3D Geometry in Geogebra - A Single Vector

Embed Size (px)

DESCRIPTION

n

Citation preview

Create a visual basic function for the following and plot it for t between -10 and +10

3D in Geogebra vector componentsPaul Robinson, IT TallaghtWebsites

Geogebra Homepage:http://www.geogebra.org/cms/

Use the Appletstart Version of Geogebra or download a stand alone version.

Geogebra Forum:

http://www.geogebra.org/forum/

Community of Geogebra users, bug reports and feature requests

Geogebra Facebook Group: http://www.facebook.com/home.php#!/geogebra

Pretty active, conference news, lots of helpful stuffGeogebra Wiki:

http://www.geogebra.org/en/wiki/index.php/English

Collection of re-usable teaching resources

University of Limerick:http://www.ul.ie/cemtl/resources.htm

Excellent GeoGebra step by step demos

Math 247:

http://math247.pbworks.com/Learn-and-Use-GeoGebra

Fantastic Step-by-Step Help on How to Use GeoGebra by Dr Linda Fahlberg-Stojanovska. Includes accessing Geogebra properties and methods using Javascript very cool.

LaTeX online equation editor:http://www.numberempire.com/texequationeditor/equationeditor.phpIndispensible if you want to put mathematics into Moodle and dont know any LaTex!IntroductionGeogebra can do a pretty good job of representing 3D objects, allowing rotations and dilations to view things from different angles and to zoom in. These notes are based on a construction by Michele Passante (http://www.mateblog.it/?p=372).First a bit of theory: Let be a point in 3D space. The 3D rotation matrices about the x, y and z axis are

where a, b and c are angles between 0o and 360o. The rotation RX will rotate P in the horizontal plane anticlockwise about the vertical z axis through an angle of a, and similarly for Ry and Rz. If we rotate P and the x, y, z coordinate frame using R we can interpret the result as a rotated view of the original point P. This is what we will do in the construction which follows.We will write a general rotation as , which will allow us to rotate about the 3 axes. Note that the 3 rotations do not commute with each other, meaning that if we write them in a different order the result will generally be slightly different! This will not matter in terms of using rotations to view 3D objects.

After rotation the point P will have 3D coordinate

where the q coordinates now depend on the angles a, b and c. To see what this looks like in 2D (on the screen!) we simply want two of the coordinates of RP. If we imagine the x axis pointing out of the screen towards us then the screen coordinates are y, z. This means we need to plot the point .This construction is OK, but it is not very flexible. As well as Q we will want to extract some other information from the 3D point RP, and it is not easy to do in GeoGebra with RP in this form. Instead we will start with

Now . We can now think of as the component of the rotated P in the direction of the rotated axis . If we let Wx be the 2D vector with components the y and z coordinates of REx , and similarly for Wy and Wz then we have

The vectors are the components of the rotated P along the rotated axis as viewed on the screen.

We will construct the rotation of a 3D point P with its axis frame. The point P does not change its position, just our rotated view of it changes.

Creating a 3D axis frame

1. Put on sliders for angles a, b, c and another named d which will be used to lengthen and shorten our axes:

Click on the slider tool then on the drawing pad. Call it a and select the angle option. Go with the default of 0o to 360o. Repeat for sliders b and c.

Create another slider called d with a Number value from 0.5 to 5 in steps of 0.1.

Right click the sliders (or their values in the left hand window) if you want to change their properties. click on the object selection tool if you want to move the sliders around.

2. Put in unit vectors along the x, y and z axes.In the input line at the bottom of the screen type

E_x = {{1}, {0}, {0}}

press returnThis represents the column vector . A row of numbers would be written as {1, 0, 0}. We need a column as we want to multiply by a matrix.

Repeat the input for

E_y = {{0}, {1}, {0}}and

E_z = {{0}, {0}, {1}}3. Put in the rotation matrices Rx, Ry and Rz and the dilation matrix DIn the input line type

R_x = {{1, 0, 0}, {0, cos(a), -sin(a)}, {0, sin(a), cos(a)}}press return

R_y = {{cos(b), 0, -sin(b)}, {0, 1, 0}, {sin(b), 0, cos(b)}}press return

R_z = {{cos(c), -sin(c), 0}, {sin(c), cos(c), 0}, {0, 0, 1}}press returnFor the general rotation type

R = R_z*R_y*R_x

press return4. Create our axesIn the input line type

V_x = R*E_x

press returnThis will rotate (and dilate) the unit vector E_x which is pointing along the x-axis.

Repeat for

V_y = R*E_y

and

V_z = R*E_zNow we need to see what that looks like on the screen. The vectors V_x, V_y and V_z are column vectors. As mentioned in the introduction we want the 2nd and 3rd components of our 3D vectors to create a point on the screen.This is probably a good point to turn off labeling. Go to Options, labeling and click on No New Objects.In the input line type

W_x = (Element[Element[V_x,2],1], Element[Element[V_x,3],1])

and press return.Element[V_x,2] is the second number in V_x, which is itself a list { } consisting of 1 number. We want the first number in that list. The round brackets in W_x mean that we now have a point in 2D which you should see on the screen.

Repeat for

W_y = (Element[Element[V_y,2],1], Element[Element[V_y,3],1])

W_z = (Element[Element[V_z,2],1], Element[Element[V_z,3],1])

In the input line type

u = vector[d*W_x]

press return

Repeat for v = vector[d*W_y] and w = vector[d*W_z].

Hide the points W_x, W_y and W_z by clicking on the circles next to their definition in the left hand window.

Click on the object Selection Tool then move sliders a and b to 30o, followed by moving c. See that d makes things bigger and smaller.5. Make the axes look a bit nicer.

Go to View and click on Axes to remove the default GeoGebra axes.

Right click on the u vector (do it in the definition in the left hand window) and go to Properties at the bottom of the list. Use ctrl or shift to select u, v and w in the vector list simultaneously. Set the Colour to dark blue and the Style line thickness to 5.In the input line type u and press return. Do the same for v and w.

Select these 3 new vectors as before, leave the colour on black and the line thickness as thin but change the line style to fine dots.

We also need to label our axes. Click on the small arrow at the bottom of the Slider Tool and select the Insert Text option. Click on the screen anywhere and type X for the text. Now right click the X text, go to Properties and Position. In the Starting Point box type 2*W_x. You may use the mouse to move the X text slightly but as you move the slider controls a, b, c and d it should follow the arrow head of the x-axis.Repeat this text insert for Y (Starting position 2*W_y) and Z (Starting position 2*W_z).

As a final flourish type

Polygon[d*(W_x+W_y), d*(-W_x+W_y), d*(-W_x-W_y), d*(W_x-W_y)]And press return.

Right click each side of this polygon and click off Show Object.

Use the Panning Tool (click it then drag on the screen) if you want to centre your construction a little. Click the little arrow on the panning tool to bring up the Zoom In and Zoom Out Tools (click then click the screen) if you want your picture bigger or smaller.We can now put other objects on our axes frame like points, lines and planes and see what they look like in 3D. We can also make geometric objects e.g. a cube made up of corners (points) and faces (polygons).Illustrating a Vector in 3DIn the input line type the column vector

P = {{1}, {1}, {1}}

As discussed in the introduction this will have the screen coordinate . In the input line type

p_x = Element[Element[P, 1], 1]

p_y = Element[Element[P, 2], 1]

p_z = Element[Element[P, 3], 1]

Q = p_x*W_x + p_y*W_y + p_z*W_zAnd press return after each line.Hide the point Q (click the circle next to it in the left hand window).

In the input line type

Vector[Q]We can also put in some components of this vector. The projection (shadow) of P on the x-y plane is the first 2 terms of Q i.e. .

In the input line type

Q_{xy} = p_x*W_x + p_y*W_yAnd hide the point Q_{xy}. Now type

Segment[(0, 0), Q_{xy}]and

Segment[Q_{xy}, Q]

Make these two segments have the fine dotted line style and, possibly, change their colour.

More elements on the Screen

1. Components of P along the x, y and z axes would be respectively, which you could also put on the picture. You could then make segments between these points and Q.If you want to put the component values of P on the axes then, for the x component,

(a) Make a textbox and type the text p_x

(b) Make the starting position p_x*W_x

Repeat for the y and z components. GeoGebra will interpret the text p_x as its numerical value.

You should now be able to go back to the definition of P and change the numbers to see other vectors.

2. Create a second point P1 (with 2D point Q1) constructed like P. The line through these points is then created using the command Line[Q, Q1].3. Create 3 points Q1, Q2 and Q3 and join them with the polygon command. This will be the plane through the corresponding 3D points P1, P2 and P3. _1357730310.unknown

_1357731902.unknown

_1357924936.unknown

_1357925079.unknown

_1357988871.unknown

_1357989356.unknown

_1357978544.unknown

_1357925030.unknown

_1357924098.unknown

_1357924397.unknown

_1357730981.unknown

_1357731218.unknown

_1357730771.unknown

_1357730120.unknown

_1357730206.unknown

_1357730024.unknown