37
Background Simultaneous Linear Equations 1. Given [A] = 6 0 0 0 5 4 0 0 3 2 1 0 9 3 2 6  then [A] is a ______________ matrix. (A) diagonal (B) identity (C) lower triangular (D) upper triangular 2. A square matrix [A] is lower triangular if (A) i  j a ij    , 0  (B)  j i a ij    , 0  (C)  j i a ij    , 0  (D) i  j a ij    , 0  3. Given 3 . 12 3 . 11 3 . 10 3 . 11 3 . 10 3 . 11 3 . 20 3 . 12 3 . 12 ] [  A , 20 11 6 5 4 2 ] [  B  then if [C] = [A] [B] , then c 31 = _____________________ (A) -58.2 (B) -37.6 (C) 219.4 (D) 259.4

300 Solved-numerical Problems

Embed Size (px)

Citation preview

Page 1: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 1/37

BackgroundSimultaneous Linear Equations

1. Given [A] =

6000

5400

3210

9326

 then [A] is a ______________ matrix.

(A) diagonal

(B) identity

(C) lower triangular

(D) upper triangular

2. A square matrix [A] is lower triangular if

(A)  i jaij     ,0  

(B)   jiaij     ,0  

(C)   jiaij     ,0  

(D)  i jaij     ,0  

3. Given

3.123.113.10

3.113.103.11

3.203.123.12

][ A ,

2011

65

42

][ B  

then if

[C] = [A] [B], then

c31= _____________________

(A) -58.2

(B) -37.6

(C) 219.4

(D) 259.4

Page 2: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 2/37

4. The following system of equations has ____________ solution(s).

 x + y = 2

6x+6y =12

(A) infinite

(B) no

(C) two

(D) unique

5. Consider there are only two computer companies in a country. The companies are named

 Dude and Imac. Each year, company Dude keeps 1/5th of its customers, while the rest switch to

 Imac. Each year, Imac keeps 1/3rd  of its customers, while the rest switch to Dude. If in 2003,

 Dude had 1/6 th

 of the market and Imac had 5/6 th

 of the market, what will be share of Dude

computers when the market becomes stable?

(A) 37/90

(B) 5/11(C) 6/11

(D) 53/90

6. Three kids - Jim, Corey and David receive an inheritance of $2,253,453. The money is put in

three trusts but is not divided equally to begin with. Corey's trust is three times that of David's

 because Corey made an  A  in Dr. Kaw’s class. Each trust is put in an interest generating

investment. The three trusts of Jim, Corey and David pays an interest of 6%, 8%, 11%,

respectively. The total interest of all the three trusts combined at the end of the first year is

$190,740.57. The equations to find the trust money of Jim ( J ), Corey (C ) and David ( D) in a

matrix form is

(A) 

57.740,190

0

453,253,2

11.008.006.0

130

111

 D

 J 

 

(B) 

57.740,190

0

453,253,2

11.008.006.0

310

111

 D

 J 

 

(C) 

57.740,190

0

453,253,2

1186310

111

 DC 

 J 

 

d

057,074,19

0

453,253,2

1186

130

111

 D

 J 

 

Page 3: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 3/37

Gaussian Elimination

1. The goal of forward elimination steps in Naïve Gauss elimination method is to reduce the

coefficient matrix to a (an) _____________ matrix.

(A)  diagonal

(B)  identity

(C)  lower triangular

(D)  upper triangular

2. Division by zero during forward elimination steps in Naïve Gaussian elimination of the set of

equations [A][X]=[C] implies the coefficient matrix [A] is

(A) invertible

(B) nonsingular

(C) not determinable to be singular or nonsingular

(D) singular

3. Using a computer with four significant digits with chopping, Naïve Gauss elimination solution

to

23.47123.7239.6

12.5823.550030.0

21

21

 x x

 x x 

is

(A)   x1 = 26.66; x2 = 1.051

(B)   x1 = 8.769; x2 = 1.051

(C)   x1 = 8.800; x2 = 1.000

(D)   x1 = 8.771; x2 = 1.052

4. Using a computer with four significant digits with chopping, Gaussian elimination with partial

 pivoting solution to

23.47123.7239.6

12.5823.550030.0

21

21

 x x

 x x 

is

(A)   x1 = 26.66; x2 = 1.051

(B)   x1 = 8.769; x2 = 1.051(C)   x1 = 8.800; x2 = 1.000

(D)   x1 = 8.771; x2 = 1.052

5. At the end of forward elimination steps of Naïve Gauss Elimination method on the following

Page 4: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 4/37

equations

 

0

007.0

0

10887.7

106057.3102857.400

15384.05.615384.05.6

104619.5102857.4104619.5102857.4

00102307.9102857.4   3

4

3

2

1

57

5757

57

c

c

c

c

 

the resulting equations in the matrix form are given by

4

2

3

3

4

3

2

1

5

575

57

1090336.1

1019530.1

10887.7

10887.7

1062500.5000

579684.09140.2600

104619.5102857.4107688.30

00102307.9102857.4

c

c

c

c

 

The determinant of the original coefficient matrix is

(A)  0.00(B)  7102857.4    

(C)  1910486.5    

( D) 20104452     .  ANSWER  

6. The following data is given for the velocity of the rocket as a function of time. To find the

velocity at t=21 s, you are asked to use a quadratic polynomial, v(t)=at 2+bt+c to

approximate the velocity profile.

t (s) 0 14 15 20 30 35

v(t) m/s 0 227.04 362.78 517.35 602.97 901.67

The correct set of equations that will find a, b and c are

(A) 

35517

78362

04227

120400

115225

114176

.

.

.

c

b

a

 

(B) 

97.602

35.517

78.362

130900

120400

115225

c

b

a

  ANSWER  

(C) 

35517

78362

0

120400

115225

100

.

.

c

b

a

 

Page 5: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 5/37

(D)

67.901

97.602

35.517

1351225

130900

120400

c

b

a

 

LU Decomposition Method

1. LU decomposition method is computationally more efficient than Naïve Gauss elimination for

solving

(A) a single set of simultaneous linear equations

(B)  multiple sets of simultaneous linear equations with different coefficient matrices

and same right hand side vectors.

(C)  multiple sets of simultaneous linear equations with same coefficient matrix and

different right hand side vectors.

(D) less than ten simultaneous linear equations.

2. The lower triangular matrix [L] in the [L][U] decomposition of matrix given below

33

2322

131211

3231

21

00

0

1

01

001

22128

16810

4525

u

uu

uuu

 

is

(A)

17333.132000.0

0140000.0

001

ANSWER 

 

(B)

  2400.400

400.1460

4525

 

(C)

0128

0110

001

 

(D)

15000.132000.0

0140000.0

001

 

Page 6: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 6/37

3. The upper triangular matrix [U] in the [L][U] decomposition of matrix given below

33

2322

131211

3231

21

00

0

1

01

001

22120

1680

4525

u

uu

uuu

 

is

(A)

17333.132000.0

0140000.0

001

 

(B)

  2400.400

400.1460

4525

 

(C)

200

1680

4525

ANSWER 

 

(D)

  240.400

4000.210

16000.02000.01

 

4. For a given 2000 2000 matrix [A], assume that it takes about 15 seconds to find the inverse

of [A] by the use of the [L][U] decomposition method, that is, finding the [L][U] once, and then

doing forward substitution and back substitution 2000 times using the 2000 columns of the

identity matrix as the right hand side vector. The approximate time, in seconds, that it will take

to find the inverse if found by repeated use of Naive Gauss Elimination method, that is, doing

forward elimination and back substitution 2000 times by using the 2000 columns of the identity

matrix as the right hand side vector is

(A) 300

(B) 1500

(C) 7500

(D) 30000

Page 7: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 7/37

5. The algorithm in solving the set of equations [A][X] = [C], where [A] = [L][U] involves

solving [L][Z] = [C] by forward substitution. The algorithm to solve [L][Z]=[C] is given by

(A) 1111   / l c z    

for i from 2 to n do

sum = 0

for j from 1 to i do

sum = sum +  jij   z l   *  

end do

 z i = (ci  –  sum) / l ii 

end do

(B) 1111   / l c z    

for i from 2 to n do

sum = 0

for j from 1 to (i-1) do

sum = sum +  jij   z l   *  

end do

 z i = (ci  –  sum) / l ii 

end do

(C) 1111   / l c z    

for i from 2 to n do

for j from 1 to (i-1) dosum = sum +  jij   z l   *  

end do

 z i = (ci  –  sum) / l ii 

end do

(D) for i from 2 to n do 

sum = 0

for j from 1 to (i-1) do

sum = sum + jij

  z l   *  

end do

 z i = (ci  –  sum) / l ii 

end do

Page 8: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 8/37

6. To solve boundary value problems, finite difference method is used resulting in simultaneous

linear equations with tri-diagonal coefficient matrices. These are solved using the specialized

[L][U] decomposition method. The set of equations in matrix form with a tri-diagonal

coefficient matrix for

22

2

5.06   x xdx

 yd 

,   00    y ,   012    y ,

using finite difference method with a second order accurate central divided difference method

and a step size of 4h  is

(A) 

0

0.16

0.16

0

1000

0625.0125.00625.00

00625.0125.00625.0

0001

4

3

2

1

 y

 y

 y

 y

 

(B) 

0

0.160.16

0

1000

0625.0125.00625.0000625.0125.00625.0

0001

4

3

2

1

 y

 y y

 y

ANSWER 

 

(C) 

0.16

0.16

0

0

0625.0125.00625.00

00625.0125.00625.0

1000

0001

4

3

2

1

 y

 y

 y

 y

 

0.16

0.160

0

0625.0125.00625.00

00625.0125.00625.01000

0001

4

3

2

1

 y

 y y

 y

 

Gauss-Seidel Method of Solving

1. A square matrix [A]nxn is diagonally dominant if

(A) ,1

n

 ji j

ijii   aa   i = 1, 2, …, n

(B) ,1

n

 ji j

ijii   aa  i = 1, 2, …, n  and ,1

n

 ji j

ijii   aa  for any i = 1, 2, …, n 

(C) ,1

n

 j

ijii   aa  i = 1, 2, …, n and ,1

n

 j

ijii   aa  for any i = 1, 2, …, n 

Page 9: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 9/37

(D) ,1

n

 j

ijii   aa  i = 1, 2, …, n 

2. Using [ x1   x2   x3] = [1 3 5] as the initial guess, the value of [ x1   x2   x3] after three iterations

in Gauss-Seidel method for

  6

52

1172

1513712

3

2

1

 x

 x x

 

is

(A) [-2.8333 -1.4333 -1.9727]

(B) [1.4959 -0.90464 -0.84914]

(C) [0.90666 -1.0115 -1.0242] 

(D) [1.2148 -0.72060 -0.82451]

Page 10: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 10/37

3. To ensure that the following system of equations,

17257

52

61172

321

321

321

 x x x

 x x x

 x x x

 

converges using Gauss-Seidel Method, one can rewrite the above equations as follows:

(A)

 

17

5

6

257

121

1172

3

2

1

 x

 x

 x

 

(B)

  6

5

17

1172

121

257

3

2

1

 x

 x

 x

 

(C)

  17

5

6

1172

121

257

3

2

1

 x

 x

 x

 

(D) The equations cannot be rewritten in a form to ensure convergence.

4. For

  2

7

22

1172

151

3712

3

2

1

 x

 x

 x

and using 121321    x x x  as the initial guess, the

values of 321   x x x  are found at the end of each iteration as

Iteration #  x1  x2   x3 1 0.41666 1.1166 0.96818

2 0.93989 1.0183 1.0007

3 0.98908 1.0020 0.99930

4 0.99898 1.0003 1.0000

At what first iteration number would you trust at least 1 significant digit in your solution?

(A) 1(B) 2(C)

 3(D) 4

Page 11: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 11/37

5. The algorithm for the Gauss-Seidel Method to solve [A] [X] = [C] is given as follows for

using nmax iterations. The initial value of [X] is stored in [X].

(A)  Sub Seidel(n, a, x, rhs, nmax)

For k = 1 To nmax

For i = 1 To n

For j = 1 To n

If (i <> j) Then

Sum = Sum + a(i, j) * x(j)

endif

 Next j

x(i) = (rhs(i) - Sum) / a(i, i)

 Next i

 Next k

End Sub

(B) Sub Seidel(n, a, x, rhs, nmax)

For k = 1 To nmax

For i = 1 To n

Sum = 0

For j = 1 To n

If (i <> j) Then

Sum = Sum + a(i, j) * x(j)

endif

 Next j

x(i) = (rhs(i) - Sum) / a(i, i)

 Next i

 Next k

End Sub

(C) Sub Seidel(n, a, x, rhs, nmax)

For k = 1 To nmax

For i = 1 To n

Sum = 0

For j = 1 To nSum = Sum + a(i, j) * x(j)

 Next j

x(i) = (rhs(i) - Sum) / a(i, i)

 Next i

 Next k

End Sub

Page 12: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 12/37

 

(D) Sub Seidel(n, a, x, rhs, nmax)

For k = 1 To nmax

For i = 1 To n

Sum = 0

For j = 1 To n

If (i <> j) Then

Sum = Sum + a(i, j) * x(j)

endif

 Next j

x(i) = rhs(i) / a(i, i)

 Next i

 Next k

End Sub

6. Thermistors measure temperature, have a nonlinear output and are valued for a limited range.

So when a thermistor is manufactured, the manufacturer supplies a resistance vs. temperature

curve. An accurate representation of the curve is generally given by

3

3

2

210   lnln)ln(1

 Ra Ra RaaT 

 

where T is temperature in Kelvin, R is resistance in ohms, and 3210   ,,,   aaaa  are constants of the

calibration curve.

Given the following for a thermistor

R T

ohm C   

1101.0

911.3

636.0

451.1

25.113

30.131

40.120

50.128

the value of temperature in C  for a measured resistance of 900 ohms most nearly is

(A) 30.002

(B) 30.472

(C) 31.272

(D) 31.445

Page 13: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 13/37

Cholesky and LDLT Decomposition

1.  For a given set of simultaneous linear equations

][]][[   b x A    

where

1105.0

1210

0121

5.0012

][ A  and

5.1

5

5

5.0

b  

The Cholesky factorized matrix ][U  can be computed as

(A) 

5590.0000

7217.0155.100

2041.08165.0225.10

3536.007071.0414.1

 

(B) 

5590.0000

7217.0155.100

2041.08165.0225.10

3536.007071.0414.1

ANSWER B 

(C) 

5590.0000

7217.0155.100

2041.08165.0225.10

3536.007071.0414.1

 

(D) 

5590.0000

7217.0155.100

2041.08165.0225.10

3536.007071.0414.1

 

Page 14: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 14/37

2.  For a given set of simultaneous linear equations

][]][[   b x A    

where

1105.0

1210

0121

5.0012

][ A  and

5.1

5

5

5.0

b  

the forward solution vector ][ y can be computed as

(A)  5590.0,877.15,784.38,5363.0   T  y

 

(B)  5590.0,784.38,877.15,5363.0   T  y

 

(C)  5590.0,878.3,5877.1,536.3   T  y

 

(D)  5590.0,5877.1,8784.3,3536.0   T  y

ANSWER

3.  For a given set of simultaneous linear equations

][]][[   b x A    

where

1105.0

1210

0121

5.0012

][ A  and

5.1

5

5

5.0

b  

The backward solution vector ][ x can be computed as

(A)  1,2,2,1   T  x

 ANSWER  

(B)  1,2,2,1   T  x

 

(C)  1,2,2,1   T  x

 

(D)  1,2,2,1T  x

 

Page 15: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 15/37

4.  The determinant of

1105.0

1210

0121

5.0012

][ A  

most nearly is(A)  -5(B)  5(C)  -50(D)  1.25

5.  Based on the given matrix ][ A , and assuming the reordering algorithm will produce the

following mapping IPERM (new equation #) = {old equation #}, such as

 

 

 

 

 

 

 

 

2

4

1

3

4

3

2

1

 IPERM  ,

the non zero off-diagonal term A(old row 4, old column 1) = 0.5 will move to the

following new location of the new matrix ][   * A  

(A)  * A (new row 3, new column 1)

(B)  * A (new row 1, new column 3)

(C)  * A (new row 3, new column 2)

(D)  * A (new row 2, new column 2)

6.  Based on the given matrix ][ A , and the given reordering mapping

 

 

 

 

 

 

 

 

2

4

1

3

4

3

2

1

 IPERM  ,

the non-zero diagonal term 1)4,4(    A  will move to the following new location of the

new matrix ][   * A  

(A)  1)1,1(*  A  

(B)  1)2,2(*  A  

(C)  1)3,3(*  A  ANSWER  

(D)  1)4,4(*  A  

7.  For a given set of simultaneous linear equations, and using LDLT algorithm,

Page 16: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 16/37

][]][[   b x A    

where

1105.0

1210

0121

5.0012

][ A  and

5.0

1

1

2

][b ,

the lower triangular matrix ][ L  can be computed as

(A) 

1625.01667.025.0

016667.00

0015.0

0001

][ L ANSWER  

(B) 

1625.01667.025.0

016667.00

0015.0

0001

][ L  

(C) 

1625.01667.025.0

016667.00

0015.0

0001

][ L  

(D) 

1625.01667.025.0

016667.00

0015.0

0001

][ L  

Page 17: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 17/37

8.  For a given set of simultaneous linear equations, and using LDLT algorithm,

][]][[   b x A    

where

1105.0

1210

0121

5.0012

][ A  and

5.0

1

1

2

][b ,

the diagonal matrix ][ D  can be computed as:

(A) 

3125.0000

03333.100

005.10

0002

][ D  

(B) 

3125.0000

03333.100

005.10

0002

][ D  

(C) 

3125.0000

03333.100

005.10

0002

][ D  

(D) 

3125.0000

03333.100

005.10

0002

][ D ANSWER  

Page 18: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 18/37

9.  For a given set of simultaneous linear equations, and using LDLT algorithm,

][]][[   b x A    

where

1105.0

1210

0121

5.0012

][ A  and

5.0

1

1

2

][b ,

the forward solution for the unknown vector ][ z   in ][]][[   b z  L    can be computed as

(A)  625.0,1,0,2T  z   

(B)  625.0,1,0,2T  z  ANSWER  

(C)  625.0,1,0,2   T  z   

(D)  625.0,1,0,2   T  z   

10.  For a given set of simultaneous linear equations, and using LDLT algorithm,

][]][[   b x A    

where

1105.0

1210

0121

5.0012

][ A  and

5.0

1

1

2

][b ,

the diagonal scaling solution for the unknown vector ][ y in ][]][[   z  y D   can be computed

as:(A)  2,75.0,0,1T 

 y  

(B)  2,75.0,0,1   T  y  

(C)  2,75.0,0,1   T  y  

(D)  2,75.0,0,1T  y  ANSWER  

Page 19: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 19/37

11.  For a given set of simultaneous linear equations, and using LDLT algorithm,

][]][[   b x A    

where

1105.0

1210

0121

5.0012

][ A  and

5.0

1

1

2

][b ,

the backward solution for the original unknown vector    ][ x , in ][][][   y x L   T  , can be

computed as

(A)  2,2,1,1T  x ANSWER  

(B)  1,2,1,2T  x  

(C)  1,2,1,1T  x  

(D) 

1,2,2,2T 

 x  

12.  Given the following 6 6 matrix ][ A , which is assumed to be SPD:

0

00

0

000

000

Sym

 A 

where  = a nonzero value (given)

0  = a zero value (given)Based on the numerically factorized formulas shown in Equations 6-7 of Chapter 04.11,or even more helpful information as indicated in Figure 1 of Chapter 04.11, and given

* = a nonzero value (computed, at the same location as the original nonzero value

of ][ A )

0  = a zero value F  = a nonzero fill-in-term (computed)

and

0)6,5(

)6,5(

 A

 F U  

the symbolically factorized upper-triangular matrix can be obtained as

Page 20: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 20/37

(A) 

 F 

U 00

0

000

000

ANSWER  

(B) 

 F 

 F 

U 00

0

000

000

 

(C) 

 F 

 F  F 

U 00

0000

000

 

D

 F 

 F  F 

 F 

U 00

0

000

000

 

Background on Interpolation

1.  The number of polynomials that can go through two fixed data points 11, y x  and 22, y x  

is(D) 0(E) 1(F) 2(G) Infinite D ANSWER

2.  A unique polynomial of degree __________________ passes through 1n  data points.

(A)  1n  

(B)  1n  or less

(C) n  

(D) n  or less

Page 21: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 21/37

3.  The following function(s) can be used for interpolation:(A)  polynomial(B) exponential(C) trigonometric

(D) all of the above

4.  Polynomials are the most commonly used functions for interpolation because they areeasy to

(A) evaluate(B) differentiate(C) integrate

(D) evaluate, differentiate and integrate

5.  Given 1n   data points nnnn   y x y x y x y x   ,,,,......,,,, 111100   , assume you pass a

function )( x f    through all the data points. If now the value of the function )( x f    is

required to be found outside the range of the given  x -data, the procedure is called

(A) extrapolation (B) interpolation(C) guessing(D) regression

Page 22: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 22/37

6.  Given three data points (1,6), (3,28), and (10, 231), it is found that the function

132   2   x x y   passes through the three data points. Your estimate of  y   at 2 x   is

most nearly(A) 6(B) 15

(C) 17(D) 28

Direct Method of Interpolation

1.  A unique polynomial of degree ________________ passes through 1n  data points.

(E)  1n  

(F)  1n  or less

(G) n  

(H) n  or less

2.  The following data of the velocity of a body is given as a function of time.

Time (s) 0 15 18 22 24

Velocity (m/s) 22 24 37 25 123

The velocity in m/s at s16  using linear polynomial interpolation is most nearly(I) 27.867

(J) 28.333(K) 30.429(L) 43.000

3.  The following data of the velocity of a body is given as a function of time.

Time (s) 0 15 18 22 24Velocity (m/s) 22 24 37 25 123

The velocity in m/s at s16  using quadratic polynomial interpolation is most nearly(M)  27.867(N) 28.333

(O) 30.429(P) 43.000

4.  The following data of the velocity of a body is given as a function of time.

Time (s) 0 15 18 22 24

Velocity (m/s) 22 24 37 25 123

Using quadratic interpolation, the interpolant   ,352367.349667.8   2   t t t v   2418    t   

approximates the velocity of the body. From this information, the time in seconds at

which the velocity of the body is 35 m/s during the above time interval of s18t   to

s24t   is(Q) 18.667(R) 20.850

Page 23: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 23/37

(S) 22.200

(T) 22.294

Page 24: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 24/37

5.  The following data of the velocity of a body is given as a function of time.

Time (s) 0 15 18 22 24

Velocity (m/s) 22 24 37 25 123

One of the interpolant approximations for the velocity from the above data is given as

,352367.3496667.8)(   2   t t t v   2418    t   

Using the above interpolant, the distance in meters covered by the body between s19t   and s22t   is most nearly

(U) 10.337

(V) 88.500(W)  93.000(X) 168.00

6.  The following data of the velocity of a body is given as a function of time.

Time (s) 0 15 18 22 24

Velocity (m/s) 22 24 37 25 123

If you were going to use quadratic interpolation to find the value of the velocity at

9.14t   seconds, what three data points of time would you choose for interpolation?

A) 0, 15, 18B) 15, 18, 22C) 0, 15, 22D) 0, 18, 24

Newton’s Divided Difference Polynomial Method1. If a polynomial of degree n has n 1 zeros, then the polynomial is(A) oscillatory

(B) zero everywhere(C) quadratic(D) not defined

2. The following x, y data is given.

 x   15 18 22 y   24 37 25

The Newton’s divided difference second order polynomial for the above data is given by

181515)( 2102     x xb xbb x f   

The value of b1 is most nearly(A) – 1.0480(B) 0.14333

(C) 4.3333(D) 24.000

Page 25: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 25/37

3. The polynomial that passes through the following x, y data

 x   18 22 24 y   ? 25 123

is given by

,323775.324125.8   2   x x   2418    x  

The corresponding polynomial using Newton’s divided difference polynomial is given by 221818)( 2102     x xb xbb x f   

The value of b2 is most nearly(A) 0.25000

(B) 8.1250

(C) 24.000(D) not obtainable with the information given

4. Velocity vs. time data for a body is approximated by a second order Newton’sdivided difference polynomial as

,15205540.020622.390     t t t bt v   2010    t   

The acceleration in 2 m/s at t 15 is(A) 0.5540(B) 39.622

(C) 36.852(D) not obtainable with the given information

5. The path that a robot is following on a x  y plane is found by interpolating thefollowing four data points as

  900.3605.9257.21524.0  23

  x x x x y  

The length of the path from x 2 to x 7 is(A)

2222225.57655.45.55.7625.45.75.7    

(B)

(C) dx x x   7

2

22 )605.9514.44572.0(1  ANSWER  

D) dx x x   7

2

22 )605.9514.44572.0(1  

 x   2 4.5 5.5 7 y   7.5 7.5 6 5

Page 26: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 26/37

6. The following data of the velocity of a body is given as a function of time.

Time (s) 0 15 18 22 24

Velocity (m/s) 22 24 37 25 123

If you were going to use quadratic interpolation to find the value of the velocity at

t 14.9 seconds, the three data points of time you would choose for interpolation are

(A) 0, 15, 18(B) 15, 18, 22(C) 0, 15, 22(D) 0, 18, 24

Lagrange Method of Interpolation

1.  A unique polynomial of degree ______________ passes through 1n  data points.

A) 1n  

B) n  

C)n  or lessD)   1n  or less

2.  Given the two points   b f ba f a   ,,, , the linear Lagrange polynomial  x f 1  that passes

through these two points is given by

A )   b f ba

a xa f 

ba

b x x f 

1  

B )   b f ab

 xa f 

ab

 x x f 

1  

C)  

ab

ab

a f b f a f  x f   

1  

D) b f ab

a xa f 

ba

b x x f 

1  ANSWER  

3.  The Lagrange polynomial that passes through the 3 data points is given by

 x   15 18 22 y   24 37 25

253724 2102   x L x L x L x f     

The value of  x L1  at 16 x  is most nearly

A) – 0.071430

B) 0.50000

C) 0.57143D) 4.3333

Page 27: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 27/37

4.  The following data of the velocity of a body is given as a function of time.

Time ( s ) 10 15 18 22 24

Velocity (   sm ) 22 24 37 25 123

A quadratic Lagrange interpolant is found using three data points, 15t  , 18 and 22.From this information, at what of the times given in seconds is the velocity of the body

m/s26  during the time interval of 15t   to 22t   seconds.A) 20.173

B) 21.858

C) 21.667D)  22.020

5.  The path that a robot is following on a  y x,   plane is found by interpolating four data

 points as

 x   2 4.5 5.5 7 y   7.5 7.5 6 5

  9000.36048.92571.215238.0   23   x x x x y  

The length of the path from 2 x  to 7 x  is

(A)  2222225.57655.45.55.7625.45.75.7    

(B)  dx x x x   7

2

223 )9000.36048.92571.215238.0(1  

(C) 

dx x x  

7

2

22

)6048.95142.445714.0(1  ANSWER  

(D)  dx x x x   7

2

23 )9000.36048.92571.215238.0(  

6.  The following data of the velocity of a body is given as a function of time.

Time (s) 0 15 18 22 24

Velocity (m/s) 22 24 37 25 123

If you were going to use quadratic interpolation to find the value of the velocity at

9.14t   seconds, what three data points of time would you choose for interpolation?

A)  0, 15, 18 B) 15, 18, 22

C) 0, 15, 22D)  0, 18, 24

Page 28: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 28/37

Background

1.  Physically, integrating b

a

dx x f    )(  means finding the

A) area under the curve from a  to b  

B)  area to the left of point a  

C)  area to the right of point b  

D)  area above the curve from a  to b  

2.  The mean value of a function )( x f   from a  to b  is given by

A) 2

)()(   b f a f     

B) 4

)(2

2)(   b f ba

 f a f     

  

   

 

C)  b

a

dx x f    )(  

D) ab

dx x f 

b

a

  )(

ANSWER  

3.  The exact value of 2.2

2.0

dx xe x  is most nearly

A)  7.8036

B) 11.807C)  14.034

D)  19.611

4.  2

2.0

)(   dx x f   for

2.10,)(     x x x f   

4.22.1,2   x x  

is most nearlyA)  1.9800

B)  2.6640C)  2.7907

D)  4.7520

Page 29: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 29/37

5.  The area of a circle of radius a  can be found by the following integral

A)    a

dx xa0

22  

B)     2

0

22 dx xa ANSWER

C)    a

dx xa0

224  

D)    a

dx xa0

22  

6.  Velocity distribution of a fluid flow through a pipe varies along the radius and is given by

)(r v . The flow rate through the pipe of radius a  is given by

A)  2)(   aav   ANSWER  

B)  2

2

)()0( aavv      

C)  a

dr r v0

)(  

D)  a

rdr r v0

)(2   

Trapezoidal Rule

1.  The two-segment trapezoidal rule of integration is exact for integrating at most ________order polynomials.

A)  firstB)  second

C)  thirdD)  fourth

2.  The value of 2.2

2.0

dx xe x  by using the one-segment trapezoidal rule is most nearly

A)  11.672

B)  11.807C)  20.099D)  24.119

Page 30: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 30/37

3.  The value of 2.2

2.0

dx xe x  by using the three-segment trapezoidal rule is most nearly

A)  11.672B)  11.807

C)  12.811

D)  14.633

4.  The velocity of a body is given by51,2)(     t t t v  

145,35   2   t t   

where t  is given in seconds, and v  is given in m/s. Use the two-segment trapezoidal rule

to find the distance in meters covered by the body from 2t   to 9t   seconds.A)  935.00

B)  1039.7

C)  1260.9

D)  5048.95.  The shaded area shows a plot of land available for sale. The units of measurement are in

meters. Your best estimate of the area of the land in 2m  is most nearlyA)  2500

B)  4775

C)  5250D)  6000

6.  The following data of the velocity of a body is given as a function of time.

Time ( s ) 0 15 18 22 24

Velocity (   sm ) 22 24 37 25 123

The distance in meters covered by the body from s12t   to s18t   calculated usingthe trapezoidal rule with unequal segments is

60

75

45

25

10060

Page 31: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 31/37

A)  162.90B)  166.00C)  181.70D)  436.50

Simpson’s 1/3 Rule 

1.  The highest order of polynomial integrand for which Simpson’s 1/3 rule of integration isexact is

A)  firstB)  second

C)  third

D)  fourth

2.  The value of 2.2

2.0

dxe x  by using 2-segment Simpson’s 1/3 rule most nearly is

A)  7.8036

B)  7.8423C)  8.4433D)  10.246

3.  The value of 2.2

2.0

dxe x  by using 4-segment Simpson’s 1/3 rule most nearly is

A)  7.8036

B)  7.8062

C)  7.8423D)  7.9655

4.  The velocity of a body is given by51,2)(     t t t v  

145,35   2   t t   

where t  is given in seconds, and v  is given in m/s. Using two-segment Simpson’s 1/3

rule, the distance in meters covered by the body from 2t   to 9t   seconds most nearlyis

A)  949.33B)  1039.7

C)  1200.5D)  1442.0

Page 32: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 32/37

5.  The value of 19

3

)(   dx x f   by using 2-segment Simpson’s 1/3 r ule is estimated as 702.039.

The estimate of the same integral using 4-segment Simpson’s 1/3 rule most nearly is

A)  1521172

3

8039.702   f  f  f     

B)  15211723

8

2

039.702 f  f  f     ANSWER

C)  152723

8039.702   f  f     

D)  152723

8

2

039.702 f  f     

6.  The following data of the velocity of a body is given as a function of time.

Time (s) 4 7 10 15

Velocity (m/s) 22 24 37 46The best estimate of the distance in meters covered by the body from 4t   to 15t   using combined Simpson’s 1/3 rule and the trapezoidal rule would be

A)  354.70

B)  362.50 

C)  368.00D)  378.80

Romberg Rule

1. 

If n I   is the value of integral

b

a dx x f   using n -segment trapezoidal rule, a better estimate

of the integral can be found using Richardson’s extrapolation as

A) 15

22

nnn

 I  I  I 

   

B) 3

22

nnn

 I  I  I 

   ANSWER

C)  n I 2  

D) n

nnn

 I 

 I  I  I 

2

22

 

Page 33: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 33/37

2.  The estimate of an integral of 19

3

dx x f    is given as 1860.9 using 1-segment trapezoidal

rule. Given   27.207    f  ,   125.4511    f  , and   23.8214    f  , the value of the integral

using 2-segment trapezoidal rule would most nearly be

A) 787.32B)  1072.0

C)  1144.9

D)  1291.5

3.  The value of an integral b

a

dx x f   given using 1, 2, and 4 segments trapezoidal rule is

given as 5.3460, 2.7708, and 1.7536, respectively. The best estimate of the integral youcan find using Romberg integration is most nearly

A)  1.3355

B)  1.3813

C)  1.4145D)  1.9124

Page 34: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 34/37

4.  Without using the formula for one-segment trapezoidal rule for estimating   b

a

dx x f    the

true error, t  E   can be found directly as well as exactly by using the formula

12

3

ab E t     " f  , ba      

for

A)    xe x f     

B)    x x x f    33  

C)    35   2   x x f   ANSWER

D)    xe x x f      25  

5.  For b

a

dx x f  , the true error, t  E  in one-segment trapezoidal rule is given by

12

3ab

 E t 

   " f  , ba      

The value of    for the integral dxe  x

2.7

5.2

2.03  is most nearly

A)  2.7998B)  4.8500

C)  4.9601

D)  5.0327

6.  Given the velocity vs. time data for a bodyt (s) 2 4 6 8 10 25

m/s    0.166 0.55115 1.8299 6.0755 20.172 8137.5

The best estimate for distance covered in meters between 2t  s and 10t  s by usingRomberg rule based on trapezoidal rule results would be

A)  33.456B)  36.877C)  37.251D)  81.350

Page 35: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 35/37

 

Gauss Quadrature Rule

1.  10

5

)(   dx x f   is exactly

A) 

1

1

)5.75.2(   dx x f   

B) 

1

1

)5.75.2(5.2   dx x f   ANSWER

C) 

1

1

)55(5   dx x f   

D) 

1

1

)()5.75.2(5   dx x f  x  

2.  For a definite integral of any third order polynomial, the two-point Gauss quadrature rulewill give the same results as the

A)  1-segment trapezoidal ruleB)  2-segment trapezoidal rule

C)  3-segment trapezoidal ruleD)  Simpson’s 1/3 rule 

3.  The value of 2.2

2.0

dx xe x  by using the two-point Gauss quadrature rule is most nearly

A)  11.672B)  11.807C)  12.811D)  14.633

Page 36: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 36/37

4.  A scientist uses the one-point Gauss quadrature rule based on getting exact results of

integration for functions 1)(    x f    and  x . The one-point Gauss quadrature rule

approximation for b

a

dx x f    )(  is

A)  )()(2

b f a f ab

 

B)   

  

   

2)(  ba f ab ANSWER

C) 

 

  

   

 

  

   

23

1

223

1

22

abab f 

abab f 

ab 

D)  )()(   a f ab  

5.  A scientist develops an approximate formula for integration as

 

b

a

 x f cdx x f    ),()( 11  where b xa     1  

The values of 1c  and 1 x  are found by assuming that the formula is exact for functions of

the form 2

10   xa xa   . The resulting formula would therefore be exact for integrating

A)  2)(    x f   

B)  2532)(   x x x f     

C)  25)(   x x f     ANSWER

D)   x x f    32)(    

6.  You are asked to estimate the water flow rate in a pipe of radiusm2

 at a remote arealocation with a harsh environment. You already know that velocity varies along the

radial location, but you do not know how it varies. The flow rate Q  is given by

2

0

2   rVdr Q      

To save money, you are allowed to put only two velocity probes (these probes sendthe data to the central office in New York, NY via satellite) in the pipe. Radial

location, r  is measured from the center of the pipe, that is 0r   is the center of the pipe and m2r   is the pipe radius. The radial locations you would suggest for thetwo velocity probes for the most accurate calculation of the flow rate are

A)  0, 2B)  1, 2C)  0, 1

D)  0.42, 1.58

Page 37: 300 Solved-numerical Problems

7/22/2019 300 Solved-numerical Problems

http://slidepdf.com/reader/full/300-solved-numerical-problems 37/37