121
Chapter 3(b): Digital Signal Processing 3.1 Introduction to Digital Signal Processing 3.2 Analogue to Digital Conversion Process 3.3 Quantisation and Encoding 3.4 Sampling of Analogue Signals 3.5 Aliasing 3.6 Digital to Analogue Conversion 3.7 Introduction to digital filters 3.7.1 Non-Recursive Digital filters 3.7.2 Recursive Digital filters 3.8 Digital filter Realisation 3.8.1 Parallel Realisation 3.8.2 Cascade Realisation 3.9 Magnitude and Phase Responses 3.10 Minimum/Maximum/Mixed Phase Systems 3.11 All-pass Filters 3.12 Second Order Resonant Filter 3.13 Stability of a Second Order Filter 3.14 Digital Oscillators 3.15 Notch Filters Professor E. Ambikairajah UNSW, Australia

3.4 Sampling of Analogue Signals Professor E. - EE&T Video ...eemedia.ee.unsw.edu.au/contents/elec3104/LectureNotes/DSP5B.pdf · Question 3 Let x(t) have a spectrum X( f) as shown

Embed Size (px)

Citation preview

Chapter 3(b): Digital SignalProcessing

3.1 Introduction to Digital Signal Processing3.2 Analogue to Digital Conversion Process3.3 Quantisation and Encoding3.4 Sampling of Analogue Signals3.5 Aliasing3.6 Digital to Analogue Conversion3.7 Introduction to digital filters

3.7.1 Non-Recursive Digital filters3.7.2 Recursive Digital filters

3.8 Digital filter Realisation3.8.1 Parallel Realisation3.8.2 Cascade Realisation

3.9 Magnitude and Phase Responses3.10 Minimum/Maximum/Mixed Phase Systems3.11 All-pass Filters3.12 Second Order Resonant Filter3.13 Stability of a Second Order Filter3.14 Digital Oscillators3.15 Notch FiltersProf

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

Question 2A digital communication link caries binary-coded words representing samples of an inputsignalx(t) = 3 cos(600t) + 2 cos (1800t) . The link is operated at 10,000 bits/s and each inputsample is quantised into 1024 different voltage levels.

(a) What is the sampling frequency?

(b) What are the frequencies in the resulting discrete-time signal x(n)?

[2 marks]

[4 marks]

kHzf s 11000

10000,10

condsamples/seebits/sampl

bits/sec

levels1024210sampleperbitsofNo 10

HzfHzfAnswer

Hzxkfff

ff

HzfHzf

sk

s

100;300:

100100019002

900;300

21

0

2

21

aliasingbyaffectedisitThereforeis

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Question 3Let x(t) have a spectrum X( f) as shown in figure 1.

The spectrum X() of the sampled signal x(t) is given by

If fs = 4 kHz, Sketch the digital spectrum X().

X(f)

f (kHz)2 4 6 8 10-8-10 -6 -4 -2

)(2;)2(1)( 1sf

k

fTT

kXT

X

Figure 1

[5 marks]

324)3(10

44)3(82

24)2(10

04)2(8

324310

44382

24210

0428

0

0

0

0

0

0

0

0

0

kxf

xfk

xf

xf

kxf

xfk

xf

xf

kfff sk

X()

2 4-4 -2

f (kHz)- 2 Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

3.7 Introduction to Digital Filters

There are two types of digital filters:

Recursive (there is at least one feedback path inthe filter)

Non-recursive (no feedback paths)

A linear time invariant discrete (LTD)system described by the following equationis commonly called a digital filter:

(3.9)10

L

kk

M

kk knybknxany

Feed forward FeedbackProf

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

where x[n] is the input signal, y[n] is the

output signal. a0, a1, a2, ...., aM; b1, b2,

b3, ..., bL are constants (filter coefficients).These coefficients determine thecharacteristics of the system.

when bk = 0 the filter is said to benon-recursive type

when bk 0 recursive type.

(3.9)10

L

kk

M

kk knybknxany

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

3.7.1 Non Recursive Digital Filters (FIR)

If bk = 0, then the calculation of y[n] does notrequire the use of previously calculated samples ofthe output (see equation (3.9)).

This is recognised as a convolution sum.

knxanxanxaknxany M

M

kk

1100

M

k

knxkhny0Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

Therefore the impulse response is identical tothe coefficients, that is,

Any filter that has an impulse response offinite duration is called Finite ImpulseResponse (FIR) filter.

otherwise

Mnanh n

00

knxanxanxaknxany M

M

kk

1100

h(0) h(1) h(M)

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example :

2

21

10

210

)()(

)(

21

zazaazXzY

zH

nxanxanxany

This is a (non-recursive) second order FIR filter

Property: A property of the FIR filter is that itwill always be stable.

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

(a) Stability requires that there should be nopoles outside the unit circle. This condition isautomatically satisfied since there are no poles at alloutside the origin. (In fact, all poles are located atthe origin.)

(b) Another property of non-recursive filter is that wemake filters with exactly linear phase characteristics [4]

Note: The ability to have an exactly linear phaseresponse is one of the most important properties ofa LTD system (filter). When a signal passes througha filter, it is modified in amplitude and/or phase.The nature and extent of the modification of thesignal is dependent on the amplitude and phasecharacteristics of the filter.Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

The phase delay or group delay of thefilter provides a useful measure of how thefilter modified the phase characteristic of thesignal. If we consider a signal that consists ofseveral frequency components (eg. speechwaveform) the phase delay of the filter is theamount of time delay each frequencycomponent of the signal suffers in goingthrough the filter.

(3.10))(

)(_

pTdelayphase

[the negative of the phase angle divided byfrequency]Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

The group delay on the other hand isthe average time delay the compositesignal suffers at each frequency as itpasses from the input to the output ofthe filter.

(3.11))(

)(_d

Tdelaygroup g

[the negative of the derivative of thephase with respect to frequency]Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

A constant group delay means that signalcomponents at different frequencies receivethe same delay in the filter.

A linear phase filter gives same time delay to allfrequency components of the input signal. A filterwith a nonlinear phase characteristic will cause aphase distortion in the signal that passes through it.

()

() = -

-

Figure 3.12. Phase response of a linear phasefilter

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

This is because the frequency components inthe signal will each be delayed by an amountnot proportional to frequency, therebyaltering their harmonic relationship. Such adistortion is undesirable in many applications,for example music, video etc.

A filter is said to have a linear phase responseif its phase response satisfies one of the followingrelationships:

(3.12)

ab

a

where ‘a’ and ‘b’ are constants.Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example

Two filter structures are shown below. Showthat both filters have linear phase.

z-1 z-1

+1 +1 +1

+

x[n]z-1 z-1

+1 -1

+

x[n]

y[n]y[n]

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

z-1 z-1

+1 -1

+

x[n]

y[n]

cos21

1

1

1

21

2

21

j

jjj

jj

e

eee

eeH

zzzH

nxnxnxny

z-1 z-1

+1 +1 +1

+

x[n]

y[n]

sin2

sin2

22

1

1

2

2

2

2

2

j

jj

jjj

j

e

ee

jee

je

eH

zzH

nxnxny

phase: () = /2 - ,linear phase

phase: () = -,linear phaseProf

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

3.7.2 Recursive Digital filter (IIR) Every recursive digital filter must contain at least one

closed loop. Each closed loop contains at least onedelay element.

For Recursive digital filters bk 0. Let a0 = a0 ,ak = 0 for k > 0, b1 = b1 & bk = 0 for k > 1

L

kk

M

kk knybknxany

10

11

0

10

1

1

zbazH

nybnxany

IIR filterProf

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

A recursive filter is an infinite impulseresponse filter (IIR).

Examples :2

21

10)( zazaazH

22

111

1)(

zbzbzH

22

11

22

11

11

)(

zbzbzaza

zH

Zeros only

Poles and Zeros

(2nd order FIR filter)

2nd order IIR filter (all pole filter)

IIR filter

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example :

The difference equation is: y[n] = x[n] + ay[n-1].

The DC gain of H(z) can be obtained by substituting = 0.

If dc gain is undesirable, introduce a constant gain

factor of (1-a), so that H(z) becomes

Note: Poles and zeros can be real or imaginary

101

1)( 1

a

azzH

aaeH j

11

11

|)( )0(0

111

)(

az

azH

dc gain = 1]1[][)1(][ naynxanyProf

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

Example:

Consider a lowpass filter

(i) Determine ‘b’ so that |H(0)| = 1

(ii) Determine the 3dB bandwidth (here) for thenormalised filter in part (i)

101 abx[n],]ay[n-y[n]

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

(i) Y(z) = aY(z) z-1 + b X(z) 11)(

azb

zH

jaeb

zH

1)(

11

)0(

a

bH

cos21

1

)sin()cos1(

1)(

sin)cos1(1

11

)(

222 aa

a

aa

aH

jaaa

aea

H j

we have |H(0)| =1

b = 1 - a

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Second Method:

2

2*2

cos21)1(

11

11

)()(|)(|aa

aae

aae

aHHH jj

222 |)0(|21|)(|1|)0(| H

cHH

(half-power point)

2

1

1

|H()|0 dB

3 dB

c

2cos21

1|)(|

aa

aH

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

21

1

|H()|2

c

aaa

aaa

c

c

214

cos

cos21)1(

21

21

2

2

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example: Consider a filter described by

2

2

)(azccza

zH where a & c are constants.

Show that the magnitude response |H()| isunity for all .

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

1][][

)()(|)(|

2222

2222

2

2

2

2*2

jj

jj

j

j

j

j

eeaccaeeacac

ceaaec

ceaaec

HHH

|H()|

-

This is an all-pass filter.

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

3.8 Digital filter Realisation [11]

1

1

1)()(

)(

)()()(

1

1

0

1

0

10

10

structure

poles

L

k

kk

zeros

M

k

kkL

k

kk

M

k

kk

L

k

kk

M

k

kk

L

kk

M

kk

zbza

zb

za

zXzY

zH

zzYbzzXazY

knybkxany

2

0

1

1

1

structure

zeros

M

k

kk

poles

L

k

kk

zazb

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

-b1

-b2

-bL

X(z)+

z-1

z-1

z-1

a1

a2

aM

a0 Y(z)

z-1

z-1

z-1

Figure 3.13. Structure 1 or Direct Form 1

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

a1

a2

aM

-b1

-b2

-bL

a0X(z) Y(z)

+ +

z-1

z-1

z-1

z-1

z-1

z-1

Figure 3.14. Structure 2 or Direct Form IIProfes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

In the case when L = M, we have Canonic form realisation.

A discrete-time filter is said to be canonic if it contains theminimum numbers of delay elements necessary to realise theassociated frequency response.

a0

a1

a2

aM

-b1

-b2

-bL

X(z)+

z-1

z-1

z-1

Y(z)+

Figure 3.15. Canonic form

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

3.8.1 Parallel Realisation [11]

structureparallel

k

k

ii

LL

MM

zHzHzHzHzH

zbzbzbzazazaa

zH

_

3211

22

11

22

110

)(...)()()()(

1)(

(use partial fraction to obtain Hi(z))

Y(z)

H1(z)

H2(z)

Hk(z)

X(z)+

Figure 3.16. Parallel structureProf

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

3.8.2 Cascade Realisation [11]

structurecascade

k

k

ii

LL

MM

zHzHzHzHzHzH

zbzbzbzazazaazH

_

3211

22

11

22

110

)(̂)...(̂)(̂)(̂)(̂)(

1)(

(Product of lower order transfer function ie. 1stor 2nd order sections)The cascade structure is the most popular form

Y(z)X(z)

Fig 3.17. Cascade structure

)(̂1 zH )(2̂ zH )(ˆ zH k

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example:

A parallel realisation of a third order system

H(z) is given by

21

1

1

211

321

3252

)325)(2(19364023

)(

zzDzC

zB

A

zzzzzz

zH

H0(z) H1(z) H2(z)Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

21

1

1

21

1

1

21

1

1

6.04.01

)151

1523

(

5.01)5.2(

319

)6.04.01(5)23(

31

5.011

25

319

)(

325)23(

31

25

319

)(

zz

z

z

zzz

zzH

zzz

zzH

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

-0.5

-0.4

-0.6

x[n]

+

z-1

z-1

+

-2.5

z-1

y[n]+ +

319

1523

151

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example:

A cascade realisation of a third-order system is given by

21

21

1

1

21

21

1

1

21

21

1

1

21

21

1

1

321

321

6.04.018.34.36.4

5.01)5.05.0(

6.04.018.34.36.4

5.01)5.05.0(

)6.04.01(5191723

)5.01(2)1(

325191723

)2()1(

3891019364023

)(

zzzz

zz

zzzz

zz

zzzz

zz

zzzz

zz

zzzzzz

zH

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

x[n] y[n]

0.5-0.5

0.5

z-1

+ +

3.4-0.4

4.6

z-1

+

3.8-0.6 z-1

+

Cascade

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example:

Implement the following system in the cascade,direct form II and parallel structures. All coefficientsare real.

)1)(1(1

)().( 11

bzazzHa

cascade structure

x[n] y[n]

-az-1

+

b

z-1

+

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

21)(11

)(

abzzbazH

y[n]x[n]+

-(a-b)z-1

+ab z-1

Direct form II

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

1111 1111)(

bzba

b

azba

a

bzB

azA

zH

Parallel structure

-a

b

x[n]

z-1

z-1

y[n]baa

bab

+

+

+

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

31)1(1

)()(

azzHb

a

x[n] y[n]

az-1

+

az-1

+

z-1

+

cascade structureS

No parallel structure exists because partialfraction expansion cannot be performed.Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

33221 3311

)(

zazaazzH

Direct Form II

a3

x[n] y[n]

3az-1

+

-3a2z-1

z-1

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

cascadezbbzzaaz

zbazba

parallelbzza

zHc

)21)(21()()(21

)1(1

)1(1

)().(

221221

1221

2121

)1)(1(1

)1)(1(1

)( 1111

bzbzzazazH

y[n]x[n]a

z-1+

az-1

+

parallel structure

+

bz-1

+

bz-1

+

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

-2(a+b)

a2+b2

y[n]+

2bz-1

-b2 z-1

+

2a z-1

-a2

x[n]

z-1

+

221221

2221

211

)21()()(21)(

zbbzzaazzbazbazH

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

3.9 Magnitude and Phase Response [11]

We can show that the magnitude response isan even function of frequency

The phase response is an odd function offrequency

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example:

Calculate the magnitude and phase response of the

3-sample averager given by

otherwise

nnh

0

1131

n n

nn zzzznhznhzH 1011

1 31

31

31

)()()(

11 131

)( zzzH Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

31

1131

)()(

jjjj

ezeeeezHH j

cos2131

)( H

Precautions must be taken when determining thephase response of a filter having a real-valuedtransfer function, because negative real valuesproduce an additional phase of radians.

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

For example, let us consider the following linear-phaseform of the transfer function

H() = e-jkB()

real-valued function of that can take positive andnegative values.

Let phase angle is :

kjBkBH

kjBkBHsincossincos

)tan()cos()()sin()(

tan

kkBkB

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The phase function () includes linear phaseterm and also accommodates for the signchanges in B(). Since -1 can be expressed as ,phase jumps of will occur at frequencieswhere B() changes sign.

If B() > 0, then () = -k.

If B() < 0, then () = -k..

tan= tan(-k) = -k or () = -k

phase angle

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Let us get back to our example

32

32

32

32

and0)(0)(

0)(0)(

]cos21[31|)(|]cos21[

31)(

H

H

HH

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The appropriate sign of must be chosen to

make () an odd function of frequency.

()

-2 --2/3 2/3 2

|H()|

-2 --2/3 2/3 2

-

Odd function

Even function

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example:

Find the magnitude and phase response of the following:

0)(,21

)2(,1)1(,21

)0( nhhhh

)(

]cos1[)(

21

121

21

21)(

21

21

21

121

)(

)(

2

21210

B

j

jjj

jj

eH

eee

eeH

zzzzzzH

The amplitude function is nevernegative (therefore there is no phasejumps of )Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

-

Even function2

|H()|

--

Odd function

()

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example :

10)(

01)(case

otherwisennn

()|H()|

1

- -

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

|H()|

1

-

-

()

-

k

(n-k)

n

h[n] = [n-k]H(z) = 1z-k

H() = 1e-jk

B() = 1 () = -k

Note: When phase exceeds range a jump of 2is needed tobring the phase back into range.

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Phase Jumps: From the previous examples, wenote that there are two occasions for which thephase function experiences discontinuities or jumps.

(1) A jump of 2occurs to maintain the phase

function within the principal value range of [-and ]

(2) A jump of occurs when B() undergoes achange of sign

The sign of the phase jump is chosen such that theresulting phase function is odd and, after the jump, lies in

the range [-and ].Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example: Magnitude and phase response ofcausal 3-sample average.

32

32

0)(

32

320)()(

]cos21[31

|)(||)(|;)(

]cos21[31

)(

131

31

31

31)(

31

31

31)(

otherwise020for

)(

221

31

B

B

BH

eH

eee

eeHzzzH

nnh

B

j

jjj

jj

-

()

-

1|H()|

- -/2 /2

2/3

-2/3

Phase is undefined at points |H()| = 0.Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

Example:

Determine and sketch the magnitude andphase response of the following filters:

4)(

8)(

121

)(

nxnyiiinxnxnyii

nxnxnyi

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

2sin

2sin

222

1

21]1[

21)(

]1[21

)()]()([21

)(

22

222

222

222

11

j

jjj

jjj

jjjj

e

ejee

jjee

e

eeeeH

zzHzXzzXzY

|H()|

-

/2

-/2

()

-

(i)

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

42

)(

4sin2

4sin222

1)(

1)()(

)()()(

)(

42

2444

48

88

B

j

jjjj

jj

e

eejjee

eeH

zzXzY

zXzzXzY

()

|H()|

/4 /2 3/2

-/2

/2

/4 /2 3/2

(ii)

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

1

4

4

44

H

eH

zzHzXzzY

nxny

j

|H()|1

-

-

() = -4

/4

(iii)

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example: Determine and sketch the magnitude and phase

response of 1st order recursive filter (IIR filter)

1 naynxny

phaseaa

aa

aaa

aaa

aaja

aaa

aeae

aeH

aeH

azzH

zXzY

j

j

j

j

cos1sintan)(

cos1sin

cos21cos1

cos21sin

tan

cos21sin

cos21cos1

11

11)(

11)(

11)(

)()(

1

2

2

22

1

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

jj aeae

1

11

1

2cos211

|)(|aa

H

Even Symmetry|H()|

-

a= 0.5

()Odd Symmetry

-

Non-linear phase

Magnitude: |H()|2 = H()H*() [H*() is the complex conjugate]

Assuming 0 < a < 1

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Examples :

The gain k0 can be selected as 1 – a, so that the

filter has unity gain at = 0.

In this case, (for unity gain at = 0).

FilterPass-Low1

11

)().( 110

1

az

aazk

zHa

1

1

02 11

)().(

azz

kzHb

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The addition of a zero at z = -1 further attenuatesthe response of the filter at high frequencies

|H2()|

|H()|

-

Low-Pass Filter|H1()|

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

(c) We can obtain simple high-pass filters by reflecting(folding) the pole-zero locations of the low-passfilters about the imaginary axis in the z-plane.

1

1

3 11

21)(

azzazH

-

1

|H3()|High pass filter

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

1

1 14

nxnxnyzzH

1

1 15

nxnxny

zzH

(d)

(e)

High-Pass Filter

Low-Pass Filter

-

2|H5()|2

|H5()|2 = 2(1-cos)

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

|H6()|2 = 4(1-cos)2

-

4

|H6()|2

(f) 21

6 1 zzH

317 1 zzH

(g)|H7()|2 = 8(1-cos)3

-

8

|H7()|2

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

3.10 Minimum-phase, Maximum-phaseand Mixed phase systems [11]

Let us consider two FIR filters:

12

11

21

)(

211)(

zzH

zzH

21 ρ

|z|=1

= -0.5

|z|=1Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

H2(z) is the reverse of the system H1(z). This is dueto the reciprocal relationship between the zeros of

H1(z) & H2(z).

The magnitude characteristics for the two filters are

identical because the roots of H1(z) & H2(z) arereciprocal.

cos45

|)(||)(|

21

)(&21

1)(

21

21

HH

eHeH jj

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Phase:

θθ

θφ

θ

θθφ

cos2sin

tan)(

cos21

sintan)(

11

12

-

2 ()

-

-

1()

-

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Note: If we reflect a zero z = that is inside

the unit circle into a zero outside the unit

circle the magnitude characteristic of the system is

unaltered, but the phase response changes.

We observe that the phase characters 1() begins

at zero phase at frequency = 0 and terminates at

zero phase at the frequency = . Hence the netphase change.

Minimum phase filter

ρz

1

0011 Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

On the other hand, the phase characteristic for thefilter with the zero outside the unit circle undergoes anet phase change

As a consequence of these different phasecharacteristics, we call the first filter a minimum-phase system and the second system is called amaximum-phase system.

If a filter with M zeros has some of its zeros insidethe unit circle and the remaining outside the unitcircle, it is called a mixed-phase system.

radians012

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

A minimum-phase property of FIR filtercarries over to IIR filter.

Let us consider

is called minimum phase if all its poles andzeros are inside the unit circle.

)()(

)(zAzB

zH

|z|=1

Re(z)Minimum phase

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

If all the zeros lie outside the unit circle, thesystem is called maximum phase.

|z|=1

Re(z)Maximum phase

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

If zeros lie both inside and outside the unitcircle, the system is called mixed-phase.

|z|=1

Re(z) Mixed phase

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Note: For a given magnitude response,the minimum-phase system is thecausal system that has the smallestmagnitude phase at every frequency

(). That is, in the set of causal andstable filters having the samemagnitude response, the minimum-phase response exhibits the smallestdeviation from zero phase.Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

Example:

Consider a fourth-order all-zero filter containing adouble complex conjugate set of zeros located at

. The minimum-phase, mixed phase and maximum

phase system pole-zero patterns having identicalmagnitude response are shown below.

47.0

jez

|z|=1

4

mixed-phase

=0.72

24

|z|=1

Minimum-phase

|z|=1

4

maximum-phase

2

21/Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The magnitude response and the phase response ofthe three systems are shown below: The minimum-phase system seems to have the phase with thesmallest deviation from zero at each frequency.

|H()|

()

minimum phase

mixed-phase (In the case linear phase)

maximum phase

-

-2

-3

-4Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example: A third order FIR filter has a transfer function

G(z) given by

From G(z), determine the transfer function of anFIR filter whose magnitude response is identical

to that of G(z) and has a minimum phaseresponse.

)25)(21216()( 1 zzzzG

)25

1)(34

1)(23

1(12)( 111 zzzzG

>1

)52)(43)(32()( 111 zzzzG

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

23

32

34

25

)52

1)(43

1)(32

1()(filterphaseMinimumThe 111 zzzkzP

lm(z)

Re(z)

|z|=1

-

- 43

52

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

3.11 All-Pass Filters [11]

An all-pass filter is one whose magnitude response isconstant for all frequencies, but whose phaseresponse is not identically zero.

[The simplest example of an all-pass filter is a pure

delay system with system function H(z) = z-k]

A more interesting all-pass filter is one that isdescribed by

where a0 = 1 and all coefficients are real.

LL

LLLL

zaza

zazazaazH

1

1

01

11

1

1)(

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

If we define the polynomial A(z) as

1|)()(|)(|)()()(

1)(

121

00

jezL

L

k

kk

zHzHHzA

zAzzH

azazA

i.e. all pass filter,

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Furthermore, if z0 is a pole of H(z), then is a

zero of H(z) {ie. the poles and zeros are reciprocalsof one another}. The figure shown below illustratestypical pole-zero patterns for a single-pole, single-zero filter and a two-pole, two-zero filter.

0

1z

a1

|z|=1

0

All-pass filter

a

|z|=1

r

0

All pass filter

0

(1/r, 0)

(1/r, -0)

(r, -0)

1

1

1

11

)(

az

zazH |a| < 1 for stabilityProf

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

We can easily show that the magnitude response isconstant.

Phase response:

22

2

1*2

cos21

1cos

21

1

11

1

11

|)()()()(|)(

aaθaa

θa

ae

ea

ae

ea

zHzHθHθHθH

θj

θj

θj

θj

ez θj

cos)(2sin)(

tan)(

cos21sin)(cos)(2

11

1

11

)(

1

11

2

11

aaaa

aaaajaa

aeae

ae

eaH j

j

j

j

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

()

-

a = 0.5

a = -0.5 a= -0.8

When 0 < a < 1, the zero lies on the positive realaxis. The phase over 0 is positive, at = 0 itis equal to and decreases until = , where it iszero.

When -1< a < 0, the zero lies on the negative realaxis. The phase over 0 is negative, startingat 0 for = 0 and decreases to -at = .Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

3.12 A second Order Resonant Filter

002

001

sincos

sincos0

0

jrrrep

jrrrepj

j

(A)1

1)(

212

2

22

11 bzbz

zzbzb

zH

z-1

z-1

+y[n]x[n]

-b1

-b2

0r p1

p2

All pole system has poles only (without counting thezeros at the origin)

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

(B)cos2)(

)(

))(())(()(

20

2

2

22

2

2

21

2

21

12

2

00

00

rzrzz

rzeerzz

zH

rezrezz

pzpzz

bzbzzzH

jj

jj

2201 ,cos2 rbrb

2

10 2 b

bCos

sff0

02

0 = resonant frequency

Comparing (A) and (B), we obtain

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

3.13 Stability of a second-order filter

Consider a two-pole resonant filter given by

b1 & b2 are coefficients

This system has two zeros at the origin and poles at

22

1121

2

2

11)(

zbzbbzbz

zzH

24

2, 211

21

bbbpp

Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

The filter is stable if the poles lies inside the unitcircle i.e. |p1| < 1 & |p2| < 1

For stability b2 < 1. If b2 = 1 then the system is anoscillator (Marginally stable)

Assume that the poles are complex

i.e. b12 – 4b2 < 0 b1

2 < 4b2 and

If b12 – 4b2 0 then we get real roots.

0,2 221 bbb

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The stability conditions define a region in the

coefficient plane (b1, b2) which is in the form of atriangle (see below)

The system is only stable if and only if the point

(b1, b2) lie inside the stability triangle.

b1

b2

-2 -1 0 1 2

1

-1

Real Poles

Complex Conjugate Poles

112 bb112 bb

4

21

2b

bparabola

12 b

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Stability Triangle

If the two poles are real then they must havea value between -1 and 1 for the system tobe stable.

01and01)2(4and4)2(

24and42

242

12

41

2121

212

212

21

21

12212

211

122

11

22

11

bbbbbbbbbb

bbbbbb

bbbb

bbb

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The region below the parabola (b12 > 4b2)

corresponds to real and distinct poles.

The points on the parabola (b12 = 4b2) result in real

and equal (double) poles.

The points above the parabola correspond tocomplex-conjugate poles.

b1

b2

-2 -1 0 1 2

1

-1

Real Poles

Complex Conjugate Poles

112 bb112 bb

4

21

2

bbparabola

12 b

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

3.14 Digital Oscillators

A digital oscillator can be made using a second orderdiscrete-time system, by using appropriatecoefficients. A difference equation for an oscillatingsystem is given by

From the table of z-transforms we know that the

z-transform of p[n] above is

nAnp cos

21

1

cos21

cos1)(

zzθ

zθzP

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Let21

1

cos21

cos1)()(

)(

zzθ

zθzXzY

zP

Taking inverse z-transform on both sides, we obtain

1cos21cos2 nxnxnynyny

No Input term for an oscillatorx[n] = 0, x[n-1] = 0

So the equation of the digital oscillator becomes

21cos2 nynyny Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

So the equation of the digital oscillator becomes

21cos2 nynyny

and its structure is shown below.

b2 = -1

b1 = 2cos

y[n-2]y[n-1]+ z-1 z-1

y[n] = A cos(n)

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

To obtain y[n] =Acos(n), use the following initialconditions:

y[0] = A cos(0.) = Ay[-1] = A cos(-1.) = A cos

The frequency can be tuned by changing the coefficient

b1 (b2 is a constant). The resonant frequencyof theoscillator is,

22cos 1

2

1 bbb

(For an oscillator b2 = 1)

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example: A digital sinusoidal oscillator is shown below.

(a) Assuming 0 is the resonant frequency of thedigital oscillator, find the values of b1 and b2 forsustaining the oscillation.

x[n]

-b1

+z-1

z-1

y[n] = A sin(n+1)

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

20

2

22

22

11

cos2

)(

))((1)(

00

00

rzrzK

rzeerzK

rezrezK

zbzbK

zH

jj

jj

b1 = -2 r cos0 ; b2 = r2

For oscillation b2 = 1 r = 1 b1 = -2 cos0Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

(b). Write the difference equation for the above figure.Assuming

x[n] = (Asin0)[n], and y(-1) = y(-2) = 0.

Show, by analysing the difference equation, that theapplication of an impulse at n = 0 serves the purpose ofbeginning the sinusoidal oscillation, and prove that theoscillation is self-sustaining thereafter.

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

nAnynyny

nxnynybny

00

1

sin21cos2

21

y[0] = A sin0

y[1] = 2cos0 , Asin0 = A sin20

0 0 1

0 0

n = 0y[0] = 2cos0 y[-1] – y[-2] + A sin0 [0]

y[1] = 2cos0 y[0] –y[-1] + A sin0 [1]

n = 1

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

y[2] = 2 cos0 y[1] – y[0] + A sin0[2]= 2 cos0 Asin20 – A sin0= 2A cos0 [2 sin0cos0] - sin0= A sin0 [4 cos20 –1 ] = A[3sin0 – 4 sin30]

n = 2

where sin30 = 3sin0 – 4 sin30

y[2] = A sin30 and so forth.

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

By setting the input to zero and under certain initialconditions, sinusoidal oscillation can be obtainedusing the structure shown above. Find these initialconditions.

(x[n] = 0 for an oscillator)

n = 0 y[0] = 2cos0 y[-1] – y[-2]for oscillation, y[-1] = 0 no cosine terms

y[0] = -y[-2] y[-2] = -Asin0 (sine term is equired)

y[0] = 0-(-A sin0) = A sin0

Initial conditions:

nxnynyny 21cos2

y[-1] =0; y[-2] = -Asin0Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Sine and cosine oscillators [1] Sinusoidal oscillators can be used to deliver the

carrier in modulators. In modulation schemes, bothsines and cosines oscillators and needed. A structurethat delivers sines and cosines simultaneously isshown below:

y[n]= cos(n)

x[n]= sin(n)

-sin

sin

cos

cos

z-1

+

z-1

+

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Proof:Trigonmetric equation for cos(n+1)is:cos(n+1)= cos(n)cos- sin(n) sinLet y[n] = cos(n) and x[n] = sin(n)

y[n+1] = cosy[n] – sinx[n]Replace n by n-1

y[n] = cosy[n-1] – sinx[n-1] (A)

Similarlysin(n+1)= sincos(n) + sin(n) cos

x[n+1] = siny[n] + x[n] cosReplace n n-1

x[n] = siny[n-1] + x[n-1] cos (B)

Using equations A & B above, the structure shown above canbe obtained.

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Exercise: An oscillator is given by the following coupled

difference equations expressed in matrixform.

Draw the structure for the realisation of thisoscillator, where 0 is the oscillationfrequency. If the initial conditionsyc[-1] = Acos0 and ys[-1] = -Asin0, obtainthe outputs yc[n] & ys[n] using the abovedifference equations.

11

cossinsincos

00

00

nyny

nyny

s

c

s

c

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

1cos1sin

1sin1cos

00

00

nynyny

nynyny

scs

scc

yc[n]

ys[n]

-sin0

sin0

cos0

cos0

z-1

z-1

+

+

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

n=0 ys[0] = sin0 (A cos0) + cos0 (-Asin0) = 0

n=0 yc[0] = cos0 (Acos0) - sin0(-Asin0) = A

n=1 yc[1] = cos0.A - sin0 .0 = Acos0

n=1 ys[1] = A sin0 + 0 = A sin0

n=2 yc[2] = cos0 yc[1] - sin0 ys[1]= cos0 A cos0 - sin0 A sin0 = A cos20

n = n yc[n] = A cos (n0)

similarly ys[n] = A sin(n0)Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Exercise: For the structure shown below, write down the

appropriate difference equations and hence state thefunction of this structure.

θsin21

z-1

y1[n]

2cos

z-1

-1

-1y2[n]

+

+

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

3.15 Notch filters [4] When a zero is placed at a given point on the

z-plane, the frequency response will be zeroat the corresponding point. A pole on theother hand produces a peak at thecorresponding frequency point.

Poles that are close to the unit circle give riselarge peaks, where as zeros close to or onthe unit circle produces troughs or minima.Thus, by strategically placing poles and zeroson the z-plane, we can obtain sample lowpass or other frequency selective filters(notch filters).Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

Example:

Obtain, by the pole-zero placement method,the transfer function of a sample digital notchfilter (see figure below) that meets thefollowing specifications: [4]

Notch Frequency: 50Hz 3db width of the Notch: ±5Hz Sampling frequency: 500 Hz

sffr 1

|H(f)|

50 250 f (Hz)0

The radius , r of the poles is determined by :

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

To reject the component at 50Hz , place a pair ofcomplex zeros at points on the unit circle corresponds to50Hz. i.e. at angles of

To achieve a sharp notch filter and improved amplituderesponse on either side of the notch frequency , a pair ofcomplex conjugate zeros are placed at a radius r < 1.

937.050010

11

ππ

ff

rs

360

360

0.937

|z| =1

2.03650050

360 00

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

21

21

2

2

2.02.02

2.02.02

2.02.0

2.02.0

878.05161.116180.11

)2.0cos(937.02878.0)2.0cos(21

)(937.0878.0)(1

937.0937.0)(

zzzz

zz

zeezeez

ezezezez

zH

jj

jj

jj

jj

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Question 4A digital filter structure is shown below. Calculate the dc gain of the filter in terms of the filtercooefficients.

Z-1

Z-1

X(z) a0

a2

+

b1

b2

Y(z)

+

+

[3 marks]

M(z)

Q(z)

P(z)

21

200

22

11

120

11

22

220

10

11

21

2

12

12

22

1)(

1)(

)()(

)()()()(

)()()(

)()()()(

)()()(

)()()(

bbaa

H

zbzbzaa

zHzXzY

zzYbzzYbzzXazXa

zzMzXazY

zYbzzYbzzXazM

zzYbzzXazQ

zYbzXazP

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Question 5The transfer function of a second order digital oscillator with an oscillation frequency of 0 isgiven by

(a) Show that the impulse response corresponding to the system function H(z) is given by

(c) The frequency of oscillation of the system H(z) can be determined using b1. Show that

where fs=sampling frequency and f0 =desired frequency of oscillation and f0 is thefrequency resolution

011

2cos2;

1)(

b

zbzz

zH

)sin()()sin(

)(0

0

nun

nh

)2sin(4 0

10

s

s

ffbf

f

[3 marks]

[4 marks]

)sin()()sin(

)(

)(1)cos(2)sin(

)()sin(1)cos(2

)sin()()sin(

0

0

02

0

0

02

00

nunnh

zHzz

znunzz

znun

Z:tabletransform-zFrom

)2sin(4)sin(4

2)sin(2)sin(2

)cos(2

0

1

0

10

00001

01

s

ss

s

ffbfbf

f

ff

b

b

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Question 6A difference equation for a particular filter is given by

y(n) = 0.12 x(n) – 0.1 x(n-2) + 0.82 x(n-3) – 0.1 x(n-4) + 0.12 x(n-6)

(a) Find the impulse response of the above filter

(b) Using minimum number of multiplications, draw an implementation for the above filter.

[2 marks]

[4 marks]

70)(

12.0)6(0)5(1.0)4(82.0)3(1.0)2(0)1(12.0)0(

nnh

hhhhhhh

for

)4()2(1.0)3(82.0)6()(12.0)( nxnxnxnxnxny

T T TT T T

+

+

+

y(n)

x(n)

0.82

-0.1

0.12x(n-3)

Implementation with 3 multiplications only

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Question 7Determine and sketch the approximate magnitude response for each of the following filters:

(a) y(n) = x(n) + x(n-1)

(b) y(n) = x(n) – x(n-1)

[4 marks]

[4 marks]

)cos(22

))sin())cos(1()(

1)(

1)(

22

1

H

eH

zzHj

)cos(22

))sin())cos(1()(

1)(

1)(

22

1

H

eH

zzHj

)(H

-

2

)(H

-

2

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Question 8The zero locations of four FIR transfer functions of order 6 are sketched below. Does any oneof the FIR filters have a linear-phase response? If so, which one?

Im(z)

Re(z)1-0.5-1-2 0.5

0.5

Figure 1

2 zeros Im(z)

Re(z)1-0.5-1-2 0.5

0.5

Figure 2

Reflected zero

Im(z)

Re(z)1-0.5-1 0.5

0.5

Figure 3

Reflected zero2 zeros

Im(z)

Re(z)1-0.5-1-2 0.5

0.5

Figure 4

2 zeros

2 zeros

2 zeros

[4 marks]

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Question 9(a) Give two reasons why you think IIR filters are superior to FIR filters

(b) State an application where a constant group delay filter is used.

(c) Draw a parallel and a cascade realisation of the filter)

41

1)(21

1(

2)(

11

zzzH

[6 marks]

[1 mark]

[2 marks]

filters.IIRequivalentintotransferedreadilybecabfiltersAnalogue

tionimplementaFIRtocomparedfiltersamethefortscoefficienlessrequirestionimplementaIIR

signalsvideoorsignalsmusicFiltering

x(n)2

0.5

z-1

+

0.25

z -1

+ y(n)

cascade

x(n)

0.5

z-1

+

y(n)

parallel

0.25

z-1

+-2

4

+

1111

41

1

2

21

1

4

41

121

1

2

zzzz Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Question 10(a) Sketch an approximate magnitude response from the pole-zero map given below:

(b) Determine and sketch the phase response of the following filter:y(n) = 0.5 x(n) + 0.5 x(n-2)

Im(z)

Re(z)1

-0.5

-1

0.5 x

x

[2 marks]

[3 marks]

)(H

- 2

)();cos()(

)21

)1(21

)(

)1(21)(

2

2

H

eeeeH

zzH

jjjj

)(

- 2

2

2

2

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Question 11(a) A third order FIR filter has a transfer function G(z) given by

From G(z), determine the transfer function of an FIR filter whose magnituderesponse is identical to that of G(z) and has a minimum phase response.

(b) Determine the magnitude response of the following filter and show that it has an all-pas characteristic.

)52)(43)(32()( 111 zzzzG

1)1(

)( 1

1

azaza

zH

[5 marks]

[3 marks]

)52

1)(43

1)(32

1(12)( 111 zzzzP

Re{z}-5/2 -4/3 -3/4 -2/5 2/3 3/2

Im{z}

reflecting

filterPass-All

11

1)()().(

1)(

1)()1(

21)(

2

22*

*2

jj

jj

j

j

j

j

aeaeaaeaea

HHH

aeeaH

aeeaHzzH )(H

-

1

)25

1)(34

1)(23

1(12)( 111 zzzzG

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Question 12(a) State two important properties of lattice filters

(b) Determine the lattice filter coefficients corresponding to thefollowing

FIR filter:

(b) Draw a lattice structure implementation for the above filter H(z)

21

31

21)( zzzH )()(

)()(

11

)()(

11

1

zAofpolynomialreversetheiszB

tcoefficienreflectionk

zBzzA

kk

zBzA

EquationsFilterLattice

mm

m

m

m

m

m

m

m

[2 marks]

[4 marks]

[3 marks]

• Low sensitivity

• Modularity

;Answer31

23

23

)1(

23

1

31

1

31

32

91

21

21

)(1)()(

)(2

1231

)(31

21)(31

)2(31

2111

12

2121

22

2221

212

21222

kkkk

zzzzz

kzBkzA

zAm

zzzBzzzAkk

z-1

+

+

x(n)

z-1

+

+

y2(n)

w2 (n)

y1(n)

w1(n)

y0(n)

w0 (n)

k1

k1

k2

k 2Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Question 13

Determine the stability region (triangle) for following the causal system

Your answer should include , sketch and equations of the boundaries of the region. Also,indicate the

region where complex conjugate poles exist.

22

111

1)(

zbzbzH [4 marks]

b1

b2

-2 -1 0 1 2

1

0

-1

b2 = 1

b2 =b1 - 1b2 = - b1 - 1

Real Poles

Complex ConjugatePoles

parabola b2 = b12

4

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia