], Guidelines forEvaluation of Radio Transmission Technologies for IMT-2000/FPLMTS(Question ITU-R 39/8).

[2] William C. Jakes, “Microwave Mobile Communications,” IEEE Press, 1994.

5 2300 -7.8 CLASSIC

6 3700 -23.9 CLASSIC

Table 12-3. Vehicular Test Environment, High Antenna,Tapped-Delay-Line Parameters

Tap

Channel A Channel B

DopplerSpectrum

Relative Delay(nSec)

Average Power(dB)

Relative Delay(nSec)

Average Power(dB)

1 0 0 0 -2.5 CLASSIC

2 310 -1.0 300 0 CLASSIC

3 710 -9.0 8900 -12.8 CLASSIC

4 1090 -10.0 12900 -10.0 CLASSIC

5 1730 -15.0 17100 -25.2 CLASSIC

6 2510 -20.0 20000 -16.0 CLASSIC

Table 12-2. Outdoor to Indoor and Pedestrian Test EnvironmentTapped-Delay-Line Parameters

Tap

Channel A Channel B

DopplerSpectrum

Relative Delay(nSec)

Average Power(dB)

Relative Delay(nSec)

Average Power(dB)

12-8 WCDMA3G_CHModel

Page 681: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_ClassicalChannel

Description Multipath fading channel of classical Doppler spectrumLibrary 3GPPFDD 10-99, Channel Model

Parameters

Name Description Default Sym Unit Type Range

SamplingRate sampling rate 3840000 int (0, ∞)

SampleRate samples per chip 4 S int [1, 32]

Dpath2 time delay of second taprelative to the first tap

310n sec real (0, ∞)

Dpath3 time delay of third taprelative to the first tap

710n sec real (0, ∞)

Dpath4 time delay of fourth taprelative to the first tap

1090n sec real (0, ∞)

Dpath5 time delay of fifth taprelative to the first tap

1730n sec real (0, ∞)

Dpath6 time delay of sixth taprelative to the first tap

2510n sec real (0, ∞)

Gpath1_dB average power of first taprelative to the strongest tapin dB

0 real (-∞, 0]

Gpath2_dB average power of secondtap relative to the strongesttap in dB

-1.0 real (-∞, 0]

Gpath3_dB average power of third taprelative to the strongest tapin dB

-9.0 real (-∞, 0]

Gpath4_dB average power of fourth taprelative to the strongest tapin dB

-10.0 real (-∞, 0]

Gpath5_dB average power of fifth taprelative to the strongest tapin dB

-15.0 real (-∞, 0]

Gpath6_dB average power of sixth taprelative to the strongest tapin dB

-20.0 real (-∞, 0]

Velocity mobile velocity in Km/hour. 100.0 real [0, 5000)

CarrierFrequency carrier frequency 2.0G Hz real (0, ∞)

WCDMA3G_ClassicalChannel 12-9

Page 682: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Model Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork model is used to pass the input signal through multipathRayleigh fading channel that is based on a tapped-delay line model. TheDoppler spectrum is classical. The maximum number of paths is 6. IfGpathi_dB(i=1,2,...6) is set to larger than 0, this tap is ignored. There is no pathloss or gain in this model.

Each firing, 1 PSig token is produced for each Sig token consumed.

2. The schematic for this subnetwork is shown in Figure 12-3.

Pin Name Description Signal Type

1 Sig complex envelope signal complex

Pin Name Description Signal Type

2 PSig output signal after passing channel complex

12-10 WCDMA3G_ClassicalChannel

Page 683: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 12-3. WCDMA3G_ClassicalChannel Schematic

References

[1] IS2000.2, “Physical Layer Standard for cdma2000 Spread Spectrum Systems,”April 1999.

[2] TR 101 112 v3.2.0, “Universal Mobile Telecommunications System (UMTS);Selection procedures for the choice of radio transmission technologies of UMTS(UMTS 30.03 Version 3.2.0), ETSI.

WCDMA3G_ClassicalChannel 12-11

Page 684: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Model Components

WCDMA3G_UserDefinedCH

Description channel model with user definitionsLibrary 3GPPFDD 10-99, Channel ModelClass SDFWCDMA3G_UserDefinedCH

Parameters

Pin Inputs

Pin Outputs

Name Description Default Sym Type Range

Carrier carrier frequency 2.0 fc real (0, ∞)

ChipRate chip rate of system 3840000 int [1, ∞)

SampleRate samples per chip 8 S int [1, 32]

Velocity mobile velocity in km/hour 100.0 V real (0, ∞)

AntennaNumber number of antennas 1 M int [1, ∞)

AntennaSpace interval between twoantennas

0.075 D real (0, ∞)

PathNumber number of multiple paths 2 N int [1, 6]

PathDelay delay in ns for all paths, 1stpathDelay as 0ns

0 5 int array [0, ∞)

AveragePower delay in dB for all paths, 1stpathPower as 0dB

0.0 -1.0 real array (-∞, ∞)

ArrivingAngle arriving angle(degrees) foreach path

0.0 0.0 A real array (-∞, ∞)

Pin Name Description Signal Type

1 in input signal to channel model complex

Pin Name Description Signal Type

2 out output signal from channel model multiple complex

12-12 WCDMA3G_UserDefinedCH

Page 685: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model is used to simulate a multi-path fading channel based on atapped-delay line model. There is no path loss or gain in this model.

Each firing, one token is consumed at the input, and one token is produced atthe output.

2. Figure 12-4 illustrates the number of taps (number of paths), tap delay, andmulti-path power distribution as defined by the user. Jakes model uses classicalDoppler spectrum.

Figure 12-4. Channel Model based on Tapped-Delay Line

Jakes model uses N0 low-frequency oscillators with frequencies equal to theDoppler shifts ωn=ωmcos(2πn/N) (n=1,2, ... , N0) plus one with frequency ωm togenerate signals frequency-shifted from a carrier frequency 2πfc, whereωm=2πV/λ, λ denotes wave-length of carrier and N0=8, N=2×(2×N0+1) is used inthe component. The amplitudes of all the components are made equal to unity

except for the one with frequency ωm, which is set equal to , as illustratedin Figure 12-5. For more information about Jakes model, refer to [2].

Antenna array is also considered in the channel model. Multi-path signal issummed and coupled to the output signals after phase shift using D and A.

Delay DelayDelay

12 M12 M

1 2 M

Power

PhaseShift

In

Out

Distribution 1 2 N

JakesModel

1 2⁄

WCDMA3G_UserDefinedCH 12-13

Page 686: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Channel Model Components

Figure 12-5.

References

[1]Draft New Recommendation ITU-R M.[FPLMT.REVAL], Guidelines forEvaluation of Radio Transmission Technologies for IMT-2000/FPLMTS(Question ITU-R 39/8).

[2] William C. Jakes, “Microwave Mobile Communications,” IEEE Press, 1994.

1.00

Amp1.0

1 2⁄

ωn ωm⁄

12-14 WCDMA3G_UserDefinedCH

Page 687: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 13: 3GPPFDD 10-99 CommonPhysical Channels Components

13-1

Page 688: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Common Physical Channels Components

WCDMA3G_AllSSCode

Description Generate all secondary synchronization codesLibrary 3GPPFDD 10-99, Common Physical ChannelsClass SDFWCDMA3G_AllSSCode

Pin Outputs

Notes/Equations

1. This model is used to generate all secondary synchronization codes (SSC) andtheir corresponding scrambling code group (SCG) indices.

Each firing, 256×15 tokens of each SSCode pin and one token of each SCG pinare produced. Each output carries 64 signals.

2. One secondary synchronization code word, , has an index, and is used in one slot. Each SSC code consists of 15 different

secondary synchronization code words that have an index array shown inTable 13-1.

Let

b = < 0,0,0,0,0,0,1,1,1,0,1,0,1,0,0,1 >. Z

=< >.

The secondary synchronization code words, , ,are constructed as the position-wise addition modulo-2 of a Hadamard sequenceand the sequence Z. The Hadamard sequences are obtained as the rows of a256×256 Hadamard matrix H8, depending on the chosen code number i. This

Pin Name Description Signal Type

1 SSCode secondary synchronization code multiple int

2 SCG scrambling code group index multiple int

Ci C1C2…C16( )∈i 1 2 … 16, , ,( )∈

b b b b b b b b b b b b b b b b, , , , , , , , , , , , , , ,

Ci C1C2…C16( )∈ i 1 2 …16, ,( )∈

13-2 WCDMA3G_AllSSCode

Page 689: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

word code is chosen from every 16th row of the matrix H8 implying 16 possiblecode words given by row number: i × 16.

SSC binary code words are converted to real valued sequences by thetransformation ‘0’->’+1’ and ‘1’->’-1’.

One SSC code consists of 15 different secondary synchronization code wordsand can differ from one cell to another, corresponding to which SCG the celluses; mapping is shown in Table 13-1. There are 64 possible SSC codes and 64related SCGs. Each firing, one SSC code and its related SCG are produced oneach signal of SSCode and SCG.

Table 13-1. SSC Code Index Array and SCG (index i of code Ci)

SCG

Slot Number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 2 8 9 10 15 8 10 16 2 7 15 7 16

2 1 1 5 16 7 3 14 16 3 10 5 12 14 12 10

3 1 2 1 15 5 5 12 16 6 11 2 16 11 15 12

4 1 2 3 1 8 6 5 2 5 8 4 4 6 3 7

5 1 2 16 6 6 11 15 5 12 1 15 12 16 11 2

6 1 3 4 7 4 1 5 5 3 6 2 8 7 6 8

7 1 4 11 3 4 10 9 2 11 2 10 12 12 9 3

8 1 5 6 6 14 9 10 2 13 9 2 5 14 1 13

9 1 6 10 10 4 11 7 13 16 11 13 6 4 1 16

10 1 6 13 2 14 2 6 5 5 13 10 9 1 14 10

11 1 7 8 5 7 2 4 3 8 3 2 6 6 4 5

12 1 7 10 9 16 7 9 15 1 8 16 8 15 2 2

13 1 8 12 9 9 4 13 16 5 1 13 5 12 4 8

14 1 8 14 10 14 1 15 15 8 5 11 4 10 5 4

15 1 9 2 15 15 16 10 7 8 1 10 8 2 16 9

16 1 9 15 6 16 2 13 14 10 11 7 4 5 12 3

17 1 10 9 11 15 7 6 4 16 5 2 12 13 3 14

18 1 11 14 4 13 2 9 10 12 16 8 5 3 15 6

19 1 12 12 13 14 7 2 8 14 2 1 13 11 8 11

20 1 12 15 5 4 14 3 26 7 8 6 2 10 11 13

21 1 15 4 3 7 6 10 13 12 5 14 16 8 2 11

22 1 16 3 12 11 9 13 5 8 2 14 7 4 10 15

23 2 2 5 10 16 11 3 10 11 8 5 13 3 13 8

WCDMA3G_AllSSCode 13-3

Page 690: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Common Physical Channels Components

24 2 2 12 3 15 5 8 3 5 14 12 9 8 9 14

25 2 3 6 16 12 16 3 13 13 6 7 9 2 12 7

26 2 3 8 2 9 15 14 3 14 9 5 5 15 8 12

27 2 4 7 9 5 4 9 11 2 14 5 14 11 16 16

28 2 4 13 12 12 7 15 10 5 2 15 5 13 7 4

29 2 5 9 9 3 12 8 14 15 12 14 5 3 2 15

30 2 5 11 7 2 11 9 4 16 7 16 9 14 14 4

31 2 6 2 13 3 3 12 9 7 16 6 9 16 13 12

32 2 6 9 7 7 16 13 3 12 2 13 12 9 16 6

33 2 7 12 15 2 12 4 10 13 15 13 4 5 5 10

34 2 7 14 16 5 9 2 9 16 11 11 5 7 4 14

35 2 8 5 12 5 2 14 14 8 15 3 9 12 15 9

36 2 9 13 4 2 13 8 11 6 4 6 8 15 15 11

37 2 10 3 2 13 16 8 10 8 13 11 11 16 3 5

38 2 11 15 3 11 6 14 10 15 10 6 7 7 14 3

39 2 16 4 5 16 14 7 11 4 11 14 9 9 7 5

40 3 3 4 6 11 12 13 6 12 14 4 5 13 5 14

41 3 3 6 5 16 9 15 5 9 10 6 4 15 4 10

42 3 4 5 14 4 6 12 13 5 13 6 11 11 12 14

43 3 4 9 16 10 4 16 15 3 5 10 5 15 6 6

44 3 4 16 10 5 10 4 9 9 16 15 6 3 5 15

45 3 5 12 11 14 5 11 13 3 6 14 6 13 4 4

46 3 6 4 10 6 5 9 15 4 15 5 16 16 9 10

47 3 7 8 8 16 11 12 4 15 11 4 7 16 3 15

48 3 7 16 11 4 15 3 15 11 12 12 4 7 8 16

49 3 8 7 15 4 8 15 12 3 16 4 16 12 11 11

50 3 8 15 4 16 4 8 7 7 15 12 11 3 16 12

51 3 10 10 15 16 5 4 6 16 4 3 15 9 6 9

52 3 13 11 5 4 12 4 11 6 6 5 3 14 13 12

53 3 14 7 9 14 10 13 8 7 8 10 4 4 13 9

54 5 5 8 14 16 13 6 14 13 7 8 15 6 15 7

55 5 6 11 7 10 8 5 8 7 12 12 10 6 9 11

56 5 6 13 8 13 5 7 7 6 16 14 15 8 16 15

57 5 7 9 10 7 11 6 12 9 12 11 8 8 6 10

Table 13-1. SSC Code Index Array and SCG (index i of code Ci) (continued)

SCG

Slot Number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

13-4 WCDMA3G_AllSSCode

Page 691: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.213 V3.0.0, “Spreading and Modulation(FDD),” October 1999.

58 5 9 6 8 10 9 8 12 5 11 10 11 12 7 7

59 5 10 10 12 8 11 9 7 8 9 5 12 6 7 6

60 5 10 12 6 5 12 8 9 7 6 7 8 11 11 9

61 5 13 15 15 14 8 6 7 16 8 7 13 14 5 16

62 9 10 13 10 11 15 15 9 16 12 14 13 16 14 11

63 9 11 12 15 12 9 13 13 11 14 10 16 15 14 16

64 9 12 10 15 13 14 9 14 15 11 11 13 12 16 10

Table 13-1. SSC Code Index Array and SCG (index i of code Ci) (continued)

SCG

Slot Number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

WCDMA3G_AllSSCode 13-5

Page 692: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Common Physical Channels Components

WCDMA3G_DnLkCPICHGen

Description Generate two orthogonal pilot patterns on CPICHLibrary 3GPPFDD 10-99, Common Physical ChannelsClass SDFWCDMA3G_DnLkCPICHGen

Pin Outputs

Notes/Equations

1. This model is used to generate two orthogonal pilot patterns on downlinkcommon pilot channel (CPICH).

Each firing, 10 tokens are produced at Ant1 and Ant2.

References

[1]3GPP Technical Specification TS25.211 V3.0.0,“Physical Channels andMapping of Transport Channels onto Physical Channels (FDD),” October 1999.

Pin Name Description Signal Type

1 Ant1 CPICH transmitted by antenna 1 complex

2 Ant2 CPICH transmitted by antenna 2 complex

13-6 WCDMA3G_DnLkCPICHGen

Page 693: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_IdentifySCG

Description Identification of scrambling code groupLibrary 3GPPFDD 10-99, Common Physical ChannelsClass SDFWCDMA3G_IdentifySCG

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

Name Description Default Sym Type Range

ChipRate chip rate of the system:Chip Rate 3.84M

Chip Rate 3.84M enum

SampleRate number of samples perchip

4 R int [1, 32]

NumberOfFrame number of frames forstatistics

1 Nf int [1, ∞)

SCGNum number of candidate SCGs 64 Ns int [1, 64]

Pin Name Description Signal Type

1 in received signal complex

2 Slot_T indicator of slot synchronization timing int

3 SSCode all candidate secondary synchronization codesresponding to all candidate SCGs

multiple int

4 SCG all candidate SCGs multiple int

Pin Name Description Signal Type

5 Frm_T indicator of frame synchronization timing int

6 Id_SCG identified SCG int

WCDMA3G_IdentifySCG 13-7

Page 694: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Common Physical Channels Components

1. This model is used to identify one scrambling code group from all candidatescrambling code groups (SCGs).

Each firing, one token of Frm_T and one token of Id_SCG are produced whenNf×R×38400 tokens of in, one token of Slot_T, 256×15 tokens of each SSCodesignal and one token of each SCG signal are consumed. SSCode and SCG aremultiple signals Ns.

2. Because there are R samples per chip in the received signal, this model firstdownsamples the received signal to chip sequence according to Slot_T.

Secondary synchronization code (SSC) is transmitted together with Primarysynchronization code during the first 256 chips of each slot of Primary CCPCH.Primary CCPCH is not transmitted in this period. SSC code differs from oneslot to another and has a period of one frame. There are 15 slots in one frame, soone SSC has 15 phases. The SSC starting position in the received signal is theframe synchronization timing. Each SSC corresponds to one SCG the cell uses.

SCG identification is implemented by calculating the cross-correlation betweenthe received signal in[j] and candidate SSCs SSCode[j]. The cross-correlation ofa complex-valued signal and a real-valued sequence is defined as:

This equation can be implemented using a structure of tapped delay lineillustrated in Table 13-1. P denotes the scope of correlation computation.SSCode is repeated with the period of 256×15 tokens.This model includes agroup of 15×Ns paralleled correlators.

Figure 13-1. Correlator Structure

1P---- SSCode j[ ] in j[ ]×

j 0=

P 1–

P Tapped Delay Line

. . . . . .

Weighting

. . . . . .

Summation

Received Data

Scrambling Code

Cross-Correlation

13-8 WCDMA3G_IdentifySCG

Page 695: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.211 V3.0.0, “Physical Channels andMapping of Transport Channels onto Physical Channels (FDD),” October 1999.

[2] 3GPP Technical Specification TS 25.213 V3.0.0, “Spreading and Modulation(FDD),” October 1999.

WCDMA3G_IdentifySCG 13-9

Page 696: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Common Physical Channels Components

WCDMA3G_IdScrambler

Description Identification of scrambling codeLibrary 3GPPFDD 10-99, Common Physical ChannelsClass SDFWCDMA3G_IdScrambler

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

Name Description Default Sym Type Range

ChipRate chip rate of the system:Chip Rate 3.84M

Chip Rate 3.84M enum

SampleRate number of samples perchip

4 R int [1, 32]

NumberOfFrame number of frames forstatistics

1 Nf int [1, ∞)

Pin Name Description Signal Type

1 in received signal complex

2 Spread spreading code used in PCCPCH int

3 Slot_T indicator of slot synchronization timing int

4 Frm_T indicator of frame synchronization timing int

5 ScrmbI a group of eight candidate scrambling codes multiple complex

6 IndexI a group of eight scrambling code indices multiple int

Pin Name Description Signal Type

7 ScrmbO identified scrambling code complex

8 IndexO identified scrambling code index int

13-10 WCDMA3G_IdScrambler

Page 697: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

1. This model is used to identify the scrambling code used in PCCPCH.

Each firing, 38400 tokens of ScrmbO and one token of IndexO are producedwhen 38400 tokens of each ScrmbI signal, one token of each IndexI signal,38400×Nf×R tokens of in, 256 tokens of Spread, one token of Slot_T and onetoken of Frm_T are consumed.

2. Because there are R samples per chip in the received signal, this modeldownsamples the received signal to chip sequence according to Slot_T andFrm_T. The Primary CCPCH is not transmitted during the first 256 chips ofeach slot; Primary SCH and Secondary SCH are transmitted during this period.

Scrambling code identification is implemented by calculating thecross-correlation between the received signal in[j] and the candidate scramblingcode Scrmbl[j]. Cross-correlation of the two complex-valued signals is definedas:

This equation can be implemented using a tapped delay line structureillustrated in Figure 13-2. P denotes the scope of correlation computation.ScrmbI and Spread are repeated with the period of 38400 and 256 tokens,respectively. This model includes a group of 8 paralleled correlators.

Figure 13-2. Correlator Structure

References

[1]3GPP Technical Specification TS 25.211 V3.0.0, “Physical Channels andMapping of Transport Channels onto Physical Channels (FDD),” October 1999.

1P---- in j[ ] ScrmbI j[ ]( )∗×

j 0=

P 1–

P Tapped Delay Line

. . . . . .

Weighting

. . . . . .

Summation

Received Data

Scrambling Code

Cross-Correlation

WCDMA3G_IdScrambler 13-11

Page 698: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Common Physical Channels Components

[2] 3GPP Technical Specification TS 25.213 V3.0.0, “Spreading and Modulation(FDD),” October 1999.

13-12 WCDMA3G_IdScrambler

Page 699: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_PCCPCHDeMux

Description De-multiplexing for primary common control physical channelLibrary 3GPPFDD 10-99, Common Physical ChannelsClass SDFWCDMA3G_PCCPCHDeMux

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to de-multiplex primary common control physical channel(PCCPCH) data.

Each firing, 18 tokens are produced when 20 tokens are consumed.

2. Figure 13-3 shows the frame structure of the PCCPCH. PCCPCH is a fixed rate(30kbps, SF= 256); downlink physical channels carry the broadcast channel(BCH). The PCCPCH is not transmitted during the first 256 chips of each slot;primary synchronization channel (SCH) and secondary SCH are transmittedduring this period.

This model punctures 2 bits of the first 20 bits in one slot bit sequence. These 2bits are inserted into WCDMA3G_PCCPCHMux.

Pin Name Description Signal Type

1 in PCCPCH multiplexed data real

Pin Name Description Signal Type

2 out PCCPCH data real

WCDMA3G_PCCPCHDeMux 13-13

Page 700: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Common Physical Channels Components

Figure 13-3. Primary Common Control Physical Channel Frame

References

[1]3GPP Technical Specification TS 25.211 V3.0.0, “Physical Channels andMapping of Transport Channels onto Physical Channels (FDD),” October 1999.

Tslot= 2560 chips, 20 bits

Slot #0 Slot #1 Slot #i Slot #14

Tf = 10 msec

Frame #0 Frame #1 Frame #i Frame #71

Tsuper = 720 msec

(Tx OFF) Data (18 bits)

256 chips

13-14 WCDMA3G_PCCPCHDeMux

Page 701: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_PCCPCHMux

Description Multiplexing for primary common control physical channelLibrary 3GPPFDD 10-99, Common Physical ChannelsClass SDFWCDMA3G_PCCPCHMux

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to multiplex primary common control physical channel(PCCPCH) data.

Each firing, 20 tokens are produced when 18 tokens are consumed.

2. Figure 13-4 illustrates the PCCPCH frame structure. The PCCPCH is a fixedrate (30kbps, SF= 256); downlink physical channels carry the broadcastchannel (BCH). The PCCPCH is not transmitted during the first 256 chips ofeach slot; primary and secondary synchronization channels (SCHs) aretransmitted during this period.

This model inserts 2 bits before 18 data bits to produce a slot bit sequence ofPCCPCH. In the WCDMA3G_TimeSwitch model, these 256 chips are maskedby primary and secondary SCHs.

Pin Name Description Signal Type

1 in PCCPCH data int

Pin Name Description Signal Type

2 out PCCPCH multiplexed data int

WCDMA3G_PCCPCHMux 13-15

Page 702: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Common Physical Channels Components

Figure 13-4. Primary Common Control Physical Channel Frame

References

[1]3GPP Technical Specification TS 25.211 V3.0.0, “Physical Channels andMapping of Transport Channels onto Physical Channels (FDD),” October 1999.

Tslot= 2560 chips, 20 bits

Slot #0 Slot #1 Slot #i Slot #14

Tf = 10 msec

Frame #0 Frame #1 Frame #i Frame #71

Tsuper = 720 msec

(Tx OFF) Data (18 bits)

256 chips

13-16 WCDMA3G_PCCPCHMux

Page 703: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_PSCode

Description Primary synchronization code generatorLibrary 3GPPFDD 10-99, Common Physical ChannelsClass SDFWCDMA3G_PSCode

Pin Outputs

Notes/Equations

1. This model is used to generate the primary synchronization code in one slot.

Each firing, 256 tokens are produced.

2. The primary synchronization channel (primary SCH) consists of a modulatedcode of length of 256 chips—the primary synchronization code (PSC). Theprimary code sequence is same in every slot. It is constructed as a generalizedhierarchical Golay sequence. The primary SCH is chosen to have good aperiodicauto correlation properties.

Let

a=<x1, x2, x3, ... , x16>=<0,0,0,0,0,0,1,1,0,1,0,1,0,1,1,0>.

The PSC code is generated by repeating sequence a modulated by a Golaycomplementary sequence.

Let

y = < >

The definition of the PSC code word follows (the left-most index corresponds tothe chip transmitted first in each time slot):

PSC code = <y(0),y(1),y(2), ... , y(255)>.

Pin Name Description Signal Type

1 out primary synchronization code int

a a a a a a a a a a a a a a a a, , , , , , , , , , , , , , ,

WCDMA3G_PSCode 13-17

Page 704: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Common Physical Channels Components

PSC binary code word is converted to real valued sequence by thetransformation ‘0’->’+1’ and ’1’->’-1’.

PSC code is unique in the entire system.

References

[1]3GPP Technical Specification TS 25.213 V3.0.0, “Spreading and Modulation(FDD),” October 1999.

13-18 WCDMA3G_PSCode

Page 705: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_SCGtoScrmb

Description Convert one SCG index to eight primary scrambling codesLibrary 3GPPFDD 10-99, Common Physical ChannelsClass SDFWCDMA3G_SCGtoScrmb

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to convert the index of one scrambling code group to a groupof 8 primary scrambling codes in downlink.

Each firing, 38400 tokens of each Scrmb signal and one token of each Indexsignal are produced when one token of SCG is consumed.

2. The Primary CCPCH is always transmitted using the primary scrambling code.There are 512 primary scrambling codes that are divided into 64 groups; eachgroup consists of 8 scrambling codes.

Name Description Default Type

ChipRate chip rate of the system:Chip Rate 3.84M

Chip Rate 3.84M enum

Pin Name Description Signal Type

1 SCG index of one scrambling code group int

Pin Name Description Signal Type

2 Scrmb a group of eight scrambling codes multiple complex

3 Index indices of eight scrambling codes multiple int

WCDMA3G_SCGtoScrmb 13-19

Page 706: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Common Physical Channels Components

Let

SCG index be SCGid ∈ (1, 2, ... , 64)

primary scrambling code index be PSid ∈ (0, 1, ... , 511).

Then one SCGid corresponds to a group of 8 primary scrambling codes whoseindices are:

PSid = (SCGid −1) × 8 + (0, 1, ... , 7)

The index of downlink scrambling code Sid = PSid × 16.

There are two steps to convert an SCG index to a group of 8 scrambling codes:

• form the index of SCG; the corresponding indices Sid of 8 scrambling codesare known.

• generate the scrambling codes according to the indices obtained. For detailsregarding scrambling code generation, refer to“WCDMA3G_DnLkAllocOVSF” on page 17-2.

References

[1]3GPP Technical Specification TS 25.213 V3.0.0, “Spreading and Modulation(FDD),” October 1999.

13-20 WCDMA3G_SCGtoScrmb

Page 707: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_SSCode

Description Secondary synchronization code generatorLibrary 3GPPFDD 10-99, Common Physical ChannelsClass SDFWCDMA3G_SSCode

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate a secondary synchronization code according toits index array.

Each firing, 256×15 tokens of out and 15 tokens of Index are produced.

2. The secondary synchronization channel (secondary SCH) consists of 15modulated codes of length 256 chips, the secondary synchronization codes(SSC). Each 256 chips sequence is a secondary synchronization code word, usedin one slot.

Let

b = <0,0,0,0,0,0,1,1,1,0,1,0,1,0,0,1>. Z = < >.

Name Description Default Type Range

Index index of secondarysynchronization code

1 int [0, 16777215]

Pin Name Description Signal Type

1 out secondary synchronization code in one frame int

2 IndexO secondary synchronization code index int

b b b b b b b b b b b b b b b b, , , , , , , , , , , , , , ,

WCDMA3G_SSCode 13-21

Page 708: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Common Physical Channels Components

Secondary synchronization code words, , , areconstructed as the position wise addition modulo 2 of a Hadamard sequence andthe sequence Z.

The Hadamard sequences are obtained as rows of a 256×256 Hadamard matrixH8, depending on the chosen code number i. This word code is chosen fromevery 16th row of the matrix H8 implying 16 possible code words given by rownumber i × 16.

SSC binary code words are converted to real valued sequences by thetransformation ‘0’->’+1’ and ‘1’->’-1’.

Each SSC code consists of 15 different secondary synchronization code wordswith an index array given in Table 13-2.

Table 13-2. Secondary SCH Code (index i of code Ci)

SSC

Slot Number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 2 8 9 10 15 8 10 16 2 7 15 7 16

2 1 1 5 16 7 3 14 16 3 10 5 12 14 12 10

3 1 2 1 15 5 5 12 16 6 11 2 16 11 15 12

4 1 2 3 1 8 6 5 2 5 8 4 4 6 3 7

5 1 2 16 6 6 11 15 5 12 1 15 12 16 11 2

6 1 3 4 7 4 1 5 5 3 6 2 8 7 6 8

7 1 4 11 3 4 10 9 2 11 2 10 12 12 9 3

8 1 5 6 6 14 9 10 2 13 9 2 5 14 1 13

9 1 6 10 10 4 11 7 13 16 11 13 6 4 1 16

10 1 6 13 2 14 2 6 5 5 13 10 9 1 14 10

11 1 7 8 5 7 2 4 3 8 3 2 6 6 4 5

12 1 7 10 9 16 7 9 15 1 8 16 8 15 2 2

13 1 8 12 9 9 4 13 16 5 1 13 5 12 4 8

14 1 8 14 10 14 1 15 15 8 5 11 4 10 5 4

15 1 9 2 15 15 16 10 7 8 1 10 8 2 16 9

16 1 9 15 6 16 2 13 14 10 11 7 4 5 12 3

17 1 10 9 11 15 7 6 4 16 5 2 12 13 3 14

18 1 11 14 4 13 2 9 10 12 16 8 5 3 15 6

19 1 12 12 13 14 7 2 8 14 2 1 13 11 8 11

20 1 12 15 5 4 14 3 26 7 8 6 2 10 11 13

21 1 15 4 3 7 6 10 13 12 5 14 16 8 2 11

Ci C1C2…C16( )∈ i 1 2 …16, ,( )∈

13-22 WCDMA3G_SSCode

Page 709: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

22 1 16 3 12 11 9 13 5 8 2 14 7 4 10 15

23 2 2 5 10 16 11 3 10 11 8 5 13 3 13 8

24 2 2 12 3 15 5 8 3 5 14 12 9 8 9 14

25 2 3 6 16 12 16 3 13 13 6 7 9 2 12 7

26 2 3 8 2 9 15 14 3 14 9 5 5 15 8 12

27 2 4 7 9 5 4 9 11 2 14 5 14 11 16 16

28 2 4 13 12 12 7 15 10 5 2 15 5 13 7 4

29 2 5 9 9 3 12 8 14 15 12 14 5 3 2 15

30 2 5 11 7 2 11 9 4 16 7 16 9 14 14 4

31 2 6 2 13 3 3 12 9 7 16 6 9 16 13 12

32 2 6 9 7 7 16 13 3 12 2 13 12 9 16 6

33 2 7 12 15 2 12 4 10 13 15 13 4 5 5 10

34 2 7 14 16 5 9 2 9 16 11 11 5 7 4 14

35 2 8 5 12 5 2 14 14 8 15 3 9 12 15 9

36 2 9 13 4 2 13 8 11 6 4 6 8 15 15 11

37 2 10 3 2 13 16 8 10 8 13 11 11 16 3 5

38 2 11 15 3 11 6 14 10 15 10 6 7 7 14 3

39 2 16 4 5 16 14 7 11 4 11 14 9 9 7 5

40 3 3 4 6 11 12 13 6 12 14 4 5 13 5 14

41 3 3 6 5 16 9 15 5 9 10 6 4 15 4 10

42 3 4 5 14 4 6 12 13 5 13 6 11 11 12 14

43 3 4 9 16 10 4 16 15 3 5 10 5 15 6 6

44 3 4 16 10 5 10 4 9 9 16 15 6 3 5 15

45 3 5 12 11 14 5 11 13 3 6 14 6 13 4 4

46 3 6 4 10 6 5 9 15 4 15 5 16 16 9 10

47 3 7 8 8 16 11 12 4 15 11 4 7 16 3 15

48 3 7 16 11 4 15 3 15 11 12 12 4 7 8 16

49 3 8 7 15 4 8 15 12 3 16 4 16 12 11 11

50 3 8 15 4 16 4 8 7 7 15 12 11 3 16 12

51 3 10 10 15 16 5 4 6 16 4 3 15 9 6 9

52 3 13 11 5 4 12 4 11 6 6 5 3 14 13 12

53 3 14 7 9 14 10 13 8 7 8 10 4 4 13 9

54 5 5 8 14 16 13 6 14 13 7 8 15 6 15 7

55 5 6 11 7 10 8 5 8 7 12 12 10 6 9 11

Table 13-2. Secondary SCH Code (index i of code Ci) (continued)

SSC

Slot Number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

WCDMA3G_SSCode 13-23

Page 710: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Common Physical Channels Components

References

[1]3GP Technical Specification TS 25.213 V3.0.0, “Spreading and Modulation(FDD),” October 1999.

56 5 6 13 8 13 5 7 7 6 16 14 15 8 16 15

57 5 7 9 10 7 11 6 12 9 12 11 8 8 6 10

58 5 9 6 8 10 9 8 12 5 11 10 11 12 7 7

59 5 10 10 12 8 11 9 7 8 9 5 12 6 7 6

60 5 10 12 6 5 12 8 9 7 6 7 8 11 11 9

61 5 13 15 15 14 8 6 7 16 8 7 13 14 5 16

62 9 10 13 10 11 15 15 9 16 12 14 13 16 14 11

63 9 11 12 15 12 9 13 13 11 14 10 16 15 14 16

64 9 12 10 15 13 14 9 14 15 11 11 13 12 16 10

Table 13-2. Secondary SCH Code (index i of code Ci) (continued)

SSC

Slot Number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

13-24 WCDMA3G_SSCode

Page 711: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_SlotTiming

Description Timing of slotLibrary 3GPPFDD 10-99, Common Physical ChannelsClass SDFWCDMA3G_SlotTiming

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to search the timing of slot.

Each firing, one token of Slot_T is produced when N×R×2560 tokens of in and256 tokens of PSCode are consumed.

Name Description Default Sym Type Range

ChipRate chip rate of the system:Chip Rate 3.84M

Chip Rate 3.84M enum

SampleRate number of samples perchip

4 R int [1, 32]

NumberOfSlot number of slots forstatistics

15 N int [2, 500]

Pin Name Description Signal Type

1 in received signal complex

2 PSCode primary synchronization code int

Pin Name Description Signal Type

3 Slot_T primary CCPCH slot synchronization timing indicator int

WCDMA3G_SlotTiming 13-25

Page 712: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Common Physical Channels Components

2. Primary synchronization code (PSC code) is unique in the entire system. It istransmitted with the secondary synchronization code during the first 256 chipsof each slot of primary CCPCH; primary CCPCH is not transmitted in thisperiod. So the starting position of PSC code in the received signal is theindicator of slot synchronization timing of primary CCPCH.

Slot timing is implemented by calculating the cross-correlation between thereceived signal in[j] and the PSC code PSCCode[j] . Input data is downsampledaccording to R. The cross-correlation of a complex-valued signal and areal-valued sequence is defined as:

This equation can be implemented using a structure of tapped delay lineillustrated in Figure 13-5. P denotes the scope of correlation calculation.PSCode is repeated with the period of 256 tokens.

Figure 13-5. Correlator Structure

References

[1]3GPP Technical Specification TS 25.211 V3.0.0, “Physical Channels andMapping of Transport Channels onto Physical Channels (FDD),” October 1999.

1P---- PSCode j[ ] in j[ ]×

j 0=

P 1–

P Tapped Delay Line

. . . . . .

Weighting

. . . . . .

Summation

Received Data

PSC code

Cross-Correlation

13-26 WCDMA3G_SlotTiming

Page 713: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TimeSwitch

Description Time switch for primary CCPCH, PSCH and SSCHLibrary 3GPPFDD 10-99, Common Physical ChannelsClass SDFWCDMA3G_TimeSwitch

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to switch between the primary common control physicalchannel (PCCPCH), the primary synchronization channel (PSCH), and thesecondary synchronization channel (SSCH).

Name Description Default Type

ChipRate chip rate of the system:Chip Rate 3.84M

Chip Rate 3.84M enum

DL_TXDiversity downlink transmit diversitymethod: No_Diversity,DL_STTD

No_Diversity enum

Pin Name Description Signal Type

1 PCCPCH primary CCPCH data complex

2 SCH sum of PSCH data and SSCH data complex

Pin Name Description Signal Type

3 Ant1 output data on antenna1 with STTD or output datawithout STTD

complex

4 Ant2 output data on antenna2 with STTD or all zerowithout STTD

complex

WCDMA3G_TimeSwitch 13-27

Page 714: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Common Physical Channels Components

Each firing, 2560 tokens of Ant1 and 2560 tokens of Ant2 are produced when256 tokens of SCH and 2560 tokens of PCCPCH are consumed.

2. In a downlink, open loop downlink transmit diversity uses a space time blockcoding based transmit diversity (STTD). Higher layers signal if STTD encodingis used for the PCCPCH by modulating the SCH. Primary and secondarysynchronization codes are modulated by the symbol given in Table 13-3.

The Primary CCPCH is a fixed rate (30kbps, SF=256) downlink physicalchannel used to carry the BCH. The Primary CCPCH is not transmitted duringthe first 256 chips of each slot; primary and secondary SCHs are transmittedduring this period.

When STTD is not used on PCCPCH, this model masks the first 256 chips ofeach slot of PCCPCH and outputs data on Ant1 as illustrated in Figure 13-6.Output data on Ant2 is all zero.

When STTD is used on PCCPCH, data symbols of PCCPCH are STTD encoded.The last odd data symbol in every frame (10ms) is not STTD encoded and thesame symbol is transmitted with equal power from the two antennas. For moreinformation regarding STTD encoding, refer to “WCDMA3G_STTDEncoder” onpage 19-2.

SCH is transmitted by the time switched transmit diversity (TSTD). In evennumbered slots, PSCH and SSCH are transmitted on Ant1; in odd numberedslots, PSCH and SSCH are transmitted on Ant2.

Output data on Ant1 and Ant2 is shown in Figure 13-7.

Table 13-3. Symbol a Modulating SCH

STTD Encoding Status symbol a

PCCPCH STTD encoded a = +1

PCCPCH not STTD encoded a = -1

13-28 WCDMA3G_TimeSwitch

Page 715: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 13-6. Primary CCPCH Frame Structure

Figure 13-7. Structure of SCH Transmitted by TSTD;PCCPCH Transmitted by STTD

References

[1]3GPP Technical Specification TS 25.211 V3.0.0, “Physical Channels andMapping of Transport Channels onto Physical Channels (FDD),” October 1999.

[2] 3GPP Technical Specification TS 25.213 V3.0.0, “Spreading and Modulation(FDD),” October 1999.

where:

Cp: primary synchronization code

Csi, k: one of 16 possible secondary synchronization code words

(Csi, 0, Csi, 1, ... , Csi, 14): encode cell specific scrambling code group

where:

Cp: primary synchronization code

Csi, k: one of 16 possible secondary synchronization code words

(Csi, 0, Csi, 1, ... , Csi, 14): encode cell specific scrambling code group

WCDMA3G_TimeSwitch 13-29

Page 716: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Common Physical Channels Components

13-30

Page 717: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 14: 3GPPFDD 10-99 MeasurementComponents

14-1

Page 718: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

WCDMA3G_BFER

Description Bit and frame error rate measurementsLibrary 3GPPFDD 10-99, MeasurementClass SDFWCDMA3G_BFER

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to measure the bit error rate (BER) and frame error rate(FER) of the input data streams.

Name Description Default Sym Type Range

FrameLength data frame length 600 L int [1, ∞)

BERWindow number of frames overwhich BER is calculated.

100 Wb int [1, ∞)

FERWindow number of frames overwhich FER is calculated.

1000 Wf int [1, ∞)

IgnoreFrameNum number of frames to beignored

0 int [0, ∞)

Pin Name Description Signal Type

1 in1 data from input1 int

2 in2 data from input2 int

Pin Name Description Signal Type

3 BER output BER value real

4 FER output FER value real

14-2 WCDMA3G_BFER

Page 719: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Each firing, one BER token and one FER token are produced when L tokens ofin1 and L tokens of in2 are consumed.

Figure 14-1 illustrates the BER measurement window. Data frames from thetwo inputs are compared:

e0 is the total error number of the current data frame f0

e1 is the total error number of the previous data frame f1

eWb−1 is the total error number of the earliest data frame in the BERmeasurement window fWb−1, and so on.

then

and

.

Figure 14-1. BER Measurement

BER eii 0=

Wb 1–

L Wb×( )⁄=

FER ei( )sgni 0=

W f 1–

W f⁄=

f0 f1 ... ... fWb-1 fWb ... ...

BER Measurement Window

e0 e1 ... ... eWb-1 eWb

Data

WCDMA3G_BFER 14-3

Page 720: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

WCDMA3G_BroadcastCHSrc

Description Broadcast channel fixed-rate data sourceLibrary 3GPPFDD 10-99, MeasurementClass SDFWCDMA3G_BroadcastCHSrc

Parameters

Pin Outputs

Notes/Equations

1. This model is used to implement fixed-rate data source for broadcast channels.Random data of one transport block is output at each transport time interval; atthe same time, the value of current transport format and maximum transportformat are output based on TTI. The number of tokens output are listed inTable 14-1.

Name Description Default Type

InfoType broadcast channel type:BCH_11_1_kbps,BCH_12_3_kbps

BCH_11_1_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

Pin Name Description Signal Type

1 TFMax maximum transport format for current service int

2 out information data int

3 TF current transport format for current service int

14-4 WCDMA3G_BroadcastCHSrc

Page 721: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. Based on InfoType and TTI, the maximum data length and transport formatare calculated.

Within one TTI, the current transport format and valid length of output dataare determined according to Table 14-2.

Within one transport block, output 0 or 1 randomly and output TF and TFMax,respectively.

References

[1]3GPP TS25.302 V3.1.0, “Services Provided by the Physical Layer,” October 1999.

[2] 3GPP TS25.101 V3.0.0, “UE Radio Transmission and Reception (FDD),”October 1999.

[3] 3GPP TS25.104 V3.0.0, “UTRA(BS) FDD: Transmission and Reception,”October 1999.

Table 14-1. Output Tokens

InfoType TTI Out Tokens TF, TFMax Tokens

BCH_11_1_kbps 10ms 111 1

20ms 222 2

40ms 444 4

80ms 888 8

BCH_12_3_kbps 10ms 123 1

20ms 246 2

40ms 492 4

80ms 984 8

Table 14-2. Output TF, TFMax and Valid Data Length

InfoType TTI TFMax Possible TF Valid Data Length

BCH_11_1_kbps 10ms 0 0 111

20ms 1 1 222

40ms 2 2 444

80ms 3 3 888

BCH_12_3_kbps 10ms 4 4 123

20ms 5 5 246

40ms 6 6 492

80ms 7 7 984

WCDMA3G_BroadcastCHSrc 14-5

Page 722: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

WCDMA3G_CCDF

Description Complementary cumulative distribution functionLibrary 3GPPFDD 10-99, Measurement

Parameters

Pin Inputs

Notes/Equations

1. This subnetwork is used to measure the complementary cumulativedistribution function (CCDF) according to the input signals.

The schematic for this subnetwork is shown in Figure 14-2.

Name Description Default Sym Type Range

BurstLen length of input signal burst 2560 Len int [1, 65536)

OutputPoint indicate output precision 100 int [1, 65536]

BurstNum number of bursts 1 Num int [1, 65536)

SignalType input signal type: RF,BaseBand

RF enum

RefR reference resistance 50.0 real (0, ∞)

Pin Name Description Signal Type

1 in input signals complex

14-6 WCDMA3G_CCDF

Page 723: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 14-2. WCDMA3G_CCDF Schematic

2. Each firing, BurstLen × BurstNum signals are input (BurstLen is the length ofslot and BurstNum is the number of slots to be measured).WCDMA3G_DisFunc measures the distribution function according to inputsignal power; results are collected by 4 NumericSink components. Thedistribution range is sent to the NumericSink identified as SignalRange and isdivided into segments according to OutputPoint. The correspondingdistribution probability is calculated based on these segments and sent to theNumericSink identified as CCDF.

WCDMA3G_DisFunc calculates peak power of 99.9% probability and averagepower of input signals. These results are collected by the NumericSinksidentified as PeakPower and MeanPower.

Note that PeakPower, MeanPower and SignalRange units are dBm;SignalRange is the absolute signal power minus MeanPower.

Typical simulation results are shown in Figure 14-3.

WCDMA3G_CCDF 14-7

Page 724: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

Figure 14-3. Typical Simulation Results

14-8 WCDMA3G_CCDF

Page 725: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_CodeDomainErr

Description Code Domain ErrorLibrary 3GPPFDD 10-99, Measurement

Parameters

Pin Inputs

Notes/Equations

1. This subnetwork is used to calculate the 3GPP code domain error. Theschematic for this subnetwork is shown in Figure 14-4.

Name Description Default Type Range

StartSym start symbol 2560 int [0, 10000]

SymBurstLen number of symbols withinburst to be measured

2560 int [1, 10000]

SampPerSym number of samples persymbol

16 int [1, 512]

SymDelayBound upper bound of delaydetection, in terms ofsymbol

0 int [-1, 1000]†

NumBursts number of bursts to bemeasured

1 int [1, ∞)

ScrambleType scramble code type:UL_long, UL_short, DL

UL_long enum

ScrambleCode index of scramble code 0 int [0, ∞)

SF spreading factor 256 int [1, 512]

† -1 means no synchronization is needed

Pin Name Description Signal Type

1 in signals to be measured for EVM complex

2 ref reference signals for EVM measurement complex

WCDMA3G_CodeDomainErr 14-9

Page 726: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

Each firing, one token is consumed.

Figure 14-4. WCDMA3G_CodeDomainError Schematic

2. SF specifies the code layer on which the code domain error is calculated.ScrambleType and ScrambleCode identify the scramble code used tode-scramble the error vectors.

3. Code domain error is the projection of the error vector over each OVSF code onthe specified layer. The error vector is defined as the difference between thereference and the tested signal. The tested signal is compensated by originoffset, phase shift and frequency and phase error.

Code domain error is calculated on the I and Q channels.

The algorithm used to calculate code domain error is defined in Annex B.2.7.2 of[1].

References

[1]3GPP Technical Specification TS 34.121 V 3.2 “Radio transmission andreception (FDD)” Release 1999.

14-10 WCDMA3G_CodeDomainErr

Page 727: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_ErrorVector

Description EVM error vectorLibrary 3GPPFDD 10-99, Measurement

Parameters

Pin Inputs

Notes/Equations

1. This subnetwork is used to calculate EVM error vector according to the testedand reference signals. Figure 14-5 shows the schematic of this subnetwork.

Name Description Default Type Range

StartSym start symbol 2560 int [0, 10000]

SymBurstLen number of symbols withinburst to be measured

2560 int [1, 10000]

SampPerSym number of samples persymbol

16 int [1, 512]

SymDelayBound upper bound of delaydetection, in symbol, -1 forno detection

-1 int [-1, 1000] †

NumBursts number of bursts to bemeasured

1 int [1, ∞)

FilterLength Number of taps 64 int [2, 128]

† -1 means no synchronization is needed

Pin Name Description Signal Type

1 in signals to be measured for EVM complex

2 ref reference signals for EVM measurement complex

WCDMA3G_ErrorVector 14-11

Page 728: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

Figure 14-5. WCDMA3G_ErrorVector Schematic

2. Each firing, one input token is consumed at each input pin while one outputtoken is produced at the output token. The data sequence size that representsthe valid error vector is SymBurstLen × NumBursts. The error vector ismeasured at each symbol instead of each sample.

Results are split into Real and Imag parts and saved in the Realerror.txt andImagerror.txt files, respectively.

3. The error vector is obtained by calculating the EVM. Let Z(k) be the complexvectors produced by observing the real transmitter through a specifiedmeasuring receiver filter at instant K, one symbol period apart. S(k) is definedto be an ideal transmitted signal observed through the measuring filter andsampled at time k. With the transmitter modeled as:

where

W = edr + jda accounts for both a frequency offset giving da radians per symbolphase rotation and an Amplitude change of dr nepers per symbol;C0 is a constant origin offset representing quadrature modulator imbalance;C1 is a complex constant representing the arbitrary phase and output powerof the transmitter;E(k) is the residual vector error on sample S(k).

The error vector E(k)

is measured and calculated for each instant k.

Z k( ) C0 C1 S k( ) E k( )+[ ]×+{ } Wk×=

E k( ) Z k( ) W k–× C0–[ ] C1⁄{ } S k( )–=

14-12 WCDMA3G_ErrorVector

Page 729: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_EVM_WithRef

Description EVM measurement with reference signal inputLibrary 3GPPFDD 10-99, Measurement

Parameters

Pin Inputs

Name Description Default Unit Type Range

StartSym start symbol 2560 int [0, ∞)

SymBurstLen number of symbols withinburst to be measured

2560 int [1, 10000]

SampPerSym number of samples persymbol

16 int [1, ∞)

SymDelayBound upper bound of delaydetection, in symbol, -1 forno detection

-1 int [-1, ∞)†

NumBursts number of bursts to bemeasured

1 int [1, ∞)††

MeasType type of measurement:EVM_rms, EVM_peak,EVM_95th_percentile

EVM_rms enum

SymbolRate symbol rate 3840000 Hz real (0, ∞)†††

EVMValue EVM value expressionoptions: EVM_Ratio,EVM_Percent

EVM_Ratio enum

† The model fulfills the synchronization (detects the delay of test signals, and aligns them with the reference signals) inside thisboundary. If set to -1, synchronization will not be applied.†† EVM results are determined over multiple bursts; NumBursts indicates the number of bursts to be measured and averaged.††† SymbolRate is used to calculate the frequency offset; the default value 3840000 Hz is the symbol rate of 3GPP.

Pin Name Description Signal Type

1 testDataInput signals to be measured for EVM complex

2 RefDataInput reference signals for EVM measurement complex

WCDMA3G_EVM_WithRef 14-13

Page 730: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

Notes/Equations

1. This subnetwork is used to accomplish the EVM measurement with numericsignals in baseband. The schematic for this subnetwork is shown inFigure 14-6.

Figure 14-6. WCDMA3G_EVM_WithRef Schematic

2. EVM measurements are used to evaluate the modulation accuracy ofmodulators.

Typically, the measurement is calculated at the symbol times within one burst.Z(k) is the complex vector produced by observing the real transmitter at theoptimal phase of symbol k. S(k) is the reference (ideal) signal of symbol ksampled at the same phase as that of Z(k). The transmitter model is

where

W = edr + jda accounts for both a frequency offset giving da radians persymbol phase rotation and an amplitude change of dr nepers per symbol

C0 is a constant origin offset representing quadrature modulator imbalance

C1 is a complex constant representing the arbitrary phase and output powerof the transmitter

E(k) is the residual vector error on sample S(k), and the value range of k is Kwhich is [0,L−1]. By setting the parameter StartSym, users can select whichsymbol the simulation starts with (Sth symbol). By setting the parameterSymBurstLen, users can select the length of the burst to be measured (L).

The error vector E(k) is measured and calculated for each instance k.

Z k( ) C0 C1 S k( ) E k( )+[ ]×+{ } Wk×=

14-14 WCDMA3G_EVM_WithRef

Page 731: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

The sum square vector error for each component is calculated over one burst.The relative RMS vector error is defined as

The symbol EVM at symbol k is defined as

which is the vector error length relative to the root average energy of the burst.

C0, C1 and W are used to minimize RMS EVM per burst, then calculate theindividual vector errors E(k) on each symbol. The symbol timing phase of thereceiver output samples calculate the vector error to give the lowest value forthe RMS EVM; this phase is called the optimal phase.

• RMS EVM (MeasType=EVM_rms) for one burst is defined as

RMS EVM should be measured by averaging over multiple bursts.

• Peak EVM (MeasType=EVM_peak) is the peak error deviation within a burst(that is, the maximum of E(k)) measured at each symbol interval.

Peak EVM should be measured by averaging over multiple bursts.

• 95th percentile (MeasType=EVM_95th_percentile) is the point where 95% ofthe individual EVM (EVM(k)), measured at each symbol interval, is below

E k( ) Z k( ) W k– C0–×C1

-------------------------------------------- S k( )–=

RMS EVM

E k( ) 2

k K∈∑

S k( ) 2

k K∈∑

--------------------------------=

EVM k( ) E k( ) 2

S k( ) 2

k K∈∑

K--------------------------------

--------------------------------=

RMS EVM

E k( ) 2

k K∈∑

S k( ) 2

k K∈∑

--------------------------------=

WCDMA3G_EVM_WithRef 14-15

Page 732: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

that point. That is, only 5% of the symbols are allowed to have an EVMexceeding the 95th-percentile point.

The 95th percentile should be measured by averaging over multiple bursts.

References

[1]ETSI SMG2 EDGE Tdoc 370r1/99, Modulation accuracy for EDGE MS andBTS, Paris, France, August 24-27, 1999.

14-16 WCDMA3G_EVM_WithRef

Page 733: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_MeasureSrc

Description Measurement channel fixed-rate data sourceLibrary 3GPPFDD 10-99, MeasurementClass SDFWCDMA3G_MeasureSrc

Parameters

Pin Outputs

Notes/Equations

1. This model is used to implement fixed-rate data source for measurementchannels. Random data of one transport block is output each transport timeinterval (TTI); at the same time, the value of current transport format (TF) andmaximum transport format (TFMax) are output based on the TTI setting. Thenumber of output tokens is listed in the Table 14-3.

Name Description Default Type

InfoType measurement channeltype: DCCH_2_4_kbps,DTCH_12_2_kbps,DTCH_64_kbps,DTCH_144_kbps,DTCH_384_kbps,DTCH_2048_kbps

DTCH_12_2_kbps

enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_20ms enum

Pin Name Description Signal Type

1 TFMax maximum transport format for current service int

2 out information data int

3 TF current transport format for current service int

WCDMA3G_MeasureSrc 14-17

Page 734: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

2. Based on InfoType and TTI, the maximum data length and maximum transportformat are calculated. Within one TTI, the current transport format and validlength of output data are determined according to Table 14-4. Within onetransport block, output 0 or 1 randomly and TF and TFMax, respectively.

Table 14-3. Output Tokens

InfoType TTI Out Tokens TF/TFMax Tokens

DCCH_2_4_kbps 10ms 24 1

20ms 48 2

40ms 96 4

80ms 192 8

DTCH_12_2_kbps 10ms 122 1

20ms 244 2

40ms 488 4

80ms 976 8

DTCH_64_kbps 10ms 640 1

20ms 1280 2

40ms 2560 4

80ms 5120 8

DTCH_144_kbps 10ms 1440 1

20ms 2880 2

40ms 5760 4

80ms 11520 8

DTCH_384_kbps 10ms 3840 1

20ms 7680 2

40ms 15360 4

80ms 30720 8

DTCH_2048_kbps 10ms 20480 1

20ms 40960 2

40ms 81920 4

80ms 163840 8

14-18 WCDMA3G_MeasureSrc

Page 735: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP TS25.302 V3.1.0,“Services Provided by the Physical Layer,” October 1999.

[2] 3GPP TS25.101 V3.0.0,“UE Radio Transmission and Reception (FDD),” October1999.

[3] 3GPP TS25.104 V3.0.0,“UTRA(BS) FDD: transmission and Reception,” October1999.

Table 14-4. Data Length and Transport Format

InfoType TTI TFMax Possible TF Valid Data Length

DCCH_2_4_kbps 10ms 0 0 24

20ms 1 1 48

40ms 2 2 96

80ms 3 3 192

DTCH_12_2_kbps 10ms 4 4 122

20ms 5 5 244

40ms 6 6 488

80ms 7 7 976

DTCH_64_kbps 10ms 8 8 640

20ms 9 9 1280

40ms 10 10 2560

80ms 11 11 5120

DTCH_144_kbps 10ms 12 12 1440

20ms 13 13 2880

40ms 14 14 5760

80ms 15 15 11520

DTCH_384_kbps 10ms 16 16 3840

20ms 17 17 7680

40ms 18 18 15360

80ms 19 19 30720

DTCH_2048_kbps 10ms 20 20 20480

20ms 21 21 40960

40ms 22 22 81920

80ms 23 23 163840

WCDMA3G_MeasureSrc 14-19

Page 736: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

WCDMA3G_PhyCHBER

Description Physical channel BER measurementLibrary 3GPPFDD 10-99, MeasurementClass SDFWCDMA3G_PhyCHBER

Parameters

Pin Inputs

Name Description Default Sym Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

IgnoreFrameNum number of frames to beignored

0 N int [0, ∞)

BERWindow number of frames overwhich BER is calculated

100 int [1, ∞)

Pin Name Description Signal Type

1 in1 data from input 1 int

2 in2 data from input 2 int

3 TF input transport format int

14-20 WCDMA3G_PhyCHBER

Page 737: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to measure the physical channel bit error rate (BER). Datais compared before channel decoding of DPDCH data at the end of eachtransmission time interval (TTI) of transport channels.

Each firing, data of one code block is input from two inputs; current transportformat is read from TF to indicate the valid data length. Data from the twoinputs are compared and BER is measured and output every TTI. The numberof input and output tokens are listed in Table 14-5.

Pin Name Description Signal Type

4 BER output bit error rate value real

Table 14-5. Input and Output Tokens

TrCHType TTI

In1/In2 TokensTF InputTokens BER Output TokenDownlink Uplink

DCH_8_kbps 10ms 96 312 1 1

20ms 176 552 2 1

40ms 336 1032 4 1

80ms 656 2016 8 1

DCH_16_kbps 10ms 368 552 1 1

20ms 688 1032 2 1

40ms 1344 2016 4 1

80ms 2640 3960 8 1

DCH_32_kbps 10ms 688 1032 1 1

20ms 1344 2016 2 1

40ms 2640 3960 4 1

80ms 5256 7884 8 1

DCH_64_kbps 10ms 1980 1980 1 1

20ms 3900 3900 2 1

40ms 7740 7740 4 1

80ms 15432 15432 8 1

WCDMA3G_PhyCHBER 14-21

Page 738: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

2. Model functions

The current value of transport format (TF) is read and valid length of inputdata is determined.

Data from two input ports is read; after N frames they are compared from thestarting point of the frame to the valid length. BER is calculated according tothe following algorithm.

Figure 14-7 shows the BER measurement window. The input data is comparedin bits. Suppose e0 is the total error number of the current data block f0 , e1 isthe total error number of the previous data block f1 , eWb-1 is the total errornumber of the earliest data block in the BER measurement window fWb-1, andthe valid data lengths of these blocks in the BER window are Li(i=0, ... , Wb-1),

DCH_128_kbps 10ms 3900 3900 1 1

20ms 7740 7740 2 1

40ms 15480 15480 4 1

80ms 30807 30807 8 1

DCH_256_kbps 10ms 7740 7740 1 1

20ms 15480 15480 2 1

40ms 30807 30807 4 1

80ms 61560 61560 8

DCH_512_kbps 10ms 15480 15480 1 1

20ms 30807 30807 2 1

40ms 61560 61560 4 1

80ms 123039 123039 8 1

DMCH_2_4_kbps 40ms 360 360 4 1

DMCH_12_2_kbps 20ms 804 804 2 1

DMCH_64_kbps 20ms 3900 3900 2 1

DMCH_144_kbps 20ms 8700 8700 2 1

DMCH_384_kbps 20ms 23112 23112 2 1

DMCH_2048_kbps 20ms 123039 2 1

Table 14-5. Input and Output Tokens

TrCHType TTI

In1/In2 TokensTF InputTokens BER Output TokenDownlink Uplink

14-22 WCDMA3G_PhyCHBER

Page 739: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 14-7. BER Measurement

then,

.

The value of BER is output every TTI.

References

[1]3GPP Technical Specification TS25.215 V3.0.0,“Physical Layer - Measurement(FDD),” October 1999.

[2] 3GPP Technical Specification TS25.302 V3.1.0,“Services Provided by thePhysical Layer,” October 1999.

f0 f1 ... ... fWb-1 fWb ... ...

BER Measurement Window

e0 e1 ... ... eWb-1 eWb

Data

BER eii 0=

Wb 1–

Lii 0=

Wb 1–

⁄=

WCDMA3G_PhyCHBER 14-23

Page 740: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

WCDMA3G_PhyCHBERWithDelay

Description Physical channel BER measure with delayLibrary 3GPPFDD 10-99, Measurement

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork is used to measure the bit error rate (BER) of the input datastreams.

Each firing, one BER token is produced when L tokens of RefIn and In areconsumed.

The schematic for this subnetwork is shown in Figure 14-8.

Name Description Default Sym Type Range

FrameLength data frame length 420 L int [1, ∞)

BERWindow number of frames overwhich BER is calculated.

100 int [1, ∞)

RefDelay delay for reference datainput

0 int [0, ∞)

Pin Name Description Signal Type

1 RefIn reference input data int

2 In input data real

Pin Name Description Signal Type

3 BER output BER value real

14-24 WCDMA3G_PhyCHBERWithDelay

Page 741: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 14-8. WCDMA3G_PhyCHBERWithDelay Schematic

References

[1]3GPP Technical Specification TS 25.101 V3.1.0 “UE Radio transmission andReception FDD,” December 1999.

[2] 3GPP Technical Specification TS 34.121 V3.0.0 “Terminal conformanceSpecification: Radio transmission and reception (FDD),” March 2000.

WCDMA3G_PhyCHBERWithDelay 14-25

Page 742: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

WCDMA3G_PowCtrlCmd

Description Generate the power control commandLibrary 3GPPFDD 10-99, MeasurementClass SDFWCDMA3G_PowCtrlCmd

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to generate the power control command expressed in termsof repeated integer bit.

2. There are four inputs in this model: target SIR, current SIR, target power andcurrent power. If the control mechanism is power based, power command bit is

Name Description Default Type Range

TPCType power control type:PowerBased, SIRBased,JointlyBased

PowerBased enum

TPCBitRepeatNum repeat number of powercontrol bit

2 int [0, ∞)

Pin Name Description Signal Type

1 TargetSIR target SIR to be achieved real

2 CurrentSIR current SIR real

3 TargetPower target power to be achieved real

4 CurrentPower current power real

Pin Name Description Signal Type

5 TPCBit power control bit int

14-26 WCDMA3G_PowCtrlCmd

Page 743: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

derived based on the comparison result between target power and currentpower. If the control mechanism is SIR based, power command bit is derivedbased on the comparison result between target SIR and current SIR. A TPCbit1 is obtained if the current value is less than the target value.

If the control mechanism is jointly based, the power command bit is determinedby SIR and power. Only when the current SIR and power are both larger thanthe target value, is TPCbit 0 obtained; otherwise TPCBit 1 is obtained.

The single TPCbit is repeated as the final TPCbit output command.

WCDMA3G_PowCtrlCmd 14-27

Page 744: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

WCDMA3G_PowerMeasure

Description Average signal power measurementLibrary 3GPPFDD 10-99, MeasurementClass SDFWCDMA3G_PowerMeasure

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to measure the short- and long-term average power of acomplex signal. The measured power is expressed in Watts.

2. The long-term average power is the mean power over all signal points measuredso far; the block average power is the mean power of the current block.

Name Description Default Unit Type Range

DataBlockSize size of data block for powermeasurement

2560 int (0, ∞)

SignalType type of signal to bemeasured: Baseband, RF

RF enum

RefR reference resistance 50.0 Ohm real (0, ∞)

Pin Name Description Signal Type

1 In complex signal to be measured complex

Pin Name Description Signal Type

2 AvgPow total signal average power real

3 BlockPow block average power real

14-28 WCDMA3G_PowerMeasure

Page 745: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Power calculation is described as follows. The complex signal at instant i isdenoted as Ri.

• If an RF signal is measured, power is expressed as

• If a baseband signal is measured, power is expressed as

mean Ri2

2 R× efR( )⁄( )

mean Ri2( )

WCDMA3G_PowerMeasure 14-29

Page 746: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

WCDMA3G_TrCHBER

Description Transport channel bit error rate measurementLibrary 3GPPFDD 10-99, MeasurementClass SDFWCDMA3G_TrCHBER

Parameters

Pin Inputs

Name Description Default Sym Type Range

InfoType information rate type:INFO_8_kbps,INFO_16_kbps,INFO_32_kbps,INFO_64_kbps,INFO_128_kbps,INFO_256_kbps,INFO_512_kbps,DCCH_2_4_kbps,DTCH_12_2_kbps,DTCH_64_kbps,DTCH_144_kbps,DTCH_384_kbps,DTCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

INFO_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms Wb enum

IgnoreFrameNum number of frames to beignored

0 N int [0, ∞)

BERWindow number of frames overwhich BER is calculated

100 int [1, ∞)

Pin Name Description Signal Type

1 in1 data from input1 int

2 in2 data from input2 int

3 TF input transport format int

14-30 WCDMA3G_TrCHBER

Page 747: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to measure the transport channel bit error rate (BER). Eachfiring, data of one transport block is input from two inputs and the currenttransport format is read from TF to indicate the valid data length. Data fromthe two inputs are compared and the BER is measured and output eachtransmission time interval (TTI). Input and output tokens are listed inTable 14-6.

Pin Name Description Signal Type

4 BER output bit error rate value real

Table 14-6. Input and Output Tokens

InfoType TTIIn1/In2Tokens TF Tokens

BERTokens

INFO_8_kbps 10ms 80 1 1

20ms 160 2 1

40ms 320 4 1

80ms 640 8 1

INFO_16_kbps 10ms 160 1 1

20ms 320 2 1

40ms 640 4 1

80ms 1280 8 1

INFO_32_kbps 10ms 320 1 1

20ms 640 2 1

40ms 1280 4 1

80ms 2560 8 1

INFO_64_kbps 10ms 640 1 1

20ms 1280 2 1

40ms 2560 4 1

80ms 5120 8 1

INFO_128_kbps 10ms 1280 1 1

20ms 2560 2 1

40ms 5120 4 1

80ms 10240 8 1

WCDMA3G_TrCHBER 14-31

Page 748: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

INFO_256_kbps 10ms 2560 1 1

20ms 5120 2 1

40ms 10240 4 1

80ms 20480 8 1

INFO_512_kbps 10ms 5120 1 1

20ms 10240 2 1

40ms 20480 4 1

80ms 40960 8 1

DCCH_2_4_kbps 10ms 24 1 1

20ms 48 2 1

40ms 96 4 1

80ms 192 8 1

DTCH_12_2_kbps 10ms 122 1 1

20ms 244 2 1

40ms 488 4 1

80ms 976 8 1

DTCH_64_kbps 10ms 640 1 1

20ms 1280 2 1

40ms 2560 4 1

80ms 5120 8 1

DTCH_144_kbps 10ms 1440 1 1

20ms 2880 2 1

40ms 5760 4 1

80ms 11520 8 1

DTCH_384_kbps 10ms 3840 1 1

20ms 7680 2 1

40ms 15360 4 1

80ms 30720 8 1

DTCH_2048_kbps 10ms 20480 1 1

20ms 40960 2 1

40ms 81920 4 1

80ms 163840 8 1

Table 14-6. Input and Output Tokens

InfoType TTIIn1/In2Tokens TF Tokens

BERTokens

14-32 WCDMA3G_TrCHBER

Page 749: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. Model functions

The current value of transport format (TF) is read and the valid length of inputdata is determined.

Data from the two input ports is read; after N frames they are compared fromstarting point of the frame to the valid length according to the input transportformat value. BER is calculated by the following algorithm:

Figure 14-9 shows the BER measurement window. Date of the two inputs arecompared in bits. Suppose e0 is the total error number of the current data blockf0 , e1 is the total error number of the previous data block f1 , eWb-1 is the totalerror number of the earliest data block in the BER measurement window fWb-1,and the valid data lengths of these blocks in the BER window areLi(i=0,...Wb-1),

Figure 14-9. BER Measurement

then,

.

BCH_11_1_kbps 10ms 111 1 1

20ms 222 2 1

40ms 444 4 1

80ms 888 8 1

BCH_12_3_kbps 10ms 123 1 1

20ms 246 2 1

40ms 492 4 1

80ms 984 8 1

Table 14-6. Input and Output Tokens

InfoType TTIIn1/In2Tokens TF Tokens

BERTokens

f0 f1 ... ... fWb-1 fWb ... ...

BER Measurement Window

e0 e1 ... ... eWb-1 eWb

Data

BER eii 0=

Wb 1–

Lii 0=

Wb 1–

⁄=

WCDMA3G_TrCHBER 14-33

Page 750: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

The value of BER is output every TTI.

References

[1]3GPP Technical Specification TS25.215 V3.0.0,“Physical Layer- Measurement(FDD),” October 1999.

[2] 3GPP Technical Specification TS25.302 V3.1.0,“Services Provided by thePhysical Layer,” October 1999.

14-34 WCDMA3G_TrCHBER

Page 751: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TrCHBLER

Description Transport channel block error rate measurementLibrary 3GPPFDD 10-99, MeasurementClass SDFWCDMA3G_TrCHBLER

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to measure the transport channel block error rate (BLER).Each firing, one input token is consumed and one output token is produced.

2. Model functions

Input CRC error information is read; the calculation of block error rate startsafter N frames. If CRC error is 1, the error occurs while checking CRC for thetransport block.

Name Description Default Sym Type Range

BLERWindow number of frames overwhich BLER is calculated

100 int [1, ∞)

IgnoreFrameNum number of frames to beignored

0 N int [0, ∞)

Pin Name Description Signal Type

1 in input CRC error information int

Pin Name Description Signal Type

2 BLER output block error rate value real

WCDMA3G_TrCHBLER 14-35

Page 752: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

The BLER is calculated using the following algorithm.

Figure 14-10 shows the BLER measurement window. Suppose e0 is the value ofCRC error information of the current transport block f0 , e1 is for the previoustransport block f1 , eWb-1 is for the earliest transport block in the BLERmeasurement window fWb-1, and L is number of calculated transport block,

then, .

the value of BLER is output every TTI.

Figure 14-10. BLER Measurement

References

[1]3GPP TS25.215 V3.0.0,“Physical Layer - Measurement (FDD),” October 1999.

[2] 3GPP TS25.302 V3.1.0,“Services Provided by the Physical Layer,” October 1999.

BLER eii 0=

Wb 1–

L⁄=

f0 f1 ... ... fWb-1 fWb ... ...

BLER Measurement Window

e0 e1 ... ... eWb-1 eWb

CRCError

14-36 WCDMA3G_TrCHBLER

Page 753: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TrCHMeasure

Description Transport channel BER and BLER measurementsLibrary 3GPPFDD 10-99, Measurement

Parameters

Pin Inputs

Name Description Default Type Range

InfoType information rate type:INFO_8_kbps,INFO_16_kbps,INFO_32_kbps,INFO_64_kbps,INFO_128_kbps,INFO_256_kbps,INFO_512_kbps,DCCH_2_4_kbps,DTCH_12_2_kbps,DTCH_64_kbps,DTCH_144_kbps,DTCH_384_kbps,DTCH_2048_kbps

INFO_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

IgnoreFrameNum number of frames to beignored

0 int [0, ∞)

BERWindow number of frames overwhich BER is calculated

100 int [1, ∞)

BLERWindow number of blocks overwhich BLER is calculated

100 int [1, ∞)

RefDelay delay for reference datainput

0 int [0, ∞)

Pin Name Description Signal Type

1 RefIn reference input data int

2 In input data int

WCDMA3G_TrCHMeasure 14-37

Page 754: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

Pin Outputs

Notes/Equations

1. This subnetwork is used to measure the bit error rate (BER) and block errorrate (BLER) for a transport channel.

The schematic for this subnetwork is shown in Figure 14-11.

Figure 14-11. WCDMA3G_TrCHMeasure Schematic

References

[1]3GPP Technical Specification TS 25.101 V3.1.0 “UE Radio transmission andReception FDD,” December 1999.

[2] 3GPP Technical Specification TS 34.121 V3.0.0 “Terminal conformanceSpecification: Radio transmission and reception (FDD),” March 2000.

3 CRCError input CRC error Information int

4 TF input transport format int

Pin Name Description Signal Type

5 BER output BER value real

6 BLER output BLER value real

Pin Name Description Signal Type

14-38 WCDMA3G_TrCHMeasure

Page 755: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TxPowAdjust

Description Adjust transmit power according to TPC commandLibrary 3GPPFDD 10-99, MeasurementClass SDFWCDMA3G_TxPowAdjust

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used adjust the instantaneous power of the transmitted signalaccording to the power control command translated from the TPCBit.

2. The repeated TPCbit is combined to obtain the TPC command. The majorityrule is applied when combining the repeated TPC bit. For example, TPCbit

Name Description Default Type Range

TPCBitRepeatNum repeat number of powercontrol bit

2 int (0, ∞)

TPCBlockSize size of data block for powercontrol

2560 int (0, ∞)

TPCStep power control step 1.0 real (0, ∞)

Pin Name Description Signal Type

1 SignalIn complex input signal complex

2 TPCBit TPC bits from multiple sources multiple int

Pin Name Description Signal Type

3 SignalOut output complex signal after power adjust complex

WCDMA3G_TxPowAdjust 14-39

Page 756: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

111001 is translated as 1 to be the power increment indicator while 000011 istaken as 0 for power reduction.

3. In some cases, such as when marco-diversity is used, power control bits frommultiple sources are received. The combining rule is: power is increased onlywhen all sources require power incrementally; otherwise, power will bereduced.

4. The power control step is expressed in decibel. The initial gain is 1.

14-40 WCDMA3G_TxPowAdjust

Page 757: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_VariableSrc

Description Variable-rate data sourceLibrary 3GPPFDD 10-99, MeasurementClass SDFWCDMA3G_VariableSrc

Parameters

Pin Outputs

Notes/Equations

1. This model is used to implement a variable-rate data source. Random data ofone transport block is output each TTI; at the same time, the value of currenttransport format (TF) and maximum transport format (TFMax) are outputseveral times based on the settings of TTI. Within one TTI, the value of TF

Name Description Default Type

InfoType information rate type:INFO_8_kbps,INFO_16_kbps,INFO_32_kbps,INFO_64_kbps,INFO_128_kbps,INFO_256_kbps,INFO_512_kbps

INFO_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

VariableRate indicate presence ofvariable rates: Yes, No

Yes enum

Pin Name Description Signal Type

1 TFMax maximum transport format for current service int

2 out information data int

3 TF current transport format for current service int

WCDMA3G_VariableSrc 14-41

Page 758: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

cannot change; during different TTIs, it can change to some lower value so thatthe valid output data can also change. The number of output tokens is listed inTable 14-7.

2. The maximum data length and maximum transport format (TFMax) arecalculated based on the settings of InfoType and TTI.

Table 14-7. Output Tokens

InfoType TTI Out Tokens TF/TFMax Tokens

INFO_8_kbps 10ms 80 1

20ms 160 2

40ms 320 4

80ms 640 8

INFO_16_kbps 10ms 160 1

20ms 320 2

40ms 640 4

80ms 1280 8

INFO_32_kbps 10ms 320 1

20ms 640 2

40ms 1280 4

80ms 2560 8

INFO_64_kbps 10ms 640 1

20ms 1280 2

40ms 2560 4

80ms 5120 8

INFO_128_kbps 10ms 1280 1

20ms 2560 2

40ms 5120 4

80ms 10240 8

INFO_256_kbps 10ms 2560 1

20ms 5120 2

40ms 10240 4

80ms 20480 8

INFO_512_kbps 10ms 5120 1

20ms 10240 2

40ms 20480 4

80ms 40960 8

14-42 WCDMA3G_VariableSrc

Page 759: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Within one TTI, the current transport format (TF) and valid length of outputdata are determined according Table 14-8.

Within the valid length of transport block, 0 or 1 is randomly output. All 0s arepadded after the valid length in the transport block and all data, TF, andTFMax are output.

Table 14-8. TF/TFMax and Valid Data Length

InfoType TTI TFMax Possible TFs Valid Data Length

INFO_8_kbps 10ms 0 0 80

20ms 1 1 160

40ms 2 2 320

80ms 3 3 640

INFO_16_kbps 10ms 4 0/4 80/160

20ms 5 1/5 160/320

40ms 6 2/6 320/640

80ms 7 3/7 640/1280

INFO_32_kbps 10ms 8 0/4/8 80/160/320

20ms 9 1/5/9 160/320/640

40ms 10 2/6/10 320/640/1280

80ms 11 3/7/11 640/1280/2560

INFO_64_kbps 10ms 12 12 640

20ms 13 13 1280

40ms 14 14 2560

80ms 15 15 5120

INFO_128_kbps 10ms 16 12/16 640/1280

20ms 17 13/17 1280/2560

40ms 18 14/18 2560/5120

80ms 19 15/19 5120/10240

INFO_256_kbps 10ms 20 12/16/20 640/1280/2560

20ms 21 13/17/21 1280/2560/5120

40ms 22 14/18/22 2560/5120/10240

80ms 23 15/19/23 5120/10240/20480

INFO_512_kbps 10ms 24 12/16/20/24 640/1280/2560/5120

20ms 25 13/17/21/25 1280/2560/5120/10240

40ms 26 14/18/22/26 2560/5120/10240/20480

80ms 27 15/19/23/27 5120/10240/20480/40960

WCDMA3G_VariableSrc 14-43

Page 760: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Measurement Components

References

[1]3GPP Technical Specification TS25.302 V3.1.0,“Services Provided by thePhysical Layer,” October 1999.

14-44 WCDMA3G_VariableSrc

Page 761: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 15: 3GPPFDD 10-99 PhysicalChannel Multiplex Components

15-1

Page 762: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Physical Channel Multiplex Components

WCDMA3G_DnLkDeMux

Description Downlink de-multiplexing for dedicated physical channelLibrary 3GPPFDD 10-99, Physical Channel MultiplexClass SDFWCDMA3G_DnLkDeMux

15-2 WCDMA3G_DnLkDeMux

Page 763: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Parameters

Name Description Default Type Range

DL_DPCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16

DPCH_30kbps_TF2_T2_P8

enum †

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

WCDMA3G_DnLkDeMux 15-3

Page 764: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Physical Channel Multiplex Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to implement data de-multiplexing for downlink dedicatedphysical channel (DPCH). Input bits are de-multiplexed into DPDCH data bits,TFCI bits, and TPC bits.

Each firing, (NData1 + NData2) tokens of DPDCH, NTFCI tokens of TFCI andNTPC tokens of TPC are produced when Ns tokens of in are consumed. Refer toTable 15-1 for N values.

2. Within one downlink DPCH, dedicated data generated at Layer 2 and above(dedicated channel (DCH) ), is transmitted in time-multiplex with controlinformation generated at Layer 1 (known pilot bits, TPC commands, and anoptional TFCI). The downlink DPCH can thus be seen as a time multiplex of adownlink DPDCH and a DPCCH. This model receives DPDCH bits, TPC bitsand TFCI bits from bit sequence of DPCH in one slot. Pilot bits are notproduced.

Pin Name Description Signal Type

1 in one slot data bits to be de-multiplexed real

Pin Name Description Signal Type

2 DPDCH DPDCH data bits real

3 TPC transmit power control bits real

4 TFCI transport format combination indicator bits real

Table 15-1. N Values

DL_DPCHType Bits per Slot (Ns)

DPDCH Bits per Slot DPCCH Bits per Slot

DPCH_15kbps_TF0_T2_P4 10 2 2 0 2 4

DPCH_15kbps_TF2_T2_P4 10 0 2 2 2 4

DPCH_30kbps_TF0_T2_P2 20 2 14 0 2 2

DPCH_30kbps_TF2_T2_P2 20 0 14 2 2 2

DPCH_30kbps_TF0_T2_P4 20 2 12 0 2 4

NData1 NData2 NTFCI NTPC NPilot

15-4 WCDMA3G_DnLkDeMux

Page 765: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 15-1. Downlink DPCH Frame Structure

References

[1]3GPP Technical Specification TS 25.211 V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October 1999.

DPCH_30kbps_TF2_T2_P4 20 0 12 2 2 4

DPCH_30kbps_TF0_T2_P8 20 2 8 0 2 8

DPCH_30kbps_TF2_T2_P8 20 0 8 2 2 8

DPCH_60kbps_TF0_T2_P4 40 6 28 0 2 4

DPCH_60kbps_TF2_T2_P4 40 4 28 2 2 4

DPCH_60kbps_TF0_T2_P8 40 6 24 0 2 8

DPCH_60kbps_TF2_T2_P8 40 4 24 2 2 8

DPCH_120kbps_TF8_T4_P8 80 4 56 8 4 8

DPCH_120kbps_TF0_T4_P8 80 4 560† 4 8

DPCH_240kbps_TF8_T4_P8 160 20 120 8 4 8

DPCH_240kbps_TF0_T4_P8 160 20 1200† 4 8

DPCH_480kbps_TF8_T8_P16 320 48 240 8 8 16

DPCH_480kbps_TF0_T8_P16 320 48 2400† 8 16

DPCH_960kbps_TF8_T8_P16 640 112 496 8 8 16

DPCH_960kbps_TF0_T8_P16 640 112 4960† 8 16

DPCH_1920kbps_TF8_T8_P16 1280 240 1008 8 8 16

DPCH_1920kbps_TF0_T8_P16 1280 240 10080† 8 16

† TFCI bits are not used, 8 DTX are used in the TFCI field (see Figure 15-1).

Table 15-1. N Values

DL_DPCHType Bits per Slot (Ns)

DPDCH Bits per Slot DPCCH Bits per Slot

NData1 NData2 NTFCI NTPC NPilot

DPCCH DPCCH DPDCH DPCCH

Data1Ndata1 bits

TPCNTPC bits

TFCINTFCI bits

Data2Ndata2 bits

PilotNpilot bits

DPDCH

WCDMA3G_DnLkDeMux 15-5

Page 766: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Physical Channel Multiplex Components

WCDMA3G_DnLkMux

Description Downlink multiplexing for dedicated physical channelLibrary 3GPPFDD 10-99, Physical Channel MultiplexClass SDFWCDMA3G_DnLkMux

15-6 WCDMA3G_DnLkMux

Page 767: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Parameters

Name Description Default Type Range

DL_DPCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16

DPCH_30kbps_TF2_T2_P8

enum †

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

WCDMA3G_DnLkMux 15-7

Page 768: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Physical Channel Multiplex Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to implement data multiplexing for downlink dedicatedphysical channel (DPCH). The DPDCH data bits are multiplexed with TFCIbits and TPC bits.

Each firing, (Ns - NPilot) tokens of out are produced when (NData1 + NData2)tokens of DPDCH, NTFCI tokens of TFCI and NTPC tokens of TPC areconsumed. Refer to Table 15-2 for N values.

2. Within one downlink, DPCH dedicated data, generated at Layer 2 and above(dedicated channel (DCH) ), is transmitted in time-multiplex with controlinformation generated at Layer 1 (known pilot bits, TPC commands, and anoptional TFCI). The downlink DPCH can thus be seen as a time multiplex of adownlink DPDCH and a downlink DPCCH; see Figure 15-2. This modelorganizes bit sequence of DPCH in one slot according to Table 15-2. Pilot bitsare not included. They are multiplexed to DPCH in modelWCDMA3G_STTDMux.

Figure 15-2. Frame structure for downlink DPCH

Pin Name Description Signal Type

1 DPDCH DPDCH data bits int

2 TPC transmit power control bits int

3 TFCI transport format combination indicator bits int

Pin Name Description Signal Type

4 out one slot data after multiplexing int

DPCCH DPCCH DPDCH DPCCH

Data1Ndata1 bits

TPCNTPC bits

TFCINTFCI bits

Data2Ndata2 bits

PilotNpilot bits

DPDCH

15-8 WCDMA3G_DnLkMux

Page 769: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.211 V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October 1999.

Table 15-2. N Values

DL_DPCHTypeBits per Slot(Ns)

DPDCH Bits per Slot DPCCH Bits per Slot

NData1 NData2 NTFCI NTPC NPilot

DPCH_15kbps_TF0_T2_P4 10 2 2 0 2 4

DPCH_15kbps_TF2_T2_P4 10 0 2 2 2 4

DPCH_30kbps_TF0_T2_P2 20 2 14 0 2 2

DPCH_30kbps_TF2_T2_P2 20 0 14 2 2 2

DPCH_30kbps_TF0_T2_P4 20 2 12 0 2 4

DPCH_30kbps_TF2_T2_P4 20 0 12 2 2 4

DPCH_30kbps_TF0_T2_P8 20 2 8 0 2 8

DPCH_30kbps_TF2_T2_P8 20 0 8 2 2 8

DPCH_60kbps_TF0_T2_P4 40 6 28 0 2 4

DPCH_60kbps_TF2_T2_P4 40 4 28 2 2 4

DPCH_60kbps_TF0_T2_P8 40 6 24 0 2 8

DPCH_60kbps_TF2_T2_P8 40 4 24 2 2 8

DPCH_120kbps_TF8_T4_P8 80 4 56 8 4 8

DPCH_120kbps_TF0_T4_P8 80 4 560† 4 8

DPCH_240kbps_TF8_T4_P8 160 20 120 8 4 8

DPCH_240kbps_TF0_T4_P8 160 20 1200† 4 8

DPCH_480kbps_TF8_T8_P16 320 48 240 8 8 16

DPCH_480kbps_TF0_T8_P16 320 48 2400† 8 16

DPCH_960kbps_TF8_T8_P16 640 112 496 8 8 16

DPCH_960kbps_TF0_T8_P16 640 112 4960† 8 16

DPCH_1920kbps_TF8_T8_P16 1280 240 1008 8 8 16

DPCH_1920kbps_TF0_T8_P16 1280 240 10080† 8 16

† TFCI bits are not used, 8 DTX are used in TFCI field.

WCDMA3G_DnLkMux 15-9

Page 770: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Physical Channel Multiplex Components

WCDMA3G_DPCHDeSeg

Description DPCH de-segmentationLibrary 3GPPFDD 10-99, Physical Channel MultiplexClass SDFWCDMA3G_DPCHDeSeg

Parameters

Name Description Default Sym Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

PhyCHNum number of physicalchannels that CCTrCH ismapped to

1 Np int [1, ∞)

15-10 WCDMA3G_DPCHDeSeg

Page 771: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16

DPCH_30kbps_TF2_T2_P8

enum †

Name Description Default Sym Type Range

WCDMA3G_DPCHDeSeg 15-11

Page 772: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Physical Channel Multiplex Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to concatenate the bits of the different dedicated physicaldata channels (DPDCHs) into one frame of CCTrCH.

Each firing, Mp×Np tokens of out are produced when Mp tokens of each signalof in are consumed. Refer to Table 15-3 for the value of Mp.

The DL_PhyCHType parameter is used only when LinkDir=Downlink;UL_DPDCHType is used only when LinkDir=Uplink.

2. When multiple dedicated physical channels are used (Np>1), the bit sequence ofone CCTrCH frame is divided among these physical channels. This modelserially concatenates one frame of each physical channel to one frame ofCCTrCH. M tokens of each in are one frame data bits of one DPDCH. CCTrCHhas Mp×Np tokens in one frame.

UL_DPDCHType uplink dedicated physicaldata channel type:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 in input data of different DPDCH frames multiple real

Pin Name Description Signal Type

2 out output data of one CCTrCH frame real

Name Description Default Sym Type Range

15-12 WCDMA3G_DPCHDeSeg

Page 773: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

Table 15-3. Mp Values

Physical Channel Type DPDCH Bits per Frame (Mp)

DL_PhyCHType

DPCH_15kbps_TF0_T2_P4 60

DPCH_15kbps_TF2_T2_P4 30

DPCH_30kbps_TF0_T2_P2 240

DPCH_30kbps_TF2_T2_P2 210

DPCH_30kbps_TF0_T2_P4 210

DPCH_30kbps_TF2_T2_P4 180

DPCH_30kbps_TF0_T2_P8 150

DPCH_30kbps_TF2_T2_P8 120

DPCH_60kbps_TF0_T2_P4 510

DPCH_60kbps_TF2_T2_P4 480

DPCH_60kbps_TF0_T2_P8 450

DPCH_60kbps_TF2_T2_P8 420

DPCH_120kbps_TF8_T4_P8 900

DPCH_120kbps_TF0_T4_P8 900

DPCH_240kbps_TF8_T4_P8 2100

DPCH_240kbps_TF0_T4_P8 2100

DPCH_480kbps_TF8_T8_P16 4320

DPCH_480kbps_TF0_T8_P16 4320

DPCH_960kbps_TF8_T8_P16 9120

DPCH_960kbps_TF0_T8_P16 9120

DPCH_1920kbps_TF8_T8_P16 18720

DPCH_1920kbps_TF0_T8_P16 18720

UL_DPDCHType

DPDCH_15kbps 150

DPDCH_30kbps 300

DPDCH_60kbps 600

DPDCH_120kbps 1200

DPDCH_240kbps 2400

DPDCH_480kbps 4800

DPDCH_960kbps 9600

WCDMA3G_DPCHDeSeg 15-13

Page 774: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Physical Channel Multiplex Components

[1]3GPP Technical Specification TS 25.211 V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October 1999.

[2] 3GPP Technical Specification TS 25.212 V3.0.0, “Multiplexing and channelcoding (FDD),” October 1999.

15-14 WCDMA3G_DPCHDeSeg

Page 775: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_DPCHSeg

Description Dedicated physical channel segmentationLibrary 3GPPFDD 10-99, Physical Channel MultiplexClass SDFWCDMA3G_DPCHSeg

Parameters

Name Description Default Sym Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

PhyCHNum number of physicalchannels that CCTrCH ismapped to

1 Np int [1, ∞)

WCDMA3G_DPCHSeg 15-15

Page 776: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Physical Channel Multiplex Components

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16

DPCH_30kbps_TF2_T2_P8

enum †

Name Description Default Sym Type Range

15-16 WCDMA3G_DPCHSeg

Page 777: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to divide the bit sequence of one CCTrCH frame intodifferent DPDCHs.

Each firing, Mp tokens of out signal are produced when Mp×Np tokens of in areconsumed. Refer to Table 15-4 for the value of Mp.

The DL_PhyCHType parameter is used only when LinkDir=Downlink;UL_DPDCHType is used only when LinkDir=Uplink.

2. When multiple dedicated physical channel are used (Np>1), the input bitsequence is divided among these channels. Mp×Np input tokens are one frameof CCTrCH data bits. All physical channels belonging to the same CCTrCH usethe same SF. Thus, the bits of one CCTrCH frame are equally divided into Npdifferent physical channels. Each channel has Mp tokens in one frame.

UL_DPDCHType uplink dedicated physicaldata channel type:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 in input data of one CCTrCH frame int

Pin Name Description Signal Type

2 out output data of each DPDCH frame multiple int

Name Description Default Sym Type Range

WCDMA3G_DPCHSeg 15-17

Page 778: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Physical Channel Multiplex Components

References

Table 15-4. Downlink Physical Channel Type

Physical Parameter Type DPDCH Bits per Frame (Mp)

DL_PhyCHType

DPCH_15kbps_TF0_T2_P4 60

DPCH_15kbps_TF2_T2_P4 30

DPCH_30kbps_TF0_T2_P2 240

DPCH_30kbps_TF2_T2_P2 210

DPCH_30kbps_TF0_T2_P4 210

DPCH_30kbps_TF2_T2_P4 180

DPCH_30kbps_TF0_T2_P8 150

DPCH_30kbps_TF2_T2_P8 120

DPCH_60kbps_TF0_T2_P4 510

DPCH_60kbps_TF2_T2_P4 480

DPCH_60kbps_TF0_T2_P8 450

DPCH_60kbps_TF2_T2_P8 420

DPCH_120kbps_TF8_T4_P8 900

DPCH_120kbps_TF0_T4_P8 900

DPCH_240kbps_TF8_T4_P8 2100

DPCH_240kbps_TF0_T4_P8 2100

DPCH_480kbps_TF8_T8_P16 4320

DPCH_480kbps_TF0_T8_P16 4320

DPCH_960kbps_TF8_T8_P16 9120

DPCH_960kbps_TF0_T8_P16 9120

DPCH_1920kbps_TF8_T8_P16 18720

DPCH_1920kbps_TF0_T8_P16 18720

UL_DPDCHType

DPDCH_15kbps 150

DPDCH_30kbps 300

DPDCH_60kbps 600

DPDCH_120kbps 1200

DPDCH_240kbps 2400

DPDCH_480kbps 4800

DPDCH_960kbps 9600

15-18 WCDMA3G_DPCHSeg

Page 779: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

[1]3GPP Technical Specification TS 25.211 V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October 1999.

[2] 3GPP Technical Specification TS 25.212 V3.0.0, “Multiplexing and channelcoding (FDD),” October 1999

WCDMA3G_DPCHSeg 15-19

Page 780: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Physical Channel Multiplex Components

WCDMA3G_UpLkDPCCHDeMux

Description De-multiplex bits from uplink DPCCHLibrary 3GPPFDD 10-99, Physical Channel MultiplexClass SDFWCDMA3G_UpLkDPCCHDeMux

Parameters

Pin Inputs

Pin Outputs

Name Description Default Type Range

UL_DPCCHType uplink dedicated physicalcontrol channel:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 DPCCH Dedicated Physical Control Channel real

Pin Name Description Signal Type

2 TFCI Transport Format Combination Indicator bits real

15-20 WCDMA3G_UpLkDPCCHDeMux

Page 781: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model is used to de-mutiplex pilot, TFCI, FBI, and TPC bits from uplinkdedicated physical control channel (DPCCH).

Each firing, 10 tokens are consumed at DPCCH; TF tokens, F tokens and Ttokens are produced at TFCI, FBI and TPC, respectively, where TF is thenumber of TFCI bits, F is the number of FBI bits and T is the number of TPCbits based on UL_DPCCHType. The number of pilot bits and pilot pattern arealso based on UL_DPCCHType.

References

[1]3GPP Technical Specification TS25.211 V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October 1999.

3 FBI Feedback Indicator bits real

4 TPC Transmit Power Control bits real

Pin Name Description Signal Type

WCDMA3G_UpLkDPCCHDeMux 15-21

Page 782: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Physical Channel Multiplex Components

WCDMA3G_UpLkDPCCHMux

Description Multiplex bits into uplink DPCCHLibrary 3GPPFDD 10-99, Physical Channel MultiplexClass SDFWCDMA3G_UpLkDPCCHMux

Parameters

Pin Inputs

Name Description Default Type Range

UL_DPCCHType uplink dedicated physicalcontrol channel:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 TFCI Transport Format Combination Indicator bits int

2 FBI Feedback Indicator bits int

3 TPC Transmit Power Control bits int

15-22 WCDMA3G_UpLkDPCCHMux

Page 783: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This model is used to multiplex pilot, TFCI, FBI, and TPC bits into uplinkdedicated physical control channel (DPCCH).

Each firing, TF, F, and T tokens are consumed at TFCI, FBI, and TPCrespectively, where TF is the number of TFCI bits, F is the number of FBI bitsand T is the number of TPC bits based on UL_DPCCHType. The number ofpilot bits and pilot pattern are also based on UL_DPCCHType.

References

[1]3GPP Technical Specification TS25.211 V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October 1999.

Pin Name Description Signal Type

4 DPCCH Dedicated Physical Control Channel int

WCDMA3G_UpLkDPCCHMux 15-23

Page 784: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Physical Channel Multiplex Components

15-24

Page 785: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 16: 3GPPFDD 10-99 Rake ReceiverComponents

16-1

Page 786: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

WCDMA3G_1CHRakeReceiver

Description Rake receiver, one code channelLibrary 3GPPFDD 10-99, Rake Receiver

Parameters

Name Description Default Sym Type Range

ChipRate chip rate of system: ChipRate 3.84Mcps

Chip Rate3.84Mcps

enum

LinkDir link direction: Downlink,Uplink

Downlink enum

16-2 WCDMA3G_1CHRakeReceiver

Page 787: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

DL_DPCHType downlink dedicatedphysical channel:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

UL_DPDCHType uplink dedicated physicaldata channel:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

Name Description Default Sym Type Range

WCDMA3G_1CHRakeReceiver 16-3

Page 788: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

UL_DPCCHType uplink dedicated physicalcontrol channel:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

DL_TXDiversity transmitting diversity indownlink: No_Diversity,DL_STTD

No_Diversity enum

SampleRate number of samples perchip

4 S int [1, 32]

PathNum number of paths or fingersof Rake

6 L int [1, 16]

MaxDelay maximum path delay interms of chips

40 D int [0, no. of halfchips of oneslot]

SearchDir search path directionbased on current timing:Forward, Backward,Bidirection

Backward enum

EstMethod estimation method basedon DPCH: Averaging,Interpolation, WMSA,NoEst

Interpolation enum

WMSASlotNum number of slots for WMSAmethod

1 K int [1, 8]

WFactors factors of weighting used inWMSA method

1.0 1.0 real array (0, 1]

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Name Description Default Sym Type Range

16-4 WCDMA3G_1CHRakeReceiver

Page 789: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork is used to implement coherent Rake receiver with maximalratio combining on one code channel.

Each firing, S× T tokens are consumed at SmpSig, and T tokens are consumedat SprdCd, where T is the number of chips per slot; N tokens are produced atCH1 where N is the number of symbols per slot. The output at CH1 is delayedby one frame because of Rake receiver signal processing. The complex format ofinput at SprdCd is Cspread×(Cscramble,i+j×Cscramble,q).

2. The schematic for this subnetwork is shown in Figure 16-1.

Pin Name Description Signal Type

1 SmpSig received baseband complex envelope signalsamples

complex

2 SprdCd bit-wise product of spreading and scrambling codesfor DPCHs or Common Pilot Channel

complex

Pin Name Description Signal Type

3 CH1 combined signals of the first code channel complex

WCDMA3G_1CHRakeReceiver 16-5

Page 790: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

Figure 16-1. WCDMA3G_1CHRakeReceiver Schematic

References

[1]3GPP Technical Specification TS25.211 V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October 1999.

[2] 3GPP Technical Specification TS25.213 V3.0.0, “Spreading and modulation(FDD),” October 1999.

[3] A. J. Viterbi, “CDMA: Principles of Spread Spectrum Communication,” WesleyPublishing Company, 1995.

16-6 WCDMA3G_1CHRakeReceiver

Page 791: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_AdjustDelay

Description Adjust delays due to rake receiverLibrary 3GPPFDD 10-99, Rake ReceiverClass SDFWCDMA3G_AdjustDelayDerived From WCDMA3G_RakeBase

Parameters

Name Description Default Sym Type Range

ChipRate chip rate of system: ChipRate 3.84Mcps

Chip Rate3.84Mcps

enum

LinkDir link direction: Downlink,Uplink

Downlink enum

PilotType basic pilot type: MultiplexPilot, Downlink CommonPilot

Multiplex Pilot enum

WCDMA3G_AdjustDelay 16-7

Page 792: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

DL_DPCHType downlink dedicatedphysical channel:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum

UL_DPDCHType uplink dedicated physicaldata channel:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

Name Description Default Sym Type Range

16-8 WCDMA3G_AdjustDelay

Page 793: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to adjust the Rake receiver output on the boundary of oneframe by inserting null slots.

UL_DPCCHType uplink dedicated physicalcontrol channel:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

DPCHNum number of DPCHs 1 M int [1, 16]

EstMethod estimation method basedon DPCH: Averaging,Interpolation, WMSA,NoEst

Interpolation enum

WMSASlotNum number of slots for WMSAmethod

1 K int [1, 8]

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 In combined signals of all code channels in terms ofslot

multiple complex

Pin Name Description Signal Type

2 OutCH1 adjusted input of the first code channel complex

3 Out adjusted input of all code channels multiple complex

Name Description Default Sym Type Range

WCDMA3G_AdjustDelay 16-9

Page 794: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

Each firing, N tokens are consumed at In, N tokens are produced at OutCH1and Out, where N is the symbol number of downlink DPCHs or uplink DPDCHsper slot. The number of signals at Out and In is based on DPCHNum.

16-10 WCDMA3G_AdjustDelay

Page 795: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_ChEstimate

Description Path parameter estimate aided by pilot symbolsLibrary 3GPPFDD 10-99, Rake ReceiverClass SDFWCDMA3G_ChEstimateDerived From WCDMA3G_RakeBase

Parameters

Name Description Default Sym Type Range

ChipRate chip rate of system: ChipRate 3.84Mcps

Chip Rate3.84Mcps

enum

LinkDir link direction: Downlink,Uplink

Downlink enum

PilotType basic pilot type: MultiplexPilot, Downlink CommonPilot

Multiplex Pilot enum

WCDMA3G_ChEstimate 16-11

Page 796: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

DL_DPCHType downlink dedicatedphysical channel:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum

UL_DPDCHType uplink dedicated physicaldata channel:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

Name Description Default Sym Type Range

16-12 WCDMA3G_ChEstimate

Page 797: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

UL_DPCCHType uplink dedicated physicalcontrol channel:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

DL_TXDiversity transmit diversity indownlink: No_Diversity,DL_STTD

No_Diversity enum

PathNum number of paths or fingersof Rake

6 L int [1, 16]

DPCHNum number of DPCHs 1 int [1, 16]

EstMethod estimation method basedon DPCH: Averaging,Interpolation, WMSA,NoEst

Interpolation enum

WMSASlotNum number of slots for WMSAmethod

1 K int [1, 8]

WFactors weighting factors used inWMSA method

1.0 1.0 real array (0, 1]

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 SymCH1 despread signals of the first code channel indownlink, Common Pilot Channel in downlink or theDPCCH in uplink of current slot

multiple complex

Pin Name Description Signal Type

2 CHEst estimation of path parameter of current slot based on DPCCH or CPICH

multiple complex

Name Description Default Sym Type Range

WCDMA3G_ChEstimate 16-13

Page 798: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

Notes/Equations

1. This model is used to estimate path characteristics aided by pilot symbols ofDPCH, CPICH in downlink or DPCCH in uplink.

Each firing, N tokens are consumed at SymCH1, and M tokens are produced atCHEst, where N is the symbol number of DPCH or CPICH in downlink basedon PilotType or DPDCH in uplink per slot, M is the symbol number of DPCH indownlink or DPDCH in uplink per slot.

References

[1]3GPP Technical Specification TS25.211 V3.0.0,“Physical channels and mappingof transport channels onto physical channels (FDD),” October 1999.

[2] S.Tanaka, M.Sawahashi, and F.Adachi, “Pilot Symbol-AssistedDecision-Directed Coherent Adaptive Array Diversity for DS-CDMA MobileRadio Reverse Link,” Proc. Wireless’97, Canada, July 1997.

[3] Y.Honda, K.Jamal, “Channel Estimation based on Time-Multiplexed PilotSymbols,” IEICE Technical Report RCS96-70, August 1996.

[4] A. J. Viterbi, “CDMA: Principles of Spread Spectrum Communication,” WesleyPublishing Company, 1995.

16-14 WCDMA3G_ChEstimate

Page 799: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_Despreader

Description De-spread chip sequence of code channelsLibrary 3GPPFDD 10-99, Rake ReceiverClass SDFWCDMA3G_DespreaderDerived From WCDMA3G_RakeBase

Parameters

Name Description Default Sym Type Range

ChipRate chip rate of system: ChipRate 3.84Mcps

Chip Rate3.84Mcps

enum

LinkDir link direction: Downlink,Uplink

Downlink enum

PilotType basic pilot type: MultiplexPilot, Downlink CommonPilot

Multiplex Pilot enum

WCDMA3G_Despreader 16-15

Page 800: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

DL_DPCHType downlink dedicatedphysical channel:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum

UL_DPDCHType uplink dedicated physicaldata channel:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

Name Description Default Sym Type Range

16-16 WCDMA3G_Despreader

Page 801: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to despread the resolved multiple path signals fromWCDMA3G_DownSample.

UL_DPCCHType uplink dedicated physicalcontrol channel:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

PathNum number of paths or fingersof Rake

6 L int [1, 16]

DPCHNum number of DPCHs 1 M int [1, 16]

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 ChpSeq chip sequences of optimum multi-path multiple complex

2 SprdCd bit-wise product of spreading and scrambling codesfor DPCHs or CPICH

multiple complex

Pin Name Description Signal Type

3 Symbol de-spread signals of all code channels of current slot multiple complex

4 SymCH1 de-spread signals of the first code channel of currentslot in downlink,Common Pilot Channel in downlink or DPCCH inuplink

multiple complex

Name Description Default Sym Type Range

WCDMA3G_Despreader 16-17

Page 802: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

Each firing, N tokens are consumed at ChpSeq and SprdCd, where N is thenumber of chips per slot. The number of ChpSeq depends on PathNum. Refer toTable 16-1 for SprdCd and Symbol and SymCH1 values.

Cspread×(Cscramble,i+j×Cscramble,q) is the input complex format of each signal atSprdCd. One slot delay is inserted at SprdCd to synchronize ChpSeq.

References

[1]3GPP Technical Specification TS25.211 V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October 1999.

[2] 3GPP Technical Specification TS25.213 V3.0.0, “Spreading and modulation(FDD),” October 1999.

[3] A. J. Viterbi, “CDMA: Principles of Spread Spectrum Communication,” WesleyPublishing Company, 1995.

Table 16-1. SprdCd, Symbol, and SymCH1 Values

LinkDir PilotType SprdCd Symbol SymCH1

Downlink Multiplexed Pilot M M × Kd Kd

Downlink Downlink Common Pilot M+1 M × Kd 10

Uplink Multiplexed Pilot M M × Ku Ku

Kd = symbol number in one slot of downlink DPCHKu = symbol number in one slot of uplink DPDCH

16-18 WCDMA3G_Despreader

Page 803: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_DownSample

Description Extract optimum samples according to path delay timingLibrary 3GPPFDD 10-99, Rake ReceiverClass SDFWCDMA3G_DownSampleDerived From WCDMA3G_RakeBase

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to extract optimum samples using the path delay timinggiven by WCDMA3G_PathSearch.

Name Description Default Sym Type Range

ChipRate chip rate of system: ChipRate 3.84Mcps

Chip Rate3.84Mcps

enum

SampleRate number of samples perchip

4 S int [1, 32]

PathNum number of paths or fingersof Rake

6 L int [1, 16]

Pin Name Description Signal Type

1 Delays path delays in terms of samples int

2 SmpSig received baseband complex envelope signalsamples

complex

Pin Name Description Signal Type

3 ChpSeq extracted optimum chip sequence multiple complex

WCDMA3G_DownSample 16-19

Page 804: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

Each firing, S × N tokens are consumed at SmpSig, L tokens are consumed atDelays, N tokens are produced at ChpSeq, where N is the number of chips perslot. ChpSeq depends on PathNum.

References

[1]3GPP Technical Specification TS25.211 V3.0.0,“Physical channels and mappingof transport channels onto physical channels (FDD),” October 1999.

[2] A. J. Viterbi, “CDMA: Principles of Spread Spectrum Communication,” WesleyPublishing Company, 1995.

16-20 WCDMA3G_DownSample

Page 805: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_PathSearch

Description Multiple path maximum power timing searchLibrary 3GPPFDD 10-99, Rake ReceiverClass SDFWCDMA3G_PathSearchDerived From WCDMA3G_RakeBase

Parameters

Name Description Default Sym Type Range

ChipRate chip rate of system: ChipRate 3.84Mcps

Chip Rate3.84Mcps

enum

LinkDir link direction: Downlink,Uplink

Downlink enum

PilotType basic pilot type: MultiplexPilot, Downlink CommonPilot

Multiplex Pilot enum

WCDMA3G_PathSearch 16-21

Page 806: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

DL_DPCHType downlink dedicatedphysical channel:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum

UL_DPDCHType uplink dedicated physicaldata channel:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

Name Description Default Sym Type Range

16-22 WCDMA3G_PathSearch

Page 807: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

UL_DPCCHType uplink dedicated physicalcontrol channel:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

DL_TXDiversity transmit diversity indownlink: No_Diversity,DL_STTD

No_Diversity enum

SampleRate number of samples perchip

4 S int [1, 32]

PathNum number of paths or fingersof Rake

6 L int [1, 16]

MaxDelay maximum path delay interms of chips

40 D int [PathNum,number of halfchips of oneslot]

SearchDir search path directionbased on current timing:Forward, Backward,Bidirection

Backward enum

whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 SmpSig received baseband complex envelope signalsamples

complex

2 SprdCd Bit-wise product of spreading and scrambling codesfor DPCHs or Common Pilot Channel

complex

Pin Name Description Signal Type

3 Delays searched timing of path delay in terms of samples int

Name Description Default Sym Type Range

WCDMA3G_PathSearch 16-23

Page 808: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

Notes/Equations

1. This model is used to search and determine the timing of multiple paths. Eachpath timing corresponds to one propagation path of radio.

Each firing, S× T tokens are consumed at SmpSig, and T tokens are consumedat SprdCd, where T is the number of chips per slot. L tokens are produced atDelays. The output at Delays is delayed by one slot because signals of multiplepath may be overlapped on adjacent slots.The complex format of input atSprdCd is Cspread×(Cscramble,i+j×Cscramble,q).

Path search direction based on current slot timing is determined by SearchDir.

References

[1]3GPP Technical Specification TS25.211 V3.0.0,“Physical channels and mappingof transport channels onto physical channels (FDD),” October 1999.

[2] A. J. Viterbi, “CDMA: Principles of Spread Spectrum Communication,” WesleyPublishing Company, 1995.

[3] S.Fukumoto, M.Sawahashi, F.Adachi, “Matched Filter-Based RAKE Combinerfor Wideband DS-CDMA Mobile Radio,” IEICE Trans. Commun., Vol., E81-B,No.7, July 1998.

16-24 WCDMA3G_PathSearch

Page 809: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_RakeCombine

Description Combine signals of optimum paths according to path estimationLibrary 3GPPFDD 10-99, Rake ReceiverClass SDFWCDMA3G_RakeCombineDerived From WCDMA3G_RakeBase

Parameters

Name Description Default Sym Type Range

ChipRate chip rate of system: ChipRate 3.84Mcps

Chip Rate3.84Mcps

enum

LinkDir link direction: Downlink,Uplink

Downlink enum

PilotType basic pilot type: MultiplexPilot, Downlink CommonPilot

Multiplex Pilot enum

WCDMA3G_RakeCombine 16-25

Page 810: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

DL_DPCHType downlink dedicatedphysical channel:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum

UL_DPDCHType uplink dedicated physicaldata channel:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

Name Description Default Sym Type Range

16-26 WCDMA3G_RakeCombine

Page 811: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

UL_DPCCHType uplink dedicated physicalcontrol channel:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

DL_TXDiversity transmit diversity indownlink: No_Diversity,DL_STTD

No_Diversity enum

PathNum number of paths or fingersof Rake

6 L int [1, 16]

DPCHNum number of DPCHs 1 M int [1, 16]

EstMethod estimation method basedon DPCH: Averaging,Interpolation, WMSA,NoEst

Interpolation enum

WMSASlotNum number of slots for WMSAmethod

1 K int [1, 8]

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 Symbol de-spread signals of each path for all code channels multiple complex

2 CHEst path estimation of one slot based on DPCH orCPICH

multiple complex

Pin Name Description Signal Type

3 WASym combined signals of all code channels multiple complex

Name Description Default Sym Type Range

WCDMA3G_RakeCombine 16-27

Page 812: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

1. This model is used to fulfill maximal ratio combining.

Each firing, N tokens are consumed at CHEst and N × M tokens are consumedat Symbol, where N is the number of symbols per slot in downlink DPCH oruplink DPDCH, N tokens are produced at WASym. The number of signals atSymbol and CHEst depend on PathNum; the number of signals at WASymdepend on DPCHNum.

References

[1]3GPP Technical Specification TS25.211 V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October 1999.

[2] S.Tanaka, M.Sawahashi, and F.Adachi, “Pilot Symbol-AssistedDecision-Directed Coherent Adaptive Array Diversity for DS-CDMA MobileRadio Reverse Link,” Proc. Wireless’97, Canada, July 1997.

[3] A. J. Viterbi, “CDMA: Principles of Spread Spectrum Communication,” WesleyPublishing Company, 1995.

16-28 WCDMA3G_RakeCombine

Page 813: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_RakeReceiver

Description Rake receiverLibrary 3GPPFDD 10-99, Rake Receiver

Parameters

Name Description Default Sym Type Range

ChipRate chip rate of system: ChipRate 3.84Mcps

Chip Rate3.84Mcps

enum

LinkDir link direction: Downlink,Uplink

Downlink enum

PilotType basic pilot type: MultiplexPilot, Downlink CommonPilot

Multiplex Pilot enum

WCDMA3G_RakeReceiver 16-29

Page 814: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

DL_DPCHType downlink dedicatedphysical channel:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

UL_DPDCHType uplink dedicated physicaldata channel:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

Name Description Default Sym Type Range

16-30 WCDMA3G_RakeReceiver

Page 815: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

UL_DPCCHType uplink dedicated physicalcontrol channel:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

DL_TXDiversity transmit diversity indownlink: No_Diversity,DL_STTD

No_Diversity enum

SampleRate number of samples perchip

4 S int [1, 32]

PathNum number of paths or fingersof Rake

6 L int [1, 16]

MaxDelay maximum path delay interms of chips

40 D int [PathNum,number of halfchips of oneslot]

SearchDir search path directionbased on current timing:Forward, Backward,Bidirection

Backward enum

DPCHNum number of DPCHs 2 M int [1, 16]

EstMethod estimation method basedon DPCH: Averaging,Interpolation, WMSA,NoEst

Interpolation enum

WMSASlotNum number of slots for WMSAmethod

1 K int [1, 8]

WFactors weighting factors used inWMSA method

1.0 1.0 real array (0, 1]

whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Name Description Default Sym Type Range

WCDMA3G_RakeReceiver 16-31

Page 816: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork is used to implement coherent Rake receiver with maximalratio combining (MRC) on multiple code channels.

Each firing, S× T tokens are consumed at SmpSig, and T tokens are consumedat SprdCd, where T is the number of chips per slot. N tokens are produced atWASym, where N is the number of symbols per slot. N or 10 tokens areproduced at CH1 in downlink or uplink, respectively. The number of signals atSprdCd is based on PilotType and DPCHNum. The number of signals atWASym depends on DPCHNum. The outputs at CH1 and WASym are delayedby one frame because of Rake receiver signal processing. The complex format ofinput at SprdCd is Cspread×(Cscramble,i+j×Cscramble,q).

2. The schematic for this subnetwork is shown in Figure 16-2.

Pin Name Description Signal Type

1 SmpSig received baseband complex envelope signalsamples

complex

2 SprdCd bit-wise product of spreading and scrambling codesfor DPCHs or Common Pilot Channel

multiple complex

Pin Name Description Signal Type

3 CH1 combined signals of the first code channel complex

4 WASym combined signals of all code channels multiple complex

16-32 WCDMA3G_RakeReceiver

Page 817: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 16-2. WCDMA3G_RakeReceiver Schematic

References

[1]3GPP Technical Specification TS25.211 V3.0.0,“Physical channels and mappingof transport channels onto physical channels (FDD),” October 1999.

[2] 3GPP Technical Specification TS25.213 V3.0.0,“Spreading and modulation(FDD),” October 1999.

WCDMA3G_RakeReceiver 16-33

Page 818: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Rake Receiver Components

[3] A. J. Viterbi, “CDMA: Principles of Spread Spectrum Communication,” WesleyPublishing Company, 1995.

16-34 WCDMA3G_RakeReceiver

Page 819: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 17: 3GPPFDD 10-99 Spreading andModulation Components

17-1

Page 820: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

WCDMA3G_DnLkAllocOVSF

Description Downlink othogonal codes allocationLibrary 3GPPFDD 10-99, Spreading & ModulationClass SDFWCDMA3G_DnLkAllocOVSF

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate single or multiple orthogonal variable spreadingfactor (OVSF) sequences as spreading codes for downlink transmission. TheOVSF sequence family has a tree-structure; the length of each OVSF sequencevaries to meet multi-rate transmission. Orthogonality is maintained among alloutput spreading sequences. The maximal length of these spreading sequenceoutput tokens is produced for each output signal.

2. The matrix size of TypeArray must be equal to that of ChannelNumberArray.

3. Layered OVSFs are generated from recursions:

Name Description Default Sym Type Range

TypeArray types of OVSF sequences 8 TT int array [2, ∞)

ChannelNumberArray numbers of code channels 1 int array[1, 2TT ]

Pin Name Description Signal Type

1 out OVSF sequences multiple int

17-2 WCDMA3G_DnLkAllocOVSF

Page 821: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

= 1

.

.

.

All OVSF sequences of the same layer are orthogonal to each other. From eachOVSF sequence Cn (m), two additional OVSF sequences ( Cn+1(2m) andCn+1(2m+1) ) are generated. These two sequences are not orthogonal to thesequence from which they are generated—the mother sequence. However, theother 2n − 2 sequences are orthogonal to this mother sequence. So the sequencesgenerated from a mother sequence cannot be used as spreading codes if thismother sequence is applied. This restriction is imposed on the spreading codeallocation to maintain orthogonality among all output OVSF sequences asspreading codes.

In downlink transmission, sequence C8(0) is dedicated to the Primary CPICHand sequence C8(1) is dedicated to the Primary CCPCH. Therefore, all mothersequences of C8(0) and C8(1) are set occupied.

Since the cycle of a spreading code is one symbol in length as defined in [1], thecycle of a spreading code of the same chip rate varies according to the symbolrate; and, the number of spreading codes available varies according to thesymbol rate. Spreading code rates are listed in Table 17-1.

C0 0( )

C1 0( )

C1 1( )1 1

1 1–=

Cn 1+ 0( )

Cn 1+ 1( )

Cn 1+ 2( )

Cn 1+ 3( )

Cn 1+ 2n 1+

2–( )

Cn 1+ 2n 1+

1–( )

Cn 0( ) Cn 0( )

Cn 0( ) Cn 0( )–

Cn 1( ) Cn 1( )

Cn 1( ) Cn 1( )–

Cn 2n

1–( ) Cn 2n

1–( )

Cn 2n

1–( ) Cn 2n

1–( )–

=

WCDMA3G_DnLkAllocOVSF 17-3

Page 822: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

References

[1]3GPP Technical Specification, TS 25.213, V3.0.0, “Spreading and modulation(FDD),” Oct 1999.

[2] K. Okawa and F. Adachi, “Orthogonal Multi-Spreading Factor Forward Link forCoherent DS-CDMA Mobile Radio,” in Proc. 47th IEEE VTC’97, Phoenix, May1997.

[3] L. Tie and X. Haige, “A Improved Multi-rate Scheme for DS-CDMA System” (inChinese), in Journal of China Institute of Communications, Vol. 19, pp.24-28,March 1998.

Table 17-1. Spreading Code Rates for 3.84 Mcps Chip Rate

Condition

Symbol Rate

7.5 15 30 60 120 240 480 960

spreading code type 9 8 7 6 5 4 3 2

spreading code length 512 256 128 64 32 16 8 4

number of spreading codes 512 256 128 64 32 16 8 4

17-4 WCDMA3G_DnLkAllocOVSF

Page 823: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_DnLkPowerAlloc

Description Multi-code power allocation for downlink transmissionLibrary 3GPPFDD 10-99, Spreading & ModulationClass SDFWCDMA3G_DnLkPowerAlloc

WCDMA3G_DnLkPowerAlloc 17-5

Page 824: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

Parameters

Name Description Default Sym Type Range

DL_DPCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16

DPCH_30kbps_TF2_T2_P8

enum †

TX_Diversity transmission mode:Normal, Diversity

Normal enum

17-6 WCDMA3G_DnLkPowerAlloc

Page 825: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to allocate transmission power to parallel channels inmulti-code transmission.

2. In multi-code transmissions, pilot, transport format combination informationand TPC symbols can be inserted in the first code channel only. (Other codechannels do not have pilot, information and TPC symbols.)

Power allocation for multi-code transmission is determined as

PP = N× Pd

where

PP denotes proportional power of the pilot, transport format combinationinformation and TPC symbols in the first code channel

Pd denotes the proportional power of the encoded data.

N is the number of code channels

The correspondence between physical channel type and numbers of pilot, TPC,TFCI symbol and data are presented in Table 17-2.

ChannelNumber number of code channels 1 N int [1, ∞)

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 input signals from several code channels with normalizedpower

multiple complex

Pin Name Description Signal Type

2 output signals to several code channels with proportionalpower

multiple complex

Name Description Default Sym Type Range

WCDMA3G_DnLkPowerAlloc 17-7

Page 826: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

References

[1]3GPP Technical Specification TS 25.213 V3.0.0 “Spreading and modulation(FDD),” October 1999.

Table 17-2. DPDCH and DPCCH Fields

DL_DPCHType Slot_L Data1 Data2 TFCI TPC Pilot

DPCH_15kbps_TF0_T2_P4 10 2 2 0 2 4

DPCH_15kbps_TF2_T2_P4 10 0 2 2 2 4

DPCH_30kbps_TF0_T2_P2 20 2 14 0 2 2

DPCH_30kbps_TF2_T2_P2 20 0 14 2 2 2

DPCH_30kbps_TF0_T2_P4 20 2 12 0 2 4

DPCH_30kbps_TF2_T2_P4 20 0 12 2 2 4

DPCH_30kbps_TF0_T2_P8 20 2 8 0 2 8

DPCH_30kbps_TF2_T2_P8 20 0 8 2 2 8

DPCH_60kbps_TF0_T2_P4 40 6 28 0 2 4

DPCH_60kbps_TF2_T2_P4 40 4 28 2 2 4

DPCH_60kbps_TF0_T2_P8 40 6 24 0 2 8

DPCH_60kbps_TF2_T2_P8 40 4 24 2 2 8

DPCH_120kbps_TF8_T4_P8 80 4 56 8 4 8

DPCH_120kbps_TF0_T4_P8 80 4 56 8 4 8

DPCH_240kbps_TF8_T4_P8 160 20 120 8 4 8

DPCH_240kbps_TF0_T4_P8 160 20 120 8 4 8

DPCH_480kbps_TF8_T8_P16 320 48 240 8 8 16

DPCH_480kbps_TF0_T8_P16 320 48 240 8 8 16

DPCH_960kbps_TF8_T8_P16 640 112 496 8 8 16

DPCH_960kbps_TF0_T8_P16 640 112 496 8 8 16

DPCH_1920kbps_TF8_T8_P16 1280 240 1008 8 8 16

DPCH_1920kbps_TF0_T8_P16 1280 240 1008 8 8 16

17-8 WCDMA3G_DnLkPowerAlloc

Page 827: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_DnLkScrambler

Description Downlink scrambling code generatorLibrary 3GPPFDD 10-99, Spreading & ModulationClass SDFWCDMA3G_DnLkScrambler

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate scrambling code for downlink transmission. Theindex of this sequence is also conveyed. Each firing, a cycle of tokens is producedin out, one is produced in INDEX. Scrambling code sequences are constructedby combining two real sequences into a complex sequence. Each of the two realsequences are constructed as the position-wise modulo-2 sum of 38400 chipsegments of two binary m-sequences generated by two 18-degree generatorpolynomials. The cycle of the scrambling code is 38400.

2. If CodeType=Primary, set S_index to 0; if CodeType=Secondary, set S_index > 0.

Name Description Default Type Range

ChipRate chip rate of the system:Chip Rate 3.84M

Chip Rate 3.84M enum

CodeType type of scrambling codes:Primary, Secondary

Primary enum

P_index index of primary code 1 int [0, 511]

S_index index of secondary code 0 int [0, 15]

Pin Name Description Signal Type

1 out scrambling code sequence complex

2 INDEX scrambling code index int

WCDMA3G_DnLkScrambler 17-9

Page 828: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

3. The scrambling codes index = 0,1, ... , 8191 are divided into 512 sets each of aprimary scrambling code and 15 secondary scrambling codes. There isone-to-one mapping between each primary scrambling code and 15 secondaryscrambling codes in a set such that ith primary scrambling code corresponds toith set of scrambling codes. Each cell is allocated one primary scrambling code.The primary CCPCH is always transmitted using the primary scrambling code.The other downlink physical channels can be transmitted with either theprimary or a secondary scrambling code from the set associated with theprimary scrambling code of the cell.

Index = 16×P_index + S_index, where P_index is the number of the set ofscrambling code. If S_index =0, the output scrambling code is a primary code; IfS_index is a number in [1,15], the output scrambling code is a secondary codethat belongs to the set of scrambling code determined by P_index.

4. The configuration of sequence generator is shown in Figure 17-1. The xsequence is constructed using polynomials x18+x7+1; the y sequence isconstructed using x18+x10+x7+x5+1. The initial values:

x(0) =- 1, x(1)=x(2)=..=x(16)=x(17)=1

y(0)=y(1)=...y(160=y(17)=-1

The out from x sequence after it is shifted by number index is summed with theout from y sequence. The resulting sequence is position-wise modulo-2 sum of38400 chips. The sequence phase is shifted by 131072 between I and Qsequence. I and Q are then combined into a complex sequence as the downlinkscrambling code at the out port.

17-10 WCDMA3G_DnLkScrambler

Page 829: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 17-1. Downlink Scrambling Code Generator

References

[1]3GPP Technical Specification, TS 25.213, V3.0.0, “Spreading and modulation(FDD),” October 1999.

WCDMA3G_DnLkScrambler 17-11

Page 830: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

WCDMA3G_DnLkSpreader

Description Direct sequence spreaderLibrary 3GPPFDD 10-99, Spreading & ModulationClass SDFWCDMA3G_DnLkSpreader

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to spread input data. In each firing, SF tokens are producedfor each inData token and SF inSeq tokens consumed.

2. This model multiplies each inData by inSeq.

References

[1]3GPP Technical Specification, TS 25.213, V3.0.0, “Spreading and modulation(FDD),” October 1999.

Name Description Default Type

SF spreading factor: SF_4 ,SF_8 , SF_16, SF_32,SF_64, SF_128, SF_256,SF_512

SF_256 enum

Pin Name Description Signal Type

1 inData information symbol complex

2 inSeq spreading code int

Pin Name Description Signal Type

3 out symbols after spreading complex

17-12 WCDMA3G_DnLkSpreader

Page 831: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_OVSF

Description Orthogonal variable spreading factor codes generatorLibrary 3GPPFDD 10-99, Spreading & ModulationClass SDFWCDMA3G_OVSF

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate a single or multiple orthogonal variablespreading factor (OVSF) sequences. The OVSF sequence family has atree-structure and the length of each OVSF sequence is variable to meetmulti-rate transmission. The number of maximal length of these OVSFsequences output tokens are produced for each output signal.

2. The matrix size of TypeArray must be equal to that of IndexArray.

TypeArray specifies the length of the multiple OVSF codes to be generated. Forexample, “4 5 6” means the length of the three codes are 16, 32 and 64,respectively. IndexArray specifies the index of the output code within the codefamily of the given length.

3. The layered spreading sequences are generated from the recursions:

Name Description Default Sym Type Range

TypeArray types of OVSF sequences 8 K int array [2, ∞]

IndexArray index matrix of OVSFsequence

0 int array[0, 2K -1]

Pin Name Description Signal Type

1 out OVSF sequences multiple int

WCDMA3G_OVSF 17-13

Page 832: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

= 1

.

.

.

References

[1]3GPP Technical Specification TS 25.213 V3.0.0 “Spreading and modulation(FDD),” October 1999.

C0 0( )

C1 0( )

C1 1( )1 1

1 1–=

Cn 1+ 0( )

Cn 1+ 1( )

Cn 1+ 2( )

Cn 1+ 3( )

Cn 1+ 2n 1+

2–( )

Cn 1+ 2n 1+

1–( )

Cn 0( ) Cn 0( )

Cn 0( ) Cn 0( )–

Cn 1( ) Cn 1( )

Cn 1( ) Cn 1( )–

Cn 2n

1–( ) Cn 2n

1–( )

Cn 2n

1–( ) Cn 2n

1–( )

=

17-14 WCDMA3G_OVSF

Page 833: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_QPSKDataMap

Description QPSK modulationLibrary 3GPPFDD 10-99, Spreading & ModulationClass SDFWCDMA3G_QPSKDataMap

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to form an orthogonal signal denoted by a complex symbolfrom the input bit stream. Each firing, one complex token is produced when twointeger tokens are consumed.

2. Table 17-3 shows the mapping algorithm; generally, Map 0 to 1 is used.

3. DTX indication bits are neither 0 nor 1, when input bit is DTX indication, it willbe mapped to 0. With another mapped bit 0, 1 or −1, a complex symbol isproduced.

Name Description Default Type

MappingRule mapping rule.: Map 0 to 1,Map 1 to 1, Do not map

Map 0 to 1 enum

Pin Name Description Signal Type

1 inBit input bit stream int

Pin Name Description Signal Type

2 out output mapped symbol complex

WCDMA3G_QPSKDataMap 17-15

Page 834: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

References

[1]3GPP Technical Specification, TS 25.213, V3.0.0, “Spreading and modulation(FDD),” October 1999.

Table 17-3. QPSK Mapping Rule

Map 0 to 1 Map 1 to 1 Do not map

in out in out in out

0, 0 (1, 1) 0, 0 (-1, -1) 0, 0 (0, 0)

0, 1 (1, -1) 0, 1 (-1, 1) 0, 1 (0, 1)

1, 0 (-1, 1) 1, 0 (1, -1) 1, 0 (1, 0)

1, 1 (-1, -1) 1, 1 (1, 1) 1, 1 (1, 1)

symbol (x, y) denotes a complex signal x + iy

17-16 WCDMA3G_QPSKDataMap

Page 835: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_UpLkAllocDPCH

Description Determine spread factor and number of phyCHs in uplinkLibrary 3GPPFDD 10-99, Spreading & ModulationClass SDFWCDMA3G_UpLkAllocDPCH

Parameters

Pin Inputs

Pin Outputs

Name Description Default Sym Type Range

TrCHNum number of transportchannels to be ratematched into one CCTrCH

1 N int [1, ∞)

TrCHType dedicated channel type:Dedicated Channel,Dedicated MeasurementChannel

DedicatedChannel

enum

RM semi-static rate matchingattribute for all transportchannels

1 real array [0, ∞)

PL maximum ratio ofpuncturing that can beapplied in uplink

0 real [0, 1)

Pin Name Description Signal Type

1 TFMax maximum TF of each transport channel int

Pin Name Description Signal Type

2 DPCHNum number of dedicated physical channels allocated inuplink

int

3 DPCHSF spreading factor of dedicated physical channelsallocated in uplink

int

WCDMA3G_UpLkAllocDPCH 17-17

Page 836: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

Notes/Equations

1. This model is used to determine the spreading factor and number of physicalchannels used in an uplink.

Each firing, one token of DPCHNum and one token of DPCHSF are producedwhen N tokens of TFMax are consumed.

2. Model functions

Notations are as follows:

Ni,j number of bits in a radio frame before rate matching on TrCH i withtransport format combination j.

RMi semi-static rate matching attribute for transport channel i. Signalledfrom higher layers.

PL puncturing limit for uplink. This value limits the amount of puncturingthat can be applied in order to avoid multiple codes or to enable the use of ahigher spreading factor. Signalled from higher layers.

Ndata,j total number of bits that are available for the CCTrCH in a radioframe with transport format combination j.

Function UpLkAllocDPDCH( ) is used to allocate the number of DedicatedPhysical Data Channels (DPDCHs) and their SF values used in Uplink. Inuplink puncturing can be used to avoid multicode or to enable the use of ahigher spreading factor when this is needed because the UE does not supportSF down to 4. The numbers of available bits in the radio frames for all possiblespreading factors are denoted by N256, N128, N64, N32, N16, N8 and N4, wherethe index refers to the spreading factor. The possible values of Ndata,j then are{N256, N128, N64, N32, N16, N8 , N4, 2N4, 3N4, 4N4, 5N4, 6N4}, where the linearcoefficient refers to the number of DPDCH. From Ndata,j, the number and SFvalues of DPDCHs, which are stored in the parameters SF and Num, can bedetermined. RMi and Nij value of each transport channel (TrCH) are saved inthe input arrays RMP and NP respectively. The number of TrCHs is TrCHNum.

UpLkAllocDPDCH (TrCHNum, RMP, NP, SF, Num)

// according to the UE capabilities

SET0 N256 N128 N64 N32 N16 N8 N4 2N4 3N4 4N4 5N4 6N4, , , , , , , , , , ,{ }⊆

17-18 WCDMA3G_UpLkAllocDPCH

Page 837: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

in SET0 such that

is non negative}

if SET1 is not empty and the smallest element of SET1 requires just onePhyCH

then

else

in SET0 such that

is non negative}

sort SET2 in ascending order

do while (Ndata is not the max of SET2 and the follower of Ndata requires noadditional PhyCH)

pf Ndata in SET2

end do

endif

SF and Num can be gotten from Ndata,j.

References

[1]3GPP Technical Specification TS 25.212 V3.0.0, “Multiplexing and channelcoding (FDD),” October 1999.

Ndata SET0{ }∈

SET1 Ndata{←

NdataRMP x[ ]

min1 y TrCHNum≤ ≤

RMP y[ ]{ }--------------------------------------------------------------- NP x[ ]×

x 1=

TrCHNum

∑–

Ndata j, min SET1( )←

SET2 Ndata{←

Ndata PL RMP x[ ]min

1 y TrCHNum≤ ≤RMP y[ ]{ }

---------------------------------------------------------------

x 1=

TrCHNum

∑× NP x[ ]×–

Ndata min SET2( )←

Ndata follower←

Ndata j, Ndata←

WCDMA3G_UpLkAllocDPCH 17-19

Page 838: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

WCDMA3G_UpLkAllocOVSF

Description Uplink transmission OVSF codesLibrary 3GPPFDD 10-99, Spreading & ModulationClass SDFWCDMA3G_UpLkAllocOVSF

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate single or multiple OVSF sequences as spreadingcodes for uplink transmission. The OVSF sequence family has a tree-structure;the length of each OVSF sequence varies for multi-rate transmission. Themaximal length of these spreading sequence output tokens are produced foreach output. The output sequence at the first signal must be a spreadingsequence for DPCCH.

2. Layered OVSFs are generated from the recursions:

C0 (0) = 1

Name Description Default Type Range

DPDCH_SF spreading factor: SF_4 ,SF_8 , SF_16, SF_32,SF_64, SF_128, SF_256

SF_4 enum

DPCH_Num number of DPDCH andDPCCH channels

1 int [1, 7]†

† DPCH_Num must be set to 7 if there is only one DPDCH channel

Pin Name Description Signal Type

1 out OVSF sequences multiple int

17-20 WCDMA3G_UpLkAllocOVSF

Page 839: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

.

.

.

All OVSF sequences of the same layer are orthogonal to each other. From eachOVSF sequence Cn(m), two additional OVSF sequences ( Cn+1(2m) andCn+1(2m+1) ) are generated. These two sequences are not orthogonal to thesequence from which they are generated—the mother sequence. However, theother 2n − 2 sequences are orthogonal to this mother sequence. So the sequencesgenerated from a mother sequence cannot be used as spreading codes if thismother sequence is applied.

In uplink transmission, the spreading codes allocation for DPCCH andDPDCHs applies.

• The DPCCH is always spread by code C8(0) = Cch,256,0

• When only one DPDCH is to be transmitted, DPDCH1 is spread by codeCch,SF,k where SF is the spreading factor of DPDCH1 and k = SFd,1/4

• When more than one DPDCH is to be transmitted, all DPDCHs havespreading factors equal to 4. DPDCHn is spread by the code Cch,n = Cch,4,k,

where k = 1 if ,k = 3 if , k = 2 if .

Since the cycle of a spreading code is one symbol in length as defined in [1], thecycle of a spreading code of the same chip rate is different according to the

C1 0( )

C1 1( )1 1

1 1–=

Cn 1+ 0( )

Cn 1+ 1( )

Cn 1+ 2( )

Cn 1+ 3( )

Cn 1+ 2n 1+

2–( )

Cn 1+ 2n 1+

1–( )

Cn 0( ) Cn 0( )

Cn 0( ) Cn 0( )–

Cn 1( ) Cn 1( )

Cn 1( ) Cn 1( )–

Cn 2n

1–( ) Cn 2n

1–( )

Cn 2n

1–( ) Cn 2n

1–( )–

=

n 1 2,{ }∈ n 3 4,{ }∈ n 5 6,{ }∈

WCDMA3G_UpLkAllocOVSF 17-21

Page 840: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

symbol rate. And, the number of spreading codes available differs according tothe symbol rate. The relationship between symbol rate, spreading code cycleand the number of spreading codes is presented in Table 17-4.

References

[1]3GPP Technical Specification TS 25.213 V3.0.0 “Spreading and modulation(FDD),” October 1999.

[2] Koichi Okawa and Fumiyuki Adachi, “Orthogonal Multi-Spreading FactorForward Link for Coherent DS-CDMA Mobile Radio,” in Proc. 47th IEEEVTC’97, Phoenix, May 1997

[3] Liu Tie and Xiang Haige, “A Improved Multi-rate Scheme for DS-CDMASystem” (in Chinese), in Journal of China Institute of Communications, Vol. 19,pp.24-28, March 1998

Table 17-4. Spreading Code Rates for 3.84 Mcps Chip Rate

Condition

Symbol Rate

15 30 60 120 240 480 960

spreading code type 8 7 6 5 4 3 2

spreading code length 256 128 64 32 16 8 4

number of spreading codes 256 128 64 32 16 8 4

17-22 WCDMA3G_UpLkAllocOVSF

Page 841: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_UpLkGainFactor

Description Gain factor generatorLibrary 3GPPFDD 10-99, Spreading & ModulationClass SDFWCDMA3G_UpLkGainFactor

Parameters

Pin Inputs

Pin Outputs

Name Description Default Type Range

GenerateMethod generate method:Signalled, Calculated

Signalled enum

TrCHNum number of all transportchannels

1 int [0, ∞)

RM semi-static rate matchingattribute

1 real array [0.0, ∞)

Beta_d_ref reference gain factor forDPDCH

1.0 real [0.0, 1.0]

Beta_c_ref reference gain factor forDPCCH

1.0 real [0.0, 1.0]

TrCHType dedicated channel type:Dedicated Channel,Dedicated MeasurementChannel

DedicatedChannel

enum

Pin Name Description Signal Type

1 InSize current block size multiple int

2 TFMax maximum transport format multiple int

Pin Name Description Signal Type

3 Beta_d gain factor for DPDCH real

4 Beta_c gain factor for DPCCH real

WCDMA3G_UpLkGainFactor 17-23

Page 842: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

Notes/Equations

1. This model is used to generate the gain factor for uplink transmission. OneBeta_d and one Beta_c token is produced for each InSize token consumed. IfGenerateMethod is Signalled, Beta_d_ref and Beta_c_ref are output directly asthe Beta_d and Beta_c.

2. Uplink DPCCH and DPDCH are transmitted with different power. Afterchannelization, spread factors are weighted by gain factors βc for DPCCH andβd for the DPDCHs. Every instant, at least one of the βc and βd has the 1.0amplitude. β values are quantized into 4 bit words. Quantization steps aregiven in Table 17-5.

3. Gain factors vary on radio frame basis based on the current TFC used. Thereare two ways to control gain factors of DPCCH and DPDCH codes for differentTFCs:

• Signalled for the TFC from higher layers, the signalled values are useddirectly for weighting of DPDCHs and DPCCH.

Table 17-5. Quantization Steps

Signalling Valuesfor βc and βd

Quantized AmplitudeRatios βc and βd

15 1.0

14 0.9333

13 0.8666

12 0.8000

11 0.7333

10 0.6667

9 0.6000

8 0.5333

7 0.4667

6 0.4000

5 0.3333

4 0.2667

3 0.2000

2 0.1333

1 0.0667

0 switch off

17-24 WCDMA3G_UpLkGainFactor

Page 843: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

• Calculated for the TFC, based on the signalled settings for a reference TFC.

Let and denote the reference gain factors

Let and denote the gain factors used for the TFC in the jth radio

frame.

RMi is the semi-static rate matching attribute for transport channel ; is

the number of bits output from the radio frame segmentation block fortransport . The sum is taken over all the transport channels. is for the

reference TFC and the is for the current TFC used in the frame.

If >1, = 1.0, means rounding to the closest lower

quantized value in Table 17-5.

If <1, = 1.0, means rounding to the closest higher

quantized value in Table 17-5.

References

[1]3GPP Technical Specification, TS 25.213, V3.0.0, “Spreading and modulation(FDD),” October 1999.

[2] 3GPP Technical Specification, TS 25.214, V3.0.0, “Physical Layer Procedures(FDD),” October 1999.

βc ref, βd ref,

βc j, βd j,

Kref RMi Ni×i

∑=

K j RMi Ni×i

∑=

i Ni

i kref

k j jth

A j

βd ref,βc ref,----------------

K jKref------------=

A j βd j, βc j,1

A j-------=

A j βc j, βd j,1

A j-------=

WCDMA3G_UpLkGainFactor 17-25

Page 844: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

WCDMA3G_UpLkScrambler

Description Uplink scrambling code generatorLibrary 3GPPFDD 10-99, Spreading & ModulationClass SDFWCDMA3G_UpLkScrambler

Parameters

Pin Outputs

Notes/Equations

1. This model is used to generate uplink transmission scrambling codes. The indexof this sequence is also conveyed. Each firing, a cycle of tokens is produced inout and one is produced in INDEX.

2. The scrambling codes are divided into short and long codes. Uplink channelsuse long or short code. Both scrambling code sequences are constructed bycombining two real sequences into a complex sequence. The long code cycle is38400, the short code cycle is 256.

Name Description Default Type Range

ChipRate chip rate of the system:Chip Rate 3.84M

Chip Rate 3.84M enum

CodeType type of scrambling code:Long_Scrambling_Code,Short_Scrambling_Code

Long_Scrambling_Code

enum

Index index of scrambling code 1 int [0, 16777215]

Pin Name Description Signal Type

1 out scrambling code complex

2 INDEX scrambling code index int

17-26 WCDMA3G_UpLkScrambler

Page 845: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3. Scrambling codes are formed as follows.

where

w0 and w1 are chip rate sequences defined as repetitions ofw0={1 1}, w1={1−1}.

c1 is a real chip rate code

c2' is a decimated version with a decimation factor2 of real chip rate code c2

In a long scrambling code, the c1 and c2 sequences are constructed as themodulo 2 sum of 38400 chip segments of two binary m-sequences generated bytwo 25-degree generator polynomials.

The primitive polynomial for x sequence is .

The primitive polynomial for y sequence is .

The long code sequence generator configuration is shown in Figure 17-2.

The initial value of shift register 1 is the index binary, while the initial values ofshift register 2 are all −1. Because the uplink scrambling code is defined as acycle of 38400 [1]; the shortened Gold sequence generator exports chips in a38400 radio frame duration and phase 0 to 38400 radio frames are repeated.The sequence phase is shifted by an amount 16777232 between c1 and c2.

Figure 17-2. Uplink Long Scrambling Code Generator

Cscramb n, c1 w0 jc2′w1+( )=

x25 x31+ +

x25 x3 x2 x 1+ + + +

WCDMA3G_UpLkScrambler 17-27

Page 846: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

In a short scrambling code, codes lengths of 256 chips are obtained by one chipperiodic extension of 255 sequences; the first and last chips of any uplink shortscrambling code are the same. The 255-length sequence is obtained by modulo 4addition of three sequences:

n = 0, 1, 2, ... , 254

Sequences a(n), b(n) and c(n) are constructed by the recursive generator definedby the polynomial g0(x), g1(x) and g2(x).

The short code sequence generator configuration is shown in Figure 17-3.

Sequence zv(n) is mapped to a complex sequence Sv(n) by the mapping functiongiven in Table 17-6. Re{Sv(n)} and Im{Sv(n)} are binary sequences c1 and c2.

The initial states for the G1 and G2 are the two 8-bit words representing index sand t in the 24-bit binary representation of scrambling code index v. The initialstate of G0 is obtained after the transformation of 8-bit word representingindex r. The transformation is:

,

, n=1, ... , 7.

The initial states of three generators are shown in Figure 17-4.

Table 17-6. zv(n) and Sv(n) Mapping

zv(n) Sv(n)

0 +1+1j

1 -1+1j

2 -1-1j

3 +1-1j

zv n( ) ar n( ) 2bs n( ) 2ct n( ) mod4( )+ +=

g0 x( ) x8 x53x3 x2

2x 1+ + + + +=

g1 x( ) x8 x7 x5 x 1+ + + +=

g2 x( ) x8 x7 x5 x41+ + + +=

ar 0( ) 2v 0( ) 1 mod4( )+=

ar n( ) 2v n( ) mod4( )=

17-28 WCDMA3G_UpLkScrambler

Page 847: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 17-3. Uplink Short Scrambling Code Generator

Figure 17-4. Uplink Short Scrambling Code GeneratorState Initialization

References

[1]3GPP Technical Specification, TS 25.213, V3.0.0, “Spreading and modulation(FDD),” October 1999.

WCDMA3G_UpLkScrambler 17-29

Page 848: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

WCDMA3G_UpLkSpreader

Description BPSK modulation and spreading.Library 3GPPFDD 10-99, Spreading & ModulationClass SDFWCDMA3G_UpLkSpreader

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to complete BPSK data mapping and spread input data.Each firing, SF tokens are produced for each inData and SF inSeq tokensconsumed.

2. Binary input bits are mapped to real values according to the mapping rule andthen multiplied one-by-one by inData with inSeq.

Name Description Default Type

MappingRule mapping rule.: Map 0 to 1,Map 1 to 1, Do not map

Map 0 to 1 enum

SF spreading factor: SF_4 ,SF_8 , SF_16, SF_32,SF_64, SF_128, SF_256

SF_256 enum

Pin Name Description Signal Type

1 inData information int

2 inSeq spreading code int

Pin Name Description Signal Type

3 out output symbols after bit map and spreading int

17-30 WCDMA3G_UpLkSpreader

Page 849: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.213 V3.0.0 “Spreading and modulation(FDD),” October 1999.

WCDMA3G_UpLkSpreader 17-31

Page 850: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Spreading and Modulation Components

17-32 WCDMA3G_UpLkSpreader

Page 851: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 18: 3GPPFDD 10-99 Test ModelComponents

18-1

Page 852: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Test Model Components

WCDMA3G_TestModel_Delay

Description W-CDMA 3GPP delay DPCH group for BS test modelsLibrary 3GPPFDD 10-99, Test ModelClass SDFWCDMA3G_TestModel_Delay

Parameters

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to delay a group of DPCHs Nd chips.

Each firing, 2560 tokens of each port of out are produced when 2560 tokens of inare consumed. Port in and out are both multiple ports, their port numbers are Naccording to DPCHNum.

Name Description Default Sym Type Range

TestModelType type of test model for basestation: TestModel1,TestModel2, TestModel3

TestModel1 enum

DPCHNum number of DPCHs in testmodel for base station

16 N int {3, 16,32,64}

Pin Name Description Signal Type

1 in input DPCH data multiple complex

Pin Name Description Signal Type

2 out output DPCH data after delay multiple complex

18-2 WCDMA3G_TestModel_Delay

Page 853: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

The relationship of each DPCH spreading code index and its delay is given inTable 18-1, Table 18-2 and Table 18-3 for Test Model 1, Test Model 2 and TestModel 3, respectively. Each DPCH is delayed Nd chips.

Table 18-1. Delay of DPCHs for Test Model 1

DPCH Spreading CodeIndex

DPCH Delay (*256 chips) (Nd)

N=16 N=32 N=64

2 86 86 86

11 134 134 134

17 52 52 52

23 45 45 45

31 143 143 143

38 112 112 112

47 59 59 59

55 23 23 23

62 1 1 1

69 88 88 88

78 30 30 30

85 18 18 18

94 30 30 30

102 61 61 61

113 128 128 128

119 143 143 143

7 83 83

13 25 25

20 103 103

27 97 97

35 56 56

41 104 104

51 51 51

58 26 26

64 137 137

74 65 65

82 37 37

88 125 125

97 149 149

108 123 123

WCDMA3G_TestModel_Delay 18-3

Page 854: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Test Model Components

117 83 83

125 5 5

4 91

9 7

12 32

14 21

19 29

22 59

26 22

28 138

34 31

36 17

40 9

44 69

49 49

53 20

56 57

61 121

63 127

66 114

71 100

76 76

80 141

84 82

87 64

91 149

95 87

99 98

105 46

110 37

116 87

118 149

122 85

126 69

Table 18-1. Delay of DPCHs for Test Model 1 (continued)

DPCH Spreading CodeIndex

DPCH Delay (*256 chips) (Nd)

N=16 N=32 N=64

18-4 WCDMA3G_TestModel_Delay

Page 855: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Table 18-2. Delay of DPCHs for Test Model 2

DPCH Spreading CodeIndex DPCH Delay (*256 chips) (Nd) N=3

24 1

71 7

120 2

Table 18-3. Delay of DPCHs for Test Model 3

DPCH Spreading CodeIndex

DPCH delay (*256 chips)

N=16 N=32

64 86 86

69 134 134

74 52 52

78 45 45

83 143 143

89 112 112

93 59 59

96 23 23

100 1 1

105 88 88

109 30 30

111 18 18

115 30 30

118 61 61

122 128 128

125 143 143

67 83

71 25

76 103

81 97

86 56

90 104

95 51

98 26

103 137

108 65

110 37

WCDMA3G_TestModel_Delay 18-5

Page 856: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Test Model Components

References

[1]3GPP Technical Specification TS 25.141 V3.3.0, “Base station conformancetesting (FDD),” September 2000.

112 125

117 149

119 123

123 83

126 5

Table 18-3. Delay of DPCHs for Test Model 3 (continued)

DPCH Spreading CodeIndex

DPCH delay (*256 chips)

N=16 N=32

18-6 WCDMA3G_TestModel_Delay

Page 857: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TestModel_PCCPCH_Src

Description PN9 data source for PCCPCH test modelLibrary 3GPPFDD 10-99, Test ModelClass SDFWCDMA3G_TestModel_PCCPCH_Src

Pin Outputs

Notes/Equations

1. This model is used to generate data source used to fill the PCCPCH frame.

The data source is generated using a 9-stage shift register. The primitivetrinomial is x9 + x4 + 1. The shift register is seeded with the orthogonalspreading code index.

Each firing, 18 tokens consisting of 1 slot of PCCPCH data are generated.

References

[1]3GPP Technical Specification TS 25.141 V3.3.0, “Base station conformancetesting (FDD),” September 2000.

Pin Name Description Signal Type

1 out data source out int

WCDMA3G_TestModel_PCCPCH_Src 18-7

Page 858: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Test Model Components

WCDMA3G_TestModel_PICH

Description PICH data for base station test modelLibrary 3GPPFDD 10-99, Test Model

Parameters

Pin Outputs

Notes/Equations

1. This subnetwork is used to generate PICH data for test models.

The schematic for this subnetwork is shown in Figure 18-1. The pagingindicator channel (PICH) is a fixed rate (SF=256) physical channel used to carrythe paging indicator (PI). One PICH radio frame of 10 msec consists of 300 bits(b0, b1, ... , b299) and are output by WCDMA3G_TestModel_PICH_Src.

PICH radio frames are then spread by the spreading code generated byWCDMA3G_OVSF.

Name Description Default Type Range

SpreadingCodeIndex spreading code index 2 int [2, 255]

GainFactor PICH gain factor 1.0 real [0, ∞)

Pin Name Description Signal Type

1 PICHout output PICH data complex

18-8 WCDMA3G_TestModel_PICH

Page 859: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 18-1. WCDMA3G_TestModel_PICH Schematic

References

[1]3GPP Technical Specification TS 25.141 V3.3.0, “Base station conformancetesting (FDD),” September 2000.

[2] 3GPP Technical Specification TS 25.211 V3.2.0, “Physical channel and mappingof transport channels onto physical channels (FDD),” March 2000.

WCDMA3G_TestModel_PICH 18-9

Page 860: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Test Model Components

WCDMA3G_TestModel_PICH_Src

Description PICH data source for base station test modelLibrary 3GPPFDD 10-99, Test ModelClass SDFWCDMA3G_TestModel_PICH_Src

Pin Outputs

Notes/Equations

1. This model is used to generate the PICH data source for test models.

The paging indicator channel (PICH) is a fixed rate (SF=256) physical channelused to carry the paging indicator (PI). One PICH radio frame of 10 msecconsists of 300 bits (b0, b1, ... , b299). Of these, 288 bits (b0,b1, ... , b287) are usedto carry PIs. The remaining 12 bits (b288, b289, ... , b299) are undefined.

In this model, PICH carries 18 paging indicators equal to [1 0 1 1 0 0 0 1 0 1 1 00 0 1 0 1 0]. This defines the first 288 symbols of the PICH. Their mapping ruleis given in Table 18-4 and is simplified according to the PICH definition in [2].No power is transmitted for the 12 remaining unused symbols (=0).

References

[1]3GPP Technical Specification TS 25.141 V3.3.0, “Base station conformancetesting (FDD),” September 2000.

Pin Name Description Signal Type

1 out output PICH data source int

Table 18-4. Mapping of Paging Indicators to PICH bits

No. of PI per frame (N) PI i =1 (i=0,1, ... , N-1) PIi =0 (i=0,1, ... , N-1)

N=18 {b16i, ... , b16i+15}={-1,-1, ... , -1} {b16i, ... , b16i+15}={1,1, ... , 1}

18-10 WCDMA3G_TestModel_PICH_Src

Page 861: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

[2] 3GPP Technical Specification TS 25.211 V3.2.0, “Physical channel and mappingof transport channels onto physical channels (FDD),” March 2000.

WCDMA3G_TestModel_PICH_Src 18-11

Page 862: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Test Model Components

WCDMA3G_TestModel1

Description Test model1 for base stationLibrary 3GPPFDD 10-99, Test Model

Parameters

Pin Outputs

Notes/Equations

1. This subnetwork is used to test spectrum emission mask, ACLR, spuriousemissions, transmit intermodulation and base station maximum output power.

The schematic for this subnetwork is shown in Figure 18-2. It includes 16, 32,or 64 DPCH channels, one PICH channel, one Primary CPICH channel, and onePCCPC+SCH channel. Active channels are listed in Table 18-5.

Name Description Default Type Range

ScramblingCodeIndex scrambling code index 0 int [0, 8191]

DPCHNum number of DPCHs in testmodel1 ( 16/32/64 ):DPCH16, DPCH32,DPCH64

DPCH16 enum

ModelGainFactor gain factor for all channelsin this model

1.0 real (0, ∞)

Pin Name Description Signal Type

1 out output test model data complex

18-12 WCDMA3G_TestModel1

Page 863: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 18-2. WCDMA3G_TestModel1 Schematic

References

[1]3GPP Technical Specification TS 25.141 V3.3.0, “Base Station ConformanceTesting (FDD),” September 2000.

Table 18-5. Test Model 1 Active Channels

TypeNo. ofChannels

Fraction ofPower (%) Level Setting (dB)

ChannelizationCode

Timing Offset(x256Tchip)

PCCPCH+SCH 1 10 -10 1 0

Primary CPICH 1 10 -10 0 0

PICH 1 3.2 -15 16 120

DPCH (SF=128) 16/32/64 76.8 in total † † †

† Refer to table 6.2 in [1]

WCDMA3G_TestModel1 18-13

Page 864: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Test Model Components

WCDMA3G_TestModel1_DPCH

Description DPCH generator for test model 1Library 3GPPFDD 10-99, Test ModelClass SDFWCDMA3G_TestModel1_DPCH

Parameters

Pin Outputs

Notes/Equations

1. This model generates a group of DPCH channels for test model 1 as specified in[1].

In this model the unit for data processing is one slot. Each firing, 2560 chips aregenerated on multiple output pins. The gain and spreading code used for eachindividual DPCH are specified in table 6.2 in [1].

References

[1]3GPP Technical Specification TS 25.141 V3.3.0, “Base station conformancetesting (FDD),” September 2000.

Name Description Default Type

DPCHNumber number of DPCH channel:DPCH16, DPCH32,DPCH64

DPCH16 enum

Pin Name Description Signal Type

1 DPCH DPCH channels multiple complex

18-14 WCDMA3G_TestModel1_DPCH

Page 865: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TestModel2

Description Test model2 for base stationLibrary 3GPPFDD 10-99, Test Model

Parameters

Pin Outputs

Notes/Equations

1. This subnetwork is used to test output power dynamics for base station.

The schematic for this subnetwork is shown in Figure 18-3. It includes 3 DPCHchannels, one PICH channel, one Primary CPICH channel and onePCCPC+SCH channel. Active channels are listed in Table 18-6.

Name Description Default Type Range

ScramblingCodeIndex scrambling code index 0 int [0, 8191]

ModelGainFactor gain factor for all channelsin this model

1.0 real [0, ∞)

Pin Name Description Signal Type

1 out output test model data complex

Table 18-6. Test Model 2 Active Channels

TypeNo. ofChannels

Fraction ofPower (%) Level Setting (dB) Channelization Code

Timing Offset(x256Tchip)

PCCPCH+SCH 1 10 -10 1 0

Primary CPICH 1 10 -10 0 0

PICH 1 10 -10 16 120

DPCH (SF=128) 3 2X10, 1X50 2X-10, 1X-3 24, 72, 120 1, 7, 2

WCDMA3G_TestModel2 18-15

Page 866: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Test Model Components

Figure 18-3. WCDMA3G_TestModel2 Schematic

References

[1]3GPP Technical Specification TS 25.141 V3.3.0, “Base station conformancetesting (FDD),” September 2000.

18-16 WCDMA3G_TestModel2

Page 867: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TestModel2_DPCH

Description DPCH generator for test model 2Library 3GPPFDD 10-99, Test ModelClass SDFWCDMA3G_TestModel2_DPCH

Pin Outputs

Notes/Equations

1. This model generates 3 DPCH channels for test model 2 as specified in [1].

In this model the unit for data processing is one slot. Each firing, 2560 chips aregenerated on 3 output ports. The gain and spreading code used for eachindividual DPCH are specified in table 6.3 in [1].

References

[1]3GPP Technical Specification TS 25.141 V3.3.0, “Base station conformancetesting (FDD),” September 2000.

Pin Name Description Signal Type

1 DPCH DPCH channels multiple complex

WCDMA3G_TestModel2_DPCH 18-17

Page 868: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Test Model Components

WCDMA3G_TestModel3

Description Test model3 for base stationLibrary 3GPPFDD 10-99, Test Model

Parameters

Pin Outputs

Notes/Equations

1. This subnetwork is used to generate the source data transmitted by basestation for test on peak code domain error.

The schematic for this subnetwork is shown in Figure 18-4. It includes severaltypes of physical channels: PCCPCH+SCH, Primary CPICH, PICH, and 16 or32 DPCHs. Power fractions and delays of these channels are listed inTable 18-7. The whole gain factor of these channels is set by ModelGainFactor.The spreading factor of DPCH is 256, its slot format is given in Table 18-8.

Name Description Default Sym Type Range

ScramblingCodeIndex scrambling code index 0 int [0, 8191]

DPCHNum number of DPCHs in testmodel3 ( 16/32 ): DPCH16,DPCH32

DPCH16 N enum

ModelGainFactor gain factor for all channelsin this model

1.0 real [0, ∞)

Pin Name Description Signal Type

1 out output test model3 data complex

18-18 WCDMA3G_TestModel3

Page 869: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 18-4. WCDMA_TestModel3 Schematic

References

[1]3GPP Technical Specification TS 25.141 V3.3.0, “Base station conformancetesting (FDD),” September 2000.

Table 18-7. Test Model 3 Active Channels

TypeNo. ofChannels

Fraction of Power (%)ChannelizationCode Index

Timing Offset(256*Tchip)N=16 N=32

PCCPCH+SCH 1 12.6 7.9 1 0

Primary CPICH 1 12.6 7.9 0 0

PICH 1 10 3.2 16 120

DPCH (SF=256) 16/32 63.7 80.4 refer to table 6.5 in [1]

Table 18-8. Test Model 3 DPCH Downlink Structure

SlotFormat

ChannelBit Rate(kbps)

ChannelSymbolRate (ksps)

Bits/FrameBits/Slot

DPDCH Bits/Slot DPCCH Bits/Slot

DPDCH DPCCH TOT N Data1 N Data2 N TFCI N TPC N pilot

6 30 15 150 150 300 20 2 8 0 2 8

WCDMA3G_TestModel3 18-19

Page 870: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Test Model Components

WCDMA3G_TestModel3_DPCH

Description DPCH generator for test model 3Library 3GPPFDD 10-99, Test ModelClass SDFWCDMA3G_TestModel3_DPCH

Parameters

Pin Outputs

Notes/Equations

1. This model generates multiple DPCH channels for test model 3 as specified in[1].

In this model the unit for data processing is one slot. Each firing, 2560 chips aregenerated on the multiple output pins. The number of output pins aredetermined by DPCHNumber. The gain and spreading code used for eachindividual DPCH are specified in table 6.5 in [1].

References

[1]3GPP Technical Specification TS 25.141 V3.3.0, “Base station conformancetesting (FDD),” September 2000.

Name Description Default Type

DPCHNumber number of DPCH channel:DPCH16, DPCH32

DPCH16 enum

Pin Name Description Signal Type

1 DPCH DPCH channels multiple complex

18-20 WCDMA3G_TestModel3_DPCH

Page 871: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TestModel4

Description Test model 4 for base stationLibrary 3GPPFDD 10-99, Test Model

Parameters

Pin Outputs

Notes/Equations

1. This subnetwork is used to test EVM. The schematic for this subnetwork isshown in Figure 18-5. It includes one PCCPCH+SCH channel. Active channelsare listed in Table 18-9.

Figure 18-5. WCDMA3G_TestModel4 Schematic

Name Description Default Type Range

ScramblingCodeIndex scrambling code index 0 int [0, 8191]

PCCPCH_SCH_Gain gain factor forPCCPC_SCH channel inthis model

0.708 real [0, ∞)

Pin Name Description Signal Type

1 out output test model data complex

WCDMA3G_TestModel4 18-21

Page 872: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Test Model Components

References

[1]3GPP Technical Specification TS 25.141 V3.3.0, “Base station conformancetesting (FDD),” September 2000.

Table 18-9. Test Model 4 Active Channels

TypeNo. ofChannels

Fraction ofPower (%) Level Setting (dB) Channelization Code

Timing Offset(x256Tchip)

PCCPCH+SCH 1 50 to 1.6 -3 to -18 1

18-22 WCDMA3G_TestModel4

Page 873: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 19: 3GPPFDD 10-99 TransmitDiversity Components

19-1

Page 874: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transmit Diversity Components

WCDMA3G_STTDEncoder

Description STTD encoder.Library 3GPPFDD 10-99, Transmit DiversityClass SDFWCDMA3G_STTDEncoder

19-2 WCDMA3G_STTDEncoder

Page 875: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Parameters

Name Description Default Type Range

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

WCDMA3G_STTDEncoder 19-3

Page 876: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transmit Diversity Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to encode symbols for space time block coding basedtransmit diversity (STTD). The open loop downlink transmit diversity usesSTTD. STTD encoding is mandatory in UE and optional in UTRAN.

The STTD encoder block diagram is shown in Figure 19-1.

The DPDCH, TPC, and TFCI are STTD encoded.

• For SF=256, if there is only one dedicated pilot symbol, it is STTD encodedwith the last symbol (data or DTX) of the second data field of the slot(encoding for this pilot symbol is completed by WCDMA3G_STTDMux).

• For SF=512 DPCH and P-CCPCH, the last odd data symbol in every radioframe is not STTD encoded and the same symbol is transmitted with equalpower from the two antennas.

Each firing, a cycle of tokens are produced on Ant1 and Ant2 when a cycle oftokens are consumed by inData; cycle values are given in Table 19-1.

Figure 19-1. STTD Encoder Block Diagram

Pin Name Description Signal Type

1 inData symbols in complex

Pin Name Description Signal Type

2 Ant1 output symbol to antenna1 complex

3 Ant2 output symbol to antenna2 complex

19-4 WCDMA3G_STTDEncoder

Page 877: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.211 V3.0.0 “Physical channels and mappingof transport channel onto physical channels (FDD),” October 1999.

Table 19-1. Cycle Values

DL_DPCHType Symbols per Slot Pilot Symbols per Slot Cycle

DPCH_15kbps_TF0_T2_P4 5 2 45

DPCH_15kbps_TF2_T2_P4 5 2 45

DPCH_30kbps_TF0_T2_P2 10 1 9

DPCH_30kbps_TF2_T2_P2 10 1 9

DPCH_30kbps_TF0_T2_P4 10 2 2

DPCH_30kbps_TF2_T2_P4 10 2 2

DPCH_30kbps_TF0_T2_P8 10 4 2

DPCH_30kbps_TF2_T2_P8 10 4 2

DPCH_60kbps_TF0_T2_P4 20 2 2

DPCH_60kbps_TF2_T2_P4 20 2 2

DPCH_60kbps_TF0_T2_P8 20 4 2

DPCH_60kbps_TF2_T2_P8 20 4 2

DPCH_120kbps_TF8_T4_P8 40 4 2

DPCH_120kbps_TF0_T4_P8 40 4 2

DPCH_240kbps_TF8_T4_P8 80 4 2

DPCH_240kbps_TF0_T4_P8 80 4 2

DPCH_480kbps_TF8_T8_P16 160 8 2

DPCH_480kbps_TF0_T8_P16 160 8 2

DPCH_960kbps_TF8_T8_P16 320 8 2

DPCH_960kbps_TF0_T8_P16 320 8 2

DPCH_1920kbps_TF8_T8_P16 640 8 2

DPCH_1920kbps_TF0_T8_P16 640 8 2

PCCPCH 135 0 135

WCDMA3G_STTDEncoder 19-5

Page 878: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transmit Diversity Components

WCDMA3G_STTDMux

Description Insert pilot in STTD encoded sequenceLibrary 3GPPFDD 10-99, Transmit DiversityClass SDFWCDMA3G_STTDMux

19-6 WCDMA3G_STTDMux

Page 879: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Parameters

Name Description Default Type Range

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16

DPCH_30kbps_TF2_T2_P8

enum †

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

WCDMA3G_STTDMux 19-7

Page 880: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transmit Diversity Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to insert pilot symbols into the STTD encoded sequence fordownlink DPCHs.

For SF=256 DPCH, if there is only one dedicated pilot symbol, it is encoded withthe last symbol (data or DTX) of the second data field. This model thencompletes STTD encoding and insertion of this single pilot symbol.

Each firing, Slot_L tokens are produced at out1 and out2 when DPCH_L tokensare consumed at DPCH1 and DPCH2. Token values are given in Table 19-2.

Pin Name Description Signal Type

1 DPCH1 DPCH symbols for antenna 1 complex

2 DPCH2 DPCH symbols for antenna 2 complex

Pin Name Description Signal Type

3 out1 output symbols for antenna 1 complex

4 out2 output symbols for antenna 2 complex

Table 19-2. Token Values

DL_DPCHType Slot_L Pilot_L DPCH_L

DPCH_15kbps_TF0_T2_P4 5 2 3

DPCH_15kbps_TF2_T2_P4 5 2 3

DPCH_30kbps_TF0_T2_P2 10 1 9

DPCH_30kbps_TF2_T2_P2 10 1 9

DPCH_30kbps_TF0_T2_P4 10 2 8

DPCH_30kbps_TF2_T2_P4 10 2 8

DPCH_30kbps_TF0_T2_P8 10 4 6

DPCH_30kbps_TF2_T2_P8 10 4 6

DPCH_60kbps_TF0_T2_P4 20 2 18

DPCH_60kbps_TF2_T2_P4 20 2 18

DPCH_60kbps_TF0_T2_P8 20 4 16

DPCH_60kbps_TF2_T2_P8 20 4 16

DPCH_120kbps_TF8_T4_P8 40 4 36

19-8 WCDMA3G_STTDMux

Page 881: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.211 V3.0.0 “Physical channels and mappingof transport channel onto physical channels (FDD),” October 1999.

DPCH_120kbps_TF0_T4_P8 40 4 36

DPCH_240kbps_TF8_T4_P8 80 4 76

DPCH_240kbps_TF0_T4_P8 80 4 76

DPCH_480kbps_TF8_T8_P16 160 8 152

DPCH_480kbps_TF0_T8_P16 160 8 152

DPCH_960kbps_TF8_T8_P16 320 8 312

DPCH_960kbps_TF0_T8_P16 320 8 312

DPCH_1920kbps_TF8_T8_P16 640 8 632

DPCH_1920kbps_TF0_T8_P16 640 8 632

Table 19-2. Token Values (continued)

DL_DPCHType Slot_L Pilot_L DPCH_L

WCDMA3G_STTDMux 19-9

Page 882: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transmit Diversity Components

19-10

Page 883: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 20: 3GPPFDD 10-99 TransportChannel Multiplex Components

20-1

Page 884: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

WCDMA3G_CCTrCHDeRMatch

Description Rate de-matching from transport channels to CCTrCHLibrary 3GPPFDD 10-99, Transport Channel MultiplexClass SDFWCDMA3G_CCTrCHDeRMatch

Parameters

Name Description Default Sym Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHPosInCCTrCH type of transport channelposition in one frame ofCCTrCH: Fixed, Flexible

Fixed enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

PhyCHNum number of physicalchannels that CCTrCH ismapped to

1 Np int [1, ∞)

20-2 WCDMA3G_CCTrCHDeRMatch

Page 885: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

UL_DPDCHType uplink dedicated physicaldata channel type:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

Name Description Default Sym Type Range

WCDMA3G_CCTrCHDeRMatch 20-3

Page 886: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

Pin Inputs

Pin Outputs

Notes/Equations

TrCHNum number of transportchannels to be multiplexedin one CCTrCH

1 Nt int [1, ∞)

TrCHNo current transport channelorder number

0 int [0, Nt-1]

TrCHType transport channel typecorresponding to maximumbit rate of current transportchannel: DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_8_kbps enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 TFMax maximum TF of each transport channel int

2 in input data of current transport channel real

3 inSize input data size int

4 TFCI received transport format combination indicator int

Pin Name Description Signal Type

5 out output data after rate de-matching real

6 outSize output data size after rate de-matching int

Name Description Default Sym Type Range

20-4 WCDMA3G_CCTrCHDeRMatch

Page 887: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

1. This model is used for transport channel rate de-matching. The bit number ofinput data is restored to the bit number of current transport channel.Discontinuous transmission indications are punctured with downlink transportchannel fixed positions.

Each firing, Nb×Sb tokens of out and Nb tokens of outSize are produced whenNt×T tokens of TFMax, Mp×Np×T tokens of in, one token of inSize and T tokensof TFCI are consumed. For uplinks, Mt tokens of out and one token of outSizeare produced when Nt tokens of TFMax, Mp×Np tokens of in, one token ofinSize and one token of TFCI are consumed. Refer to Table 20-1 throughTable 20-3 for the values of T, Sb, Nb, Mt and Mp.

Table 20-1. Value of T

TTI Frame Number in TTI (T)

TTI_10ms 1

TTI_20ms 2

TTI_40ms 4

TTI_80ms 8

Table 20-2. Values of Sb, Nb, and Mt

TrCHType TF TTIDownlink OutputData Block Size (Sb)

Downlink Output DataBlock (Nb)

Uplink Output DataSize (Mt)

DCH_8_kbps 0 10ms 96 1 312

1 20ms 176 1 276

2 40ms 336 1 258

3 80ms 656 1 252

DCH_16_kbps 4 10ms 368 1 552

5 20ms 688 1 516

6 40ms 1344 1 504

7 80ms 2640 1 495

DCH_32_kbps 8 10ms 688 1 1032

9 20ms 1344 1 1008

10 40ms 2640 1 990

11 80ms 5256 1 986

DCH_64_kbps 12 10ms 1980 1 1980

13 20ms 3900 1 1950

14 40ms 7740 1 1935

15 80ms 7716 2 1929

WCDMA3G_CCTrCHDeRMatch 20-5

Page 888: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

DCH_128_kbps 16 10ms 3900 1 3900

17 20ms 7740 1 3870

18 40ms 7740 2 3858

19 80ms 10269 3 3851

DCH_256_kbps 20 10ms 7740 1 7740

21 20ms 7740 2 7716

22 40ms 10269 3 7702

23 80ms 12312 5 7695

DCH_512_kbps 24 10ms 7740 2 15432

25 20ms 10269 3 15404

26 40ms 12312 5 15390

27 80ms 13671 9 15380

DMCH_2_4_kbps 2 40ms 360 1 105

DMCH_12_2_kbps 5 20ms 804 1 495

DMCH_64_kbps 9 20ms 3900 1 2295

DMCH_144_kbps 13 20ms 8700 1 4700

DMCH_384_kbps 17 20ms 11556 2 9525

DMCH_2048_kbps 21 20ms 57510

BCH_11_1_kbps 0 10ms 270 1

BCH_12_3_kbps 5 20ms 540 1

Table 20-3. Values of Mp

Physical Channel Type Bits per Frame (Mp)

DL_PhyCHType

DPCH_15kbps_TF0_T2_P4 60

DPCH_15kbps_TF2_T2_P4 30

DPCH_30kbps_TF0_T2_P2 240

DPCH_30kbps_TF2_T2_P2 210

DPCH_30kbps_TF0_T2_P4 210

DPCH_30kbps_TF2_T2_P4 180

DPCH_30kbps_TF0_T2_P8 150

DPCH_30kbps_TF2_T2_P8 120

DPCH_60kbps_TF0_T2_P4 510

DPCH_60kbps_TF2_T2_P4 480

Table 20-2. Values of Sb, Nb, and Mt (continued)

TrCHType TF TTIDownlink OutputData Block Size (Sb)

Downlink Output DataBlock (Nb)

Uplink Output DataSize (Mt)

20-6 WCDMA3G_CCTrCHDeRMatch

Page 889: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. Model functions

This model is an inverse process of WCDMA3G_CCTrCHRMatch.

Notations are as follows:

Nij for uplink, number of bits in a radio frame after rate matching ontransport channel i with transport format combination j; for downlink, anintermediate calculation variable.

NilTTI (used in downlink only) number of bits in a transmission time

interval after rate matching on transport channel i with transport format l.

DPCH_60kbps_TF0_T2_P8 450

DPCH_60kbps_TF2_T2_P8 420

DPCH_120kbps_TF8_T4_P8 900

DPCH_120kbps_TF0_T4_P8 900

DPCH_240kbps_TF8_T4_P8 2100

DPCH_240kbps_TF0_T4_P8 2100

DPCH_480kbps_TF8_T8_P16 4320

DPCH_480kbps_TF0_T8_P16 4320

DPCH_960kbps_TF8_T8_P16 9120

DPCH_960kbps_TF0_T8_P16 9120

DPCH_1920kbps_TF8_T8_P16 18720

DPCH_1920kbps_TF0_T8_P16 18720

PCCPCH 270

UL_DPDCHType

DPDCH_15kbps 150

DPDCH_30kbps 300

DPDCH_60kbps 600

DPDCH_120kbps 1200

DPDCH_240kbps 2400

DPDCH_480kbps 4800

DPDCH_960kbps 9600

Table 20-3. Values of Mp (continued)

Physical Channel Type Bits per Frame (Mp)

WCDMA3G_CCTrCHDeRMatch 20-7

Page 890: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

∆ Nij for uplink, if positive, number of bits to be punctured in each radioframe on transport channel i with transport format combination j;for uplink, if negative, number of bits to be repeated in each radio frame ontransport channel i with transport format combination j.for downlink, an intermediate calculation variable.

∆ NilTTI (used in downlink only) if positive, number of bits to be punctured

in each transmission time interval on transport channel i with transportformat l; if negative, number of bits to be repeated in each transmission timeinterval on transport channel i with transport format l.

Fi number of radio frames in transmission time interval of transportchannel i.

ni radio frame number in transmission time interval of transport channel i(0 ≤ ni ≤ Fi ).

q (used in uplink only) average puncturing distance.

IF (ni ) (used in uplink only) inverse interleaving function of first interleaver.

S(ni ) (used in uplink only) shift of puncturing pattern for radio frame ni .

TFi (j) transport format of transport channel i for format combination j.

TFS(i) set of transport format indices l for transport channel i.

TFCS set of transport format combination indices j.

N length of data before rate matching

eini initial value of variable e in rate de-matching pattern determinationalgorithm.

eplus increment of variable e in rate de-matching pattern determinationalgorithm.

eminus decrement of variable e in rate de-matching pattern determinationalgorithm.

X systematic bit in turbo code.

Y first parity bit in turbo code.

Y′ second parity bit in turbo code.

20-8 WCDMA3G_CCTrCHDeRMatch

Page 891: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

round towards +∞, that is, integer such that

round towards -∞, that is, integer such that

absolute value of x

The o notation is used to replace an index x when the indexed variable Xx doesnot depend on the index x. In the left wing of an assignment the meaning is that"Xo=Y" is equivalent to "for all x do Xx=Y".

Because of variable rate source, the data rate of each transport channel canchange from one TTI to another. TrCHType corresponds to the maximum bitrate of current transport channel. According to Table 20-2, it and TTI determinethe output buffer size at the out pin. From input TFCI, the current TF values ofall transport channels can be obtained.

3. Downlink Rate De-Matching

BCH is mapped to PCCPCH. From Table 20-2 and Table 20-3, one frame datasize of BCH is equal to that of PCCPCH. So for BCH, ∆Nij = 0. Ratede-matching algorithm in Note (5) is not needed.

Function DnLk_DeRM_Parameters( ) is used to determine the downlink de-ratematching parameters used in the function DeRMatch_Algorithm( ) in Note (5):N, eini, eplus, eminus. Variable inSize comes from input pin inSize. In downlink,the maximum data size of each transport channel is determined by itsmaximum TF value from input TFMax according to Table 20-2. The currentdata size of each transport channel Nil

TTI is based on its TF and TTI valueslisted in Table 20-2.

NilTTI = Sb*Nb;

DnLk_DeRM_Parameters(inSize, TFMax, NilTTI, N, eini, eplus, eminus)

if for fixed positions of transport channels

then

if ∆Ni,oTTI = 0

then for transport channel i, the output data of the rate de-matching is thesame as the input data and the rate de-matching algorithm of Note 5 does not

need to be executed.

x x x x 1+<≤

x x 1 x x≤<–

x

∆NTTI

i o, inSize← maxl TFS i( )∈

NTTIil

WCDMA3G_CCTrCHDeRMatch 20-9

Page 892: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

else

if for convolutional codes or ∆Ni,oTTI > 0 for turbo codes

then

// for each transmission time interval of transport channel i with TF l

Puncturing in WCDMA3G_CCTrCHRMatch if ∆N < 0, repetition otherwise.

else // ∆Ni,oTTI < 0 for turbo codes

// for Y sequence

// for Y′ sequence, X bits not punctured in WCDMA3G_CCTrCHRMatch.

// for each transmission time interval of transport channel i with TF l

Puncturing in WCDMA3G_CCTrCHRMatch if ∆N < 0, repetition otherwise.

end if

end if

else // for flexible positions of transport channels

if ∆NilTTI = 0

then for transport channel i, the output data of the rate de-matching is thesame as the input data and the rate de-matching algorithm of Note (5) doesnot need to be executed.

else

∆N ∆NTTI

i o, a,← 2 Nmax,← maxl TFS i( )∈

NTTIil

N NTTI

il eini,← Nmax eplus,← a Nmax eminus,⋅← a ∆N⋅←

a 2←

a 1←

∆N∆N

TTI

i o, 2⁄ forYsequence

∆NTTI

i o, 2⁄ forY 'sequence

← Nmax, maxl TFS i( )∈

NTTIil

3⁄←

N NTTIil

3⁄ eini,← Nmax eplus,← a Nmax eminus,⋅← a ∆N⋅←

∆NTTI

il inSize← NTTil

20-10 WCDMA3G_CCTrCHDeRMatch

Page 893: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

if for convolutional codes or ∆NilTTI>0 for turbo codes

then

// for each transmission time interval of transport channel i with TF l

Puncturing in WCDMA3G_CCTrCHRMatch if ∆N < 0, repetition otherwise

else // ∆NilTTI<0 for turbo codes

// for Y sequence

// for Y′ sequence, X bits cannot be punctured.

// for each transmission time interval of transport channel i with TF l

Puncturing in WCDMA3G_CCTrCHRMatch if ∆N < 0, repetition otherwise

end if

end if

end if

4. Rate de-matching for uplink

Function UpLk_DeRM_Parameters( ) is used to determine the uplink de-ratematching parameters used in the function DeRMatch_Algorithm( ) in Note (5):N, eini, eplus, eminus. The value at input pin inSize is the data size of currenttransport channel after rate matching in WCDMA3G_CCTrCHRMatch. It isequal to (Nij + ∆Nij). Because Nij can be obtained according to Table 20-2, ∆Nijcan be calculated.

Nij = Mt

UpLk_DeRM_Parameters (inSize, Nij, N, eini, eplus, eminus)

N ∆NTTIil

← a, 2←

N NTTIil

eini,← N eplus,← a N eminus,⋅← a ∆N⋅←

a 2←

a 1←

∆N∆N

TTI

il 2⁄ forYsequence

∆NTTI

il 2⁄ forY 'sequence

N NTTIil

3⁄ eini,← N eplus,← a N eminus,⋅← a ∆N⋅←

WCDMA3G_CCTrCHDeRMatch 20-11

Page 894: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

if ∆Nij = 0

then the output data of the rate matching is the same as the input data and thede-rate matching algorithm in Note 5 is not needed.

else

if for convolutional codes or ∆Ni,j>0 for turbo codes

then

if q is even

then // where gcd(q,Fi ) means greatest commondivisor

of q and Fi

else

end if

for each x = 0 to Fi -1

end for

// for each radio frame, calculate the following parameters

mod aN, if eini = 0 then .

Puncturing for ∆N<0 in WCDMA3G_CCTrCHRMatch, repeating otherwise

∆Nij inSize Nij–←

q Nij ∆Nij( )⁄←

q' q gcd q Fi,( )–← Fi⁄

q' q←

S IF x q'⋅ modFi( )( ) x q'⋅ divFi( )←

∆N ∆Ni j,←

a 2←

N Ni j,←

eini a S ni( ) ∆N⋅⋅ N+( )← eini a N⋅←

eplus a N⋅←

eminus a ∆N⋅←

20-12 WCDMA3G_CCTrCHDeRMatch

Page 895: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

else // ∆Ni,j<0 for turbo codes

for Y sequence

for Y′ sequence

if ( q≤2)

then for each x = 0 to Fi − 1

if (Y sequence) ; end if

if (Y' sequence) ; end if

end for

else

if q is even

then where gcd(q,Fi ) means greatest common divisor ofq and Fi

else q' = q

end if

end if

for each x = 0 to Fi - 1

if (Y sequence) , end if

if (Y′ sequence) , end if

end for

// for each radio frame, calculate the following parameters

a 2←

a 1←

∆N ∆Ni j,( ) 2⁄ forYsequence∆Ni j,( ) 2⁄ forY 'sequence

N Ni j,( ) 3⁄←

q N ∆N⁄←

S IF 3x 1+( )modFi[ ][ ] xmod2←

S IF 3x 2+( )modFi[ ][ ] xmod2←

q' q gcd q Fi,( )–← Fi⁄

r x q'⋅ modFi←

S IF 3r 1+( )modFi[ ][ ] x q'⋅ divFi←

S IF 3r 2+( )modFi[ ][ ] x q'⋅ divFi←

WCDMA3G_CCTrCHDeRMatch 20-13

Page 896: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

N is as above,

Puncturing for ∆N<0 in WCDMA3G_CCTrCHRMatch, repeating otherwise

end if

end if

5. Rate de-matching pattern determination

Function DeRMatch_Algorithm( ) is used to determine the de-rate matchingpattern of input data inP. N, eini, eplus, eminus are the parameters given in Note(3) or (4).

DeRMatch_Algorithm (inP, N, eini, eplus, eminus )

if puncturing has been performed in WCDMA3G_CCTrCHRMatch

then // initial error between current and desired puncturing ratio

// index of current bit

do while m<= N

// update error

if e<= 0 then // check if bit should be inserted

insert a neutral data after inP[m]

// update error

end if

end do

else // repetition has been performed in WCDMA3G_CCTrCHRMatch

// initial error between current and desired puncturing ratio

// index of current bit

do while m<= N

eini a N⋅←

eminus a ∆N⋅←

e eini←m 1←

e e← eminus–

e e← eplus+

m m 1+←

e eini←

m 1 n 1←;←

20-14 WCDMA3G_CCTrCHDeRMatch

Page 897: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

// update error

do while e <= 0 // check if bit number m+n should be punctured

puncture data inP[m+n]

// update error

n = n + 1

end do

// next bit

end do

end if

References

[1]3GPP Technical Specification TS 25.212 V3.0.0, “Multiplexing and channelcoding (FDD),” October 1999

e e← eminus–

e e← eplus+

m m 1+←

WCDMA3G_CCTrCHDeRMatch 20-15

Page 898: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

WCDMA3G_CCTrCHRMatch

Description Rate matching from transport channels to CCTrCHLibrary 3GPPFDD 10-99, Transport Channel MultiplexClass SDFWCDMA3G_CCTrCHRMatch

Parameters

Name Description Default Sym Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHPosInCCTrCH type of transport channelposition in one frame ofCCTrCH: Fixed, Flexible

Fixed enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

PhyCHNum number of physicalchannels that CCTrCH ismapped to

1 Np int [1, ∞)

20-16 WCDMA3G_CCTrCHRMatch

Page 899: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

UL_DPDCHType uplink dedicated physicaldata channel type:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

Name Description Default Sym Type Range

WCDMA3G_CCTrCHRMatch 20-17

Page 900: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

Pin Inputs

Pin Outputs

TrCHNum number of transportchannels to be multiplexedin one CCTrCH

1 Nt int [1, ∞)

TrCHNo current transport channelorder number

0 int [0, Nt-1]

TrCHType transport channel typecorresponding to maximumbit rate of current transportchannel: DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_8_kbps enum

RM semi-static rate matchingattribute for all transportchannels

1 real array [0, ∞)

OptimisticTrCHSizes set of transport channelframe sizes for flexibledownlink transport channelpositions

0 real array [0, ∞)

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 TFMax maximum TF of each transport channel int

2 in input data of current transport channel int

3 TFCI transport format combination indicator int

Pin Name Description Signal Type

4 out output data after rate matching int

5 outSize output data size after rate matching int

Name Description Default Sym Type Range

20-18 WCDMA3G_CCTrCHRMatch

Page 901: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes/Equations

1. This model is used to implement transport channel rate matching. The bitnumber of current transport channel data is changed to the bit numberrequired by the relevant coded composite transport channel (CCTrCH).Discontinuous transmission indicators are inserted with fixed transportchannel positions in downlinks.

Each firing:

• for downlinks, Mp×Np×T tokens of out and one token of outSize are producedwhen T×Nt tokens of TFMax, T tokens of TFCI and S tokens of in areconsumed

• for uplinks, Mp×Np tokens of out and one token of outSize are produced whenNt tokens of TFMax, one token of TFCI and S tokens of in are consumed.

Refer to Table 20-4 through Table 20-6 for the values of T, S, and Mp.

Table 20-4. T Values

TTI Frame Number in TTI (T)

TTI_10ms 1

TTI_20ms 2

TTI_40ms 4

TTI_80ms 8

Table 20-5. S Values

TrCHType TF TTIDownlink Input DataSize (S)

Uplink Input DataSize (S)

DCH_8_kbps 0 10ms 96 312

1 20ms 176 276

2 40ms 336 258

3 80ms 656 252

DCH_16_kbps 4 10ms 368 552

5 20ms 688 516

6 40ms 1344 504

7 80ms 2640 495

WCDMA3G_CCTrCHRMatch 20-19

Page 902: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

DCH_32_kbps 8 10ms 688 1032

9 20ms 1344 1008

10 40ms 2640 990

11 80ms 5256 986

DCH_64_kbps 12 10ms 1980 1980

13 20ms 3900 1950

14 40ms 7740 1935

15 80ms 7716*2 1929

DCH_128_kbps 16 10ms 3900 3900

17 20ms 7740 3870

18 40ms 7740*2 3858

19 80ms 10269*3 3851

DCH_256_kbps 20 10ms 7740 7740

21 20ms 7740*2 7716

22 40ms 10269*3 7702

23 80ms 12312*5 7695

DCH_512_kbps 24 10ms 7740*2 15432

25 20ms 10269*3 15404

26 40ms 12312*5 15390

27 80ms 13671*9 15380

DMCH_2_4_kbps 2 40ms 360 90

DMCH_12_2_kbps 5 20ms 804 402

DMCH_64_kbps 9 20ms 3900 1950

DMCH_144_kbps 13 20ms 8700 4350

DMCH_384_kbps 17 20ms 11556*2 11556

DMCH_2048_kbps 21 20ms 61520

BCH_11_1_kbps 0 10ms 270

BCH_12_3_kbps 5 20ms 270*2

Table 20-6. Mp Values

Physical Channel Type Bits per Frame (Mp)

DL_PhyCHType

DPCH_15kbps_TF0_T2_P4 60

DPCH_15kbps_TF2_T2_P4 30

Table 20-5. S Values (continued)

TrCHType TF TTIDownlink Input DataSize (S)

Uplink Input DataSize (S)

20-20 WCDMA3G_CCTrCHRMatch

Page 903: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

2. Model functions

In rate matching, bits on a transport channel are repeated or punctured. Higherlayers assign a rate-matching attribute for each transport channel.

Notations are:

DPCH_30kbps_TF0_T2_P2 240

DPCH_30kbps_TF2_T2_P2 210

DPCH_30kbps_TF0_T2_P4 210

DPCH_30kbps_TF2_T2_P4 180

DPCH_30kbps_TF0_T2_P8 150

DPCH_30kbps_TF2_T2_P8 120

DPCH_60kbps_TF0_T2_P4 510

DPCH_60kbps_TF2_T2_P4 480

DPCH_60kbps_TF0_T2_P8 450

DPCH_60kbps_TF2_T2_P8 420

DPCH_120kbps_TF8_T4_P8 900

DPCH_120kbps_TF0_T4_P8 900

DPCH_240kbps_TF8_T4_P8 2100

DPCH_240kbps_TF0_T4_P8 2100

DPCH_480kbps_TF8_T8_P16 4320

DPCH_480kbps_TF0_T8_P16 4320

DPCH_960kbps_TF8_T8_P16 9120

DPCH_960kbps_TF0_T8_P16 9120

DPCH_1920kbps_TF8_T8_P16 18720

DPCH_1920kbps_TF0_T8_P16 18720

PCCPCH 270

UL_DPDCHType

DPDCH_15kbps 150

DPDCH_30kbps 300

DPDCH_60kbps 600

DPDCH_120kbps 1200

DPDCH_240kbps 2400

DPDCH_480kbps 4800

DPDCH_960kbps 9600

Table 20-6. Mp Values (continued)

Physical Channel Type Bits per Frame (Mp)

WCDMA3G_CCTrCHRMatch 20-21

Page 904: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

Nij for uplink, number of bits in a radio frame before rate matching ontransport channel i with transport format combination j; for downlink, anintermediate calculation variable.

NilTTI (used in downlink only) number of bits in a transmission time interval

before rate matching on transport channel i with transport format l.

∆Nij for uplink, if positive, number of bits to be repeated in each radio frameon transport channel i with transport format combination j;for uplink, if negative, number of bits to be punctured in each radio frame ontransport channel i with transport format combination j.for downlink, an intermediate calculation variable.

∆NilTTI (used in downlink only) if positive, number of bits to be repeated in

each transmission time interval on transport channel i with transport formatl; if negative, number of bits to be punctured in each transmission timeinterval on transport channel i with transport format l.

RMi semi-static rate matching attribute for transport channel i; signalledfrom higher layers.

Ndata,j total number of bits available for the CCTrCH in a radio frame withtransport format combination j.

Zij intermediate calculation variable.

Fi no. of radio frames in transmission time interval of transport channel i.

ni radio frame number in transmission time interval of transport channel i(0 ≤ ni ≤ Fi ).

q (used in uplink only) average puncturing distance.

IF(ni ) (used in uplink only) inverse interleaving function of first interleaver.

S(ni ) (used in uplink only) shift of puncturing pattern for radio frame ni

TFi (j) transport format of transport channel i for format combination j.

TFS(i) set of transport format indices l for transport channel i.

TFCS set of transport format combination indices j.

N input data length in rate matching pattern dermination algorithm.

20-22 WCDMA3G_CCTrCHRMatch

Page 905: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

eini initial value of variable e in rate matching pattern determinationalgorithm.

eplus increment of variable e in rate matching pattern determinationalgorithm.

eminus decrement of variable e in rate matching pattern determinationalgorithm.

X systematic bit in turbo code.

Y first parity bit in turbo code.

Y′ second parity bit in turbo code.

round toward +∞, that is, integer such that

round toward -∞, that is, integer such that

absolute value of x

The o notation is used to replace an index x when the indexed variable Xxdoes not depend on the index x. In the left wing of an assignment themeaning is that "Xo =Y" is equivalent to "for all x do Xx =Y".

TrCHType responds to the maximum possible bit rate of current transportchannel. According to Table 20-5, it and TTI determine the input buffer size atpin in. Because variable rate source, the data rate of each transport channel canchange from one TTI to another. From input TFCI, the current TF values of alltransport channels can be obtained. RMi can be set through the parameter RM.Fi of the current transport channel is T.

Function RMatch_deltasize( ) is used to calculate the rate matching parametersdeltasize saved in the array deltaSizeP. There are TrCHNum ( equal to Nt)transport channels with RM values saved in the array RMP. Sizes of alltransport channels Nij are stored in the array TrCHFrameSizeP. Thesetransport channels will be rate matched into one frame of CCTrCH withCCTrCHSize equal to Mp *Np .

RMatch_deltasize (TrCHFrameSizeP, deltaSizeP, RMP, TrCHNum,CCTrCHSize)

for each

x x x x 1+<≤

x x 1 x x≤<–

x

∆Nij

sum 0←

i 0 TrCHNum 1–,[ ]∈

WCDMA3G_CCTrCHRMatch 20-23

Page 906: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

do

end for

for each

do tmpSum += RMP[i] * TrCHFrameSizeP[i]

end for

3. Determining rate matching parameters in downlink

BCH is mapped to PCCPCH. From Table 20-5 and Table 20-6, one frame datasize of BCH is equal to that of PCCPCH. So for BCH, ∆Nij = 0. Rate matchingalgorithm of Note (6) is not needed.

Function DnLk_RM_Parameters( ) is used to determine the downlink ratematching parameters used in the function RMatch_Algorithm( ) in Note (6): N,eini, eplus, eminus. For downlink, Ndata,j does not depend on the transport formatcombination j and denoted as Ndata,o; it is determined by channelization code(s)and equal to Mp*Np in this model. After rate matching, the data size of thecurrent transport channel in TTI is output at pin outSize. The current data sizeof each transport channel Nil

TTI is based on its TF and TTI values as shown inTable 20-5. The maximum data size of each transport channel i for downlink

is determined by its maximum TF value from input TFMax

according to Table 20-5. is derived from function RMatch_deltasize( ).

DnLk_RM_Parameters (TFMax, Ndata,o, Fi, NilTTI ,N, eini, eplus, eminus)

if for fixed positions of transport channels

sum RMP i[ ]=+ TrCHFrameSizeP i[ ]⋅

tmpSum 0←

tmpLast 0←

tmp 0←

i 0 TrCHNum 1–,[ ]∈

tmp tmpSum CCTrCHSize⋅( ) sum⁄←

deltaSizeP i[ ] tmp tmpLast– TrCHFrameSizeP i[ ]–←

tmpLast tmp←

maxl TFS i( )∈

NTTI

i l,

∆Nij

20-24 WCDMA3G_CCTrCHRMatch

Page 907: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

then // an intermediate calculation variable Ni,o,

determined by TFMax and Fi

∆Ni,o is calculated by calling function RMatch_deltasize( ) (input parameterTrCHFrameSizeP is based on Ni,o).

if ∆Ni,oTTI = 0

then for transport channel i, the output data of the rate matching is the sameas the input data and the rate matching algorithm of Note (6) does not needto be executed.

else

if for convolutional codes or ∆Ni,oTTI > 0 for turbo codes

then

// Nmax is determined by TFMax

// for each transmission time interval of transport channel i with TF l

Puncturing if ∆N < 0, repetition otherwise.

else // ∆Ni,oTTI < 0 for turbo codes

// for Y sequence

// for Y′ sequence, the X bits cannot be punctured.

// for each transmission time interval of transport channel i with TF l

Ni o,1Fi------

maxl TFS i( )∈

NTTI

i l,⋅←

∆NTTIi o,

Fi ∆Ni o,⋅←

∆N ∆NTTI

i o, a, 2 Nmax, maxl TFS i( )∈

NTTIil

← ← ←

NTTIil

eini, Nmax eplus, a Nmax eminus,⋅ a ∆N⋅← ← ← ←

a 2←

a 1←

∆N∆N

TTI

i o, 2⁄ forYsequence

∆NTTI

i o, 2⁄ forY 'sequence

← Nmax, maxl TFS i( )∈

NTTIil

3⁄←

N NTTIil

3⁄ eini, Nmax eplus, a Nmax eminus,⋅ a ∆N⋅← ← ← ←

WCDMA3G_CCTrCHRMatch 20-25

Page 908: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

Puncturing if ∆N < 0, repetition otherwise.

end if

end if

// for each transport channel, its reserved bit size in one frame of CCTrCH is

.

// if the data of one transport channel after rate matching fill incompletely itsreserved bit positions, discontinuous transmission (DTX) indications areinserted. DTX indication is denoted by 10 in this model.

else // for flexible positions of transport channels

// an intermediate calculation variable Nij is calculated.

if the parameter OptimisticTrCHSizes is valid and used

then Ni,j, i = 1, ... , Nt , can be obtained by OptimisticTrCHSizes.

They meet the following condition: .

else // parameter OptimisticTrCHSizes is not valid and not used

Ni,j =

end if

// rate matching ratios RF i are calculated for each

transport channel i.

// tentative temporary values of ∆Ni,lTTI

for all transport channel i and any of its transport format l are calculated

// temporary values of ∆Ni,lTTI are checked and corrected for all j in TFCS

maxl TFS i( )∈

NTTIil

∆NTTI

i o,+ Fi⁄

Ni j,1Fi------ N

TTIi TFi j( ),⋅←

maxj TFCS∈

RMi Ni j,⋅( )i 1=

Nt

Ni o,1Fi------← max

l TFS i( )∈N

TTIi l,

RFiNdata °,

RMi Ni j,⋅( )i 1=

Nt

∑------------------------------------------- RMi⋅←

∆NTTIi l,

FiRFi N

TTIi l,

Fi------------------------------- N

TTIi l,

–⋅←

20-26 WCDMA3G_CCTrCHRMatch

Page 909: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

if D > Ndata, o

then for i = 1 to Nt

∆Ni,j is calculated by calling function RMatch_deltasize( ) (parameterTrCHFrameSizeP is based on Nij )

∆N = Fi * ∆Ni,j

if then

end if

end for

end if

end for

if ∆Ni,lTTI = 0

then output data of the rate matching is the same as the input data and therate matching algorithm of Note (6) does not need to be executed.

else

if for convolutional codes or ∆NilTTI>0 for turbo codes

then

// for each transmission time interval of transport channel i with TF l

Puncturing if ∆N < 0, repetition otherwise.

else //for ∆NilTTI<0 for turbo codes

// for Y sequence

// for Y′ sequence. The X bits shall not be punctured.

DN TTI

i TFi j( ),∆N TTI

i TFi j( ),+

Fi----------------------------------------------------------------

i 1=

Nt

∑←

∆NTTI

i TFi j( ), ∆N> ∆NTTI

i TFi j( ), ∆N←

∆N ∆NTTIil

← a, 2←

N NTTIil

eini, N eplus, a N eminus,⋅ a ∆N⋅← ← ← ←

a 2←

a 1←

WCDMA3G_CCTrCHRMatch 20-27

Page 910: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

// for each transmission time interval of transport channel i with TF l

Puncturing if if ∆N < 0, repetition otherwise.

// After rate matching, each transport channel data size in one frame of

CCTrCH is

end if

end if

end if

4. Determining rate matching parameters in uplink

Ndata,j is equal to Mp*Np. The current data size of each transport channel Nij isdetermined by its current TF and TTI as shown in Table 20-5. Using functionRMatch_deltasize( ), ∆Nij can be calculated. If ∆Nij = 0 then the output data ofthe rate matching is the same as the input data and the rate matchingalgorithm of Note (6) does not need to be executed.

Function UpLk_RM_Parameters( ) is used to determine the rate matchingparameters used in function RMatch_Algorithm( ) in Note (6): N, eini, eplus,eminus.

UpLk_RM_Parameters (Nij, ∆Nij, Fi , N, eini, eplus, eminus)

if for convolutional codes or ∆Nij>0 for turbo codes

then

if q is even

thenwhere gcd(q,Fi ) means greatest common divisor of q and Fi

else

∆N∆NTTI

il2⁄ forYsequence

∆NTTIil

2⁄ forY 'sequence

N NTTIil

3⁄ eini, N eplus, a N eminus,⋅ a ∆N⋅← ← ← ←

NTTIil

∆NTTIil

+( ) Fi⁄

q Nij ∆Nij( )⁄←

q' q gcd q Fi,( )– Fi⁄=

20-28 WCDMA3G_CCTrCHRMatch

Page 911: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

end if

for each x = 0 to Fi -1

end for

, if eini = 0 then

Puncturing for ∆N<0, repeating otherwise.

else // ∆Nij<0 for turbo codes

// for Y sequence

// for Y′ sequence

if ( q<=2)

then for x = 0 to Fi - 1

if ( Y sequence ) ; end if

if ( Y′ sequence) ; end if

end for

else

if q is even

q' q←

S IF x q'⋅ modFi( )( ) x q'⋅ divFi( )←

∆N ∆Nij a 2←;←

N Nij←

eini a S ni( ) ∆N⋅ ⋅ N+( )mod a N⋅( )← eini a N⋅←

eplus a N eminus a ∆N⋅←;⋅←

a 2←

a 1←

∆N ∆Ni j,( ) 2⁄ forYsequence∆Ni j,( ) 2⁄ forY 'sequence

N Ni j,( ) 3⁄←

q N ∆N⁄←

S IF 3x 1+( )modFi[ ][ ] xmod2=

S IF 3x 2+( )modFi[ ][ ] xmod2=

WCDMA3G_CCTrCHRMatch 20-29

Page 912: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

thenwhere gcd(q,Fi ) means greatest common divisor of q and Fi

else

end if

for each x = 0 to Fi - 1

if ( Y sequence ) end if

if ( Y′ sequence ) end if

end for

// for each frame, the rate matching parameters are calculated

N is as above,

Puncturing for ∆N<0, repeating otherwise.

end if

5. Bit separation for rate matching

In rate matching, puncturing for turbo codes is done for Y sequence and Y'sequence separately. No puncturing is applied to the X sequence. Therefore, theX, Y and Y' sequence must be separated before the rate matching algorithm isapplied.

For downlink, the rate matching follows channel coding (see Figure 20-1), so bitseparation is easily accomplished. The bit stream after channel coding hasconstant pattern: ... , X,Y,Y', ... .

For uplink, see Figure 20-2, rate matching is applied after radio framesegmentation.

There are two different alternation patterns in bit stream from radio framesegmentation according to the TTI of a transport channel as shown inTable 20-7. Each radio frame of a transport channel starts with different initial

q' q gcd q Fi,( )– Fi⁄=

q' q←

r x q'⋅ modFi←

S IF 3r 1+( )modFi[ ][ ] x q'⋅ divFi←

S IF 3r 2+( )modFi[ ][ ] x q'⋅ divFi←

eini a N⋅←

eminus a ∆N⋅←

20-30 WCDMA3G_CCTrCHRMatch

Page 913: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

parity type. Table 20-8 shows the initial parity type of each radio frame of atransport channel with TTI={10,20,40,80} msec.

Table 20-7 and Table 20-8 define a complete output bit pattern from radio framesegmentation.

Figure 20-1. Overall rate matching block diagram in downlink where x denotespunctured bit

Figure 20-2. Overall rate matching block diagram in uplink where x denotespunctured bit

Table 20-7. Alternation Patterns of Bits fromRadio Frame Segmentation in Uplink

TTI (msec) Alternation Patterns

10,40 ...X,Y,Y',...

20,80 ...,X,Y',Y,...

WCDMA3G_CCTrCHRMatch 20-31

Page 914: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

6. Rate matching pattern

Function RMatch_Algorithm( ) is used to determine the rate matching patternof input data inP which length is N, according to parameters eini, eplus, eminus.

RMatch_Algorithm (inP, N, eini, eplus, eminus )

if puncturing is to be performed

then // initial error between current and desired puncturing ratio

// index of current bit

do while m<= N

// update error

if e<= 0 then // check if bit number m should be punctured

puncture bit inP[m]

// update error

end if

end do

else

// initial error between current and desired puncturing ratio

// index of current bit

do while m<= N

Table 20-8. Initial Parity Type of Radio Frames of Transport Channel in Uplink

TTI (msec) ni =0 ni =1 ni =2 ni =3 ni =4 ni =5 ni =6 ni =7

10 X

20 X Y

40 X Y' Y X

80 X Y Y' X Y Y' X Y

ni denotes radio frame indexes

e eini←

m 1←

e e← eminus–

e e← eplus+

m m 1+←

e eini←

m 1←

20-32 WCDMA3G_CCTrCHRMatch

Page 915: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

// update error

do while e <= 0 // check if bit number m should be repeated

repeat bit inP[m] // a repeated bit is placed directly after the original one

// update error

end do

// next bit

end do

end if

References

[1]3GPP Technical Specification TS 25.212 V3.0.0, “Multiplexing and channelcoding (FDD),” October 1999.

e e← eminus–

e e← eplus+

m m 1+←

WCDMA3G_CCTrCHRMatch 20-33

Page 916: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

WCDMA3G_RadioFrameDeEqual

Description Radio frame de-equalizationLibrary 3GPPFDD 10-99, Transport Channel MultiplexClass SDFWCDMA3G_RadioFrameDeEqual

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Uplink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

Pin Name Description Signal Type

1 in input data real

2 TF input transport format int

20-34 WCDMA3G_RadioFrameDeEqual

Page 917: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. Radio frame size de-equalization removes the padding bit sequence that isadded when performing radio frame size equalization.

Radio frame size de-equalization is only performed in the uplink (downlink ratematching output block length is always an integer multiple of radio segment).

For details regarding radio frame size equalization, refer to [1].

References

[1]3GPP Technical Specification TS 25.212 V3.0.0, “Multiplexing and ChannelCoding,” October 1999.

Pin Name Description Signal Type

3 out output data real

4 outSize output data size int

WCDMA3G_RadioFrameDeEqual 20-35

Page 918: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

WCDMA3G_RadioFrameDelay

Description Radio frame delayLibrary 3GPPFDD 10-99, Transport Channel MultiplexClass SDFWCDMA3G_RadioFrameDelay

Parameters

Name Description Default Sym Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

PhyCHNum number of physicalchannels that CCTrCH ismapped to

1 Np int [1, ∞)

20-36 WCDMA3G_RadioFrameDelay

Page 919: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

Name Description Default Sym Type Range

WCDMA3G_RadioFrameDelay 20-37

Page 920: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to delay input data several frames for radio framede-segmentation because output data from the Rake receiver has one framedelay.

Each firing, Mp×Np tokens of out and one token of outSize are produced whenMp×Np tokens of in and one token of inSize are consumed.

Mp×Np tokens of input data is one frame data of 10ms. Because output datafrom the Rake receiver has one frame delay, this model delays input data (T-1)frames (Mp×Np× (T-1) tokens) and input data size (T-1) tokens. In variable ratetransmission, all data in one frame is not useful, only inSize tokens are valid.WCDMA3G_RadioFrameDeSeg concatenates T frames to one TTI data block.The first data block in TTI is delayed data, not useful.

UL_DPDCHType uplink dedicated physicaldata channel type:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 in input data real

2 inSize input data size int

Pin Name Description Signal Type

3 out output data real

4 outSize output data size int

Name Description Default Sym Type Range

20-38 WCDMA3G_RadioFrameDelay

Page 921: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Refer to Table 20-9 and Table 20-10 for the values of T and Mp.

2. DL_PhyCHType is valid only when LinkDir=Downlink; UL_DPDCHType isvalid only when LinkDir=Uplink.

Table 20-9. T Values

TTI Frame Number in TTI (T)

TTI_10ms 1

TTI_20ms 2

TTI_40ms 4

TTI_80ms 8

Table 20-10. Mp Values

Physical Channel Type Bits per Frame (Mp)

DL_PhyCHType

DPCH_15kbps_TF0_T2_P4 60

DPCH_15kbps_TF2_T2_P4 30

DPCH_30kbps_TF0_T2_P2 240

DPCH_30kbps_TF2_T2_P2 210

DPCH_30kbps_TF0_T2_P4 210

DPCH_30kbps_TF2_T2_P4 180

DPCH_30kbps_TF0_T2_P8 150

DPCH_30kbps_TF2_T2_P8 120

DPCH_60kbps_TF0_T2_P4 510

DPCH_60kbps_TF2_T2_P4 480

DPCH_60kbps_TF0_T2_P8 450

DPCH_60kbps_TF2_T2_P8 420

DPCH_120kbps_TF8_T4_P8 900

DPCH_120kbps_TF0_T4_P8 900

DPCH_240kbps_TF8_T4_P8 2100

DPCH_240kbps_TF0_T4_P8 2100

DPCH_480kbps_TF8_T8_P16 4320

DPCH_480kbps_TF0_T8_P16 4320

DPCH_960kbps_TF8_T8_P16 9120

DPCH_960kbps_TF0_T8_P16 9120

DPCH_1920kbps_TF8_T8_P16 18720

DPCH_1920kbps_TF0_T8_P16 18720

WCDMA3G_RadioFrameDelay 20-39

Page 922: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

References

[1]3GPP Technical Specification TS 25.211 V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October 1999

[2] 3GPP Technical Specification TS 25.212 V3.0.0, “Multiplexing and channelcoding (FDD),” October 1999.

PCCPCH 270

UL_DPDCHType

DPDCH_15_kbps 150

DPDCH_30_kbps 300

DPDCH_60_kbps 600

DPDCH_120_kbps 1200

DPDCH_240_kbps 2400

DPDCH_480_kbps 4800

DPDCH_960_kbps 9600

Table 20-10. Mp Values

Physical Channel Type Bits per Frame (Mp)

20-40 WCDMA3G_RadioFrameDelay

Page 923: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_RadioFrameDeSeg

Description Radio frame de-segmentationLibrary 3GPPFDD 10-99, Transport Channel MultiplexClass SDFWCDMA3G_RadioFrameDeSeg

Parameters

Name Description Default Sym Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

DL_PhyCHNum number of physicalchannels that CCTrCH ismapped to

1 Np int [1, ∞)

WCDMA3G_RadioFrameDeSeg 20-41

Page 924: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

Name Description Default Sym Type Range

20-42 WCDMA3G_RadioFrameDeSeg

Page 925: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to concatenate each radio frame of one transport channelinto one data block in TTI. Each radio frame has the same number of bits.

Each firing, for downlinks, Mp×Np×T tokens of out and one token of outSize areproduced when Mp×Np×T tokens of in and T tokens of inSize are consumed. Foruplinks, each firing, Mt×T tokens of out and one token of outSize are producedwhen Mt×T tokens of in and T tokens of inSize are consumed.

Mp×Np×T tokens (for downlink) or Mt×T tokens (for uplink) of input data arebit sequence corresponding to T consecutive frames. Because variable rate

UL_DCHType uplink dedicated channeltype: DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps

DCH_8_kbps enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 in input data of one radio frame real

2 inSize input data size in 10ms int

Pin Name Description Signal Type

3 out output data in TTI real

4 outSize output data size in TTI int

Name Description Default Sym Type Range

WCDMA3G_RadioFrameDeSeg 20-43

Page 926: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

transmission, not all Mp×Np tokens (for downlink) or Mt (for uplink) in oneframe are useful. In each frame of input tokens, inSize tokens are useful. Thismodel serially concatenates useful tokens of T frames to a data block in TTI.OutSize is all useful tokens in this data block.

Refer to Table 20-11 through Table 20-13 for the values of T, Mp, and Mt.

2. DL_PhyCHType is valid only when LinkDir=Downlink; UL_DPDCHType isvalid only when LinkDir=Uplink.

Table 20-11. T Values

TTI Frame Number in TTI (T)

TTI_10ms 1

TTI_20ms 2

TTI_40ms 4

TTI_80ms 8

Table 20-12. MP Values

DL_DPCHType DPDCH, PCCPCH Bits/Frame (Mp)

DPCH_15kbps_TF0_T2_P4 60

DPCH_15kbps_TF2_T2_P4 30

DPCH_30kbps_TF0_T2_P2 240

DPCH_30kbps_TF2_T2_P2 210

DPCH_30kbps_TF0_T2_P4 210

DPCH_30kbps_TF2_T2_P4 180

DPCH_30kbps_TF0_T2_P8 150

DPCH_30kbps_TF2_T2_P8 120

DPCH_60kbps_TF0_T2_P4 510

DPCH_60kbps_TF2_T2_P4 480

DPCH_60kbps_TF0_T2_P8 450

DPCH_60kbps_TF2_T2_P8 420

DPCH_120kbps_TF8_T4_P8 900

DPCH_120kbps_TF0_T4_P8 900

DPCH_240kbps_TF8_T4_P8 2100

DPCH_240kbps_TF0_T4_P8 2100

DPCH_480kbps_TF8_T8_P16 4320

DPCH_480kbps_TF0_T8_P16 4320

DPCH_960kbps_TF8_T8_P16 9120

20-44 WCDMA3G_RadioFrameDeSeg

Page 927: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

DPCH_960kbps_TF0_T8_P16 9120

DPCH_1920kbps_TF8_T8_P16 18720

DPCH_1920kbps_TF0_T8_P16 18720

PCCPCH 270

Table 20-13. Mt Values

UL_DCHType TTI DCH Bits/Frame (Mt)

DCH_8_kbps 10ms 312

20ms 276

40ms 258

80ms 252

DCH_16_kbps 10ms 552

20ms 516

40ms 504

80ms 495

DCH_32_kbps 10ms 1032

20ms 1008

40ms 990

80ms 986

DCH_64_kbps 10ms 1980

20ms 1950

40ms 1935

80ms 1929

DCH_128_kbps 10ms 3900

20ms 3870

40ms 3858

80ms 3851

DCH_256_kbps 10ms 7740

20ms 7716

40ms 7702

80ms 7695

Table 20-12. MP Values (continued)

DL_DPCHType DPDCH, PCCPCH Bits/Frame (Mp)

WCDMA3G_RadioFrameDeSeg 20-45

Page 928: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

References

[1]3GPP Technical Specification TS 25.211 V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October 1999

[2] 3GPP Technical Specification 25.212 V3.0.0, “Multiplexing and channel coding(FDD),” October 1999

DCH_512_kbps 10ms 15432

20ms 15404

40ms 15390

80ms 15380

DMCH_2_4_kbps 40ms 90

DMCH_12_2_kbps 20ms 402

DMCH_64_kbps 20ms 1950

DMCH_144_kbps 20ms 4350

DMCH_384_kbps 20ms 11556

DMCH_2048_kbps 20ms 61520

Table 20-13. Mt Values (continued)

UL_DCHType TTI DCH Bits/Frame (Mt)

20-46 WCDMA3G_RadioFrameDeSeg

Page 929: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_RadioFrameEqual

Description Radio frame equalizationLibrary 3GPPFDD 10-99, Transport Channel MultiplexClass SDFWCDMA3G_RadioFrameEqual

Parameters

Pin Inputs

Name Description Default Type

LinkDir link direction: Downlink,Uplink

Uplink enum

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

Pin Name Description Signal Type

1 in input data int

2 TF input transport format int

WCDMA3G_RadioFrameEqual 20-47

Page 930: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

Pin Outputs

Notes/Equations

1. Radio frame size equalization pads the input bit sequence to ensure that theoutput can be segmented into the same size.

Radio frame size equalization is performed in the uplink only (downlink ratematching output block length is always an integer multiple of radio segment).

For details regarding radio frame size equalization refer to [1].

References

[1]3GPP Technical Specification, TS 25.212, V3.0.0, “Multiplexing and ChannelCoding,” October 1999.

Pin Name Description Signal Type

3 out output data int

4 outSize output data size int

20-48 WCDMA3G_RadioFrameEqual

Page 931: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_RadioFrameSeg

Description Radio frame segmentationLibrary 3GPPFDD 10-99, Transport Channel MultiplexClass SDFWCDMA3G_RadioFrameSeg

Parameters

Name Description Default Sym Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

DL_PhyCHNum number of physicalchannels that CCTrCH ismapped to

1 Np int [1, ∞)

WCDMA3G_RadioFrameSeg 20-49

Page 932: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

Name Description Default Sym Type Range

20-50 WCDMA3G_RadioFrameSeg

Page 933: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to segment one transport channel data block in TTI into thenumber of radio frames determined by TTI. Each radio frame has the samenumber of bits.

Each firing, for Downlink, Mp×Np×T tokens of out and T tokens of outSize areproduced when Mp×Np×T tokens of in and one token of inSize are consumed;for Uplink, Mt×T tokens of out and T tokens of outSize are produced when Mt×Ttokens of in and one token of inSize are consumed. Refer to Table 20-14 throughTable 20-16 for the values of T, Mp, and Mt.

UL_DCHType uplink dedicated channeltype: DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps

DCH_8_kbps enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 in input data in TTI int

2 inSize input data size in TTI int

Pin Name Description Signal Type

3 out output data of one radio frame int

4 outSize output data size in 10ms int

Name Description Default Sym Type Range

WCDMA3G_RadioFrameSeg 20-51

Page 934: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

2. DL_PhyCHType and DL_PhyCHNum are valid only when LinkDir=Downlink;UL_DCHType is valid only when LinkDir=Uplink.

3. When the transmission time interval is longer than 10ms, the input bitsequence in TTI is segmented and mapped onto T consecutive radio frames.Mp×Np×T tokens (for downlink) or Mt×T (for uplink) of input data are bitsequence in TTI, corresponding to T frames data. In variable rate transmission,only inSize tokens in the input tokens are useful. This model equally segmentsinSize tokens to T frames. In each frame, outSize tokens are useful.

Table 20-14. Value of T

TTI Frame Number in TTI (T)

TTI_10ms 1

TTI_20ms 2

TTI_40ms 4

TTI_80ms 8

Table 20-15. Value of Mp

DL_PhyCHType Bits per Frame (Mp)

DPCH_15kbps_TF0_T2_P4 60

DPCH_15kbps_TF2_T2_P4 30

DPCH_30kbps_TF0_T2_P2 240

DPCH_30kbps_TF2_T2_P2 210

DPCH_30kbps_TF0_T2_P4 210

DPCH_30kbps_TF2_T2_P4 180

DPCH_30kbps_TF0_T2_P8 150

DPCH_30kbps_TF2_T2_P8 120

DPCH_60kbps_TF0_T2_P4 510

DPCH_60kbps_TF2_T2_P4 480

DPCH_60kbps_TF0_T2_P8 450

DPCH_60kbps_TF2_T2_P8 420

DPCH_120kbps_TF8_T4_P8 900

DPCH_120kbps_TF0_T4_P8 900

DPCH_240kbps_TF8_T4_P8 2100

DPCH_240kbps_TF0_T4_P8 2100

DPCH_480kbps_TF8_T8_P16 4320

DPCH_480kbps_TF0_T8_P16 4320

DPCH_960kbps_TF8_T8_P16 9120

20-52 WCDMA3G_RadioFrameSeg

Page 935: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

DPCH_960kbps_TF0_T8_P16 9120

DPCH_1920kbps_TF8_T8_P16 18720

DPCH_1920kbps_TF0_T8_P16 18720

PCCPCH 270

Table 20-16. Value of Mt

UL_DCHType TTI Bits per Frame (Mt)

DCH_8_kbps 10ms 312

20ms 276

40ms 258

80ms 252

DCH_16_kbps 10ms 552

20ms 516

40ms 504

80ms 495

DCH_32_kbps 10ms 1032

20ms 1008

40ms 990

80ms 986

DCH_64_kbps 10ms 1980

20ms 1950

40ms 1935

80ms 1929

DCH_128_kbps 10ms 3900

20ms 3870

40ms 3858

80ms 3851

DCH_256_kbps 10ms 7740

20ms 7716

40ms 7702

80ms 7695

Table 20-15. Value of Mp (continued)

DL_PhyCHType Bits per Frame (Mp)

WCDMA3G_RadioFrameSeg 20-53

Page 936: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

References

[1]3GPP Technical Specification TS 25.211 V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October 1999

[2] 3GPP Technical Specification 25.212 V3.0.0, “Multiplexing and channel coding(FDD),” October 1999

DCH_512_kbps 10ms 15432

20ms 15404

40ms 15390

80ms 15380

DMCH_2_4_kbps 40ms 90

DMCH_12_2_kbps 20ms 402

DMCH_64_kbps 20ms 1950

DMCH_144_kbps 20ms 4350

DMCH_384_kbps 20ms 11556

DMCH_2048_kbps 20ms 61520

Table 20-16. Value of Mt (continued)

UL_DCHType TTI Bits per Frame (Mt)

20-54 WCDMA3G_RadioFrameSeg

Page 937: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_TrCHDeMux

Description Transport channel de-multiplexingLibrary 3GPPFDD 10-99, Transport Channel MultiplexClass SDFWCDMA3G_TrCHDeMux

Parameters

Name Description Default Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHPosInCCTrCH type of transport channelposition in one frame ofCCTrCH: Fixed, Flexible

Fixed enum

PhyCHNum number of physicalchannels that CCTrCH ismapped to

1 int [1, ∞)

WCDMA3G_TrCHDeMux 20-55

Page 938: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

UL_DPDCHType uplink dedicated physicaldata channel type:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps,BCH_11_1_kbps,BCH_12_3_kbps

DPDCH_30kbps enum

Name Description Default Type Range

20-56 WCDMA3G_TrCHDeMux

Page 939: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to de-multiplex radio frames of all transport channels fromone coded composite transport channel (CCTrCH). It also puncturesdiscontinuous transmission indicators with flexible transport channel positionsin downlinks.

Each firing, Mp×Np tokens of each out signal and one token of each outSizesignal are produced when Nt tokens of TFMax, Mp×Np tokens of in and onetoken of TFCI are consumed. Refer to Table 20-17 for the values of Mp.

2. DL_PhyCHType is valid only when LinkDir=Downlink; UL_DPDCHType isvalid only when LinkDir=Uplink. When DL_PhyCHType=PCCPCH, setPhyCHNum and TrCHNum to 1.

TrCHNum number of transportchannels to be multiplexed

1 int [1, ∞)

TrCHType dedicated channel type:Dedicated Channel,Dedicated MeasurementChannel, BroadcastChannel

DedicatedChannel

enum

RM semi-static rate matchingattribute for all transportchannels

1 real array

OptimisticTrCHSizes set of transport channelframe sizes for flexibledownlink transport channelpositions

0 real array

Pin Name Description Signal Type

1 TFMax maximum TF of each transport channel int

2 in data of one CCTrCH frame to be de-multiplexed real

3 TFCI received transport format combination indicator int

Pin Name Description Signal Type

4 out data of each transport channel after de-multiplexing multiple real

5 outSize data size of each transport channel afterde-multiplexing

multiple int

Name Description Default Type Range

WCDMA3G_TrCHDeMux 20-57

Page 940: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

Table 20-17. Value of Mp

Physical Channel Type Bits per Frame (Mp)

DL_PhyCHType

DPCH_15kbps_TF0_T2_P4 60

DPCH_15kbps_TF2_T2_P4 30

DPCH_30kbps_TF0_T2_P2 240

DPCH_30kbps_TF2_T2_P2 210

DPCH_30kbps_TF0_T2_P4 210

DPCH_30kbps_TF2_T2_P4 180

DPCH_30kbps_TF0_T2_P8 150

DPCH_30kbps_TF2_T2_P8 120

DPCH_60kbps_TF0_T2_P4 510

DPCH_60kbps_TF2_T2_P4 480

DPCH_60kbps_TF0_T2_P8 450

DPCH_60kbps_TF2_T2_P8 420

DPCH_120kbps_TF8_T4_P8 900

DPCH_120kbps_TF0_T4_P8 900

DPCH_240kbps_TF8_T4_P8 2100

DPCH_240kbps_TF0_T4_P8 2100

DPCH_480kbps_TF8_T8_P16 4320

DPCH_480kbps_TF0_T8_P16 4320

DPCH_960kbps_TF8_T8_P16 9120

DPCH_960kbps_TF0_T8_P16 9120

DPCH_1920kbps_TF8_T8_P16 18720

DPCH_1920kbps_TF0_T8_P16 18720

PCCPCH 270

UL_DPDCHType

DPDCH_15kbps 150

DPDCH_30kbps 300

DPDCH_60kbps 600

DPDCH_120kbps 1200

DPDCH_240kbps 2400

DPDCH_480kbps 4800

DPDCH_960kbps 9600

20-58 WCDMA3G_TrCHDeMux

Page 941: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Table 20-18. Transport Channel Data Sizes

TrCHType TF TTIDownlinkData Size

Uplink DataSize

DCH_8_kbps 0 10ms 96 312

1 20ms 176 276

2 40ms 336 258

3 80ms 656 252

DCH_16_kbps 4 10ms 368 552

5 20ms 688 516

6 40ms 1344 504

7 80ms 2640 495

DCH_32_kbps 8 10ms 688 1032

9 20ms 1344 1008

10 40ms 2640 990

11 80ms 5256 986

DCH_64_kbps 12 10ms 1980 1980

13 20ms 3900 1950

14 40ms 7740 1935

15 80ms 15432 1929

DCH_128_kbps 16 10ms 3900 3900

17 20ms 7740 3870

18 40ms 15432 3858

19 80ms 30807 3851

DCH_256_kbps 20 10ms 7740 7740

21 20ms 15432 7716

22 40ms 30807 7702

23 80ms 61560 7695

DCH_512_kbps 24 10ms 15432 15432

25 20ms 30807 15404

26 40ms 61560 15390

27 80ms 123039 15380

DMCH_2_4_kbps 2 40ms 360 105

DMCH_12_2_kbps 5 20ms 804 495

DMCH_64_kbps 9 20ms 3900 2295

DMCH_144_kbps 13 20ms 8700 4700

DMCH_384_kbps 17 20ms 23112 9525

DMCH_2048_kbps 21 20ms 57510

WCDMA3G_TrCHDeMux 20-59

Page 942: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

3. Model functions

This model calculates the data size of each transport channel in one frame ofCCTrCH (determined in WCDMA3G_CCTrCHRMatch) and gets each transportchannel data from it. The calculations used in this model are the same as, andthe following notations are consistent with, WCDMA3G_CCTrCHRMatch.

Nij for uplink, number of bits in a radio frame before rate matching ontransport channel i with transport format combination j; for downlink, anintermediate calculation variable.

NilTTI (used in downlink only) number of bits in a transmission time

interval before rate matching on transport channel i with transport format l.

∆Nij for uplink, if positive, number of bits to be repeated in each radioframe on transport channel i with transport format combination j;for uplink, if negative, number of bits to be punctured in each radio frame ontransport channel i with transport format combination j.for downlink, an intermediate calculation variable.

∆NilTTI (used in downlink only) if positive, number of bits to be repeated in

each transmission time interval on transport channel i with transport formatl; if negative, number of bits to be punctured in each transmission timeinterval on transport channel i with transport format l.

RMi semi-static rate matching attribute for transport channel i; signalledfrom higher layers.

Ndata,j total number of bits available for the CCTrCH in a radio frame withtransport format combination j.

Zij intermediate calculation variable.

Fi no. of radio frames in transmission time interval of transport channel i.

ni radio frame number in transmission time interval of transport channel i(0 ≤ ni ≤ Fi).

BCH_11_1_kbps 0 10ms 270

BCH_12_3_kbps 5 20ms 540

Table 20-18. Transport Channel Data Sizes

TrCHType TF TTIDownlinkData Size

Uplink DataSize

20-60 WCDMA3G_TrCHDeMux

Page 943: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

TFi (j) transport format of transport channel i for transport formatcombination j.

TFS(i) set of transport format indices l for transport channel i.

TFCS set of transport format combination indices j.

round towards +∞, that is, integer such that

round towards -∞, that is, integer such that

absolute value of x

The o notation is used to replace an index x when the indexed variable Xxdoes not depend on the index x. In the left wing of an assignment themeaning is that "Xo =Y" is equivalent to "for all x do Xx =Y".

• Downlink

One CCTrCH frame size Ndata,j does not depend on the transport formatcombination j and is equal to Mp*Np. It is denoted as Ndata,*. All transportchannel data in 10ms are serially placed in one frame of CCTrCH. Forflexible positions of transport channels, there may be some DTX indicationsat the end of one frame of CCTrCH.

• Uplink

One CCTrCH frame size Ndata,j is equal to Mp*Np. M and Np are determinedby WCDMA3G_UpLkAllocDPCH. Each transport channel data after ratematching is serially placed in one frame of CCTrCH and all transportchannel data fills it completely.

From input TFCI, TF values of all Nt transport channels can be obtained.The maximum data size of each transport channel is determined by itsmaximum TF value from input TFMax. Table 20-18 list TF values. RMi isobtained from RM. After de-multiplexing, the data size of each transportchannel in 10ms is output at outSize.

Function RMatch_deltasize( ) is used to calculate the rate matching parametersdeltasize ∆Nij saved in the deltaSizeP array. There are TrCHNum (equal to Nt)transport channels which RM values are saved in the RMP array. The sizes ofall transport channels Nij are stored in the TrCHFrameSizeP array. All thesetransport channels will be rate matched into one frame of CCTrCH with a sizeof CCTrCHSize that is equal to Mp*Np.

x x x x 1+<≤

x x 1 x x≤<–

x

WCDMA3G_TrCHDeMux 20-61

Page 944: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

RMatch_deltasize (TrCHFrameSizeP, deltaSizeP, RMP, TrCHNum,CCTrCHSize)

for each

do

end for

for each

do tmpSum += RMP[i] * TrCHFrameSizeP[i]

end for

4. Computation of transport channel data size in downlink

One BCH is mapped to one PCCPCH. From Table 20-17 and Table 20-18, oneframe data size of BCH is equal to that of PCCPCH. So for BCH, there are notransport channel multiplexing and rate matching; input data is directlyoutput.

Function DnLk_TrCHDemux( ) is used to calculate the data size of eachtransport channel saved in the array TrCHSizeP in downlink.The current datasize of each transport channel NilTTI is based on its TF and TTI values asshown in Table 20-18. The maximum data size of each transport channel i for

downlink is determined by its maximum TF value from input

TFMax according to Table 20-18. is derived from function

RMatch_deltasize( ).

DnLk_TrCHDemux( TFMax, NilTTI ,TrCHSizeP)

sum 0←

i 0 TrCHNum 1–,[ ]∈

sum RMP i[ ]=+ TrCHFrameSizeP i[ ]⋅

tmpSum 0←

tmpLast 0←

tmp 0←

i 0 TrCHNum 1–,[ ]∈

tmp tmpSum CCTrCHSize⋅( ) sum⁄←

deltaSizeP i[ ] tmp tmpLast– TrCHFrameSizeP i[ ]–←

tmpLast tmp←

maxTFS i( )∈

NTTI

i l,

∆Nij

20-62 WCDMA3G_TrCHDeMux

Page 945: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

if for fixed positions of transport channels

then // an intermediate calculation variable Ni,o,

determined by TFMax and Fi

∆Ni,o is calculated by calling function RMatch_deltasize( ) which inputparameter TrCHFrameSizeP is based on Ni,o.

// For each transport channel i

else // for flexible positions of transport channels

// an intermediate calculation variable Nij is calculated.

if the parameter OptimisticTrCHSizes is valid and used

then Ni,j, i = 1, ... , Nt, can be obtained by OptimisticTrCHSizes.

They meet the following condition: .

else // parameter OptimisticTrCHSizes is not valid and not used

Ni,j =

end if

// rate matching ratios RFi are calculated for each

transport channel i.

Ni o,1Fi------

maxl TFS i( )∈

NTTI

i l,⋅←

∆NTTIi o,

Fi ∆Ni o,⋅←

∆Ni ∆NTTIi o,

← Ni max,, maxl TFS i( )∈

NTTIil

TrCHSizeP i[ ] ∆Ni Ni max,+( ) Fi⁄←

Ni j,1Fi------ N

TTIi TFi j( ),⋅←

maxj TFCS∈

RMi Ni j,⋅( )i 1=

Nt

Ni o,1Fi------← max

l TFS i( )∈N

TTIi l,

RFiNdata °,

RMi Ni j,⋅( )i 1=

Nt

∑------------------------------------------- RMi⋅←

WCDMA3G_TrCHDeMux 20-63

Page 946: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

// tentative temporary values of ∆Ni,lTTI for

all transport channel i and any of its transport format l are calculated

// Temporary values of ∆Ni,lTTI are checked and corrected

for all j in TFCS

if D > Ndata, o

then for i = 1 to Nt

∆Ni,j is calculated by calling function RMatch_deltasize( ) (parameterTrCHFrameSizeP is based on Nij .

∆N = Fi * ∆Ni,j

if then

end if

end for

end if

end for

// for each transport channel i

end if

5. Calculation of transport channel data size in uplink

Ndata,j = Mp*Np; Nij can be obtained according to the TF value of transportchannel i. Using the function RMatch_deltasize( ), the data size of transportchannel i is (∆Nij + Nij ).

∆NTTIi l,

FiRFi N

TTIi l,

Fi------------------------------- N

TTIi l,

–⋅←

DN TTI

i TFi j( ),∆N TTI

i TFi j( ),+

Fi----------------------------------------------------------------

i 1=

Nt

∑←

∆NTTI

i TFi j( ), ∆N> ∆NTTI

i TFi j( ), ∆N←

∆N ∆NTTI

ilNi, N

TTIil

← ←

TrCHSizeP i[ ] ∆Ni Ni+( ) Fi⁄←

20-64 WCDMA3G_TrCHDeMux

Page 947: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

References

[1]3GPP Technical Specification TS 25.212 V3.0.0, “Multiplexing and channelcoding (FDD),” October 1999.

WCDMA3G_TrCHDeMux 20-65

Page 948: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

WCDMA3G_TrCHMux

Description Transport channel multiplexingLibrary 3GPPFDD 10-99, Transport Channel MultiplexClass SDFWCDMA3G_TrCHMux

Parameters

Name Description Default Sym Type Range

LinkDir link direction: Downlink,Uplink

Downlink enum

TrCHPosInCCTrCH type of transport channelpositions in one frame ofCCTrCH: Fixed, Flexible

Fixed enum

PhyCHNum number of physicalchannels that CCTrCH ismapped to

1 Np int [1, ∞)

20-66 WCDMA3G_TrCHMux

Page 949: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

UL_DPDCHType uplink dedicated physicaldata channel type:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

Name Description Default Sym Type Range

WCDMA3G_TrCHMux 20-67

Page 950: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This model is used to multiplex radio frames of all transport channels into onecoded composite transport channel (CCTrCH). It also inserts discontinuoustransmission indications with flexible positions of transport channels indownlinks.

Each firing, Mp×Np tokens of out are produced when Mp×Np tokens of each insignal and one token of each inSize signal are consumed. Refer to Table 20-19for the value of Mp.

2. DL_PhyCHType is valid only when LinkDir=Downlink; UL_DPDCHType isvalid only when LinkDir=Uplink. When DL_PhyCHType=PCCPCH, setPhyCHNum and TrCHNum to 1.

TrCHNum number of transportchannels to be multiplexed

1 Nt int [1, ∞)

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 in data of each transport channel to be multiplexed multiple int

2 inSize data size of each transport channel to be multiplexed multiple int

Pin Name Description Signal Type

3 out data after all transport channels are multiplexed int

Table 20-19. Value of Mp

Physical Channel Type Bits per Frame (Mp)

DL_PhyCHType

DPCH_15kbps_TF0_T2_P4 60

DPCH_15kbps_TF2_T2_P4 30

Name Description Default Sym Type Range

20-68 WCDMA3G_TrCHMux

Page 951: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3. Mp×Np tokens of each signal at pin in are one frame bit sequence of eachtransport channel. Every 10ms, these radio frames are serially multiplexed intoone frame of coded composite transport channel (CCTrCH). Because of variablerate transmission, in one frame of each transport channel (Mp×Np tokens), onlyinSize tokens are useful.

DPCH_30kbps_TF0_T2_P2 240

DPCH_30kbps_TF2_T2_P2 210

DPCH_30kbps_TF0_T2_P4 210

DPCH_30kbps_TF2_T2_P4 180

DPCH_30kbps_TF0_T2_P8 150

DPCH_30kbps_TF2_T2_P8 120

DPCH_60kbps_TF0_T2_P4 510

DPCH_60kbps_TF2_T2_P4 480

DPCH_60kbps_TF0_T2_P8 450

DPCH_60kbps_TF2_T2_P8 420

DPCH_120kbps_TF8_T4_P8 900

DPCH_120kbps_TF0_T4_P8 900

DPCH_240kbps_TF8_T4_P8 2100

DPCH_240kbps_TF0_T4_P8 2100

DPCH_480kbps_TF8_T8_P16 4320

DPCH_480kbps_TF0_T8_P16 4320

DPCH_960kbps_TF8_T8_P16 9120

DPCH_960kbps_TF0_T8_P16 9120

DPCH_1920kbps_TF8_T8_P16 18720

DPCH_1920kbps_TF0_T8_P16 18720

PCCPCH 270

UL_DPDCHType

DPDCH_15kbps 150

DPDCH_30kbps 300

DPDCH_60kbps 600

DPDCH_120kbps 1200

DPDCH_240kbps 2400

DPDCH_480kbps 4800

DPDCH_960kbps 9600

Table 20-19. Value of Mp

Physical Channel Type Bits per Frame (Mp)

WCDMA3G_TrCHMux 20-69

Page 952: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 Transport Channel Multiplex Components

For downlinks, there are two types of transport channels positions in one frameof CCTrCH: fixed and flexible. Fixed position means a fixed number of bits arereserved for each transport channel. With fixed positions, after seriallyconcatenating one frame of useful data in each transport channel, datacompletely fills one CCTrCH frame. With flexible positions, data may notcompletely fill one frame of CCTrCH; in this case, discontinuous transmissionindication bits are inserted that indicate when transmission power is to beturned off.

For uplinks, the data after serially concatenating one frame of each transportchannel completely fills one frame of CCTrCH; there are no discontinuoustransmission indication bits.

References

[1]3GPP Technical Specification TS 25.211 V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October 1999.

[2] 3GPP Technical Specification TS 25.212 V3.0.0, “Multiplexing and channelcoding (FDD),” October 1999.

[3] 3GPP Technical Specification TS 25.302 V3.1.0, “Services provided by thePhysical Layer,” October 1999.

20-70 WCDMA3G_TrCHMux

Page 953: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 21: 3GPPFDD 10-99 User EquipmentComponents

21-1

Page 954: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

WCDMA3G_DnLkDeSpreading

Description Downlink de-spreading and de-scramblingLibrary 3GPPFDD 10-99, User Equipment

Parameters

Name Description Default Sym Type Range

SF spreading factor: SF_4 ,SF_8 , SF_16, SF_32,SF_64, SF_128, SF_256,SF_512

SF_256 NSF enum

UseExtSpreadingCode use external spreadingcode: Yes, No

No enum

SpreadingCodeIndex spreading code index 0 int [0, NSF -1]

ScramblingCodeIndex scrambling code index 0 int [0, 8191]

21-2 WCDMA3G_DnLkDeSpreading

Page 955: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

DL_DPCHType downlink dedicatedphysical channel:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16

DPCH_30kbps_TF2_T2_P8

enum †

DL_TXDiversity transmitting diversity indownlink: No_Diversity,DL_STTD

No_Diversity enum

SampleRate number of samples perchip

8 int [1, 32]

PathNum number of paths 1 int [1, 16]

MaxDelay maximum path delay interms of chips

20 int [0, 1280]

Name Description Default Sym Type Range

WCDMA3G_DnLkDeSpreading 21-3

Page 956: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork is used to perform de-spreading and de-scrambling in adownlink.

When UseExtSpreadingCode=Yes, spreading code is input though pinSpreadingCodeExt; otherwise, WCDMA3G_OVSF generates the spreadingcode.

Refer to Table 21-1 for the values of NSF.

SearchDir path search directionbased on current timing:Forward, Backward,Bidirection

Backward enum

EstMethod channel estimationmethod: Averaging,Interpolation, WMSA,NoEst

Interpolation enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 In input data complex

2 SpreadingCodeExt external spreading code int

Pin Name Description Signal Type

3 Out output data complex

Name Description Default Sym Type Range

21-4 WCDMA3G_DnLkDeSpreading

Page 957: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

The schematic for this subnetwork is shown in Figure 21-1. Input data(spreading code generated by WCDMA3G_OVSF or input by pinSpreadingCodeExt) and scrambling code generated by WCDMA3G_Scramblerare input to WCDMA3G_1CHRakeReceiver, which de-spreads andde-scrambles the input data. WCDMA3G_1CHRakeReceiver implementscoherent Rake receiver with maximal ratio combining (MRC) on one codechannel.

Figure 21-1. WCDMA3G_DnLkDeSpreading Schematic

References

[1]3GPP Technical Specification TS 25.213 V3.0.0 “Spreading and Modulation(FDD),” October 1999.

Table 21-1. Relation between SF and NSF

SF NSF

SF_4 4

SF_8 8

SF_16 16

SF_32 32

SF_64 64

SF_128 128

SF_256 256

SF_512 512

WCDMA3G_DnLkDeSpreading 21-5

Page 958: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

[2] 3GPP Technical Specification TS25.211 V3.0.0, “Physical channels andmapping of transport channels onto physical channels (FDD),” October 1999.

[3] Andrew J.Viterbi, “CDMA: Principles of Spread Spectrum Communication,”Wesley Publishing Company, 1995.

21-6 WCDMA3G_DnLkDeSpreading

Page 959: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_DnLkDPCHDeMux

Description Downlink dedicated physical channel demultiplexingLibrary 3GPPFDD 10-99, User Equipment

WCDMA3G_DnLkDPCHDeMux 21-7

Page 960: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

Parameters

Name Description Default Type Range

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16

DPCH_30kbps_TF2_T2_P8

enum †

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

21-8 WCDMA3G_DnLkDPCHDeMux

Page 961: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork is used to perform dedicated physical channel (DPCH)de-multiplexing in downlink.

The schematic for this subnetwork is shown in Figure 21-2. The input complexdata stream is converted into I and Q streams by CxToRect then synchronouslycombined into one data stream by Commutator2. DPCH data is de-multiplexedby WCDMA3G_DnLkDeMux to get dedicated physical data channel (DPDCH)data, transmit power control (TPC) bits and transport format combinationindicator (TFCI) bits. DPDCH data is second de-interleaved byWCDMA3G_SecondDeintlvr.

Figure 21-2. WCDMA3G_DnLkDPCHDeMux Schematic

References

Pin Name Description Signal Type

1 In input symbol complex

Pin Name Description Signal Type

2 DataOut output data after demultiplexing real

3 Out output data real

4 TPC output TPC bits real

5 TFCI output TFCI real

WCDMA3G_DnLkDPCHDeMux 21-9

Page 962: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

[1]3GPP Technical Specification TS 25.211 V3.0.0 “Physical channels and mappingof transport channels onto physical channels (FDD),” October 1999.

[2] 3GPP Technical Specification TS 25.212 V3.0.0 “Multiplexing and channelcoding (FDD),” October 1999.

21-10 WCDMA3G_DnLkDPCHDeMux

Page 963: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_DnLkTrCHDecoding

Description Downlink transport channel decodingLibrary 3GPPFDD 10-99, User Equipment

Parameters

Name Description Default Sym Type Range

TrCHNum number of transportchannels to be multiplexedin one CCTrCH

1 Nt int [1, ∞)

TrCHNo current transport channelnumber

1 int [1, Nt-1]

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

TrCHPosInCCTrCH Indicator of TrCHs positionin one frame of CCTrCH:Fixed, Flexible

Fixed enum

PhyCHNum number of physicalchannels

1 Nd int [1, ∞)

WCDMA3G_DnLkTrCHDecoding 21-11

Page 964: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16, PCCPCH

DPCH_30kbps_TF2_T2_P8

enum †

RadioFrameDelayOn radio frame delay on: Yes,No

Yes enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Name Description Default Sym Type Range

21-12 WCDMA3G_DnLkTrCHDecoding

Page 965: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork is used to perform downlink transport channel decoding.

The schematic for this subnetwork is shown in Figure 21-3. It includes radioframe delay, radio frame de-segmentation, first de-interleaving, ratede-matching, channel decoding, code block concatenation and CRC checking.

This subnetwork performs the inverse function of theWCDMA3G_DnLkTrCHCoding subnetwork.

Pin Name Description Signal Type

1 TFMax maximum transport format for current service int

2 In input data real

3 InSize size of current input block int

4 TF input transport format int

5 TFCI input TFCI information int

Pin Name Description Signal Type

6 DecoderInput the input to channel decoder real

7 Out output data after Transport channel decoding int

8 CRCError CRC error indicator int

9 TFOut transport format output int

WCDMA3G_DnLkTrCHDecoding 21-13

Page 966: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

Figure 21-3. WCDMA3G_DnLkTrCHDecoding Schematic

References

[1]3GPP Technical Specification TS 25.212 V3.0.0, “Multiplexing and channelcoding (FDD),” October 1999.

[2] 3GPP Technical Specification TS 34.121 V3.0.0 “Terminal conformanceSpecification: Radio transmission and reception (FDD),” March 2000.

21-14 WCDMA3G_DnLkTrCHDecoding

Page 967: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_UE_FixedRateDemod

Description Downlink demodulation for measurement channelsLibrary 3GPPFDD 10-99, User Equipment

Parameters

Name Description Default Sym Type Range

DataType measurement channeltype: DTCH_12_2_kbps,DTCH_64_kbps,DTCH_144_kbps,DTCH_384_kbps

DTCH_12_2_kbps

enum

ScramblingCodeIndex scrambling code index 0 int [0, 8191]

SampleRate number of samples perchip

8 S int [1, 32]

PathNum number of paths 1 L int [1, 16]

MaxDelay maximum path delay interms of chips

20 D int [0, 1280]

SearchDir path searching directionbased on current timing:Forward, Backward,Bidirection

Backward enum

EstMethod channel estimationmethod: Averaging,Interpolation, WMSA,NoEst

Interpolation enum

SF1 spreading factor for user1:SF1_4 , SF1_8 , SF1_16,SF1_32, SF1_64,SF1_128, SF1_256,SF1_512

SF1_256 enum

SF2 spreading factor for user2:SF2_4 , SF2_8 , SF2_16,SF2_32, SF2_64,SF2_128, SF2_256,SF2_512

SF2_256 enum

WCDMA3G_UE_FixedRateDemod 21-15

Page 968: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork is used to demodulate the input complex symbol to calculatethe physical channel BER (bit error rate) for reference measurement channels12.2/64/144/384 kbps [1] for user equipment in downlink.

The schematic for this subnetwork is shown in Figure 21-4. It includes the Rakereceiver, spreading code and scrambling code generation, and BERmeasurement. This subnetwork takes the input symbol from In in chips andreference DPCH data from DPCHDataIn in radio frame (15 slots), and outputsthe physical channel BER once every radio frame (15 slots).

SF3 spreading factor for user3:SF3_4 , SF3_8 , SF3_16,SF3_32, SF3_64,SF3_128, SF3_256,SF3_512

SF3_256 enum

SF4 spreading factor for user4:SF4_4 , SF4_8 , SF4_16,SF4_32, SF4_64,SF4_128, SF4_256,SF4_512

SF4_256 enum

Pin Name Description Signal Type

1 In input data complex

2 DPCHDataIn input bits for DPCH data fields int

Pin Name Description Signal Type

3 Out output data real

4 PhyCHBER output physical channel BER value real

Name Description Default Sym Type Range

21-16 WCDMA3G_UE_FixedRateDemod

Page 969: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 21-4. WCDMA3G_UE_FixedRateDemod Schematic

References

[1]3GPP Technical Specification TS 25.101 V3.2.0 “UE: Radio transmission andReception (FDD),” March 2000.

[2] 3GPP Technical Specification TS 34.121 V3.0.1 “Radio transmission andreception (FDD),” March 2000.

WCDMA3G_UE_FixedRateDemod 21-17

Page 970: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

WCDMA3G_UE_FixedRateReceiver

Description Downlink receiver for measurement channelsLibrary 3GPPFDD 10-99, User Equipment

Parameters

Name Description Default Type Range

DataType measurement channeltype: DTCH_12_2_kbps,DTCH_64_kbps,DTCH_144_kbps,DTCH_384_kbps

DTCH_12_2_kbps

enum

ScramblingCodeIndex scrambling code index 0 int [0, 8191]

SampleRate number of samples perchip

8 int [1, 32]

PathNum number of paths 1 int [1, 16]

MaxDelay maximum path delay interms of chips

20 int [0, 1280]

SearchDir path searching directionbased on current timing:Forward, Backward,Bidirection

Backward enum

EstMethod channel estimationmethod: Averaging,Interpolation, WMSA,NoEst

Interpolation enum

SF1 spreading factor for user1:SF1_4 , SF1_8 , SF1_16,SF1_32, SF1_64,SF1_128, SF1_256,SF1_512

SF1_256 enum

SF2 spreading factor for user2:SF2_4 , SF2_8 , SF2_16,SF2_32, SF2_64,SF2_128, SF2_256,SF2_512

SF2_256 enum

21-18 WCDMA3G_UE_FixedRateReceiver

Page 971: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork is used to demodulate and decode the input complex symbol tocalculate the physical channel BER (bit error rate), transport channelBER/BLER (block error rate) for DTCH (dedicated transport channel) andDCCH (dedicated control channel) for reference measurement channels12.2/64/144/384 kbps [1] for the user equipment in a downlink.

SF3 spreading factor for user3:SF3_4 , SF3_8 , SF3_16,SF3_32, SF3_64,SF3_128, SF3_256,SF3_512

SF3_256 enum

SF4 spreading factor for user4:SF4_4 , SF4_8 , SF4_16,SF4_32, SF4_64,SF4_128, SF4_256,SF4_512

SF4_256 enum

Pin Name Description Signal Type

1 In input data complex

2 TFMaxIn Input TFMax int

3 RefDataIn1 reference data bits from source1 int

4 RefDataIn2 reference data bits from source2 int

5 DPCHDataIn input bits for DPCH data fields int

Pin Name Description Signal Type

6 DCCH_Out output data for DCCH int

7 DCCH_BER output BER value for DCCH real

8 DCCH_BLER output BLER value for DCCH real

9 DTCH_Out output data for DTCH int

10 DTCH_BER output BER value for DTCH real

11 DTCH_BLER output BLER value for DTCH real

12 PhyCHBER output physical channel BER value real

Name Description Default Type Range

WCDMA3G_UE_FixedRateReceiver 21-19

Page 972: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

The schematic for this subnetwork is shown in Figure 21-5. It includes the Rakereceiver, spreading code and scrambling code generation, transport channelde-multiplexing, channel decoding, and BER measurements.

This subnetwork takes the input symbol from In in chips, reference source datafrom RefDataSrc1/RefDataSrc2 in transport blocks, reference DPDCH datafrom DPDCHDataIn in radio frames, TFMax value from TFMaxIn in every10msec. It outputs the physical channel BER once every radio frame (15 slots)and outputs DCCH_BER/DCCH_BLER and DTCH_BER/DTCH_BLER onceevery transport block according to the TTI (transmit time interval) of eachtransport channel.

Figure 21-5. WCDMA3G_UE_FixedRateReceiver Schematic

References

[1]3GPP Technical Specification TS 25.101 V3.2.0 “UE: Radio transmission andReception (FDD),” March 2000.

[2] 3GPP Technical Specification TS 34.121 V3.0.1 “Radio transmission andreception (FDD),” March 2000.

21-20 WCDMA3G_UE_FixedRateReceiver

Page 973: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_UE_FixedRateSrc

Description Uplink signal source for measurement channelsLibrary 3GPPFDD 10-99, User Equipment

Parameters

Name Description Default Type Range

DataType measurement channeltype: DTCH_12_2_kbps,DTCH_64_kbps,DTCH_144_kbps,DTCH_384_kbps

DTCH_12_2_kbps

enum

UL_DPCCHType uplink dedicated physicalcontrol channel:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

ScramblingCodeType type of scrambling code:Long_Scrambling_Code,Short_Scrambling_Code

Long_Scrambling_Code

enum

ScramblingCodeIndex scrambling code index 0 int [0, 2^24-1]

GainUnit gain unit in index [0,15] ormanually set value: Index,Value

Index enum

DPDCHGainIndex gain index for DPDCH 15 int [0, 15]

DPDCHGainFactor gain factor forDPDCH(used whileGainUnit=Value)

1.0 real [0.0, ∞)

DPCCHGainIndex gain index for DPCCH 15 int [0, 15]

WCDMA3G_UE_FixedRateSrc 21-21

Page 974: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

Pin Outputs

Notes/Equations

1. This subnetwork is used to provide the signal source for reference measurementchannels 12.2/64/144/384 kbps[1] for user equipment in an uplink.

The schematic for this subnetwork is shown in Figure 21-6. It includes the datasource for measurement transport channel, channel coding, transport channelmultiplexing, physical channel mapping, spreading and scrambling fordedicated physical channel (DPCH).

This subnetwork outputs the combined complex symbols from out in chips, andoutputs TFMax once every 10 msec. Reference data sources are output fromRef_DataSrc1/Ref_DataSrc2 every transport block according to the TTI settingof each transport channel. The results for channel coding are output fromCoderOutput1/ CoderOutput2 for measurement of BER (bit error rate) beforechannel coding in coding frames or blocks.

DPCCHGainFactor gain factor forDPCCH(used whileGainUnit=Value)

1.0 real [0.0, ∞)

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 Out output data complex

2 TFMax ouput TFMax int

3 Ref_DataSrc1 reference data bits from source1 int

4 Ref_DataSrc2 reference data bits from source2 int

5 CoderOutput1 coder output data bits from TrCH1 int

6 CoderOutput2 coder output data bits from TrCH2 int

7 DPDCHData output bits for DPDCH data fields int

Name Description Default Type Range

21-22 WCDMA3G_UE_FixedRateSrc

Page 975: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 21-6. WCDMA3G_UE_FixedRateSrc Schematic

References

[1]3GPP Technical Specification TS 25.101 V3.2.0 “UE: Radio transmission andReception (FDD),” March 2000.

[2] 3GPP Technical Specification TS 34.121 V3.0.1 “Radio transmission andreception (FDD),” March 2000.

WCDMA3G_UE_FixedRateSrc 21-23

Page 976: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

WCDMA3G_UE_FixedRateSrc_2M

Description Uplink signal source for measurement channels DTCH2048kbpsLibrary 3GPPFDD 10-99, User Equipment

Parameters

Name Description Default Type Range

DataType measurement channeltype: DTCH_2048_kbps

DTCH_2048_kbps

enum

UL_DPCCHType uplink dedicated physicalcontrol channel:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

ScramblingCodeType type of scrambling code:Long_Scrambling_Code,Short_Scrambling_Code

Long_Scrambling_Code

enum

ScramblingCodeIndex scrambling code index 0 int [0, 2^24-1]

GainUnit gain unit in index [0,15] ormanually set value: Index,Value

Index enum

DPDCHGainIndex gain index for DPDCH 15 int [0, 15]

DPDCHGainFactor gain factor forDPDCH(used whenGainUnit=Value)

1.0 real [0.0, ∞)

DPCCHGainIndex gain index for DPCCH 15 int [0, 15]

21-24 WCDMA3G_UE_FixedRateSrc_2M

Page 977: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This subnetwork is used to provide the signal source for reference measurementchannel 2048 kbps [1] for the user equipment in an uplink.

The schematic for this subnetwork is shown in Figure 21-7. It includes the datasource for measurement transport channel, channel coding, transport channelmultiplexing, physical channel mapping, spreading and scrambling fordedicated data channel (DPCH).

This subnetwork outputs the combined complex symbols from out in chips, andoutputs TFMax once every 10 msec. The reference data source is output fromRef_DataSrc1/Ref_DataSrc2 every transport block according to the TTI settingof each transport channel. The results for channel coding are output fromCoderOutput1/ CoderOutput2 for measurement of BER (bit error rate) beforechannel coding in coding frames or blocks.

DPCCHGainFactor gain factor forDPCCH(used whenGainUnit=Value)

1.0 real [0.0, ∞)

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 Out output data complex

2 TFMax ouput TFMax int

3 Ref_DataSrc1 reference data bits from source1 int

4 Ref_DataSrc2 reference data bits from source2 int

5 CoderOutput1 coder output data bits from TrCH1 int

6 CoderOutput2 coder output data bits from TrCH2 int

7 DPDCH1Data output bits for DPDCH#1 data fields int

Name Description Default Type Range

WCDMA3G_UE_FixedRateSrc_2M 21-25

Page 978: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

Figure 21-7. WCDMA3G_UE_FixedRateSrc_2M Schematic

References

[1]3GPP Technical Specification TS 25.101 V3.2.0 “UE: Radio transmission andReception (FDD),” March 2000.

[2] 3GPP Technical Specification TS 34.121 V3.0.1 “Radio transmission andreception (FDD),” March 2000.

21-26 WCDMA3G_UE_FixedRateSrc_2M

Page 979: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_UE_VariableRateDemod

Description Downlink demodulation for variable-rate sourceLibrary 3GPPFDD 10-99, User Equipment

WCDMA3G_UE_VariableRateDemod 21-27

Page 980: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

Parameters

Name Description Default Sym Type Range

DataType information rate type:INFO_8_kbps,INFO_16_kbps,INFO_32_kbps,INFO_64_kbps,INFO_128_kbps,INFO_256_kbps,INFO_512_kbps

INFO_8_kbps enum

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16

DPCH_30kbps_TF2_T2_P8

enum †

ScramblingCodeIndex scrambling code index 0 int [0, 8191]

21-28 WCDMA3G_UE_VariableRateDemod

Page 981: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

SampleRate number of samples perchip

8 S int [1, 32]

PathNum number of paths 1 L int [1, 16]

MaxDelay maximum path delay interms of chips

20 D int [0, 1280]

SearchDir path search directionbased on current timing:Forward, Backward,Bidirection

Backward enum

EstMethod channel estimationmethod: Averaging,Interpolation, WMSA,NoEst

Interpolation enum

SF1 spreading factor for user1:SF1_4 , SF1_8 , SF1_16,SF1_32, SF1_64,SF1_128, SF1_256,SF1_512

SF1_256 enum

SF2 spreading factor for user2:SF2_4 , SF2_8 , SF2_16,SF2_32, SF2_64,SF2_128, SF2_256,SF2_512

SF2_256 enum

SF3 spreading factor for user3:SF3_4 , SF3_8 , SF3_16,SF3_32, SF3_64,SF3_128, SF3_256,SF3_512

SF3_256 enum

SF4 spreading factor for user4:SF4_4 , SF4_8 , SF4_16,SF4_32, SF4_64,SF4_128, SF4_256,SF4_512

SF4_256 enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 In input data complex

2 DPCHDataIn input bits for DPCH data fields int

Name Description Default Sym Type Range

WCDMA3G_UE_VariableRateDemod 21-29

Page 982: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

Pin Outputs

Notes/Equations

1. This subnetwork is used to demodulate the input complex symbol to calculatethe physical channel BER (bit error rate) for variable-rate sources ranging from8 to 512 kbps for the user equipment in a downlink.

The schematic for this subnetwork is shown in Figure 21-8. It includes the Rakereceiver, spreading code and scrambling code generation, and the BERmeasurement. This subnetwork takes the input symbol from In in chips andreference DPDCH data from DPDCHDataIn in radio frame (15 slot), outputsthe demodulation data in radio frames and the physical channel BER onceevery radio frame (15 slots).

Figure 21-8. WCDMA3G_UE_VariableRateDemod Schematic

References

Pin Name Description Signal Type

3 Out output data real

4 PhyCHBER output physical channel BER value real

21-30 WCDMA3G_UE_VariableRateDemod

Page 983: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

[1]3GPP Technical Specification TS 25.101 V3.2.0 “UE: Radio transmission andReception (FDD),” March 2000.

[2] 3GPP Technical Specification TS 34.121 V3.0.1 “Radio transmission andreception (FDD),” March 2000.

WCDMA3G_UE_VariableRateDemod 21-31

Page 984: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

WCDMA3G_UE_VariableRateReceiver

Description Downlink receiver for variable-rate sourceLibrary 3GPPFDD 10-99, User Equipment

Parameters

Name Description Default Sym Type Range

DataType information rate type:INFO_8_kbps,INFO_16_kbps,INFO_32_kbps,INFO_64_kbps,INFO_128_kbps,INFO_256_kbps,INFO_512_kbps

INFO_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

21-32 WCDMA3G_UE_VariableRateReceiver

Page 985: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

DL_PhyCHType downlink physical channeltype:DPCH_15kbps_TF0_T2_P4,DPCH_15kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P2,DPCH_30kbps_TF2_T2_P2,DPCH_30kbps_TF0_T2_P4,DPCH_30kbps_TF2_T2_P4,DPCH_30kbps_TF0_T2_P8,DPCH_30kbps_TF2_T2_P8,DPCH_60kbps_TF0_T2_P4,DPCH_60kbps_TF2_T2_P4,DPCH_60kbps_TF0_T2_P8,DPCH_60kbps_TF2_T2_P8,DPCH_120kbps_TF8_T4_P8,DPCH_120kbps_TF0_T4_P8,DPCH_240kbps_TF8_T4_P8,DPCH_240kbps_TF0_T4_P8,DPCH_480kbps_TF8_T8_P16,DPCH_480kbps_TF0_T8_P16,DPCH_960kbps_TF8_T8_P16,DPCH_960kbps_TF0_T8_P16,DPCH_1920kbps_TF8_T8_P16,DPCH_1920kbps_TF0_T8_P16

DPCH_30kbps_TF2_T2_P8

enum †

ScramblingCodeIndex scrambling code index 0 int [0, 8191]

SampleRate number of samples perchip

8 S int [1, 32]

PathNum number of paths 1 L int [1, 16]

MaxDelay maximum path delay interms of chips

20 D int [0, 1280]

Name Description Default Sym Type Range

WCDMA3G_UE_VariableRateReceiver 21-33

Page 986: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

Pin Inputs

SearchDir path search directionbased on current timing:Forward, Backward,Bidirection

Backward enum

EstMethod channel estimationmethod: Averaging,Interpolation, WMSA,NoEst

Interpolation enum

SF1 spreading factor for user1:SF1_4 , SF1_8 , SF1_16,SF1_32, SF1_64,SF1_128, SF1_256,SF1_512

SF1_256 enum

SF2 spreading factor for user2:SF2_4 , SF2_8 , SF2_16,SF2_32, SF2_64,SF2_128, SF2_256,SF2_512

SF2_256 enum

SF3 spreading factor for user3:SF3_4 , SF3_8 , SF3_16,SF3_32, SF3_64,SF3_128, SF3_256,SF3_512

SF3_256 enum

SF4 spreading factor for user4:SF4_4 , SF4_8 , SF4_16,SF4_32, SF4_64,SF4_128, SF4_256,SF4_512

SF4_256 enum

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 In input data complex

2 TFMaxIn Input TFMax int

3 RefDataIn reference data bits from source int

4 CoderOutput coder output data bits from TrCH int

5 DPCHDataIn input bits for DPCH data fields int

Name Description Default Sym Type Range

21-34 WCDMA3G_UE_VariableRateReceiver

Page 987: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Outputs

Notes/Equations

1. This subnetwork is used to demodulate and decode the input complex symbol tocalculate the physical channel BER (bit error rate), transport channelBER/BLER (block error rate) for the variable-rate data source ranging from 8 to512 kbps for the user equipment in a downlink.

The schematic for this subnetwork is shown in Figure 21-9. It includes the Rakereceiver, spreading code and scrambling code generation, transport channelde-multiplexing, channel decoding, and BER measurements.

This subnetwork takes the input symbol from In in chips, reference source datafrom RefDataSrc in transport blocks, reference DPCH data from DPCHDataInin radio frames, TFMax value from TFMaxIn in every 10msec. It outputs thephysical channel BER once every radio frame (15 slots) and outputs TrCHBER/TrCHBLER once every transport block according to the TTI (transmit timeinterval) of each transport channel. PhyCHBER_before_Decoding is used tomeasure the BER before channel coding every coding blocks.

Pin Name Description Signal Type

6 Out output data int

7 TrCHBER output TrCHBER value real

8 TrCHBLER output TrCHBLER value real

9 PhyCHBER_before_Decoding output BER value before decoding real

10 PhyCHBER output physical channel BER value real

WCDMA3G_UE_VariableRateReceiver 21-35

Page 988: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

Figure 21-9. WCDMA3G_UE_VariableRateReceiver Schematic

References

[1]3GPP Technical Specification TS 25.101 V3.2.0 “UE: Radio transmission andReception (FDD),” March 2000.

[2] 3GPP Technical Specification TS 34.121 V3.0.1 “Radio transmission andreception (FDD),” March 2000.

21-36 WCDMA3G_UE_VariableRateReceiver

Page 989: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

WCDMA3G_UE_VariableRateSrc

Description Uplink signal source for variable-rate sourceLibrary 3GPPFDD 10-99, User Equipment

Parameters

Name Description Default Type Range

DataType information rate type:INFO_8_kbps,INFO_16_kbps,INFO_32_kbps,INFO_64_kbps,INFO_128_kbps,INFO_256_kbps

INFO_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

VariableRate indicate presence ofvariable rates: Yes, No

Yes enum

UL_DPCCHType uplink dedicated physicalcontrol channel:DPCCH_15kbps_P6_TF2_F0_T2,DPCCH_15kbps_P8_TF0_F0_T2,DPCCH_15kbps_P5_TF2_F1_T2,DPCCH_15kbps_P7_TF0_F1_T2,DPCCH_15kbps_P6_TF0_F2_T2,DPCCH_15kbps_P5_TF2_F2_T1

DPCCH_15kbps_P6_TF2_F0_T2

enum †

ScramblingCodeType type of scrambling code:Long_Scrambling_Code,Short_Scrambling_Code

Long_Scrambling_Code

enum

ScramblingCodeIndex scrambling code index 0 int [0, 2^24-1]

GainUnit gain unit in index [0,15] ormanually set value: Index,Value

Index enum

DPDCHGainIndex gain index for DPDCH 15 int [0, 15]

WCDMA3G_UE_VariableRateSrc 21-37

Page 990: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

Pin Outputs

Notes/Equations

1. This subnetwork is used to provide the signal source for variable-rate sourcesranging from 8 to 512 kbps of the user equipment in an uplink.

The schematic for this subnetwork is shown in Figure 21-10. It includes thevariable-rate data source for transport channel, channel coding, transportchannel multiplexing, physical channel mapping, spreading and scrambling fordedicated physical channel (DPCH).

This subnetwork outputs the combined complex symbols from Out and outputsTFMax once every 10 msec. The reference data source are output fromRef_DataSrc every transport block according to the TTI setting of eachtransport channel. The results for channel coding are output from CoderOutputfor measurement of BER (bit error rate) before channel coding in coding framesor blocks. The DPDCH (dedicated physical data channel) data bits are outputfrom DPCHData for physical channel BER measurement in radio frames (15slots).

DPDCHGainFactor gain factor forDPDCH(used whenGainUnit=Value)

1.0 real [0.0, ∞)

DPCCHGainIndex gain index for DPCCH 15 int [0, 15]

DPCCHGainFactor gain factor forDPCCH(used whenGainUnit=Value)

1.0 real [0.0, ∞)

† whereTFn = number of transmit format indicator bitsTn = number of transmit power control bitsPn = number of pilot bitsFn = number of feedback indicator bits

Pin Name Description Signal Type

1 Out output data complex

2 TFMax ouput TFMax int

3 Ref_DataSrc reference data bits from source int

4 CoderOutput coder output data bits from TrCH int

5 DPDCHData output bits for DPDCH data fields int

Name Description Default Type Range

21-38 WCDMA3G_UE_VariableRateSrc

Page 991: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 21-10. WCDMA3G_UE_VariableRateSrc Schematic

References

[1]3GPP Technical Specification TS 25.101 V3.2.0 “UE: Radio transmission andReception (FDD),” March 2000.

[2] 3GPP Technical Specification TS 34.121 V3.0.1 “Radio transmission andreception (FDD),” March 2000.

WCDMA3G_UE_VariableRateSrc 21-39

Page 992: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

WCDMA3G_UpLkDPCCH_Src

Description Uplink signal source for one DPCCHLibrary 3GPPFDD 10-99, User Equipment

Parameters

Pin Outputs

Notes/Equations

Name Description Default Type Range

GainUnit gain unit in index [0,15] ormanually set value: Index,Value

Index enum

DPCCHGainIndex gain index for DPCCH 15 int [0, 15]

DPCCHGainFactor gain factor for DPCCH(used whenGainUnit=Value)

1.0 real [0.0, ∞)

TFCIOn with TFCI: Yes, No Yes enum

FBIBitsCount feedback information bitscount per slot

0 int [0, 2]

ScramblingCodeType type of scrambling code:Long_Scrambling_Code,Short_Scrambling_Code

Long_Scrambling_Code

enum

ScramblingCodeIndex scrambling code index 0 int [0, 2^24-1]

TFCIValue input TFCI value per frame 0x0000 0x0000 int array (-∞∞)

FBIBitsValue input FBI value per slot 0 int (-∞∞)

TPCBitsValue input TPC value per frame 0x5555 int (-∞∞)

Pin Name Description Signal Type

1 DPCCHData output DPCCH data complex

21-40 WCDMA3G_UpLkDPCCH_Src

Page 993: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

1. This subnetwork is used to generate the data stream of one uplink dedicatedphysical control channel (DPCCH).

When GainUnit=Index, the gain of DPCCH is based on DPCCHGainIndex;otherwise it is based on DPCCHGainFactor. TFCIOn and FBIBitsCountdetermine the slot format of DPCCH.

The schematic for this subnetwork is shown in Figure 21-11. InputFBIBitsValue is feedback information value of one slot. Input TPCBitsValue istransmit power control (TPC) value of one frame. These two inputs as well asTFCIValue are converted to the bit stream, then multiplexed to one frame ofDPCCH. After DPCCH data stream is spread by the spreading code generatedby WCDMA3G_OVSF, it is mapped onto the Q-branch and multiplied with thescrambling code generated by WCDMA3G_UpLkScrambler.

Figure 21-11. WCDMA3G_UpLkDPCCH_Src Schematic

References

[1]3GPP Technical Specification TS 25.213 V3.0.0 “Spreading and Modulation(FDD),” October 1999.

[2] 3GPP Technical Specification TS 25.211 V3.0.0 “Physical channels and mappingof transport channels onto physical channels (FDD),” October 1999.

WCDMA3G_UpLkDPCCH_Src 21-41

Page 994: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

WCDMA3G_UpLkDPDCH_Src

Description Uplink signal source for one DPDCHLibrary 3GPPFDD 10-99, User Equipment

Parameters

Pin Outputs

Notes/Equations

Name Description Default Type Range

DPDCHRate uplink DPDCH rate:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

MultiCHs multiple DPDCHs: Yes, No No enum

DPDCHNo Number of DPDCHs 1 int [1, 6]

GainUnit gain unit in index [0,15] ormanually set value: Index,Value

Index enum

DPDCHGainIndex gain index for DPDCH 15 int [0, 15]

DPDCHGainFactor gain factor forDPDCH(used whenGainUnit=Value)

1.0 real [0.0, ∞)

ScramblingCodeType type of scrambling code:Long_Scrambling_Code,Short_Scrambling_Code

Long_Scrambling_Code

enum

ScramblingCodeIndex scrambling code index 0 int [0, 2^24-1]

Pin Name Description Signal Type

1 DPDCHData output DPDCH data complex

21-42 WCDMA3G_UpLkDPDCH_Src

Page 995: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

1. This subnetwork is used to generate the data stream of one uplink dedicatedphysical data channel (DPDCH).

When GainUnit=Index, the gain of DPDCH is based on DPDCHGainIndex,otherwise it is based on parameter DPDCHGainFactor.

When MultiCHs=No, DPDCHNo must be set to 1; when MultiCHs=Yes,DPDCHNo of all DPDCHs must be serial, from 1 to the number of DPDCHs.

The schematic for this subnetwork is shown in Figure 21-12. DPDCH randombit source is second interleaved and then spread by the spreading codegenerated by WCDMA3G_OVSF. The data stream is mapped onto the I-branchwhen DPDCHNo is odd and onto the Q-branch when DPDCHNo is even. Thecomplex data stream is then multiplied with the scrambling code generated byWCDMA3G_UpLkScrambler.

Figure 21-12. WCDMA3G_UpLkDPDCH_Src Schematic

References

[1]3GPP Technical Specification TS 25.213 V3.0.0 “Spreading and Modulation(FDD),” October 1999.

[2] 3GPP Technical Specification TS 25.211 V3.0.0 “Physical channels and mappingof transport channels onto physical channels (FDD),” October 1999.

WCDMA3G_UpLkDPDCH_Src 21-43

Page 996: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

WCDMA3G_UpLkTrCHCoding

Description Uplink transport channel codingLibrary 3GPPFDD 10-99, User Equipment

Parameters

Name Description Default Sym Type Range

TrCHNum number of transportchannels to be multiplexedin one CCTrCH

1 Nt int [1, ∞)

TrCHNo current transport channelnumber

0 int [0, Nt-1]

TrCHType transport channel type:DCH_8_kbps,DCH_16_kbps,DCH_32_kbps,DCH_64_kbps,DCH_128_kbps,DCH_256_kbps,DCH_512_kbps,DMCH_2_4_kbps,DMCH_12_2_kbps,DMCH_64_kbps,DMCH_144_kbps,DMCH_384_kbps,DMCH_2048_kbps,BCH_11_1_kbps,BCH_12_3_kbps

DCH_8_kbps enum

TTI transmission time interval:TTI_10ms, TTI_20ms,TTI_40ms, TTI_80ms

TTI_10ms enum

TrCHPosInCCTrCH indicator of transportchannels position in oneframe of CCTrCH: Fixed,Flexible

Fixed enum

PhyCHNum number of physicalchannels

1 int [1, 8]

21-44 WCDMA3G_UpLkTrCHCoding

Page 997: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Pin Inputs

Pin Outputs

Notes/Equations

1. This subnetwork is used to perform uplink transport channel coding.

The schematic for this subnetwork is shown in Figure 21-13. It includes CRCencoder, code block segmentation, channel coding, first interleaving, radioframe equalization, radio frame segmentation and rate match. CRC bits areadded to each transport block to perform error detection.

UL_DPDCHType uplink dedicated physicaldata channel type:DPDCH_15kbps,DPDCH_30kbps,DPDCH_60kbps,DPDCH_120kbps,DPDCH_240kbps,DPDCH_480kbps,DPDCH_960kbps

DPDCH_30kbps enum

RM semi-static rate matchingattribute for all transportchannels

1 real array [0, ∞)

OptimisticTrCHSizes a set of frame sizes forflexible position oftransport channels

0 real array [0, ∞)

Pin Name Description Signal Type

1 TFMax maximum transport format for current service int

2 In information symbol int

3 TF input transport format int

4 TFCI input TFCI information int

Pin Name Description Signal Type

5 CoderOutput channel coding output data int

6 Out output data of one radio frame int

7 OutSize output data size in 10 msec int

Name Description Default Sym Type Range

WCDMA3G_UpLkTrCHCoding 21-45

Page 998: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD 10-99 User Equipment Components

Figure 21-13. WCDMA3G_UpLkTrCHCoding Schematic

All transport blocks in a TTI are serially concatenated. If the number of bits ina TTI is greater than 504 when convolutional coding is used or greater than5114 when turbo coding is used, code block segmentation is performed after theconcatenation of the transport blocks. Code blocks are then delivered to thechannel coding block; radio frame size equalization pads the input bit sequenceto ensure the output can be segmented.

The first interleaving is a block interleaver with inter-column permutations; theradio frame segmentation used to segment one transport channel data block inTTI into the number of radio frames is determined by TTI. Each radio framehas the same number of bits. Rate matching is used to repeat or puncture bitsin transport channel to ensure that the total number bit rate after the secondmultiplexing is identical to the total channel bit rate of the allocated dedicatedphysical channel.

References

[1]3GPP Technical Specification TS 25.212 V3.0.0, “Multiplexing and channelcoding (FDD),” October 1999.

[2] 3GPP Technical Specification TS 34.121 V3.0.0 “Terminal conformanceSpecification: Radio transmission and reception (FDD),” March 2000.

21-46 WCDMA3G_UpLkTrCHCoding

Page 999: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 22: Base Station Receiver DesignExamples

IntroductionThe WCDMA3G_BS_Rx_prj project shows base station receiver measurementcharacteristics, including reference sensitivity levels, dynamic range, adjacentchannel selectivity, blocking and intermodulation characteristics, and wanted signalcalibration.

Designs for these measurements are described in the following sections; they include:

• Reference sensitivity levels: BS_Rx_RefLevel.dsn

• Dynamic range: BS_Rx_DynamicRange.dsn

• Adjacent channel selectivity: BS_Rx_ACS.dsn

• Blocking characteristics: BS_Rx_Blocking.dsn

• Intermodulation characteristics: BS_Rx_Intermod.dsn

22-1

Page 1000: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Receiver Design Examples

Designs under this project consist of:

• Uplink RF band signal source

3GPPFDD_RF_Uplink is used to provide a RF 3GPPFDD uplink signal source.The parameter of this subnetwork is shown in Table 22-1.

Table 22-1. Parameters of 3GPPFDD_RF_Uplink

The schematic for this subnetwork is shown in Figure 22-1.

Name Description Value Range

SpecVersion version of specifications: Version_03_00, Version_12_00, Version_03_02

ROut output resistance (0,+∞)

FCarrier frequency of carrier, in MHz (0,+∞)

Power output power, in dBm (-∞,+∞)

PhasePolarity if set to Invert, Q channel signal is inverted: Normal, Invert

GainImbalance gain imbalance, I to Q channel, in dB (-∞,+∞)

PhaseImbalance phase imbalance, I to Q channel, in degrees (-∞,+∞)

I_OriginOffset I origin offset in percent with respect to output rms voltage (-∞,+∞)

Q_OriginOffset Q origin offset in percent with respect to output rms voltage (-∞,+∞)

IQ_Rotation IQ rotation in degrees (-∞,+∞)

NDensity additive noise density in dBm per Hz (-∞,+∞)

SamplesPerChip samples per chip (0,+∞)

ExcessBW excess bandwidth of raised cosine filters [0,1]

FilterLength length of raised cosine filters in number of symbols (0,+∞)

RefCh reference measurement channel: UL_REF_12_2, UL_REF_64, UL_REF_144,UL_REF_384_10, UL_REF_384_20, UL_REF_768, UL_REF_2048

DPCCH_SltFmt DPCCH slot format [0, 5]

ScrambleType scramble type: Long, Short integer

ScrambleCode index of scramble code [0, 16777215]

GainIndex gain index [0, 15]

22-2 Introduction

Page 1001: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 22-1. 3GPPFDD_RF_Uplink Schematic

12.2 kbps UL reference measurement channel is used in all RX measurements.One 12.2 kbps DTCH (dedicated transport channel) and one 2.4 kbps DCCH(dedicated control channel) are multiplexed into one 60 kbps DPDCH(dedicated physical data channel). The 60 kbps DPDCH and 15 kbps DPCCH(dedicated physical control channel) are I/Q multiplexed into one data streamusing different spreading factors (64 for DPDCH and 256 for DPCCH), thenscrambled with the specified scrambling code. The amplitude ratio ofDPCCH/DPDCH is 0.7333 according to the Annex A of TS25.104.

The data source of baseband output from 3GPPFDD_UL_Source is directlymodulated to 1950 MHz by WCDMA3G_RF_Mod. The IF to RF up-converter isremoved in order to save simulation time.

• Channel loss and interfering signal combination

The transmitted RF signal is then attenuated by RF channel (RF_Gain model)and combined with interfering signals (modulated or continuous waveform) atgiven frequency offsets using RF_IQ. The modulated interfering signals areinput from an outside model.

• Base station RF receiver

3GPPFDD_RF_Uplink_Receiver is used to provide a receiver of RF 3GPPuplink signals. The parameter of this subnetwork is shown in Table 22-2.

Table 22-2. Parameter of 3GPPFDD_RF_Uplink_Receiver

Name Description Value Range

SpecVersion version of specifications: Version_03_00, Version_12_00, Version_03_02

RLoad input resistance (0,+∞)

Introduction 22-3

Page 1002: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Receiver Design Examples

The schematic for this subnetwork is shown in Figure 22-2.

FCarrier frequency of carrier, in MHz (0,+∞)

Phase demodulator reference phase in degrees

VRef reference voltage for output power calibration (0,+∞)

SamplesPerChip samples per chip (0,+∞)

ExcessBW excess bandwidth of raised cosine filters [0,1]

FilterLength length of raised cosine filters in number of symbols (0,+∞)

RefCh reference measurement channel: UL_REF_12_2, UL_REF_64, UL_REF_144,UL_REF_384_10, UL_REF_384_20, UL_REF_768, UL_REF_2048

DPCCH_SltFmt DPCCH slot format [0, 5]

ScrambleType scramble type: Long, Short integer

ScrambleCode index of scramble code [0, 16777215]

MaxDelaySample maximum delay boundary in term of sample [0, 2559]

ChannelType select the channel type to be processed: CH_GAUSSIAN, CH_FADING

ChannelInfo fading channel information source: Known, Estimated

ChannelInfoOffset offset between spread code and channel information in terms of sample

PathSearch path search frequency: EverySlot, Once

SearchMethod path search method: Coherent, NonCoherent, Combined

SearchSlotsNum number of slots for path search [1, 6]

PathNum number of Rake fingers [1, 6]

PathDelaySample delay for each finger in term of samples [0,MaxDelaySample]

Name Description Value Range

22-4 Introduction

Page 1003: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 22-2. 3GPPFDD_RF_Uplink_Receiver Schematic

At the receiver side, the received signal is demodulated to be the basebandsignal by WCDMA3G_RF_Demod.

3GPPFDD_UL_Rx_RefCH is used to demodulate and decode the receivingbaseband signals and BER values of DTCH and DCCH; BER values of DPDCHare calculated with the decode output of DTCH and DCCH.

• BER Calculation

3GPPFDD_RF_Uplink_BER is used to measure DPCH, DCCH and DTCH BERof 3GPP uplink channel. The parameter of this subnetwork is shown inTable 22-3.

Table 22-3. Parameter of 3GPPFDD_RF_Uplink_BER

The schematic for this subnetwork is shown in Figure 22-3.

Name Description Value Range

FrameNum frame number (0,+∞)

RefCh reference measurement channel: UL_REF_12_2, UL_REF_64, UL_REF_144,UL_REF_384_10, UL_REF_384_20, UL_REF_768, UL_REF_2048

Introduction 22-5

Page 1004: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Receiver Design Examples

Figure 22-3. 3GPPFDD_RF_Uplink_Receiver Schematic

Common variables used in these designs are listed in Table 22-4.

Table 22-4. Common VAR Parameters

Parameter Name Description Default Value

SpecVersion Specification version 2

RefCh Reference measurement channel 0

SamplePerChip Samples per chip 8

FrameNum Number of frames to be measured 4

TStep Time step 1/(3840000*SamplesPerChip)

FilterLength Filter length in terms of samples 16

FCarrier RF carrier frequency 1950 (MHz)

SourceR Source resistance 50 (ohm)

SourceDelay Source delay (2*int(FilterLength*SamplesPerChip/2)+1)*TStep

22-6 Introduction

Page 1005: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Reference Sensitivity Level MeasurementsBS_Rx_RefLevel.dsn Design

Features

• Base station receiver reference sensitivity level measurements

• Uplink reference measurement channels

• Integrated RF models

• BER of transport channels

• Decoded output data

Description

This design measures base station receiver reference sensitivity level according tosection 7.2 in TS25.104. The schematic is shown in Figure 22-4.

Figure 22-4. BS_Rx_RefLevel.dsn Schematic

The reference sensitivity is the minimum receiver input power measured at theantenna connector at which the BER does not exceed the value (0.001) specified insection 7.2.1.

Gain factors of RF models in this design are set to satisfy the following conditions persection 7.2.1 in TS 25.104 version 3.2.0:

• Ior = −121dBm/3.84 MHz

• BER performance must not exceed 0.001.

Reference Sensitivity Level Measurements 22-7

Page 1006: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Receiver Design Examples

Simulation Results

Simulation results are shown in Figure 22-5.

Figure 22-5. BER Results for Base Station Reference Sensitivity Level Measurement

Benchmark

• Simulation time is approximately 5 minutes on a P4/2.2G 512M PC powered byMS Windows 2000 and ADS 2003C for 4 frames.

Table 22-5. Base Station Reference Sensitivity Levels

Measurement Channel BS Reference Sensitivity Level BER

12.2 kbps -121 dBm BER ≤ 0.001

22-8 Reference Sensitivity Level Measurements

Page 1007: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Dynamic Range MeasurementsBS_Rx_DynamicRange.dsn

Features

• Base station receiver dynamic range measurement

• Uplink reference measurement channels

• Integrated RF models

• BER of transport channels

• Decoded output data

Description

This design measures the base station receiver dynamic range according to section7.3 in TS25.104. The schematic is shown in Figure 22-6.

Figure 22-6. BS_Rx_DynamicRange.dsn Schematic

Receiver dynamic range is the receiver’s ability to handle a rise of interference in thereception frequency channel. The receiver must fulfill a specified BER for a specified

Dynamic Range Measurements 22-9

Page 1008: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Receiver Design Examples

sensitivity degradation of the requisite signal in the presence of an interferingAWGN signal in the same reception frequency channel.

The BER must not exceed 0.001 with parameters listed in Table 22-6.

Gain factors of RF models in this design are set to satisfy the following conditionsspecified in section 7.3.1 of TS 25.104:

• Ior = −91dBm/3.84 MHz

• AWGN Signal Power = −73dBm/3.84 MHz

• BER performance of DTCH and DCCH must not exceed 0.001.

Simulation Results

Simulation results are shown in Figure 22-7.

Figure 22-7. Dynamic Range Measurement Simulation Results

Benchmark

Table 22-6. Base Station Dynamic Range

Parameter Level Unit

Data rate 12.2 kbps

Requisite signal -91 dBm

Interfering AWGN signal -73 dBm/3.84 MHz

22-10 Dynamic Range Measurements

Page 1009: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

• Simulation time is approximately 5 minutes on a P4/2.2G 512M PC powered byMS Windows 2000 and ADS 2003C for 4 frames.

Dynamic Range Measurements 22-11

Page 1010: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Receiver Design Examples

Adjacent Channel Selectivity MeasurementsBS_Rx_ACS.dsn

Features

• Base station receiver adjacent channel selectivity measurements

• Uplink reference measurement channels

• Integrated RF models

• BER of transport channels

• Decoded output data

Description

This design measures base station receiver adjacent channel sensitivity (ACS)according to section 7.4 in TS25.104. The schematic is shown in Figure 22-8.

Figure 22-8. BS_Rx_ACS.dsn Schematic

ACS is a measure of the receiver’s ability to receive the requisite signal at itsassigned channel frequency in the presence of an adjacent channel signal at a givenfrequency offset from the center frequency of the assigned channel. ACS is the ratioof the receiver filter attenuation on the assigned channel frequency to the receivefilter attenuation on the adjacent channel(s). The BER must not exceed 0.001.

22-12 Adjacent Channel Selectivity Measurements

Page 1011: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

The gain factors of RF models in this design are set to satisfy the following conditionsper section 7.4.1 in TS 25.104 version 3.2.0:

• = −115dBm/3.84 MHz

• Interfering Signal Power = −52dBm/3.84 MHz

• Interfering Signal Frequency Offset = 5 MHz

• BER performance of DTCH and DCCH must not exceed 0.001.

Simulation Results

Simulation results are shown in Figure 22-9.

Figure 22-9. Adjacent Channel Selectivity Measurement Simulation Results

Benchmark

• Simulation time is approximately 9 minutes on a P4/2.2G 512M PC powered byMS Windows 2000 and ADS 2003C for 4 frames.

Table 22-7. Base Station Adjacent Channel Selectivity

Parameter Level Unit

Data rate 12.2 kbps

Requisite signal -115 dBm

Interfering signal -52 dBm/3.84 MHz

Fuw (Modulated) 5 MHz

Ior

Adjacent Channel Selectivity Measurements 22-13

Page 1012: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Receiver Design Examples

Blocking Characteristics MeasurementsBS_Rx_Blocking.dsn Design

Features

• Base station receiver adjacent channel selectivity measurements

• Uplink reference measurement channels

• Integrated RF models

• BER of transport channels

• Decoded output data

Description

This design measures base station receiver blocking characteristics according tosection 7.5 in TS25.104. The schematic is shown in Figure 22-10.

Figure 22-10. BS_Rx_Blocking.dsn Schematic

Blocking characteristics is a measure of the receiver’s ability to receive the requisitesignal at its assigned channel frequency in the presence of an interfering signal onfrequencies other than those of the adjacent channels. The blocking performancemust apply at all frequencies as specified in Table 22-8, using a 1MHz step size. TheBER must not exceed 0.001.

22-14 Blocking Characteristics Measurements

Page 1013: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

The gain factors of RF models in this design are set to satisfy the following conditionsper section 7.5.1 in TS 25.104:

• = = −115dBm/3.84 MHz

• Interfering Signal Power = −40dBm/3.84 MHz

• Interfering Signal Frequency Offset = 10 MHz

• BER performance of DTCH and DCCH must not exceed 0.001.

Simulation Results

Simulation results are shown in Figure 22-11.

Figure 22-11. Blocking Measurements Simulation Results

Benchmark

• Simulation time is approximately 9 minutes on a P4/2.2G 512M PC powered byMS Windows 2000 and ADS 2003C for 4 frames.

Table 22-8. Base Station Blocking Characteristics

Center Frequency ofInterfering Signal

InterferingSignal Level

RequisiteSignal Level

Minimum Offset ofInterfering Signal Type of Interfering Signal

1920-1980 MHz† -40 dBm -115 dBm 10 MHz WCDMA signal with one code

1900-1920 MHz1980-2000 MHz

-40 dBm -115 dBm 10 MHz WCDMA signal with one code

1-1900 MHz2000-12750 MHz

-15 dBm -115 dBm CW carrier

† only this signal is implemented

Ior

Blocking Characteristics Measurements 22-15

Page 1014: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Receiver Design Examples

Intermodulation Characteristics MeasurementsBS_Rx_Intermod.dsn

Features

• Base station receiver adjacent channel selectivity measurements

• Uplink reference measurement channels

• Integrated RF models

• BER of transport channels

• Decoded output data

Description

This design measures base station receiver intermodulation characteristics accordingto section 7.6 in TS25.104. The schematic is shown in Figure 22-12.

Figure 22-12. BS_Rx_Intermod.dsn Schematic

Third- and higher-order mixing of the two interfering RF signals can produce aninterfering signal in the band of the requisite channel. Intermodulation responserejection is a measure of the receiver’s ability to receive the requisite signal on itsassigned channel frequency in the presence of two or more interfering signals that

22-16 Intermodulation Characteristics Measurements

Page 1015: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

have a specific frequency relationship to the requisite signal. The BER must notexceed 0.001.

Gain factors of RF models in this design are set to satisfy the following conditions persection 7.6.1 in TS 25.104:

• = −115dBm/3.84 MHz

• Interfering CW signal power = −48dBm

• Interfering CW signal frequency offset = 10 MHz

• Interfering modulated signal power = −48dBm

• Interfering modulated signal frequency offset = 20 MHz

• BER performance of DTCH and DCCH must not exceed 0.001.

Simulation Results

Simulation results are shown in Figure 22-13.

Figure 22-13. Intermodulation Simulation Results

Benchmark

Table 22-9. Base Station Intermodulation Performance Requirement

Requisite Signal Level Interfering Signal Level Offset Type of Interfering Signal

-115 dBm -48 dBm 10 MHz CW Signal

20 MHz WCDMA signal with one code

Ior

Intermodulation Characteristics Measurements 22-17

Page 1016: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Receiver Design Examples

• Simulation time is approximately 20 minutes on a P4/2.2G 512M PC poweredby MS Windows 2000 and ADS 2003C for 4 frames.

References

[1]3GPP Technical Specification TS 25.104 V3.5.0, “UTRA(BS) FDD: Radiotransmission and Reception,” December 2000.

[2] 3GPP Technical Specification TS 25.141 V3.4.1, “Base station conformancetest,” December 2000.

22-18 Intermodulation Characteristics Measurements

Page 1017: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 23: Base Station Transmitter DesignExamples

IntroductionThe WCDMA3G_BS_Tx_prj project shows base station transmitter measurementcharacteristics including maximum output power, occupied bandwidth,complementary cumulative distribution function (CCDF), spectrum emission,spurious emission, adjacent channel leakage power ratio (ACLR) and peak codedomain error and code domain power. The downlink frequency band is set at 2110 to2170 MHz and the signal sources are the test models defined in 25.141.

Designs for these measurements include:

• Maximum power measurements: BS_Tx_MaxPower.dsn

• Occupied bandwidth measurements: BS_Tx_Occupied_BW.dsn

• Complementary cumulative distribution function measurements:BS_Tx_CCDF.dsn

• Transmitter spectrum emissions measurements: BS_Tx_Spec_Emission.dsn

• Adjacent channel leakage power measurements in frequency domain:BS_Tx_ACLR.dsn

• Transmitter EVM measurements: BS_Tx_EVM.dsn

• Transmitter peak code domain error measurements:BS_Tx_Pk_Code_Error.dsn

• Signal power distribution measurements in code domain:BS_Tx_Code_Domain_Power.dsn

• Spurious emission measurement: Bs_Tx_SpurEmission.dsn

In the basic structure of the example designs a downlink signal source modelgenerates an RF signal and a measurement model implements the measurements.

Simulation results are displayed in data display files, which carry the same names asthe designs.

The downlink signal source 3GPPFDD_RF_Downlink supports fourteen types ofsources, including four data rate fully coded sources and three types of test model 1,

Introduction 23-1

Page 1018: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Transmitter Design Examples

test model 2, two types of test model 3 and test model 4 and three types of test model5. Type is based on the SourceType parameter. The hierarchical schematic of3GPPFDD_RF_Downlink is shown in Figure 23-1.

Figure 23-1. Schematic of 3GPPFDD_RF_Downlink

The Fully coded source 3GPPFDD_DL_Source and test models are selected by IfElsemodel then modulated to RF signal by 3GPPFDD_RF_Mod. A reference signal isoutput after RRC filtering. For the details regarding the fully-coded signals, refer to3GPPFDD_DL_Source documentation.

The common variables used in these designs are listed in Table 23-1.

Table 23-1. VAR Parameters

Parameter Name Description Default Value

SpecVersion Specification version 2

SamplePerChip Samples per chip 8

ChipsPerSlot Chips per slot 2560

NumSlotMeasured Number of slots to be measured Depends on measurements

23-2 Introduction

Page 1019: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

StartSlot The first slot to be measured 0

TimeStart Start point for timed measurement (1+StartSlot)*667e-6

TimeStep Time step 1/(3840000*SamplesPerChip)

TimeStop Stop point for timed measurement (1+StartSlot+NumSlotMeasured)*667e-6

FilterLength Filter length in terms of samples 16

FCarrier RF frequency 2140 (MHz)

RF_BW RF bandwidth 50 (MHz)

SignalPower Signal power 10(dBm)

Table 23-1. VAR Parameters

Parameter Name Description Default Value

Introduction 23-3

Page 1020: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Transmitter Design Examples

Maximum Power MeasurementsBS_Tx_MaxPower.dsn design

Features

• maximum power measurement

• test model 1 is used as the signal source

• synchronized slot measurement

Description

BS_Tx_MaxPower.dsn measures the maximum power of downlink signal. Normally,the base station maximum output power must remain within +2dB and -2dB of themanufacturer’s rated power.

The schematic for this design is shown in Figure 23-2.

Figure 23-2. BS_Tx_MaxPower.dsn Schematic

3GPPFDD_TestModel1 consists of 16/32/64 DPCH channels, one PICH channel, oneprimary CPICH channel and one PCCPCH+SCH channel, an SCCPCH is included inversion 2002-03. The PICH channel and DPCH channels are transmitted afterdifferent time offsets. When OutputMode = Ramp, the output power will reach itspreset value after all channels are transmitted. Meaningful maximum power isreached after 15 slots.

Simulation Results

Figure 23-3 shows the performance of maximum output power.

23-4 Maximum Power Measurements

Page 1021: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 23-3. Maximum Power Curve

Benchmark

• Hardware Platform: Pentium 4 2.2 GHz, 512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 20 slots

• Simulation Time: approximately 13 seconds

Maximum Power Measurements 23-5

Page 1022: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Transmitter Design Examples

Occupied Bandwidth MeasurementsBS_Tx_OccupiedBW.dsn Design

Features

• occupied bandwidth measurement

• test model 1 is used as the signal source

• synchronized slot measurement

Description

BS_Tx_OccupiedBW.dsn measures the occupied bandwidth of downlink signal. Theschematic is shown in Figure 23-4.

Occupied bandwidth is a measure of the bandwidth containing 99% of the integratedpower for the transmitted spectrum and is centered on the assigned frequency. Theoccupied bandwidth must be less than 5 MHz based on a chip rate of 3.84 Mcps.

Figure 23-4. BS_Tx_OccupiedBW.dsn Schematic

Simulation Results

The signal power density spectrum is obtained using the spectrum analyzer.Figure 23-5 shows the signal power density spectrum. A marker is placed to identifythe occupied bandwidth.

23-6 Occupied Bandwidth Measurements

Page 1023: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 23-5. Occupied Bandwidth Curve

Benchmark

• Hardware Platform: Pentium 4 2.2 GHz, 512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 1 slot

• Simulation Time: 4 seconds

Occupied Bandwidth Measurements 23-7

Page 1024: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Transmitter Design Examples

Complementary Cumulative Distribution FunctionMeasurementsBS_Tx_CCDF.dsn Design

Features

• CCDF measurement

• test model 1 is used as the signal source

• synchronized slot measurement

Description

BS_Tx_CCDF.dsn measures the CCDF of a downlink signal. The schematic is shownin Figure 23-6.

Figure 23-6. BS_Tx_CCDF.dsn Schematic

Simulation Results

The measurement is deployed on 5 slots of a stable signal after the first frame (15slots). Figure 23-7 shows the CCDF performance.

23-8 Complementary Cumulative Distribution Function Measurements

Page 1025: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 23-7. Base Station Transmitter CCDF Curve

Benchmark

• Hardware Platform: Pentium 4 2.2 GHz, 512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 5 slots

• Simulation Time: 4 seconds

Complementary Cumulative Distribution Function Measurements 23-9

Page 1026: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Transmitter Design Examples

Transmitter Spectrum Emissions MeasurementsBS_Tx_Spec_Emission.dsn Design

Feature

• Test model 1 is used as the signal source

• Out-of-band power is measured by sweeping the center frequency of thebandpass filter

Description

BS_Tx_Spec_Emission.dsn measures the base station transmitter spectrumemission. Out-of-band emissions are unwanted emissions immediately outside thechannel bandwidth resulting from the modulation process and non-linearity in thetransmitter. Figure 23-8 shows the schematic for this design.

Figure 23-8. BS_Tx_Spec_Emission.dsn Schematic

Notes

Emissions must not exceed the maximum level specified by the mask in thefrequency range with offset from ∆fmin -12.5 MHz to ∆fmax 12.5 MHz from the carrierfrequency. Mask values are specified in Table 23-2. There are some small differencesin different versions[2]. A sweeper is used to simulate all frequency offsets.

23-10 Transmitter Spectrum Emissions Measurements

Page 1027: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Table 23-2. Spectrum Emission Mask Values

Frequency Offset ∆f Maximum Level Measurement Bandwidth †

Base Station Maximum Output Power P < 31 dBm

2.5 ≤ ∆f < 2.7 MHz -22 dBm 30 kHz

2.7 ≤ ∆f < 3.5 MHz -22 - 15(∆f - 2.7) dBm 30 kHz

30 kHz

3.5 ≤ ∆f < 7.5 MHz -21 dBm 1 MHz

7.5 ≤ ∆f ≤ ∆fmax MHz -25 dBm 1 MHz

Base Station Maximum Output Power 31 ≤ P < 39 dBm

2.5 ≤ ∆f < 2.7 MHz P - 53 dBm30 kHz

2.7 ≤ ∆f < 3.5 MHz P - 53 - 15(∆f - 2.7) dBm 30 kHz

†† P - 65 dBm 30 kHz

3.5 ≤ ∆f < 7.5 MHz P - 52 dBm 1 MHz

7.5 ≤ ∆f ≤ ∆fmax MHz P - 56 dBm 1 MHz

Base Station Maximum Output Power 39 ≤ P < 43 dBm

2.5 ≤ ∆f < 2.7 MHz -14 dBm 30 kHz

2.7 ≤ ∆f < 3.5 MHz -14 - 15(∆f - 2.7) dBm 30 kHz

†† -26 dBm 30 kHz

3.5 ≤ ∆f < 7.5 MHz -13 dBm 1 MHz

7.5 ≤ ∆f ≤ ∆fmax MHz P - 56 dBm 1 MHz

Base Station Maximum Output Power P ≥ 43 dBm

2.5 ≤ ∆f < 2.7 MHz -14 dBm 30 kHz

2.7 ≤ ∆f < 3.5 MHz - 14 - 15(∆f - 2.7) dBm 30 kHz

†† -26 dBm 30 kHz

3.5 ≤ ∆f ≤ ∆fmax MHz -13 dBm 1 MHz

† the first and last measurement positions with a 30 kHz filter are 2.515 and 3.485 MHz, respectively.

the first and last measurement positions with a 2 MHz filter are 4 MHz and (∆fmax - 500 kHz), respectively.

††This frequency range ensures that the range of values of f_offset is continuous.

Transmitter Spectrum Emissions Measurements 23-11

Page 1028: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Transmitter Design Examples

Simulation Results

The spectrum emission is stored in the sink after 15 slots. Figure 23-9 shows thespectrum emission for the base station output powers and masks listed in Table 23-2.

Figure 23-9. Spectrum Emission Curves

Benchmark

• Hardware Platform: Pentium 4 2.2 GHz, 512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 1slot sweeping frequency offset from -12.5 MHz to 12.5 MHz

• Simulation Time: approximately 20 minutes

23-12 Transmitter Spectrum Emissions Measurements

Page 1029: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Adjacent Channel Leakage Power Measurements inFrequency DomainBS_Tx_ACLR.dsn Design

Features

• adjacent channel leakage power ratio measured in the frequency domain

• test model 1 is used as the signal source

• synchronized slot measurement

Description

BS_Tx_ACLR.dsn measures the base station transmitter adjacent channel leakagepower ratio (ACLR) in the frequency domain. ACLR is the ratio of the transmittedpower to the power measured after a receiver filter in the adjacent channel. In thisdesign, both the transmitted and received power are measured through a rootraised-cosine and roll-off 0.22 matched filter; noise power bandwidth is set to 3.84MHz. The schematic for this design is shown in Figure 23-10.

The de-activated DUT in parallel is an alternate DUT that supports circuitco-simulation that can be replaced with the user’s design.

Figure 23-10. BS_Tx_ACLR.dsn Schematic

Simulation Results

Adjacent Channel Leakage Power Measurements in Frequency Domain 23-13

Page 1030: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Transmitter Design Examples

The Spectrum analyzer is used to measure the transmitted power and adjacentchannel power in the frequency domain. When the base station adjacent channeloffset is +5 or -5 MHz, the ACLR limit is 45 dB; when the base station adjacentchannel offset is +10 or -10 MHz, the ACLR limit is 50 dB. The measurement isdeployed after the first frame (15 slots) and the signal becomes stable. Figure 23-11shows the ACLR performance of the base station transmitter.

Figure 23-11. Base Station Transmitter Spectrum and ACLR Performance

Benchmark

• Hardware Platform: Pentium 4 2.2 GHz, 512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 0.1 slot

• Simulation Time: approximately 23 seconds

23-14 Adjacent Channel Leakage Power Measurements in Frequency Domain

Page 1031: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Transmitter EVM MeasurementsBS_Tx_EVM.dsn Design

Features

• error vector magnitude measurements

• test model 4 is used as the signal source

• synchronized slot measurement with reference signal

Description

This design measures the error vector magnitude (EVM) of the base stationtransmitter. EVM is the difference between the measured waveform and thetheoretical modulated waveform and shows modulation accuracy. EVM expressed asa percentage must not be worse than 17.5%.

The schematic for this design is shown in Figure 23-12.

Figure 23-12. BS_Tx_EVM.dsn Schematic

Transmitter EVM Measurements 23-15

Page 1032: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Transmitter Design Examples

Figure 23-13. 3GPPFDD_EVM Schematic

Simulation Results

EVM =0.000123%

Benchmark

• Hardware Platform: Pentium 4 2.2 GHz, 512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 1 slot

• Simulation Time: approximately 50 seconds

23-16 Transmitter EVM Measurements

Page 1033: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Transmitter Peak Code Domain Error MeasurementsBS_Tx_Pk_Code_Error.dsn Design

Features

• peak code domain error calculation

• test model 3 is used as the signal source

• synchronized slot measurement with reference signal

Description

The schematic for this design is shown in Figure 23-14. The code domain error iscalculated by projecting the error vector power onto the code domain at the maximumspreading code. The peak code domain error is defined as the maximum value for thecode domain error and cannot exceed −33 dB.

Figure 23-14. BS_Tx_Pk_Code_Error.dsn Schematic

Simulation Results

The peak code domain error is shown in Figure 23-15.

Transmitter Peak Code Domain Error Measurements 23-17

Page 1034: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Transmitter Design Examples

Figure 23-15. Peak Code Domain Error of Base Station Transmitter

Benchmark

• Hardware Platform: Pentium 4 2.2 GHz, 512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 1 slot

• Simulation Time: 50 seconds

23-18 Transmitter Peak Code Domain Error Measurements

Page 1035: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Signal Power Distribution Measurements in CodeDomainBS_Tx_Code_Domain_Power.dsn Design

Features

• code domain power distribution measurement

• test model 3 is used as the signal source

Description

This design is used to analyze downlink signal power distribution in the code domain.The schematic is shown in Figure 23-16. A fixed-rate signal source is used to generatethe baseband signal, pass it through the modulator; an upconverter is used to get theRF signal. The complex envelope of the RF signal is removed to project its power intothe code domain.

Figure 23-16. BS_Tx_Code_Domain_Power.dsn Schematic

The received chip stream can be described as a vector Z of complex valued samples.The vector is of length N=n*m, where n is the number of symbol periods in themeasurement interval and m is the spreading factor (m chips per symbol, with onesample per chip). To project Z into the code domain, individual complex valuedelements of Z are defined as:

vk where k=0,1, ... , N-1

The chip stream is de-scrambled and divided into symbol vectors,

Signal Power Distribution Measurements in Code Domain 23-19

Page 1036: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Transmitter Design Examples

for s=0,1, ... , n-1

A 2-dimensional matrix is generated of the projections of each received symbol vector

onto each code vector Ci (i=0...m-1). Ci = ci + jci and ci is the ith spreading code. is

its complex conjugate.

By calculating the square of the magnitudes of the terms in Pz we arrive at a matrixof power coefficients that can be further processed by summing the values for eachcode across all symbols and normalizing to the received signal power. This producesthe code domain power coefficient vector

For each code i, we have calculated the projection of a symbol-long segment of thevector V onto code vector Ci for each symbol in the measurement interval. Wesummed these projected powers over all symbols then normalized to the receivedsignal power.

ρ S = { ρ0, ρ1, ... , ρm-1}

The power coefficients vector can be plotted, at least conceptually, as a histogram togive a display the power distribution in the code domain for the vector Z.

Ss vsm vsm 1+ vsm 2+ … , vsm m 1–+, , ,{ }=

Ci

Pi s,ss Ci×

Ci-----------------=

ρs

PZi s,

2

s 0=

n 1–

∑Z 2

------------------------------=

23-20 Signal Power Distribution Measurements in Code Domain

Page 1037: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Simulation Results

Signal power distribution in the code domain is shown in Figure 23-17. Here OVSFcode of layer 8 is used, the range of code index is from 0 to 255.

Figure 23-17. Signal Power Distribution in Code Domain

Benchmark

• Hardware Platform: Pentium 4 2.2 GHz, 512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 1 slot per code (2560 chips per slot)

• Simulation Time: approximately 83 seconds

Signal Power Distribution Measurements in Code Domain 23-21

Page 1038: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Transmitter Design Examples

Spurious Emissions MeasurementsBS_Tx_SpurEmissions.dsn Design

Features

• file-based signal source of test model 1

• circuit co-simulation

Description

Spurious emissions are caused by unwanted transmitter effects such as harmonicsemission, parasitic emission, intermodulation and frequency conversion products, butexclude out-of-band emissions. BS_Tx_SpurEmissions.dsn measures harmonicsemission using the ADS circuit envelope simulator. Figure 23-18 shows the schematicfor this design.

Figure 23-18. BS_Tx_SpurEmissions.dsn Schematic

The timed I, Q source data are generated by WCDMA3G_SignalSource_prj, whichmeasured IF emissions plus third-harmonic emissions of LO. By changingfundamental frequencies and their order, users can observe different harmonicemissions. The ITU-R Recommendation SM.329-7[1] defined two mandatorycategories of limits for spurious emissions according to [2].

23-22 Spurious Emissions Measurements

Page 1039: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Simulation Results

Figure 23-19 shows spectrum of signal on carrier frequency.

Figure 23-19. Main Signal of Base Station Transmitter

Figure 23-20 shows spectrum of spurious emissions on IF frequency plus third-orderharmonics of LO frequency.

Figure 23-20. Spurious Emissions of Base Station Transmitter

Spurious Emissions Measurements 23-23

Page 1040: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Transmitter Design Examples

Benchmark

• Hardware Platform: Pentium 4 2.2 GHz, 512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 5 slots

• Simulation Time: approximately 1 minute

References

[1]3GPP Technical Specification TS 34.121 V3.3.0 “Terminal conformanceSpecification: Radio transmission and reception (FDD),” December 2000.

[2] 3GPP Technical Specification TS 25.104 V3.5.0, “UTRA(BS) FDD: Radiotransmission and Reception,” December 2000.

[3] 3GPP Technical Specification TS 25.141 V3.4.1, “Base station conformancetest,” December 2000.

23-24 Spurious Emissions Measurements

Page 1041: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 24: BER Validation DesignExamples

IntroductionThe WCDMA3G_BERValidation_prj project contains the example designs to testBER performance.

Two designs are used to test channel coding performance over an AWGN channel:

• Convolutional Coding: 3GPPFDD_ConvCode.dsn

• Turbo Coding: 3GPPFDD_TurboCode.dsn

The source for BER test is a random bit stream with 50 percent probability for 0 andfor 1. The bit stream is turbo or convolutionally coded using polynomials specified by3GPP specification. The coded bits are modulated as dipolar signals and go throughan AWGN channel. The signals are taken as float inputs and are not quantized.Signals are then decoded by the classic Viterbi or MAP turbo decoder, and the harddecision is compared with the original bit stream for the BER value.

These are classic tests (see [1] and [2] ) and the BER values are reasonable comparedwith many references covering modern coding theory.

The channel coding and decoding models take the parameters for transport channelconfiguration. These parameters can be converted as coding block size and blocknumber using the 3GPPFDD_TrCH_Cal model.

Two designs are used to test the UE and BS fading channel performance.

• Base station receiver performance test: 3GPPFDD_BS_Rx_Performance.dsn

• User equipment receiver performance test:3GPPFDD_UE_Rx_Performance.dsn

There are 5 cases defined for 3GPP fading channel profile. The channel profileselected for these designs is fading channel case 1. 3GPP FDD referencemeasurement channel 12.2 kbps is selected. If other channel profiles or referencemeasurement channels are selected, the signal source, the channel, and the receivermust be re-configured.

The tests take the channel information from the channel model output and there isno channel estimation error. For multipath fading channel, the receiver samples the

24-1

Page 1042: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

BER Validation Design Examples

received signals from different positions to locate the different propagation paths.These sampling positions are pre-determined and are set up by the PathDelaySampleparameter.

For information regarding channel delay search as well as the method fordetermining channel information, refer to the RAKE receiver documentation.

Two designs are used to test HS-DPCCH performance:

• HS-DPCCH performance over AWGN channel:3GPPFDD_HS_UL_AWGN_BER.dsn

• HS-DPCCH performance over fading channel:3GPPFDD_HS_UL_Fading_BER.dsn

HARQ-Ack and CQI information are transmitted via HS-DPCCH. The transmissionquality of HARQ-Ack is evaluated by BER performance. The CQI transmissionquality is measured by the RMS error between the received and transmitted CQIvalues.

24-2

Page 1043: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Viterbi Decoder Performance for Rate 1/3 and 1/2Convolutional Coding3GPPFDD_ConvCode_BER.dsn Design

Features

• soft-decision Viterbi decoder for 3GPP convolutional coding

• BER performance over AWGN channel

• 3GPP convolutional coding performance benchmark

Description

For convolutional coding the constraint length is 9 and Rate 1/3 and 1/2 Viterbidecoders are tested. The schematic for this design is shown in Figure 24-1.

Figure 24-1. 3GPPFDD_ConvCode_BER Schematic

Simulation Results

Simulation results displayed in 3GPPFDD_ConvCode_BER.dds are shown inFigure 24-2.

Viterbi Decoder Performance for Rate 1/3 and 1/2 Convolutional Coding 24-3

Page 1044: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

BER Validation Design Examples

Figure 24-2. Simulation Results

Benchmark

• Hardware Platform: P4 1.8 GHz/512 MB memory

• Software Platform: Windows XP, ADS 2002

• Data Points: 10,000,000 bits

• Simulation Time: approximately 2 hours

24-4 Viterbi Decoder Performance for Rate 1/3 and 1/2 Convolutional Coding

Page 1045: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

MAP Decoder Performance for Rate 1/3 TurboCoding3GPPFDD_TurboCode_BER.dsn Design

Features

• MAP decoder for 3GPP turbo coding

• BER performance over AWGN channel

• 3GPP turbo coding performance benchmark (blocksize is 1040)

Description

The turbo decoder is tested with a block size equal to 1040. The BER values areobtained when the number of iterations is 2 to 9. The coding block could affect theturbo decoder performance. From iterations 6 to 9, there is no signification decodinggain. The schematic for this design is shown in Figure 24-3.

Figure 24-3. 3GPPFDD_TurboCode_BER Schematic

Simulation Results

Simulation results displayed in 3GPPFDD_TurboCode_BER.dds are shown inFigure 24-4.

MAP Decoder Performance for Rate 1/3 Turbo Coding 24-5

Page 1046: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

BER Validation Design Examples

Figure 24-4. Simulation Results

Benchmark

• Hardware Platform: P4 1.8GHz/512 MB memory

• Software Platform: Windows XP, ADS 2002

• Data Points: 10,000,000 bits

• Simulation Time: approximately 30 hours

References

[1]G. D. Forney, “The Viterbi algorithm,” Proc. IEEE, vol. 61, pp. 268-278, Mar,1973.

[2] C. Berrou and A. Glavieus. “Near optimum error correcting coding anddecoding: turbo-codes,” IEEE Trans. Comm., pp. 1261-1271, Oct. 1996.

24-6 MAP Decoder Performance for Rate 1/3 Turbo Coding

Page 1047: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Base Station Receiver Performance Test

3GPPFDD_BS_Rx_Performance.dsn Design

Features

• BS BER performance over fading channel

• Fading channel BER measurement under ideal conditions

Description

The modulated uplink signal source is fed to the 3GPP channel model. The channelmodel is configure as fading channel case 1. Then the faded signals are contaminatedby AWGN noise, which gives the desired Eb/No value. The receiver gets the channelinformation from the channel model output and samples the signals atpre-determined positions to get the signals propagated over different paths. Theschematic for this design is shown in Figure 24-5.

Figure 24-5. 3GPPFDD_BS_Rx_Performance Schematic

The target bit energy to noise density ratio (Eb/N0) is calculated as below: the(Eb/N0)DPDCH observed over physical channel can be calculated as:

Please note the DPCCH power doesn’t contribute to BER performance so that(SignalPower)DPDCH in the above equations is obtained be scaled by total power bythe DPDCH/DPCCH ratio:

Taking the channel coding gain into, the target Eb/N0 can be obtained as:

Eb N0⁄( )DPDCH

SignalPower( )DPDCH Time( )bit×N0

-----------------------------------------------------------------------------------------------

SignalPower( )DPDCH

3840000-------------------------------------------------------------- SF×

N0-----------------------------------------------------------------------------= =

SignalPower( )DPDCH SignalPower 1

1 GainIndex15

--------------------------------+ 2-------------------------------------------------×=

MAP Decoder Performance for Rate 1/3 Turbo Coding 24-7

Page 1048: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

BER Validation Design Examples

while

If repetition/puncturing is performed by rate matching, the rate match ratio shall beincluded in the channel coding gain. Using the equations listed above, the AGWNnoise density can be calculated and signals with desired Eb/N0 value can be obtained.

Simulation Results

Simulation results displayed in 3GPPFDD_BS_Rx_Performance.dds are shown inmultiple pages. Figure 24-6 through Figure 24-8.

Figure 24-6. Main Page

Eb N0⁄Eb N0⁄( )DPDCH

ChannelCodingGain--------------------------------------------------------------=

ChannelCodingGain BlockSizeAfterChannelCodingBlockSizeBeforeChannelCoding-------------------------------------------------------------------------------------------------=

24-8 MAP Decoder Performance for Rate 1/3 Turbo Coding

Page 1049: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 24-7. Figures Page

Figure 24-8. Equations Page

Benchmark

• Hardware Platform: P4 1.7 GHz/512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 4 10 msec frames

• Simulation Time: approximately 200 seconds

MAP Decoder Performance for Rate 1/3 Turbo Coding 24-9

Page 1050: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

BER Validation Design Examples

User Equipment Receiver Performance Test

3GPPFDD_UE_Rx_Performance.dsn Design

Features

• UE BER performance over fading channel

• Fading channel BER measurement under ideal conditions

Description

Power of the modulated downlink signal source is calibrated to Ior dBm/3.84MHz.The gain of each channel is calibrated to give the desired DPCH_Ec/Ior ratio. Thissignal is fed to the 3GPP channel model. The channel model is configure as fadingchannel case 1. Then the faded signals are contaminated by AWGN noise whosepower is calibrated as Ioc dBm/3.84MHz. The receiver gets the channel informationfrom the channel model output and samples the signals at pre-determined positionsto get the signals propagated over different paths. The schematic for this design isshown in Figure 24-9.

Figure 24-9. 3GPPFDD_UE_Rx_Performance Schematic

The power level of the signals input to the receiver is normalized to 10 dBm.

24-10 MAP Decoder Performance for Rate 1/3 Turbo Coding

Page 1051: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Simulation Results

Simulation results displayed in 3GPPFDD_BS_Rx_Performance.dds are shown inFigure 24-10 through Figure 24-12.

Figure 24-10. Main Page

Figure 24-11. Figures Page

MAP Decoder Performance for Rate 1/3 Turbo Coding 24-11

Page 1052: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

BER Validation Design Examples

Figure 24-12. Equations Page

Benchmark

• Hardware Platform: P4 1.7 GHz/512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 4 10 msec frames

• Simulation Time: approximately 400 seconds

24-12 MAP Decoder Performance for Rate 1/3 Turbo Coding

Page 1053: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Uplink HS-DPCCH Performance over AWGN channel3GPPFDD_HS_UL_AWGN_BER.dsn

Features

• HARQ-Ack BER performance over AWGN channel

• CQI transmission quality measured by RMS error

Description

The HARQ-Ack and CQI information are coded and multiplexed to form theHS-DPCCH sub-frame. The HS-DPCCHs are modulated and spread with DPCCHand DPDCH; DPCCH and DPDCH are configured according to referencemeasurement channel 12.2kbps.

At the receiver side, the soft information of HS-DPCCH obtained by rake receiver isde-multiplexed as coded HARQ-Ack and CQI bit streams. The HARQ-Ack and CQIinformation is then recovered by channel decoders. BER is measured for HARQ-Ackand RMS error is measured for CQI.

The schematic for this design is shown in Figure 24-13.

Figure 24-13. 3GPPFDD_HS_UL_AWGN_BER Schematic

Uplink HS-DPCCH Performance over AWGN channel 24-13

Page 1054: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

BER Validation Design Examples

Simulation Results

Simulation results displayed in 3GPPFDD_HS_UL_AWGN_BER.dds are shown inFigure 24-14. Note that Eb/No is calculated at the rake receiver input.

Differences between the transmitted CQI sequence (denoted by Ti) and the receivedCQI (denoted by Ri) are measured. Error definitions are:

• Error_Abs= average of abs(Ti -Ri)

• Error_Abs_Ratio=Error_Abs/average of abs(Ti)

• Error_RMS= sqrt(average of (Ti-Ri)2)

• Error_RMS_Ratio=Error_RMS/average of (Ti )2.

Figure 24-14. Simulation Results

Benchmark

• Hardware Platform: P4 1.8 GHz/512 MB memory

• Software Platform: Windows XP, ADS 2003C

• Data Points: 300 sub-frames

• Simulation Time: approximately 10 minutes

24-14 Uplink HS-DPCCH Performance over AWGN channel

Page 1055: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Uplink HS-DPCCH Performance over Fading channel3GPPFDD_HS_UL_Fading_BER.dsn Design

Features

• HARQ-Ack BER performance over fading channel

• CQI transmission quality measured by RMS error

Description

This design is the same as the 3GPPFDD_HS_UL_AWGN.dsn except the signal isupconverted to radio frequency 1950 MHz and passed through a multipath fadingchannel; channel profile is:

• 120 km per hour

• Gain array for the 2 paths is 0dB, -10dB

• Delay array for the 2 paths is 0 nsec, 976 nsec

The schematic for this design is shown in Figure 24-15.

Figure 24-15. 3GPPFDD_HS_UL_Fading_BER Schematic

Uplink HS-DPCCH Performance over Fading channel 24-15

Page 1056: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

BER Validation Design Examples

Simulation Results

Simulation results displayed in 3GPPFDD_HS_UL_Fading_BER.dds are shown inFigure 24-16. Note that Eb/No is calculated at the input of rake receiver.

Differences between the transmitted CQI sequence (denoted by Ti) and the receivedCQI (denoted by Ri) are measured. Error definitions are:

• Error_Abs = average of abs(Ti -Ri)

• Error_Abs_Ratio = Error_Abs/average of abs(Ti)

• Error_RMS = sqrt(average of (Ti-Ri)2)

• Error_RMS_Ratio = Error_RMS/average of (Ti )2.

Figure 24-16. Simulation Results

Benchmark

• Hardware Platform: P4 1.8 GHz/512 MB memory

• Software Platform: Windows XP, ADS 2003C

• Data Points: 30 sub-frames

• Simulation Time: approximately 10 minutes

24-16 Uplink HS-DPCCH Performance over Fading channel

Page 1057: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 25: Power Amplifier Test Examples

IntroductionThe WCDMA3G_PA_Test_prj provides signal sources compliant with 3GPP technicalspecification of December 2000. The new 3GPPFDD_Synch model is used to ensureall measurements start at the beginning of a slot.

This project focuses on verification of power amplifier designs for 3GPP wirelesshandsets. Nine measurements are provided including maximum output power,occupied bandwidth, complementary cumulative distribution function (CCDF),spectrum emission, adjacent channel leakage power ratio (ACLR), ACLR in thepresence of switching transients, error vector magnitude (EVM), peak code domainerror, and code domain power.

Designs for these measurements are described in the following sections; they include:

• Maximum output power measurements: WCDMA3G_PA_UE_OutputPower.dsn

• Occupied bandwidth measurements: WCDMA3G_PA_UE_OccupiedBW.dsn

• CCDF and peak-to-mean information measurements:WCDMA3G_PA_UE_CCDF.dsn

• Spectrum emission measurements: WCDMA3G_PA_UE_SpecEmissions.dsn

• ACLR measurements: WCDMA3G_PA_UE_ACLR.dsn

• ACLR measurements in the presence of switching transients:WCDMA3G_PA_UE_ACLR_SwitchingTransient.dsn

• EVM measurements: WCDMA3G_PA_UE_EVM.dsn

• Peak code domain error measurements: WCDMA3G_PA_UE_PkCodeError.dsn

• Signal power distribution measurements in the code domain:WCDMA3G_PA_UE_CodeDomainPower.dsn

Common variables used in these designs are described in Table 25-1.

Table 25-1. VAR Parameters

Parameter Name Description Default Value

SamplePerChip Samples per chip 8

SpecVersion Specification version 1(2000-12)

ChipsPerSlot Chips per slot 2560

25-1

Page 1058: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Power Amplifier Test Examples

Figure 25-1 shows the top-level schematic for a typical power amplifier test designexample.

Figure 25-1. Power Amplifier Test Design Example Top-Level Schematic

This typical design example and each power amplifier design example include theseitems.

• the _Info module contains measurement information and specifications.

• the DF (data flow) controller and VAR Simulation_Variables define systemsimulation parameters.

• the VAR User_Defined_Variables defines parameters for a specificmeasurement. Users can customize these settings. Typical parameters settingsare:

• SignalPower = dbmtow(24-DUT_Gain)

• RF_Freq = 1950 MHz

NumSlotMeasured Number of slots to be measured Depends

StartSlot The first slot to be measured 0

TimeStart Start point for timed measurement (1+StartSlot)*667e-6

TimeStep Time step 1/(3840000*SamplesPerChip)

TimeStop Stop point for timed measurement (1+StartSlot+NumSlotMeasured)*667e-6

FilterLength Filter length in terms of samples 16

RF_Freq RF frequency 1950 (MHz)

SignalPower Signal power Depends

Table 25-1. VAR Parameters

Parameter Name Description Default Value

25-2 Introduction

Page 1059: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

• NumSlotsMeasured = 1

• the SUB_3GPP_Source module (schematic is shown in Figure 25-2) generatesthe standard reference signal and the real modulated timed signal to be tested.Reference signals are required in some measurements to calibrate the signalsto be tested.

• the measurement channel rate is 12.2 kbps.

• the spreading factor for DPCCH is 256 and DPDCH is 64.

Figure 25-2. SUB_3GPP_Source.dsn Schematic

• the Device_To_Be_Tested module can be replaced by the user’s power amplifiercircuit. A GainRF item with Gain=1 is used in each example design.

• the _Measure module selects the signal and performs different measurements.

If the RF signal delay (RF_Delay) through the device under test is greater than onechip (0.26 µsec), that delay value can be entered in the _Measure module.

Each design example has a corresponding data display template identified with thecorresponding filename with a .dds extension. Power amplifier designers can use the.dds data to display simulation results of their own design. When simulation iscomplete, a pass or fail message is generated that indicates if results meetspecifications. A reference data set of simulation results of each example design canbe found with a prefix of Ref_.

Introduction 25-3

Page 1060: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Power Amplifier Test Examples

Maximum Output Power MeasurementsWCDMA3G_PA_UE_OutputPower.dsn Design

Description

This design measures the maximum power of the output signals.

The top-level schematic for this design is shown in Figure 25-3. TheSUB_OutputPower_Info.dsn subnetwork contains measurement information andspecifications. The SUB_3GPP_Source.dsn subnetwork generates the RF band signaland passes it to the device under test.

The SUB_OutputPower_Measure.dsn subnetwork, Figure 25-4, implements themaximum output power measurement based on specifications.

Figure 25-3. WCDMA3G_PA_UE_OutputPower.dsn Schematic

Figure 25-4. SUB_OutputPower_Measure.dsn Schematic

Simulation Results

Simulation results are shown in Figure 25-5.

25-4 Maximum Output Power Measurements

Page 1061: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

In the Data Display window, Page > Equations contains variable definitions andcalculations.

Figure 25-5. WCDMA3G_PA_UE_OutputPower.dds Simulation Results

Benchmark

• Hardware Platform: Pentium III 450 MHz, 512 MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

• Simulation Time: approximately 1 minute

Maximum Output Power Measurements 25-5

Page 1062: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Power Amplifier Test Examples

Occupied Bandwidth MeasurementsWCDMA3G_PA_UE_OccupiedBW.dsn Design

Description

Occupied bandwidth is a measure of the bandwidth containing 99% of the totalintegrated power of the transmitted spectrum, centered on the assigned channelfrequency. The occupied channel bandwidth must be less than 5 MHz based on a chiprate of 3.84 Mcps.

The top-level schematic for this design is shown in Figure 25-6. TheSUB_OccupiedBW_Info.dsn subnetwork contains measurement information andspecifications. The SUB_3GPP_Source.dsn subnetwork generates the RF band signaland passes it to the device under test.

The SUB_OccupiedBW_Measure.dsn subnetwork shown in Figure 25-7 implementsthe occupied bandwidth measurement according to specifications.

Figure 25-6. WCDMA3G_PA_UE_OccupiedBW.dsn Schematic

25-6 Occupied Bandwidth Measurements

Page 1063: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 25-7. SUB_OccupiedBW_Measure.dsn Schematic

Simulation Results

Simulation results are shown in Figure 25-8. This includes the spectrum with m1and m2 markers positioned so the lower and higher power ratios equal 0.5%.

In the Data Display window, Page > Equations contains variable definitions andcalculations.

Figure 25-8. WCDMA3G_PA_UE_OccupiedBW.dds Simulation Results

Benchmark

Occupied Bandwidth Measurements 25-7

Page 1064: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Power Amplifier Test Examples

• Hardware Platform: Pentium III 450 MHz, 512 MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

• Simulation Time: approximately 1 minute

25-8 Occupied Bandwidth Measurements

Page 1065: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Complementary Cumulative Distribution FunctionMeasurementsWCDMA3G_PA_UE_CCDF.dsn Design

Description

Complementary cumulative distribution function (CCDF) fully characterizes thepower statistics of a signal. It provides PAR versus probability.

The top-level schematic for this design is shown in Figure 25-9. TheSUB_3GPP_PA_CCDF_Info.dsn subnetwork contains measurement information andspecifications. The SUB_3GPP_Source.dsn subnetwork generates the RF band signaland passes it to the device under test.

The SUB_3GPP_PA_CCDF_Info.dsn subnetwork shown in Figure 25-10 implementsthe CCDF measurement.

Figure 25-9. WCDMA3G_PA_UE_CCDF.dsn Schematic

Figure 25-10. SUB_PA_CCDF_Measure.dsn Schematic

Complementary Cumulative Distribution Function Measurements 25-9

Page 1066: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Power Amplifier Test Examples

Simulation Results

Simulation results in Figure 25-11 show the CCDF curve.

In the Data Display window, Page > Equations contains variable definitions andcalculations.

Figure 25-11. WCDMA3G_PA_UE_CCDF.dds Simulation Results

Benchmark

• Hardware Platform: Pentium III 450 MHz, 512 MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

• Simulation Time: approximately 1 minute

25-10 Complementary Cumulative Distribution Function Measurements

Page 1067: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Spectrum Emission MeasurementsWCDMA3G_PA_UE_SpecEmissions.dsn Design

Description

This example is used to measure the out-of-band emission of user equipment againstthe spectrum emission mask.

Out-of-band emissions are unwanted emissions immediately outside the nominalchannel resulting from the modulation process and non-linearity in the transmitterbut excluding spurious emissions. Spectrum emission mask is a limit to theout-of-band emission.

The spectrum emission mask of the user equipment applies to frequencies 2.5 MHz to12.5 MHz away from the user equipment center carrier frequency. The out-of-channelemission is specified relative to the user equipment output power measured in a 3.84MHz bandwidth.

The top-level schematic for this design is shown in Figure 25-12. TheSUB_SpecEmissions.dsn subnetwork contains measurement information andspecifications. The RF modulated signal is generated by the SUB_3GPP_Source.dsnsubnetwork and passed to the device under test.

In the SUB_SpecEmissions_Measure.dsn subnetwork, Figure 25-13, output power ismeasured with a bandpass root raised-cosine (RRC) filter with a 3.84 MHzbandwidth. The out-of-channel emission is measured by sweeping the centerfrequency of another bandpass RRC filter.

The user typically sets parameters for SignalPower, RF_Freq andNumSlotsMeasured on the schematic. If the RF signal delay (RF_Delay) through thedevice under test is greater than one chip (0.26 µsec), that delay value can be enteredin SUB_SpecEmissions_Measure.dsn.

Spectrum Emission Measurements 25-11

Page 1068: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Power Amplifier Test Examples

Figure 25-12. WCDMA3G_PA_UE_SpecEmissions.dsn Schematic

Figure 25-13. SUB_SpecEmissions_Measure.dsn Schematic

Simulation Results

Simulation results are shown in Figure 25-14; this shows the spectrum emissionagainst the emission mask.

25-12 Spectrum Emission Measurements

Page 1069: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 25-14. WCDMA3G_PA_UE_SpecEmissions.dds Simulation Results

Benchmark

• Hardware Platform: Pentium III 450 MHz, 512 MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

• Data Points: 1 slot for each measurement

• Simulation Time: approximately 30 seconds for 1 point. The overall timedepends on the out-of-band frequency bandwidth to be measured.

Spectrum Emission Measurements 25-13

Page 1070: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Power Amplifier Test Examples

Adjacent Channel Leakage Power RatioMeasurementsWCDMA3G_PA_UE_ACLR.dsn Design

Description

Adjacent channel leakage power ratio (ACLR) is the ratio of the transmitted power tothe power measured in an adjacent channel. Both the transmitted power and theadjacent channel power are measured with a filter that has a root raised-cosine(RRC) filter response with rolloff of α = 0.22 and a bandwidth equal to the chip rate.

The main source of adjacent channel leakage (ACL) is non-linear effects in the poweramplifiers. It directly affects the co-existing performance of systems on adjacentchannels. Power leakage is a general noise pollution and degrades performance of thesystem in the adjacent channel. The standard current values for user equipment are33 dB or -50 dBm (whichever represents a lower leakage power) at 5 MHz offset, and43 dB or -50 dBm (whichever represents a lower leakage power) at 10 MHz offset.

The top-level schematic for this design is shown in Figure 25-15. TheSUB_ACLR_Info.dsn subnetwork contains measurement information andspecifications. The SUB_3GPP_Source.dsn subnetwork generates the RF band signaland passes it to the device under test.

The SUB_ACLR_Measure.dsn subnetwork (Figure 25-16) implements ACLRmeasurements according to specifications. The ACLR_Filter_Bank.dsn subnetwork(Figure 25-17) contains filters for ACLR measurement.

Figure 25-15. WCDMA3G_PA_UE_ACLR.dsn Schematic

25-14 Adjacent Channel Leakage Power Ratio Measurements

Page 1071: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 25-16. SUB_ACLR_Measure.dsn Schematic

Figure 25-17. ACLR_Filter_Bank.dsn Schematic

Simulation Results

Simulation results in Figure 25-18 show main and adjacent channel spectrums.

Adjacent Channel Leakage Power Ratio Measurements 25-15

Page 1072: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Power Amplifier Test Examples

In the Data Display window, Page > Equations contains variable definitions andcalculations.

Figure 25-18. WCDMA3G_PA_UE_ACLR.dds Simulation Results

Benchmark

• Hardware Platform: Pentium III 450 MHz, 512 MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

• Simulation Time: approximately 1 minute

25-16 Adjacent Channel Leakage Power Ratio Measurements

Page 1073: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Adjacent Channel Leakage Power RatioMeasurements in Presence of Switching TransientsWCDMA3G_PA_UE_ACLR_SwitchingTransient.dsn Design

Description

This design example is used to measure the adjacent channel leakage power ratio(ACLR) in the presence of the switching transient.

ACLR is a measure of transmitter performance. It is defined as the ratio of thetransmitted power to the power measured in an adjacent channel. Both thetransmitted power and the adjacent channel power are measured with a filter thathas a root raised-cosine (RRC) filter response with rolloff of 0.22 and a bandwidthequal to the chip rate. 3GPP specifications define the minimum requirements for theACLR.

The top-level schematic for this design is shown in Figure 25-19. The RF modulatedsignal, generated by the SUB_3GPP_Source.dsn subnetwork, is passed to the deviceunder test.

Figure 25-19. WCDMA3G_PA_UE_ACLR_SwitchingTransient.dsn Schematic

The SUB_ACLR_SwitchingTransient_Measure.dsn, Figure 25-20, measures thepower of four adjacent channels as well as the user equipment channel power. TheACLR is measured through four measurement intervals (time slots) to present theswitching transients.

The user typically sets parameters for SignalPower, RF_Freq andNumSlotsMeasured on the schematic. If the RF signal delay (RF_Delay) through the

Adjacent Channel Leakage Power Ratio Measurements in Presence of Switching Transients 25-17

Page 1074: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Power Amplifier Test Examples

device under test is greater than one chip (0.26 µsec), that delay value can be enteredin the SUB_ACLR_SwitchingTransient_Measure.dsn subnetwork.

Figure 25-20. SUB_ACLR_SwitchingTransient_Measure.dsn Schematic

Simulation Results

Simulation results (WCDMA3G_PA_UE_ACLR_SwitchingTransient.dds) are shownin Figure 25-21. The specification requires that if adjacent channel power is greaterthan -50dBm then the ACLR must be higher than the value specified in Table 25-2.

Figure 25-21. ACLR Measurement Simulation Results

25-18 Adjacent Channel Leakage Power Ratio Measurements in Presence of Switching Transients

Page 1075: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Benchmark

• Hardware Platform: Pentium III 450 MHz, 512 MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

• Data Points: 1 slot for each measurement

• Simulation Time: approximately 2 minutes

Table 25-2. User Equipment ACLR Requirements

Power Class Adjacent Channel Relative to User Equipment Channel ACLR limit

3 +5MHz or -5MHz 33dB

3 +10MHz or -10MHz 43dB

4 +5MHz or -5MHz 33dB

4 +10MHz or -10MHz 43dB

Adjacent Channel Leakage Power Ratio Measurements in Presence of Switching Transients 25-19

Page 1076: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Power Amplifier Test Examples

Error Vector Magnitude MeasurementsWCDMA3G_PA_UE_EVM.dsn Design

Description

Error vector magnitude (EVM) is a measure of the difference between the measuredwaveform and the theoretical modulated waveform (the error vector). It is the squareroot of the ratio of the mean error vector power to the mean reference signal powerexpressed as a percentage. The measurement interval is one power control group(time slot).

The top-level schematic for this design is shown in Figure 25-22. TheSUB_PA_EVM_Info.dsn subnetwork contains measurement information andspecifications. The SUB_3GPP_Source.dsn subnetwork generates the RF band signaland passes it to the device under test.

The SUB_PA_EVM_Measure.dsn subnetwork, Figure 25-23, implements the errorvector magnitude measurement.

Figure 25-22. WCDMA3G_PA_UE_EVM.dsn Schematic

25-20 Error Vector Magnitude Measurements

Page 1077: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 25-23. SUB_PA_EVM_Measure.dsn Schematic

Simulation Results

Simulation results are shown in Figure 25-24.

In the Data Display window, Page > Equations contains variable definitions andcalculations.

Figure 25-24. WCDMA3G_PA_UE_EVM.dds Simulation Results

Benchmark

• Hardware Platform: Pentium III 450 MHz, 512 MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

• Simulation Time: approximately 1 minute

Error Vector Magnitude Measurements 25-21

Page 1078: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Power Amplifier Test Examples

Peak Code Domain Error MeasurementsWCDMA3G_PA_UE_PkCodeError.dsn Design

Description

This example is used to measure the peak code domain error of user equipmenttransmitted signal.

The top-level schematic for this design is shown in Figure 25-25. A channel mixedsignal is generated by SUB_3GPP_Source.dsn subnetwork, then passed to the deviceunder test.

Figure 25-25. WCDMA3G_PA_UE_PkCodeError.dsn Schematic

The SUB_PA_PkCodeError_Measure.dsn subnetwork, Figure 25-26, implements thepeak code domain error measurement. The tested signal and the reference signal aremeasured with filters that have root raised-cosine filter response with rolloff of 0.22and a bandwidth equal to the chip rate.

25-22 Peak Code Domain Error Measurements

Page 1079: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 25-26. SUB_PA_PkCodeError_Measure.dsn Schematic

The peak code domain error is calculated by projecting the error vector power on eachcode channel at a spreading factor of 256. The code domain error of each code isdefined as the ratio of the mean power of the projection onto that code, to the meanpower of the composite reference waveform. This ratio is expressed in dB. The peakcode domain error is defined as the maximum value for the code domain error for allcodes. As in FDD/uplink each code can be used twice on the I channel or on the Qchannel. Code domain error must be measured on both channels. The measurementinterval is one power control group (time slot).

Simulation Results

Simulation results are shown in Figure 25-27. This shows the code domain error ofthe tested signal on the I and Q channels; peak code domain error occurs on the Qchannel.

• I channel peak code domain error = - 69.921 dB

• Q channel peak code domain error = - 69.843 dB

Peak Code Domain Error Measurements 25-23

Page 1080: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Power Amplifier Test Examples

Figure 25-27. WCDMA3G_PA_UE_PkCodeError.dds Simulation Results

Benchmark

• Hardware Platform: Pentium III 450 MHz, 512 MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

• Data Points: 1slot per code (2560 chips per slot)

• Simulation Time: approximately 1 minute

25-24 Peak Code Domain Error Measurements

Page 1081: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Signal Power Distribution Measurements in CodeDomainWCDMA3G_PA_UE_CodeDomainPower.dsn Design

Description

This example is used to measure signal power distribution across the set of codechannels, normalized to the total signal power.

The top-level schematic for this design is shown in Figure 25-28. The RF modulatedsignal generated by the SUB_3GPP_Source.dsn subnetwork is passed to the deviceunder test.

Figure 25-28. WCDMA3G_PA_UE_CodeDomainPower.dsn Schematic

The SUB_PA_CodeDomainPower_Measure.dsn subnetwork, Figure 25-29,implements the code domain power measurement.

Figure 25-29. SUB_PA_CodeDomainPower_Measure.dsn Schematic

Code domain power is measured with a filter that has a root raised-cosine filterresponse with a rolloff of 0.22 and a bandwidth equal to the chip rate.

Signal Power Distribution Measurements in Code Domain 25-25

Page 1082: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Power Amplifier Test Examples

Code domain power is measured at the C(8) layer, that is the signal is decoded by theOVSF codes of SF=256. This is legitimate because the power attributable to a trafficchannel using a higher rate spreading code will correlate with the block of K adjacentcodes at the level for which the higher rate code is the parent. (K is the ratio betweenthe used spreading factor and 256.) Provided that all the codes in this block areidentified as used codes then the aggregate power of the K codes in the block willequal the signal power of the higher rate code.

The user typically sets parameters for SignalPower, RF_Freq andNumSlotsMeasured on the schematic. The measurement interval is one powercontrol group (time slot).

Simulation Results

The vector of code domain power is plotted as a histogram to display the powerdistribution in the code domain. Simulation results in Figure 25-30 show the powerdistribution of the transmitted signal.

Since it is an ideal design, levels for the inactive channels are zero; in reality, signaland system imperfections compromise the code orthogonality and result in a certainamount of signal power projecting onto inactive codes. A real signal will also have acertain noise level that, being random, will project more or less evenly onto all codes.

Figure 25-30. WCDMA3G_PA_UE_CodeDomainPower.dds Simulation Results

Benchmark

• Hardware Platform: Pentium III 450 MHz, 512 MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

• Data Points: 1 slot per code (2560 chips per slot)

25-26 Signal Power Distribution Measurements in Code Domain

Page 1083: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

• Simulation Time: approximately 1 minute

References

[1]3GPP Technical Specification TS 25.101 V3.5.0 “UE: Radio transmission andReception (FDD),” December 2000.

[2] 3GPP Technical Specification TS 34.121 V3.3.0 “Radio transmission andreception (FDD),” December 2000.

Signal Power Distribution Measurements in Code Domain 25-27

Page 1084: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Power Amplifier Test Examples

25-28

Page 1085: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 26: Signal Source Design Examples

IntroductionThe WCDMA3G_SignalSource_prj project demonstrates the use of base station anduser equipment signal source models and EVM measurement models. Two ESGinterface demonstrations and an example of ESG Option 100 signal source and 89600VSA are included. These example designs are described in the following sections:

• Downlink Test Model 1 Signal Source: 3GPPFDD_BS_Tx_TestModel1.dsn

• Uplink 12.2 kbps Signal Source: 3GPPFDD_UE_Tx_12_2.dsn

• ESG Option 100 Compliant Signal Source Demo:3GPPFDD_ESG100_Demo.dsn

• EVM Measurement with Non-Synchronized Signal:3GPPFDD_EVM_Demo.dsn

• EVM Measurement with Synchronized Signal:3GPPFDD_EVM_Synch_Demo.dsn

• ESG E4438C interface demo: 3GPPFDD_ESG4438C.dsn

• ESG E443xB interface demo: 3GPPFDD_ESG443xB.dsn

Variables used in these designs are listed in Table 26-1.

Table 26-1. VAR Parameters

Parameter Name Description Default Value

SamplePerChip Samples per chip 8

ChipsPerSlot Chips per slot 2560

NumSlotMeasured Number of slots to be measured Depends

StartSlot The first slot to be measured 0

TimeStart Start point for timed measurement (1+StartSlot)*667e-6

TimeStep Time step 1/(3840000*SamplesPerChip)

TimeStop Stop point for timed measurement (1+StartSlot+NumSlotMeasured)*667e-6

FilterLength Filter length in terms of samples 16*SamplesPerChip

IF_Freq IF frequency 190 (MHz)

RF_Freq RF frequency 2140 (MHz)

Introduction 26-1

Page 1086: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Signal Source Design Examples

RF_BW RF bandwidth for 50 (MHz)

SignalPower Signal power Depends

Table 26-1. VAR Parameters

Parameter Name Description Default Value

26-2 Introduction

Page 1087: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Downlink Test Model 1 Signal Source3GPPFDD_BS_Tx_TestModel1.dsn Design

Description

This design generates a file-based signal of downlink test model 1, which can be usedas signal source in other designs. The schematic is shown in Figure 26-1.

Figure 26-1. 3GPPFDD_BS_Tx_TestModel1.dsn Schematic

Simulation Results

Simulation results saved in Ref_3GPPFDD_BS_TestM1_I_Data.tim andRef_3GPPFDD_BS_TestM1_Q_Data.tim are used in the BS_Tx_SpurEmissions.dsnof WCDMA3G_BS_Tx_prj. The spectrum is shown in Figure 26-2.

Downlink Test Model 1 Signal Source 26-3

Page 1088: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Signal Source Design Examples

Figure 26-2. Spectrum of Transmitted Signal

Benchmark

• Hardware Platform: Pentium III 450 MHz, 512 MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

• Simulation Time: approximately 1 minute

26-4 Downlink Test Model 1 Signal Source

Page 1089: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Uplink 12.2 kbps Signal Source3GPPFDD_UE_Tx_12_2.dsn Design

Description

This design generates a file-based signal of uplink 12.2 kbps source, which can beused as signal source in other designs. The schematic is shown in Figure 26-3.

Figure 26-3. 3GPPFDD_UE_Tx_12_2.dsn Schematic

Simulation Results

Simulation results are saved in Ref_3GPPFDD_UE_12_2_I_Data.tim andRef_3GPPFDD_UE_12_2_Q_Data.tim. The spectrum is shown in Figure 26-4.

Uplink 12.2 kbps Signal Source 26-5

Page 1090: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Signal Source Design Examples

Figure 26-4. Spectrum of Transmitted Signal

Benchmark

• Hardware Platform: Pentium III 450 MHz, 512MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

• Simulation Time: approximately 1 minute

26-6 Uplink 12.2 kbps Signal Source

Page 1091: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

ESG Option 100 Compliant Signal Source Demo3GPPFDD_ESG100_Demo.dsn Design

Features

• ESG option 100 compliant signal source

• VSA 89600 measurement

Description

This design demonstrates how the use of an ESG 100 compliant signal source in the3GPPFDD design library and the VSA 89600 measurement model. The schematic isshown in Figure 26-5.

Figure 26-5. 3GPPFDD_ESG100_Demo.dsn Schematic

The baseband signal source data is generated by the 3GPPFDD_UpLk model. It is setas one DPCCH plus six DPDCHs.

The VSA89600_1 model will call Agilent 89600 vector signal analyzer, which requiresGlacier to be installed. The Glacier file setting is 3GPPFDD_ESG100_Demo.set; itmeasures spectrum, code domain power and constellation.

Simulation Results

The VSA results are shown in Figure 26-6.

ESG Option 100 Compliant Signal Source Demo 26-7

Page 1092: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Signal Source Design Examples

Figure 26-6. 89600 VSA results

Benchmark

• Hardware Platform: Pentium III 450 MHz, 512MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

26-8 ESG Option 100 Compliant Signal Source Demo

Page 1093: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

EVM Measurement with Non-synchronized Signal3GPPFDD_EVM_Demo.dsn Design

Description

This design demonstrates the 3GPP EVM measurement. The schematic is shown inFigure 26-7.

The measurement can be performed on specified slots. The test and reference signalsare automatically aligned at the slot boundary. If the test signal is severelycontaminated, it is difficult to align it to the slot boundary and an incorrect EVMvalue could be obtained; therefore, the test and reference signals should be alignedoutside the EVM measurement model as described in the EVM measurementexample 3GPPFDD_EVM_Synch_Demo.dsn in the next section.

A recommended method to synchronize the test and reference signal is to test theEVM at different offsets between the signals. The hypothesis is the minimum valuewill be obtained if the reference and test signal are aligned.

Figure 26-7. 3GPPFDD_EVM_Demo.dsn Schematic

Simulation Results

Simulation results are displayed in 3GPPFDD_EVM_Demo.dds. EVM is preset at1.23%, the simulation results of two slots are 1.212197% and 1.249422%.

Benchmark

• Hardware Platform: Pentium III 450 MHz, 512MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

• Data Points: 2 slots

• Simulation Time: 50 seconds

EVM Measurement with Non-synchronized Signal 26-9

Page 1094: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Signal Source Design Examples

EVM Measurement with Synchronized Signal3GPPFDD_EVM_Synch_Demo.dsn Design

Description

This example demonstrates how to measure EVM between synchronized test andreference signals. The schematic is shown in Figure 26-8.

The EVM measurement model is hidden inside the EVM measurement subnetworks.The source is a standard QPSK signal. The test and reference signals aresynchronized with each other to achieve high measurement accuracy. The two Tk plotmodels can be activated to view the difference between the reference and test signals.

Figure 26-8. 3GPPFDD_EVM_Synch_Demo.dsn Schematic

Simulation Results

Simulation results are displayed in 3GPPFDD_EVM_Synch_Demo.dds. EVM ispreset at 12%, the simulation results of 3 slots are 11.990%, 11.993% and 12.081%.

Benchmark

• Hardware Platform: Pentium III 450 MHz, 512 MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

• Data Points: 3 slots

• Simulation Time: 22 seconds

26-10 EVM Measurement with Synchronized Signal

Page 1095: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

ESG 4438C Interface Demo3GPPFDD_ESG4438C.dsn Design

Description

This design demonstrates how a ESG4438C instrument interface model is used with3GPP source model.

The schematic is shown in Figure 26-9.

Figure 26-9. 3GPPFDD_ESG4438C.dsn Schematic

Benchmark

• Hardware Platform: Pentium III 450 MHz, 512 MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

ESG 4438C Interface Demo 26-11

Page 1096: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Signal Source Design Examples

ESG 443xB Interface Demo3GPPFDD_ESG443xB.dsn Design

Description

This design demonstrates how a ESG443xB instrument interface model is used with3GPP source model.

The schematic is shown in Figure 26-10

Figure 26-10. 3GPPFDD_ESG443xB.dsn Schematic

Benchmark

• Hardware Platform: Pentium III 450 MHz, 512 MB memory

• Software Platform: Windows NT 4.0 Workstation, ADS 2002

26-12 ESG 443xB Interface Demo

Page 1097: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 27: User Equipment ReceiverDesign Examples

IntroductionThe WCDMA3G_UE_Rx_prj project shows 3GPP W-CDMA user equipment receivermeasurements, including reference sensitivity levels, maximum input levels,adjacent channel selectivity, in-band blocking characteristics, and intermodulationcharacteristics.

Designs for these measurements include:

• Reference sensitivity levels: UE_Rx_RefLevel.dsn,UE_Rx_RefLevel_Without_IF.dsn

• Maximum input levels: UE_Rx_MaxLevel.dsn

• Adjacent channel selectivity: UE_Rx_ACS.dsn

• In-band blocking characteristics: UE_Rx_In_Band_Blocking.dsn

• Intermodulation characteristics: UE_Rx_Intermod.dsn

In the 3GPPFDD_DL_Source model, one 12.2kbps DTCH (dedicated transportchannel) and one 2.4kbps DCCH (dedicated control channel) are multiplexed into one60kbps DPCH. Measurement channels are output, including 1DPCH, 1PCCPCH(primary common control physical channel), 1PSCH (primary synchronizationchannel), 1SSCH (secondary synchronization channel), 1CPICH (common pilotchannel), and 1PICH (page indication channel).

The data source of the baseband output from 3GPPFDD_DL_Source is modulated tobe RF signal by WCDMA3G_RF_Mod. The IF to RF upconverter is removed to savesimulation time. RF frequency is 2140 MHz. This signal is then weakened by RFchannel (GainRF model). At the receiver side, the received signal is demodulated tothe baseband signal by RF_RX_IFout1 and WCDMA3G_RF_Demod, and recoveredby 3GPPFDD_DL_Rx_RefCH. IF frequency is 190 MHz.

In measurement of UE Rx characteristics, channels transmitted are set according toTable 27-1 except for Maximum Input Level measurement.

Introduction 27-1

Page 1098: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Receiver Design Examples

The SCH power shall be divided equally between Primary and SecondarySynchronous channels, so the P-SCH_Ec/DPCH_Ec = S-SCH_Ec/DPCH_Ec = 2 dB.

UE_Rx_DPCH_Ec_to_Ior.dsn is used to calibrate the gain of each channel.

In case of Maximum Input Level measurement, the OCNS interference is set tonecessary power to achieve the required DPCH_Ec/Ior of -19 dB. The gain of otherchannels remain the same.

All measurement examples give BER results of DCCH, DTCH and DPCH.

NOTE Considering that the rake receiver in 3GPPFDD_DL_Rx_RefCH modelinduces a delay of one frame, the first output frame from the receiver model must bediscarded in a BER test.

In all examples (except UE_Rx_RefLevel_Without_IF.dsn) 4 data frames aresimulated to give an illustration of the measurements. To have meaningful BERresults, the simulation frame number must be substituted by a relative greater value.Their simulation results are displayed in UE_Rx_Results.dds with the selected dataset.

This project also provides a long simulation exampleUE_Rx_RefLevel_Without_IF.dsn, in which 180 frames are measured. The BERversus noise figure curves are displayed in UE_Rx_RefLevel_Without_IF.dds

Table 27-2 depicts the common parameters setting in the example designs.

Table 27-1. Downlink Physical Channels Transmitted During a Connection

Physical Channel Power

P-CPICH P-CPICH_Ec / DPCH_Ec = 7 dB

P-CCPCH P-CCPCH_Ec / DPCH_Ec = 5 dB

SCH SCH_Ec / DPCH_Ec = 5 dB

PICH PICH_Ec / DPCH_Ec = 2 dB

DPCH Test dependent power

27-2 Introduction

Page 1099: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Parameters of data block size defined in BERsink_VAR are determined according tothe reference measurement channel type. The default channel is 12.2 kbps asspecified in TS 25.101. To set a different channel, users can push into the3GPPFDD_DL_Rx_RefCH model to get corresponding block size as reference.

Table 27-2. VAR Parameters

Parameter Name Description Default Value

SpecVersion Specification version 2

SamplePerChip Samples per chip Depend on measurements

FrameNum Number of frames to be measured 4

TimeStop Stop point for timed measurement FrameNum/10 (sec)

FilterLength Filter length in terms of samples 16

FCarrier RF frequency 2140 (MHz)

RF_BW RF bandwidth 50 (MHz)

SignalPower Signal power 10 (dBm)

NoiseFigure Noise figure 11

VRef Reference voltage for RF_Mod and RF_Demodmodel

8.9254 (V) for Maximum input level measurement3.9291 (V) for other measurement

Ior_Power Total transmit power of downlink Depend on measurements

MaxDelay Maximum delay samples in path searching 2*FilterLength*SamplesPerChip+1

Introduction 27-3

Page 1100: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Receiver Design Examples

Reference Sensitivity LevelUE_Rx_RefLevel.dsn Design

Features

• measurement of user equipment receiver reference sensitivity level

• downlink reference measurement channels including 1DPCH, 1PCCPCH,1PSCH, 1SSCH, 1CPICH, and 1PICH

• BER of DTCH, DCCH and DPCH

Description

This design measures user equipment receiver reference sensitivity levels accordingto section 7.3 in TS25.101. The schematic is shown in Figure 27-1.

Figure 27-1. UE_Rx_RefLevel.dsn Schematic

Gain factors of RF models in this design are set according to the results ofUE_Rx_DPCH_Ec_Validation.dsn or UE_Rx_Ior_Calibration.dsn to satisfy thefollowing conditions:

• DPCH_Ec=−117 dBm/3.84 MHz

• Ior =−106.7 dBm/3.84 MHz

• BER performance cannot exceed 0.001.

Simulation Results

Simulation results are displayed in UE_Rx_Results.dds.

27-4 Reference Sensitivity Level

Page 1101: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Benchmark

• Hardware Platform: Pentium 4 2.2 GHz, 512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 4 frames

• Simulation Time: approximately 3 minutes

Reference Sensitivity Level 27-5

Page 1102: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Receiver Design Examples

Reference Sensitivity Level Test Without IF to RFConvertersUE_Rx_RefLevel_Without_IF.dsn Design

Features

• measurement of user equipment receiver reference sensitivity level

• accelerated simulation by removing the IF to RF converters

• BER curves

Description

This design measures the reference sensitivity level; IF to RF converters are removedfor faster simulation.

The Ior value is set to -106.7 dBm, as required.

The BER is measured against the noise figure at the receiver. It is calibrated so thata BER of 0.1% can be achieved when noise figure is approximately 11 dB.

The schematic for this design is shown in Figure 27-2.

27-6 Reference Sensitivity Level Test Without IF to RF Converters

Page 1103: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 27-2. UE_Rx_RefLevel_Without_IF.dsn Schematic

Simulation Results

Simulation results displayed in UE_Rx_RefLevel_Without_IF.dds are shown inFigure 27-3.

Reference Sensitivity Level Test Without IF to RF Converters 27-7

Page 1104: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Receiver Design Examples

Figure 27-3. Simulation Results

Benchmark

• Hardware Platform: Pentium 4 2.2 GHz, 512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 180 frames over 6 noise figure points

• Simulation Time: approximately 3 minutes per 3 frames

27-8 Reference Sensitivity Level Test Without IF to RF Converters

Page 1105: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Maximum Input Level BER MeasurementsUE_Rx_MaxLevel.dsn Design

Features

• measurement for user equipment receiver maximum input level

• downlink reference measurement channels including 1DPCH, 1PCCPCH,1PSCH, 1SSCH, 1CPICH, 1 PICH and 16 OCNS interferers

• existing RF channel loss

• BER of DTCH, DCCH and DPCH

Description

This design measures user equipment receiver maximum input level per section 7.4in TS25.101. The schematic is shown in Figure 27-4.

Figure 27-4. UE_Rx_MaxLevel.dsn Schematic

Gain factors of RF models in this design are set to satisfy a condition specified in TS25.101:

• =−25 dBm/3.84 MHz

• DPCH_Ec/Ior = -19 dB

• BER performance of DTCH and DCCH cannot exceed 0.001.

Simulation Results

Simulation results are displayed in UE_Rx_Results.dds.

Ior

Maximum Input Level BER Measurements 27-9

Page 1106: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Receiver Design Examples

Benchmark

• Hardware Platform: Pentium 4 2.2 GHz, 512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 4 frames

• Simulation Time: approximately 3 minutes

27-10 Maximum Input Level BER Measurements

Page 1107: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Adjacent Channel Sensitivity MeasurementsUE_Rx_ACS.dsn Design

Features

• measurement of adjacent channel selectivity

• downlink reference measurement channels including 1DPCH, 1PCCPCH,1PSCH, 1SSCH, 1CPICH and 1PICH

• existing adjacent channel signal and RF channel loss

• BER of DTCH, DCCH and DPCH

Description

This design evaluates adjacent channel sensitivity (ACS) of user equipment receiverper section 7.5 in TS25.101. The schematic is shown in Figure 27-5.

Figure 27-5. UE_Rx_ACS.dsn Schematic

Gain factors of RF models are set to satisfy the condition DPCH_Ec =−103dBm/3.84MHz.

Simulation Results

Simulation results are displayed in UE_Rx_Results.dds.

Benchmark

• Hardware Platform: Pentium 4 2.2 GHz, 512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 4 frames

• Simulation Time: approximately 4.5 minutes

Adjacent Channel Sensitivity Measurements 27-11

Page 1108: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Receiver Design Examples

Inband Blocking CharacteristicsUE_Rx_In_Band_Blocking.dsn Design

Features

• evaluation of user equipment receiver inband blocking characteristics

• downlink reference measurement channels including 1DPCH, 1PCCPCH,1PSCH, 1SSCH, 1CPICH and 1PICH

• unwanted modulated interferer and RF channel loss

• BER of DTCH, DCCH and DPCH

Description

This design evaluates user equipment receiver inband blocking characteristics persection 7.6 in TS25.101. The schematic is shown in Figure 27-6.

Figure 27-6. UE_Rx_In_Band_Blocking.dsn Schematic

Gain factors of RF models are set according to the result of designUE_Rx_In_Band_Blocking_DPCH_Ec.dsn to satisfy the conditionDPCH_Ec=-114dBm/3.84MHz

Simulation Results

Simulation results are displayed in UE_Rx_Results.dds.

Benchmark

• Hardware Platform: Pentium 4 2.2 GHz, 512 MB memory

27-12 Inband Blocking Characteristics

Page 1109: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 4 frames

• Simulation Time: approximately 9.5 minutes

Inband Blocking Characteristics 27-13

Page 1110: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Receiver Design Examples

Intermodulation CharacteristicsUE_Rx_Intermod.dsn Design

Features

• evaluation of user equipment receiver intermodulation characteristics

• downlink reference measurement channels including 1DPCH, 1PCCPCH,1PSCH, 1SSCH, 1CPICH and 1PICH

• existing intermodulation response signals and RF channel loss

• BER of DTCH, DCCH and DPCH

Description

This design evaluates user equipment receiver intermodulation characteristics persection 7.8 in TS25.101. The schematic is shown in Figure 27-7.

Figure 27-7. UE_Rx_Intermod.dsn Schematic

In the RF channel, there are two intermodulation response signals that have aspecific frequency relationship to the requisite signal.

• one is a modulated signal that has +20MHz offset of 2140MHz; its power is−46dBm/3.84MHz.

• one is a continuous wave that has +10 frequency offset to 2140MHz; its power is−46dBm.

27-14 Intermodulation Characteristics

Page 1111: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

The frequency and power of these interferers are set in WCDMA3G_RF_IQ. Gainfactors of RF models are adapted to satisfy the conditionDPCH_Ec=-114dBm/3.84MHz per section 7.5.1 in TS 25.101.

Simulation Results

Simulation results are displayed in UE_Rx_Results.dds.

Benchmark

• Hardware Platform: Pentium 4 2.2 GHz, 512 MB memory

• Software Platform: Windows 2000, ADS 2003C

• Data Points: 4 frames

• Simulation Time: approximately 20 minutes

References[1]3GPP Technical Specification TS 25.101 V3.5.0, “UE Radio transmission and

Reception (FDD),” December 2000.

[2] 3GPP Technical Specification TS 34.121 V3.3.0, “Radio transmission andreception (FDD),” December 2000.

References 27-15

Page 1112: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Receiver Design Examples

27-16 References

Page 1113: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Chapter 28: User Equipment TransmitterDesign Examples

IntroductionThe WCDMA3G_UE_Tx_prj project demonstrates user equipment transmittermeasurement characteristics. These measurements include maximum power,occupied bandwidth, complementary cumulative distribution function (CCDF),spectrum emission, adjacent channel leakage power ratio (ACLR), error vectormagnitude (EVM), peak code domain error, code domain power, and spuriousemission.

The uplink frequency is set to 1950 MHz.

Designs for these measurements are described in the following sections; they include:

• Maximum power measurements: UE_Tx_Max_Power.dsn

• Occupied bandwidth measurements: UE_Tx_Occupied_BW.dsn

• CCDF and peak-to-mean information measurements: UE_Tx_CCDF.dsn

• Spectrum emission measurements: UE_Tx_Spec_Emissions.dsn

• Adjacent channel leakage power ratio measurements: UE_Tx_ACLR.dsn andUE_Tx_ACLR_SwitchingTransients.dsn

• Error vector magnitude measurements: UE_Tx_EVM.dsn

• Peak code domain error measurements: UE_Tx_Pk_Code_Error.dsn

• Signal power distribution measurements in code domain:UE_Tx_Code_Domain_Power.dsn

• Spurious emission measurement: UE_Tx_SpurEmission.dsn

Common variables used in these designs are listed in Table 28-1.

Table 28-1. VAR Parameters

Parameter Name Description Default Value

SpecVersion Specification version 2

RefCh Reference measurement channel 0

SamplePerChip Samples per chip 8

Introduction 28-1

Page 1114: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

3GPPFDD_RF_Uplink is used to provide a RF 3GPPFDD uplink signal source; theschematic for this subnetwork is shown in Figure 28-1; parameters are listed inTable 28-2.

The 12.2 kbps uplink reference measurement channel is used in all transmittermeasurements except peak code domain error measurement where the 768 kbps ULreference measurement channel is used.

Figure 28-1. 3GPPFDD_RF_Uplink Schematic

Table 28-2. 3GPPFDD_RF_Uplink Parameters

TStep Time step 1/(3840000*SamplesPerChip)

FilterLength Filter length in terms of samples 16

FCarrier RF carrier frequency 1950 (MHz)

SourceR Source resistance 50 (ohm)

SourceDelay Source delay (2*int(FilterLength*SamplesPerChip/2)+1)*TStep

Name Description Value Range

SpecVersion version of specifications: Version_03_00, Version_12_00, Version_03_02

ROut output resistance (0,+∞)

FCarrier frequency of carrier, in MHz (0,+∞)

Power output power, in dBm (-∞,+∞)

PhasePolarity if set to Invert, Q channel signal is inverted: Normal, Invert

GainImbalance gain imbalance, I to Q channel, in dB (-∞,+∞)

PhaseImbalance phase imbalance, I to Q channel, in degrees (-∞,+∞)

Table 28-1. VAR Parameters (continued)

Parameter Name Description Default Value

28-2 Introduction

Page 1115: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

I_OriginOffset I origin offset in percent with respect to output rms voltage (-∞,+∞)

Q_OriginOffset Q origin offset in percent with respect to output rms voltage (-∞,+∞)

IQ_Rotation IQ rotation in degrees (-∞,+∞)

NDensity additive noise density in dBm per Hz (-∞,+∞)

SamplesPerChip samples per chip (0,+∞)

ExcessBW excess bandwidth of raised cosine filters [0,1]

FilterLength length of raised cosine filters in number of symbols (0,+∞)

RefCh reference measurement channel: UL_REF_12_2, UL_REF_64, UL_REF_144,UL_REF_384_10, UL_REF_384_20, UL_REF_768, UL_REF_2048

DPCCH_SltFmt DPCCH slot format [0, 5]

ScrambleType scramble type: Long, Short integer

ScrambleCode index of scramble code [0, 16777215]

GainIndex gain index [0, 15]

Name Description Value Range

Introduction 28-3

Page 1116: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

Maximum PowerUE_Tx_Max_Power.dsn Design

Features

• 12.2 kbps reference measurement channel

• maximum power measurement

• fixed-rate measurement signal source

• uplink reference measurement channel

• 40 and 20 msec transmission time intervals

• 16-bit CRC detection

• rate 1/3 convolutional coding

• static rate matching

• fixed position of transport channel in radio frame

• BPSK modulation

• integrated RF components

Description

UE_Tx_Max_Power.dsn measures the maximum power of downlink signal. TheUE_Tx_Max_Power.dsn schematic shown in Figure 28-2 includes signal source,modulator, and maximum power measurement sections.

Figure 28-2. UE_Tx_Max_Power.dsn Schematic

Carrier frequency is set to 1950 MHz in this design.

28-4 Maximum Power

Page 1117: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

3GPPFDD_RF_OutputPower is used to measure output power; the schematic for thissubnetwork is shown in Figure 28-3; parameters are listed in Table 28-3.

Figure 28-3. 3GPPFDD_RF_OutputPower Schematic

Table 28-3. 3GPPFDD_RF_OutputPower Parameters

Name Description Value Range

SpecVersion version of specifications: Version_03_00, Version_12_00, Version_03_02

RLoad input resistance (0,+∞)

RTemp temperature of resistor [-273.15,+∞)

TStep input time step, in sec (0,+∞)

FCarrier frequency of carrier, in MHz (0,+∞)

SamplesPerChip samples per chip (0,+∞)

FilterLength length of raised cosine filters in number of symbols (0,+∞)

LinkDir link direction: Downlink, Uplink

ScrambleCode index of scramble code [0, 16777215]

ULScrambleType uplink scramble code type: LONG, SHORT

ScrambleOffset scramble offset in downlink channels [0, 15]

DLScrambleType downlink scramble code type: Normal, RightAlternate, LeftAlternate

SpreadFactor spreading factor {4,8,16,32,64,128,256,512}

SpreadCode index of spread code [0,SpreadFactor-1]

StartSlot number of slot to be ignored [0,+∞)

SlotNum number of slots measured [1,+∞)

SCH switch for SCH: On, Off

CPICH switch for CPICH: On, Off

SearchLength search length (0:(400.0/3840000))

SlotBoundary slot boundary in terms of sample

Maximum Power 28-5

Page 1118: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

Simulation Results

Figure 28-4 shows the performance of maximum output power.

Figure 28-4. Maximum Power Curve

Benchmark

• Simulation time is approximately 7 seconds on a P4/2.2G 512M PC powered byMS Windows 2000 and ADS 2003C.

28-6 Maximum Power

Page 1119: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Occupied Bandwidth MeasurementsUE_Tx_Occupied_BW.dsn Design

Features

• 12.2 kbps reference measurement channel

• occupied bandwidth measurement

• fixed-rate measurement signal source

• uplink reference measurement channel

• 40 and 20 msec transmission time intervals

• 16-bit CRC detection

• rate 1/3 convolutional coding

• static rate matching

• fixed position of transport channel in radio frame

• BPSK modulation

• integrated RF components

• standard measurement signal source

Description

Occupied bandwidth is a measure of the bandwidth containing 99% of the totalintegrated power of the transmitted spectrum, centered on the assigned channelfrequency. The occupied channel bandwidth must be less than 5 MHz based on a chiprate of 3.84 Mcps.

The signal spectrum is plotted using an FFT model. On the data display sheet, amarker is placed to find the occupied bandwidth specified.

The schematic for this subnetwork is shown in Figure 28-5.

Occupied Bandwidth Measurements 28-7

Page 1120: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

Figure 28-5. UE_Tx_Occupied_BW.dsn Schematic

3GPPFDD_RF_OccupiedBW is used to measure output power; the schematic for thissubnetwork is shown in Figure 28-6; parameters are listed in Table 28-4.

Figure 28-6. 3GPPFDD_RF_OccupiedBW Schematic

Table 28-4. 3GPPFDD_RF_OccupiedBW Parameters

Name Description Value Range

SpecVersion version of specifications: Version_03_00, Version_12_00, Version_03_02

RLoad input resistance (0,+∞)

RTemp temperature of resistor [-273.15,+∞)

SpecMeasResBW Spectrum resolution bandwidth

SpecMeasWindow Window type: Hamming 0.54, Hanning 0.50, Gaussian 0.75, Kaiser 7.865,HP8510 6.0, Blackman, Blackman-Harris

FCarrier frequency of carrier, in MHz (0,+∞)

SamplesPerChip samples per chip (0,+∞)

FilterLength length of raised cosine filters in number of symbols (0,+∞)

LinkDir link direction: Downlink, Uplink

28-8 Occupied Bandwidth Measurements

Page 1121: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes

Set the number of points for FFT transformation so that the resolution of spectrum ishigh enough to discriminate the bandwidth containing the 99% signal power.

Simulation Results

Simulation results displayed in UE_Tx_Occupied_BW.dds are shown in Figure 28-7.

ScrambleCode index of scramble code [0, 16777215]

ULScrambleType uplink scramble code type: LONG, SHORT

ScrambleOffset scramble offset in downlink channels [0, 15]

DLScrambleType downlink scramble code type: Normal, RightAlternate, LeftAlternate

SpreadFactor spreading factor {4,8,16,32,64,128,256,512}

SpreadCode index of spread code [0,SpreadFactor-1]

StartSlot number of slot to be ignored [0,+∞)

SlotNum number of slots measured [1,+∞)

SCH switch for SCH: On, Off

CPICH switch for CPICH: On, Off

SearchLength search length (0:(400.0/3840000))

SlotBoundary slot boundary in terms of sample

SlotFormat slot format

Table 28-4. 3GPPFDD_RF_OccupiedBW Parameters (continued)

Name Description Value Range

Occupied Bandwidth Measurements 28-9

Page 1122: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

Figure 28-7. Occupied Bandwidth Measurement Results

Benchmark

• Simulation time is 4 seconds on a P4/2.2G 512M PC powered by MS Windows2000 and ADS 2003C.

28-10 Occupied Bandwidth Measurements

Page 1123: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

CCDF and Peak-to-Mean Information MeasurementsUE_Tx_CCDF.dsn Design

Features

• 12.2 kbps reference measurement channel

• CCDF and peak-to-mean measurements using independent model

• fixed-rate measurement signal source

• uplink reference measurement channel

• 40 and 20 msec transmission time intervals

• 16-bit CRC detection

• rate 1/3 convolutional coding

• static rate matching

• fixed position of transport channel in radio frame

• BPSK modulation

• integrated RF components

Description

Complementary cumulative distribution function (CCDF) and peak-to-meaninformation can be used to measure the performance of an amplifier. The schematicfor this design is shown in Figure 28-8.

Figure 28-8. UE_Tx_CCDF.dsn Schematic

3GPPFDD_RF_CCDF is used to measure output power; the schematic for thissubnetwork is shown in Figure 28-9; parameters are listed in Table 28-5.

CCDF and Peak-to-Mean Information Measurements 28-11

Page 1124: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

Figure 28-9. 3GPPFDD_RF_CCDF Schematic

Table 28-5. 3GPPFDD_RF_CCDF Parameters

Name Description Value Range

SpecVersion version of specifications: Version_03_00, Version_12_00, Version_03_02

RLoad input resistance (0,+∞)

RTemp temperature of resistor [-273.15,+∞)

FCarrier frequency of carrier, in MHz (0,+∞)

SamplesPerChip samples per chip (0,+∞)

FilterLength length of raised cosine filters in number of symbols (0,+∞)

LinkDir link direction: Downlink, Uplink

ScrambleCode index of scramble code [0, 16777215]

ULScrambleType uplink scramble code type: LONG, SHORT

ScrambleOffset scramble offset in downlink channels [0, 15]

DLScrambleType downlink scramble code type: Normal, RightAlternate, LeftAlternate

SpreadFactor spreading factor {4,8,16,32,64,128,256,512}

SpreadCode index of spread code [0,SpreadFactor-1]

StartSlot number of slot to be ignored [0,+∞)

SlotNum number of slots measured [1,+∞)

SCH switch for SCH: On, Off

CPICH switch for CPICH: On, Off

SearchLength search length (0:(400.0/3840000))

SlotBoundary slot boundary in terms of sample

SlotFormat slot format

28-12 CCDF and Peak-to-Mean Information Measurements

Page 1125: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes

The CCDF model outputs 4 values. The CCDF curve is obtained by plotting theCCDF outputs versus the SignalRange. The peak-to-mean ratio is obtained bysubtracting the MeanPower from the PeakPower.

Simulation Results

Simulation results displayed in UE_Tx_CCDF.dds are shown in Figure 28-10.

Figure 28-10. UE_Tx_CCDF.dsn Simulation Results

Benchmark

• Simulation time is 6 seconds on a P4/2.2G 512M PC powered by MS Windows2000 and ADS 2003C.

CCDF and Peak-to-Mean Information Measurements 28-13

Page 1126: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

Spectrum Emission MeasurementsUE_Tx_SpecEmissions.dsn Design

Features

• 12.2 kbps reference measurement channel

• fixed-rate measurement signal source

• uplink reference measurement channel

• 40 and 20 msec transmission time intervals

• 16-bit CRC detection

• rate 1/3 convolutional coding

• static rate matching

• fixed position of transport channel in radio frame

• BPSK modulation

• RF components

• out-of-band power is measured by sweeping the center frequency of thebandpass filter

Description

The spectrum emission mask of the user equipment applies to frequencies between2.5 and 12.5 MHz from the user equipment center carrier frequency. The output ofchannel emission is specified relative to the user equipment output power measuredin a 3.84 MHz bandwidth.

The output power measures a bandpass raised-cosine filter with a 3.84 MHzbandwidth. The out-of-channel emission is measured by sweeping the centerfrequency of another bandpass raised-cosine filter. The schematic is shown inFigure 28-11.

28-14 Spectrum Emission Measurements

Page 1127: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 28-11. UE_Tx_SpecEmissions.dsn Schematic

3GPPFDD_RF_SpecEmission is used to measure output power; the schematic forthis subnetwork is shown in Figure 28-12; parameters are listed in Table 28-6.

Figure 28-12. 3GPPFDD_RF_SpecEmission Schematic

Table 28-6. 3GPPFDD_RF_SpecEmission Parameters

Name Description Value Range

SpecVersion version of specifications: Version_03_00, Version_12_00, Version_03_02

RLoad input resistance (0,+∞)

RTemp temperature of resistor [-273.15,+∞)

TStep input time step, in sec (0,+∞)

FCarrier frequency of carrier, in MHz (0,+∞)

Spectrum Emission Measurements 28-15

Page 1128: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

Notes

The bandwidth measurements vary according to frequency offset.

Simulation Results

Simulation results are displayed in UE_Tx_SpecEmissions.dds; the spectrumemission against the emission mask is shown in Figure 28-13.

ExcessBW excess bandwidth of raised cosine filters [0,1]

DeltaFreq delta frequency, in MHz

FilterDelay filter time delay, in usec

SamplesPerChip samples per chip (0,+∞)

FilterLength length of raised cosine filters in number of symbols (0,+∞)

LinkDir link direction: Downlink, Uplink

ScrambleCode index of scramble code [0, 16777215]

ULScrambleType uplink scramble code type: LONG, SHORT

ScrambleOffset scramble offset in downlink channels [0, 15]

DLScrambleType downlink scramble code type: Normal, RightAlternate, LeftAlternate

SpreadFactor spreading factor {4,8,16,32,64,128,256,512}

SpreadCode index of spread code [0,SpreadFactor-1]

StartSlot number of slot to be ignored [0,+∞)

SlotNum number of slots measured [1,+∞)

SCH switch for SCH: On, Off

CPICH switch for CPICH: On, Off

SearchLength search length (0:(400.0/3840000))

SlotBoundary slot boundary in terms of sample

Table 28-6. 3GPPFDD_RF_SpecEmission Parameters (continued)

Name Description Value Range

28-16 Spectrum Emission Measurements

Page 1129: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 28-13. Spectrum Emission Simulation Results

Benchmark

• Simulation time is approximately 9 minutes on a P4/2.2G 512M PC powered byMS Windows 2000 and ADS 2003C.

Spectrum Emission Measurements 28-17

Page 1130: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

Adjacent Channel Leakage Power RatioMeasurementsUE_Tx_ACLR.dsn Design

UE_Tx_ACLR_SwitchingTransients.dsn Design

Features

• 12.2 kbps reference measurement channel

• power in an adjacent channel measured using FFT

• fixed-rate measurement signal source

• uplink reference measurement channel

• 40 and 20 msec transmission time intervals

• 16-bit CRC detection

• rate 1/3 convolutional coding

• static rate matching

• fixed position of transport channel in radio frame

• BPSK modulation

Description

UE_Tx_ACLR.dsn measures the frequency domain power;UE_Tx_ACLR_SwitchingTransients.dsn measures the time domain power.

Adjacent channel leakage power ratio (ACLR) is the ratio of the transmitted power tothe power measured in an adjacent channel. Both the transmitted power and theadjacent channel power are measured with a filter that has a root-raised cosine(RRC) filter response with a rolloff of 0.22 and a bandwidth equal to the chip rate.

Power in 4 adjacent channels is measured: 2 above and 2 below the center frequencyof the measured signal.

The schematic for UE_Tx_ACLR.dsn is shown in Figure 28-14. 3GPPFDD_RF_ACLRis used to measure output power; the schematic for this subnetwork is shown inFigure 28-15; parameters are listed in Table 28-6.

The schematic for UE_Tx_ACLR_SwitchingTransients.dsn is shown in Figure 28-16.

28-18 Adjacent Channel Leakage Power Ratio Measurements

Page 1131: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 28-14. UE_Tx_ACLR.dsn Schematic

Figure 28-15. 3GPPFDD_RF_ACLR Schematic

Table 28-7. 3GPPFDD_RF_ACLR Parameters

Name Description Value Range

SpecVersion version of specifications: Version_03_00, Version_12_00, Version_03_02

RLoad input resistance (0,+∞)

RTemp temperature of resistor [-273.15,+∞)

ExcessBW excess bandwidth of raised cosine filters [0,1]

FCarrier frequency of carrier, in MHz (0,+∞)

SamplesPerChip samples per chip (0,+∞)

FilterLength length of raised cosine filters in number of symbols (0,+∞)

Adjacent Channel Leakage Power Ratio Measurements 28-19

Page 1132: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

Figure 28-16. UE_Tx_ACLR_SwitchingTransients.dsn Schematic

LinkDir link direction: Downlink, Uplink

ScrambleCode index of scramble code [0, 16777215]

ULScrambleType uplink scramble code type: LONG, SHORT

ScrambleOffset scramble offset in downlink channels [0, 15]

DLScrambleType downlink scramble code type: Normal, RightAlternate, LeftAlternate

SpreadFactor spreading factor {4,8,16,32,64,128,256,512}

SpreadCode index of spread code [0,SpreadFactor-1]

StartSlot number of slot to be ignored [0,+∞)

SlotNum number of slots measured [1,+∞)

SCH switch for SCH: On, Off

CPICH switch for CPICH: On, Off

SearchLength search length (0:(400.0/3840000))

SlotBoundary slot boundary in terms of sample

SlotFormat slot format

Table 28-7. 3GPPFDD_RF_ACLR Parameters (continued)

Name Description Value Range

28-20 Adjacent Channel Leakage Power Ratio Measurements

Page 1133: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Notes

The subnetwork design ACLR_Filter_Bank.dsn contains the filters for powermeasurement.

Simulation Results

Simulation results displayed in UE_Tx_ACLR.dds andUE_Tx_ACLR_SwitchingTransients.dds are shown in Figure 28-17 andFigure 28-18. Results meet the ACLR requirements as defined in 3GPP TS 25.101.

Figure 28-17. UE_Tx_ACLR.dsn Simulation Results

Adjacent Channel Leakage Power Ratio Measurements 28-21

Page 1134: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

Figure 28-18. UE_Tx_ACLR_SwitchingTransients.dsn Simulation Results

Benchmark

• Simulation time is approximately 1 minute on a P4/2.2G 512M PC powered byMS Windows 2000 and ADS 2003C.

28-22 Adjacent Channel Leakage Power Ratio Measurements

Page 1135: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Error Vector Magnitude MeasurementsUE_Tx_EVM.dsn Design

Features

• 12.2 kbps reference measurement channel

• error vector magnitude is measured by the EVM model

• fixed-rate measurement signal source

• uplink reference measurement channel

• 40 and 20 msec transmission time intervals

• 16-bit CRC detection

• rate 1/3 convolutional coding

• static rate matching

• fixed position of transport channel in radio frame

• BPSK modulation

• integrated RF components

Description

Error vector magnitude (EVM) is a measure of the difference between the measuredwaveform and the theoretical modulated waveform (the error vector). It is the squareroot of the ratio of the mean error vector power to the mean reference signal powerexpressed as a percentage. The measurement interval is one power control group(time slot).

The schematic for this design is shown in Figure 28-19. The 3GPP basic model3GPPFDD_EVM measures the EVM using the received signal and reference signal.

3GPPFDD_RF_EVM is used to measure output power; the schematic for thissubnetwork is shown in Figure 28-20; parameters are listed in Table 28-7.

Error Vector Magnitude Measurements 28-23

Page 1136: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

Figure 28-19. UE_Tx_EVM.dsn Schematic

Figure 28-20. 3GPPFDD_RF_EVM Schematic

Table 28-8. 3GPPFDD_RF_EVM Parameters

Name Description Value Range

SpecVersion version of specifications: Version_03_00, Version_12_00, Version_03_02

RLoad input resistance (0,+∞)

RTemp temperature of resistor [-273.15,+∞)

ExcessBW excess bandwidth of raised cosine filters [0,1]

FCarrier frequency of carrier, in MHz (0,+∞)

SamplesPerChip samples per chip (0,+∞)

FilterLength length of raised cosine filters in number of symbols (0,+∞)

LinkDir link direction: Downlink, Uplink

ScrambleCode index of scramble code [0, 16777215]

ULScrambleType uplink scramble code type: LONG, SHORT

ScrambleOffset scramble offset in downlink channels [0, 15]

28-24 Error Vector Magnitude Measurements

Page 1137: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Simulation Results

Simulation results are displayed UE_Tx_EVM.dds and shown in Figure 28-21.

Figure 28-21. EVM Results

Benchmark

• Simulation time is 30 seconds on a P4/2.2G 512M PC powered by MS Windows2000 and ADS 2003C.

DLScrambleType downlink scramble code type: Normal, RightAlternate, LeftAlternate

SpreadFactor spreading factor {4,8,16,32,64,128,256,512}

SpreadCode index of spread code [0,SpreadFactor-1]

StartSlot number of slot to be ignored [0,+∞)

SlotNum number of slots measured [1,+∞)

SCH switch for SCH: On, Off

CPICH switch for CPICH: On, Off

DUT_DelayBound search length (0:(400.0/3840000))

EVMValue EVM value expression options: Ratio, Percent

Correct_IQ_Offset switch for IQ offset correction: Yes, No

SlotFormat slot format

Table 28-8. 3GPPFDD_RF_EVM Parameters (continued)

Name Description Value Range

Error Vector Magnitude Measurements 28-25

Page 1138: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

Peak Code Domain Error MeasurementsUE_Tx_Pk_Code_Error.dsn Design

Features

• 768 kbps reference measurement channel

• error vector generation

• peak code domain error calculation

• fixed-rate measurement signal source

• uplink reference measurement channel

• 40 and 10 msec transmission time intervals

• 16-bit CRC detection

• rate 1/3 convolutional coding

• static rate matching

• fixed position of transport channel in radio frame

• BPSK modulation

• integrated RF components

Description

The schematic for this design is shown in Figure 28-22. The code domain error iscalculated by projecting the error vector power onto the code domain of the 8th layer(spreading factor is 256) by correlating the error vector with each code. The errorvector for each power code is defined as the ratio to the mean power of the referencewaveform expressed in dB. The peak code domain error is defined as the maximumvalue for the code domain error. The measurement interval is one power controlgroup (time slot). The requirement for peak code domain error applies to multi-codetransmission only.

28-26 Peak Code Domain Error Measurements

Page 1139: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Figure 28-22. UE_Tx_Pk_Code_Error.dsn Schematic

3GPPFDD_RF_PCDE is used to measure output power; the schematic for thissubnetwork is shown in Figure 28-23; parameters are listed in Table 28-8.

Figure 28-23. 3GPPFDD_RF_PCDE Schematic

Table 28-9. 3GPPFDD_RF_PCDE Parameters

Name Description Value Range

SpecVersion version of specifications: Version_03_00, Version_12_00, Version_03_02

RLoad input resistance (0,+∞)

RTemp temperature of resistor [-273.15,+∞)

ExcessBW excess bandwidth of raised cosine filters [0,1]

FCarrier frequency of carrier, in MHz (0,+∞)

SamplesPerChip samples per chip (0,+∞)

FilterLength length of raised cosine filters in number of symbols (0,+∞)

LinkDir link direction: Downlink, Uplink

ScrambleCode index of scramble code [0, 16777215]

ULScrambleType uplink scramble code type: LONG, SHORT

ScrambleOffset scramble offset in downlink channels [0, 15]

Peak Code Domain Error Measurements 28-27

Page 1140: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

Simulation Results

Simulation results are shown in Figure 28-24.

Figure 28-24. Peak Code Domain Error Results

Benchmark

• Simulation time is 26 seconds on a P4/2.2G 512M PC powered by MS Windows2000 and ADS 2003C.

DLScrambleType downlink scramble code type: Normal, RightAlternate, LeftAlternate

SpreadFactor spreading factor {4,8,16,32,64,128,256,512}

SpreadCode index of spread code [0,SpreadFactor-1]

StartSlot number of slot to be ignored [0,+∞)

SlotNum number of slots measured [1,+∞)

SCH switch for SCH: On, Off

CPICH switch for CPICH: On, Off

DUT_DelayBound search length (0:(400.0/3840000))

CodeLayer the code layer to calculate the peak code error

Correct_IQ_Offset switch for IQ offset correction: Yes, No

SlotFormat slot format

Table 28-9. 3GPPFDD_RF_PCDE Parameters (continued)

Name Description Value Range

28-28 Peak Code Domain Error Measurements

Page 1141: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Signal Power Distribution Measurements in CodeDomainUE_Tx_Code_Domain_Power.dsn Design

Features

• code domain power distribution measurement

• fixed-rate measurement signal source

• uplink reference measurement channel

• 40 and 20 msec transmission time intervals

• 16-bit CRC detection

• rate 1/3 convolutional coding

• static rate matching

• fixed position of transport channel in radio frame

• BPSK modulation

• integrated RF components

Description

This design is used to analyze downlink signal power distribution in the code domain.The schematic is shown in Figure 28-25. A fixed-rate signal source is used to generatethe baseband signal, pass it through the modulator; an upconverter is used to get theRF signal. The complex envelope of the RF signal is removed to project its power intothe code domain.

Figure 28-25. UE_Tx_Code_Domain_Power.dsn Schematic

Signal Power Distribution Measurements in Code Domain 28-29

Page 1142: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

3GPPFDD_RF_CDP is used to measure output power; the schematic for thissubnetwork is shown in Figure 28-26; parameters are listed in Table 28-9.

Figure 28-26. 3GPPFDD_RF_CDP Schematic

The received chip stream can be described as a vector Z of complex valued samples.The vector is of length N=n × m, where n is the number of symbol periods in themeasurement interval and m is the spreading factor (m chips per symbol, with onesample per chip). To project Z into the code domain, individual complex valuedelements of Z are defined as:

vk wherek=0, 1, ...,N-1.

The chip stream is de-scrambled and divided into symbol vectors,

Ss = {vsm, vsm + 1, vsm + 2, ... , vsm + m-1} for s = 0, 1, ... , n-1

A 2-dimensional matrix is generated of the projections of each received symbol vector

onto each code vector Ci (i=0, ... , m-1). Ci = ci + jci and ci is the ith spreading code.

is its complex conjugate.

Table 28-10. 3GPPFDD_RF_CDP Parameters

Name Description Value Range

RLoad input resistance (0,+∞)

RTemp temperature of resistor [-273.15,+∞)

SamplesPerChip samples per chip (0,+∞)

FilterLength length of raised cosine filters in number of symbols (0,+∞)

ExcessBW excess bandwidth of raised cosine filters

ScrambleCode index of scramble code [0, 16777215]

ScrambleType scramble code type: UL_long, UL_short, DL

SpreadFactor spreading factor {4,8,16,32,64,128,256,512}

StartSlot number of slot to be ignored [0,+∞)

SearchLength search length (0:(400.0/3840000))

Ci

28-30 Signal Power Distribution Measurements in Code Domain

Page 1143: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

By calculating the square of the magnitudes of the terms in PZ we arrive at a matrixof power coefficients which we can further process by summing the values for eachcode across all symbols and normalizing to the received signal power. This producesthe code domain power coefficient vector

.

For each code i, we have calculated the projection of a symbol-long segment of thevector V onto code vector Ci for each symbol in the measurement interval. We havesummed these projected powers over all symbols then normalized to the receivedsignal power.

The vector of power coefficients can be plotted, at least conceptually, as a histogramto display the power distribution in the code domain for the vector Z.

Simulation Results

Signal power coefficient distribution in the code domain is generated by comparingthe code domain power with total power of slot; the result is shown in Figure 28-27.

Pi s,

ss CiCi

-------------=

ρs

PZi s,

2

s 0=

n 1–

Z2

---------------------------------=

ρs ρ0 ρ1 …ρm 1–, ,{ }=

Signal Power Distribution Measurements in Code Domain 28-31

Page 1144: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

Figure 28-27. Signal Power Coefficient Distribution in Code Domain

Benchmark

• Simulation time is approximately 5 minutes on a P4/2.2G 512M PC powered byMS Windows 2000 and ADS 2003C.

28-32 Signal Power Distribution Measurements in Code Domain

Page 1145: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Spurious Emissions MeasurementsUE_Tx_SpurEmissions.dsn Design

Feature

• file-based signal source of test model 1

• circuit co-simulation

Description

Spurious emissions are caused by unwanted transmitter effects such as harmonicsemission, parasitic emission, intermodulation and frequency conversion products, butexclude out-of-band emissions. This design measures harmonics emission using ADScircuit envelope simulator. Figure 28-28 shows the schematic for this design.

The timed I, Q source data are generated by WCDMA3G_SignalSource_prj, whichmeasured IF emissions plus third-order harmonic emissions of LO. By changingfundamental frequencies and their order, users can observe different harmonicemissions. The ITU-R Recommendation SM.329-7[1] defined two mandatorycategories of limits for spurious emissions, as referred in [2].

Figure 28-28. UE_Tx_SpurEmissions.dsn Schematic

Simulation Results

Figure 28-29 shows spectrum of signal on carrier frequency.

Spurious Emissions Measurements 28-33

Page 1146: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

User Equipment Transmitter Design Examples

Figure 28-30 shows spectrum of spurious emissions on IF frequency plus third-orderharmonics of LO frequency.

Figure 28-29. Main Signal of User Equipment Transmitter

Figure 28-30. Spurious Emissions of User Equipment Transmitter

Benchmark

• Simulation time is approximately 1 minutes on a P4/2.2G 512M PC powered byMS Windows 2000 and ADS 2003C.

References

[1]3GPP Technical Specification TS 34.121 V3.3.0 “Terminal conformanceSpecification: Radio transmission and reception (FDD),” December 2000.

[2] 3GPP Technical Specification TS 25.101 V3.5.0, “UE Radio transmission andReception,” December 2000.

28-34 Spurious Emissions Measurements

Page 1147: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

Index

Numerics1CHRakeReceiver, WCDMA3G, 16-23GPPFDD, 3GPPFDD, 4-2

AAdjustDelay, WCDMA3G, 16-7AllSSCode, WCDMA3G, 13-2

BBFER, WCDMA3G, 14-2BroadcastCHSrc, WCDMA3G, 14-4BS_FixedRateDemod, WCDMA3G, 10-2BS_FixedRateReceiver, WCDMA3G, 10-5BS_FixedRateReceiver_2M, WCDMA3G,

10-8BS_FixedRateSrc, WCDMA3G, 10-11BS_VariableRateDemod, WCDMA3G, 10-14BS_VariableRateReceiver, WCDMA3G,

10-17BS_VariableRateSrc, WCDMA3G, 10-20

CCC, WCDMA3G, 11-2CCDF, WCDMA3G, 14-6CCTrCHDeRMatch, WCDMA3G, 20-2CCTrCHRMatch, WCDMA3G, 20-16ChannelCoding, 3GPPFDD, 8-4ChannelCoding, WCDMA3G, 11-6ChannelDecoding, 3GPPFDD, 7-2ChannelDecoding, WCDMA3G, 11-9CHDelay, WCDMA3G, 12-2ChEstimate, WCDMA3G, 16-11CHInterpolate, WCDMA3G, 12-4CHModel, WCDMA3G, 12-5ClassicalChannel, WCDMA3G, 12-9CodeBlkDeSeg, 3GPPFDD, 7-4CodeBlkDeSeg, WCDMA3G, 11-12CodeBlkSeg, 3GPPFDD, 8-6CodeBlkSeg, WCDMA3G, 11-16CodeDomainErr, 3GPPFDD, 3-2CodeDomainErr, WCDMA3G, 14-9CodeDomainErr_NonSyn, 3GPPFDD, 3-6CodeDomainPwr, WCDMA3G, 3-58CPICH, 3GPPFDD, 2-2CRCDecoder, 3GPPFDD, 7-6

CRCDecoder, WCDMA3G, 11-21CRCEncoder, 3GPPFDD, 8-2CRCEncoder, WCDMA3G, 11-23

DDataPattern, 3GPPFDD, 5-8Despreader, WCDMA3G, 16-15Distort, 3GPPFDD, 3-9DL_12_2, 3GPPFDD, 2-4DL_144, 3GPPFDD, 2-9DL_384, 3GPPFDD, 2-14DL_64, 3GPPFDD, 2-19DL_BCH, 3GPPFDD, 2-24DL_BTFD, 3GPPFDD, 2-27DL_PCH_FACH, 3GPPFDD, 2-34DL_Rake, 3GPPFDD, 6-2DL_RefCh, 3GPPFDD, 2-39DL_Rx_RefCH, 3GPPFDD, 9-2DL_Source, 3GPPFDD, 2-42DLDeFirDTXInser, 3GPPFDD, 7-8DLDeFirInterLv, 3GPPFDD, 7-12DLDePhyCHMap, 3GPPFDD, 7-16DLDePhyCHSeg, 3GPPFDD, 7-18DLDeRadioSeg, 3GPPFDD, 7-20DLDeRateMatch, 3GPPFDD, 7-24DLDeSecDTXInser, 3GPPFDD, 7-28DLDeSecInterLv, 3GPPFDD, 7-32DLDeTrCHMulti, 3GPPFDD, 7-34DLFirDTXInser, 3GPPFDD, 8-8DLFirInterLv, 3GPPFDD, 8-12DLPhCHMap, 3GPPFDD, 8-16DLPhCHSeg, 3GPPFDD, 8-18DLRadioSeg, 3GPPFDD, 8-20DLRateMatch, 3GPPFDD, 8-24DLScrmb, 3GPPFDD, 5-2DLSecDTXInser, 3GPPFDD, 8-30DLSecInterLv, 3GPPFDD, 8-33DLTrCHMulti, 3GPPFDD, 8-35DnLinkRF, 3GPPFDD, 2-49DnLkAllocOVSF, WCDMA3G, 17-2DnLkCPICH, WCDMA3G, 10-24DnLkCPICHGen, WCDMA3G, 13-6DnLkDeMux, WCDMA3G, 15-2DnLkDeSpreading, WCDMA3G, 21-2DnLkDPCH, WCDMA3G, 10-26

Index-1

Page 1148: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

DnLkDPCHDeMux, WCDMA3G, 21-7DnLkDPCHMux, WCDMA3G, 10-28DnLkMux, WCDMA3G, 15-6DnLkOCNS, WCDMA3G, 10-32DnLkPCCPCH_SCH, WCDMA3G, 10-35DnLkPowerAlloc, WCDMA3G, 17-5DnLkScrambler, WCDMA3G, 17-9DnLkSpreader, WCDMA3G, 17-12DnLkSpreading, WCDMA3G, 10-37DnLkTrCHCoding, WCDMA3G, 10-40DnLkTrCHDecoding, WCDMA3G, 21-11DownSample, WCDMA3G, 16-19DPCCH, 3GPPFDD, 9-6DPCCHDeMux, 3GPPFDD, 4-2DPCCHMux, 3GPPFDD, 5-4DPCH, 3GPPFDD, 2-57DPCHDeMux, 3GPPFDD, 4-4DPCHDeSeg, WCDMA3G, 15-10DPCHMux, 3GPPFDD, 5-6DPCHs, 3GPPFDD, 2-60DPCHSeg, WCDMA3G, 15-15DPDCH, 3GPPFDD, 9-9

EErrorVector, WCDMA3G, 14-11ESG_DnLkDPCH, WCDMA3G, 10-44estModel3, WCDMA3G, 18-18EVM, 3GPPFDD, 3-11EVM_NonSyn, 3GPPFDD, 3-16EVM_WithRef, WCDMA3G, 14-13

FFirstDeintlvr, WCDMA3G, 11-25FirstIntlvr, WCDMA3G, 11-30

HHS_CQI_Decoder, 3GPPFDD, 7-38HS_CQI_Encoder, 3GPPFDD, 8-39HS_DPCCH_Decoder, 3GPPFDD, 7-41HS_DPCCH_DeMux, 3GPPFDD, 4-6HS_DPCCH_Encoder, 3GPPFDD, 8-42HS_DPCCH_Mux, 3GPPFDD, 5-10HS_UL_Rake, 3GPPFDD, 6-8HS_ULSpread, 3GPPFDD, 5-12HS_Uplink, 3GPPFDD, 9-12HS_Uplink_Rx, 3GPPFDD, 2-65

IIdentifySCG, WCDMA3G, 13-7IdScrambler, WCDMA3G, 13-10Interpolator, 3GPPFDD, 3-20

MMeanSquare, WCDMA3G, 3-62MeasureSrc, WCDMA3G, 14-17

OOCNS, 3GPPFDD, 2-68OVSF, 3GPPFDD, 5-14OVSF, WCDMA3G, 17-13

PPathSearch, WCDMA3G, 16-21PCCPCH, 3GPPFDD, 2-71PCCPCHDeMux, 3GPPFDD, 4-8PCCPCHDeMux, WCDMA3G, 13-13PCCPCHMux, 3GPPFDD, 5-16PCCPCHMux, WCDMA3G, 13-15PCPCHMux, 3GPPFDD, 5-18PCPCHPrmbl, 3GPPFDD, 5-20PCPCHSprd, 3GPPFDD, 5-22PhyCHBER, WCDMA3G, 14-20PhyCHBERWithDelay, WCDMA3G, 14-24PICH, 3GPPFDD, 2-73PowCtrlCmd, WCDMA3G, 14-26PowerMeasure, WCDMA3G, 14-28PRACHDeMux, 3GPPFDD, 4-10PRACHMux, 3GPPFDD, 5-24PRACHPrmbl, 3GPPFDD, 5-26PRACHScrmb, 3GPPFDD, 5-28PRACHSprd, 3GPPFDD, 5-29PSCode, WCDMA3G, 13-17

QQPSKDataMap, WCDMA3G, 17-15

RRadioFrameDeEqual, WCDMA3G, 20-34RadioFrameDelay, WCDMA3G, 20-36RadioFrameDeSeg, WCDMA3G, 20-41RadioFrameEqual, WCDMA3G, 20-47RadioFrameSeg, WCDMA3G, 20-49RakeCombine, WCDMA3G, 16-25RakeReceiver, WCDMA3G, 16-29RF_ACLR, 3GPPFDD, 3-21

Index-2

Page 1149: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

RF_ACLR_SwitchingTransients,3GPPFDD, 3-25

RF_CCDF, 3GPPFDD, 3-27RF_CCDF, WCDMA3G, 3-64RF_CDP, 3GPPFDD, 3-29RF_Downlink, 3GPPFDD, 2-76RF_Downlink_BER, 3GPPFDD, 3-31RF_Downlink_Receiver, 3GPPFDD, 9-14RF_EVM, 3GPPFDD, 3-34RF_OccupiedBW, 3GPPFDD, 3-37RF_OutputPower, 3GPPFDD, 3-40RF_PCDE, 3GPPFDD, 3-43RF_PowMeas, WCDMA3G, 3-67RF_SpecEmission, 3GPPFDD, 3-46RF_Uplink, 3GPPFDD, 9-18RF_Uplink_BER, 3GPPFDD, 3-49RF_Uplink_Receiver, 3GPPFDD, 2-81

SSCCPCHDeMux, 3GPPFDD, 4-12SCCPCHMux, 3GPPFDD, 5-31SCGtoScrmb, WCDMA3G, 13-19SCH, 3GPPFDD, 2-84SecondDeintlvr, WCDMA3G, 11-36SecondIntlvr, WCDMA3G, 11-41SlotTiming, WCDMA3G, 13-25SSCode, WCDMA3G, 13-21StdOCNS, 3GPPFDD, 2-86STTDEncoder, WCDMA3G, 19-2STTDMux, WCDMA3G, 19-6Synch, 3GPPFDD, 3-52

TTC_Adjust, WCDMA3G, 11-57TC_Deintlvr, WCDMA3G, 11-60TC_Intlvr, WCDMA3G, 11-64TC_Intlvr_f, WCDMA3G, 11-72TC_Map, WCDMA3G, 11-79TC_MAPDecoder1, WCDMA3G, 11-82TC_MAPDecoder2, WCDMA3G, 11-85TC_PadTail, WCDMA3G, 11-88TC_PunctureTail, WCDMA3G, 11-91TC_RSCEncoder, WCDMA3G, 11-94TC_SigDecision, WCDMA3G, 11-97TCDecoder, WCDMA3G, 11-47TCDecoder_Base, WCDMA3G, 11-50TCEncoder, WCDMA3G, 11-53TestModel_Delay, WCDMA3G, 18-2

TestModel_PCCPCH_Src, WCDMA3G, 18-7TestModel_PICH, WCDMA3G, 18-8TestModel_PICH_Src, WCDMA3G, 18-10TestModel1, 3GPPFDD, 2-88TestModel1, WCDMA3G, 18-12TestModel1_DPCH, WCDMA3G, 18-14TestModel2, 3GPPFDD, 2-91TestModel2, WCDMA3G, 18-15TestModel2_DPCH, WCDMA3G, 18-17TestModel3, 3GPPFDD, 2-93TestModel3_DPCH, WCDMA3G, 18-20TestModel4, 3GPPFDD, 2-96TestModel4, WCDMA3G, 18-21TestModel5, 3GPPFDD, 2-99TFCIComb, 3GPPFDD, 8-44TFCIDecoder, 3GPPFDD, 7-43TFCIDecoder, WCDMA3G, 11-98TFCIDeComb, 3GPPFDD, 8-46TFCIDemap, WCDMA3G, 11-101TFCIEncoder, 3GPPFDD, 8-48TFCIEncoder, WCDMA3G, 11-103TFCIMap, WCDMA3G, 11-107TFIGenerator, 3GPPFDD, 8-50TimeSwitch, WCDMA3G, 13-27TrCH_Cal, 3GPPFDD, 8-54TrCHBER, 3GPPFDD, 3-56TrCHBER, WCDMA3G, 14-30TrCHBLER, WCDMA3G, 14-35TrCHDeMux, WCDMA3G, 20-55TrCHMeasure, WCDMA3G, 14-37TrCHMux, WCDMA3G, 20-66TrCHSrc, 3GPPFDD, 8-52TrCHSrcWithTFIin, 3GPPFDD, 8-57TxPowAdjust, WCDMA3G, 14-39

UUE_FixedRateDemod, WCDMA3G, 21-15UE_FixedRateReceiver, WCDMA3G, 21-18UE_FixedRateSrc, WCDMA3G, 21-21UE_FixedRateSrc_2M, WCDMA3G, 21-24UE_Rx_ACS, 27-11UE_Rx_InbandBlk, 27-12UE_Rx_Intermod, 27-14UE_Rx_MaxLevel, 27-9UE_VariableRateDemod, WCDMA3G, 21-27UE_VariableRateReceiver, WCDMA3G,

21-32UE_VariableRateSrc, WCDMA3G, 21-37

Index-3

Page 1150: 3GPP W-CDMA Design Libraryliterature.cdn.keysight.com/litweb/pdf/ads2004a/pdf/wcdma3g-doc.pdfv 3GPPFDD_SCCPCHDeMux..... 4-12 5 3GPPFDD Physical Channel Multiplexers and Coders

UL_12_2, 3GPPFDD, 9-21UL_144, 3GPPFDD, 9-26UL_2M, 3GPPFDD, 9-31UL_384_TTI10, 3GPPFDD, 9-36UL_384_TTI20, 3GPPFDD, 9-41UL_64, 3GPPFDD, 9-46UL_768, 3GPPFDD, 9-51UL_RACH, 3GPPFDD, 9-55UL_Rake, 3GPPFDD, 6-11UL_RefCh, 3GPPFDD, 9-58UL_Rx_RefCH, 3GPPFDD, 2-102UL_Source, 3GPPFDD, 9-61ULDeFirInterLv, 3GPPFDD, 7-45ULDePhyCHMap, 3GPPFDD, 7-47ULDePhyCHSeg, 3GPPFDD, 7-51ULDeRadioEqual, 3GPPFDD, 7-55ULDeRadioSeg, 3GPPFDD, 7-57ULDeRateMatch, 3GPPFDD, 7-59ULDeSecInterLv, 3GPPFDD, 7-63ULDeTrCHMulti, 3GPPFDD, 7-67ULFirInterLv, 3GPPFDD, 8-59ULGainFactor, 3GPPFDD, 8-61ULLongScrmb, 3GPPFDD, 5-33ULPhyCHMap, 3GPPFDD, 8-65ULPhyCHSeg, 3GPPFDD, 8-67ULRadioEqual, 3GPPFDD, 8-72ULRadioSeg, 3GPPFDD, 8-74ULRateMatch, 3GPPFDD, 8-77ULSecInterLv, 3GPPFDD, 8-82ULShortScrmb, 3GPPFDD, 5-34ULSpread, 3GPPFDD, 5-35ULTrCHMulti, 3GPPFDD, 8-84UpLinkRF, 3GPPFDD, 9-65UpLk, 3GPPFDD, 9-73UpLkAllocDPCH, WCDMA3G, 17-17UpLkAllocOVSF, WCDMA3G, 17-20UpLkDPCCH_Src, WCDMA3G, 21-40UpLkDPCCHDeMux, WCDMA3G, 15-20UpLkDPCCHMux, WCDMA3G, 15-22UpLkDPDCH_Src, WCDMA3G, 21-42UpLkGainFactor, WCDMA3G, 17-23UpLkScrambler, WCDMA3G, 17-26UpLkSpreader, WCDMA3G, 17-30UpLkTrCHCoding, WCDMA3G, 21-44UpLkTrCHDecoding, WCDMA3G, 10-46UserDefinedCH, WCDMA3G, 12-12

VVariableSrc, WCDMA3G, 14-41ViterbiDCC, WCDMA3G, 11-109

Index-4