25
3. Neumann Functions, Bessel Functions of the 2 nd Kind Neumann Functions : cos sin J x J x Y x 2 0 1 !2 s s s x J x s s x << 1 1 1 sin 1 2 x Y x 1 sin 2 x Y x cos sin lim cos n dJ x dJ x J x d d lim n n Y x Y x 1 n n dJ x dJ x d d

3. Neumann Functions, Bessel Functions of the 2 nd Kind

  • Upload
    job

  • View
    93

  • Download
    4

Embed Size (px)

DESCRIPTION

3. Neumann Functions, Bessel Functions of the 2 nd Kind. Neumann Functions :. x

Citation preview

Page 1: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

3. Neumann Functions,

Bessel Functions of the 2nd Kind

Neumann Functions : cos

sin

J x J xY x

2

0 1 ! 2

s s

s

xJ x

s s

x << 1 1 1

sin 1 2

xY x

1sin

2

xY x

cos sin

limcosn

d J x d J xJ x

d d

limn n

Y x Y x

1 n

n

d J x d J x

d d

Page 2: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

2

0 1 ! 2

s s

s

xJ x

s s

1 n

n

n

d J x d J xY x

d d

2

0

1ln

2 1 ! 2

s s

s

d J x sx xJ x

d s s

ln2

2

x

d x d e

d d

ln2 2

x x

11 1

d ss s

d

21

0

2

0

1 !2 1ln

2 ! 2

11 1

! ! 2

k nn

n nk

k k n

k

n kx xY x J x

k

xk n k

n k k

Ex.14.3.8

1 !

2

n

n

n xY x

x << 1 2

xY x

agrees with

Page 3: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

21

0

2

0

1 !2 1ln

2 ! 2

11 1

! ! 2

k nn

n nk

k k n

k

n kx xY x J x

k

xk n k

n k k

2

0 00

2 2ln

2 ! ! 2

k k

kk

x xY x J x H

k k

1 nn H

1

1n

nj

Hj

2

00

2 2ln

2 ! ! 2

k k

kk

x xJ x H

k k

Mathematica

For x , periodic with amp x 1/2

/2 phase difference with Jn

Page 4: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

Integral Representation

1

21 2

2cos2

11

2

xxt

Y x d tt

0

0

2cos coshY x d t x t

1Re , 0

2x

0x

1/22

1

cos2

1

xtd t

t

Ex.14.3.7Ex.14.4.8

Page 5: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

Recurrence Relations cos

sin

J x J xY x

1 1

2J x J x J x

x

1 1 1 11 1

cos

sin

J x J x x J x J xY x Y x

x

1 1

2J x J x J x

x

1 11

cos 1

sin 1

J x J xY x

1 11

cos 1

sin 1

J x J xY x

1 1cos

sin

J x J x

1 1cos

sin

J x J

cos2

sin

J x x J x

x x

1 1

2Y x Y x Y x

x

Page 6: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

cos

sin

J x J xY x

1 1 1 11 1

cos

sin

J x J x x J x J xY x Y x

x

1 11

cos

sin

J x J xY x

1 1

1

cos

sin

J x JY x

cos2

sin

J x x J x

x

1 1

2Y x Y x Y x

x

1 1 2J x J x J x

1 1 2J x J x J x cos

sin

J x J xY x

Since Y satisfy the same RRs for J , they are also the solutions to the Bessel eq.

Caution: Since RR relates solutions to different ODEs (of different ), it depends on their normalizations.

Page 7: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

Wronskian Formulas

For an ODE in self-adjoint form 0p x y r x y

the Wronskian of any two solutions satisfies

,

AW u v

p x ,

u vW u v

u v

u v u v

Ex.7.6.1

Bessel eq. in self-adjoint form : 2

0x y x yx

For a noninteger , the two independent solutions J & J satisfy

AJ J J J

x

Page 8: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

AJ J J J

x

A can be determined at any point, such as x = 0.

2

0 1 ! 2

s s

s

xJ x

s s

1

1 2

xJ x

1

2 1 2

xJ x

1

1 2

xJ x

1

2 1 2

xJ x

1

22 1 1 2

xJ J J J

2 sin

x

1sin

2 sinJ J J J

x

2 sin

A

0nA

Page 9: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

More Recurrence Relations

1 1

2sinJ J J J

x

1 1

2sinJ J J J

x

2J Y J Y

x

1 1

2J Y J Y

x

Combining the Wronskian with the previous recurrence relations,

one gets many more recurrence relations

Page 10: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

Uses of Neumann Functions

1. Complete the general solutions.

2. Applicable to any region excluding the origin ( e.g.,

coaxial cable, quantum scattering ).

3. Build up the Hankel functions ( for propagating waves ).

Page 11: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

Example 14.3.1. Coaxial Wave Guides

EM waves in region between 2 concentric cylindrical

conductors of radii a & b. ( c.f., Eg.14.1.2 & Ex.14.1.26 )

For TM mode in cylindrical cavity (eg.14.1.2) :

cosi mz m m j

pE J e z

a h

2 2 0zk E

2 222 m j m j pp

ka h c

For TM mode in coaxial cable of radii a & b :

i m i l z i tz mn m mn mn m mnE c J d Y e e e

0

0

mn m mn mn m mn

mn m mn mn m mn

c J a d Y a

c J b d Y b

22 2 2

mnk lc

with cutoff mn c

Note: No cut-off for TEM modes.

Page 12: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

4. Hankel Functions, H(1) (x) & H

(2) (x)

1H x J x i Y x

Hankel functions of the 1st & 2nd kind :

2H x J x i Y x

c.f. cos sinie i

*1 2H x H x

for x real

1

1 2

xJ x

1 !2 2ln

2

xY x J x

x

For x << 1,

> 0 :

0

2ln

2

xY x J x

10

21 ln

2

xH x i

1 1 ! 2~H x i

x

20

21 ln

2

xH x i

2 1 ! 2~H x i

x

Page 13: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

Recurrence Relations

1 1

2sinJ J J J

x

1 1

2sinJ J J J

x

2J Y J Y

x

1 1

2J Y J Y

x

1 1

2J x J x J x

x

1 1 2J x J x J x

2 1 1 21 1

4H H H H

i x

1 11 1

2J H J H

i x

1, 2 1, 2 1, 21 1

2H x H x H x

x

1, 2 1 , 2 1 , 21 1 2H x H x H x

2 21 1

2J H J H

i x

Page 14: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

Contour Representations

/2 1/

2 2 2 1 1

2 2

end

start

tx t t

t

e xx F xF x F t

i t t

/2 1/

1

1

2

x t t

C

eF x d t

i t

The integral representation

is a solution of the Bessel eq. if at end points of

C.

See Schlaefli integral

/2 1/

1

1

2

x t t

C

eF x d t

i t

/2 1/ 1

02

x t te xt

t t

/2 1/

0 or Re

10 0

2

x t t

t t

e xt x

t t

1/lim lim 0a t tb b a t

t tt e t e

1/ /

0 0lim lim 0a t tb b a t

t tt e t e

0a

Page 15: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

Mathematica

The integral representation

is a solution of the Bessel eq. for any C with end points t = 0 and Re t = .

/2 1/

1

1

2

x t t

C

eF x d t

i t

Consider

1

/2 1/1

1

1 x t t

C

ef x d t

i t

2

/2 1/2

1

1 x t t

C

ef x d t

i t

1 21

2J x f x f x

If one can prove 1 21

2Y x f x f x

i

then 1f x J x i Y x

2f x J x i Y x

1H x

2H x

Page 16: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

Proof of 1 21

2Y x f x f x

i

1 , 2

/2 1/1 , 2

1

1 x t t

C

ef x d t

i t

1 ie

ts s

1 1

1 ie

t s

1 1t s

t s

1

/2 1/1

1

x s si

C

e ef x d s

i s

1ie f x

2

/2 1/2

1

x s si

C

e ef x d s

i s

2ie f x

2

d sd t

s

0~

0

i

i

et s

e

1 21

2J x f x f x

1 21

2i ie f x e f x

Page 17: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

1 21

2i iJ x e f x e f x

1 21

2J x f x f x

cos

sin

j x j xY x

1 2 1 2cos cos sin cos sin1

2 sin

f x f x i f x i f x

1 21

2f x f x

i QED

1

/2 1/1

1

1 x t t

C

eH x d t

i t

2

/2 1/2

1

1 x t t

C

eH x d t

i t

i.e.

are saddle points.(To be used in asymptotic expansions.)

t i

Page 18: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

5. Modified Bessel Functions, I (x) & K (x)

2 2 2 2 0Z k Z k k Z k Bessel equation :

Z k A J k B Y k 1 2C H k D H k

2 2 2 2 0R k R k k R k Modified Bessel equation :

R k A I k B K k

oscillatory

Modified Bessel functions exponential

k ik Bessel eq. Modified Bessel eq.

are all solutions of the MBE. 1 2, , ,J ik Y ik H ik H ik

Page 19: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

I (x)

2

0 1 ! 2

s s

s

xJ x

s s

2

0

1

1 ! 2

s

s

xJ ix i

s s

Modified Bessel functions of the 1st kind :

I x i J i x

/ 2 /2i ie J x e

2

0

1

1 ! 2

s

s

x

s s

I (x) is regular at x = 0 with 1

1 2

xI x

n

n nJ x J x nn nI x i J i x nn

ni J i x nn nni i I x

n nI x I x

Page 20: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

Mathematica

Page 21: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

Recurrence Relations for I (x)

1 1

2J x J x J x

x

1 1 2J x J x J x

I x i J i x

1 1

2J ix J i x J i x

i x

1 11 1

2i I x i I x i I x

i x

1 1

2I x I x I x

x

1 1 2

d J ixJ ix J ix

d ix

1 1 11 1 2i I x i I x i I x

1 1 2I x I x I x

d I x d J ixi i

d x d ix

Page 22: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

2nd Solution K (x)

11

2K x i H ix

Modified Bessel functions of the 2nd kind ( Whitaker functions ) :

1

2i J i x i Y ix

2 sin

I x I x

x

1 1

2K x K x K x

x

1 1 2K x K x K x

Recurrence relations :

0 ln ln 2K x x For x 0 :

12K x x

Ex.14.5.9

Page 23: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

Integral Representations

cos

0

1cosx

nI x d e n

0

0

1cosh cosI x d x

Ex.14.5.14

0

0

cos sinhK x d t x t

2

0

cos

1

xtd t

t

0x

Page 24: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

Example 14.5.1. A Green’s Function

2 2 2

1 2 1 2 1 2 1 22 2 2 2 21 1 1 1 1 1 1

1 1 1,G z z

z

r r

Green function for the Laplace eq. in cylindrical coordinates :

1 2

1 2

1

2i m

m

e

1 2

1 2

1

2i k z z

z z d k e

1 2

0

1cosd k k z z

Let

1 2

1 2 1 2 1 22

0

1, , , cos

2i m

mm

G d k g k e k z z

r r

Page 25: 3. Neumann Functions,    Bessel Functions of the 2 nd  Kind

1 2

2 2 2

1 22 2 2 21 1 1 1 1 1

2 22

1 2 1 22 2 21 1 1 1

0

1 1,

1 1cos , ,

2i m

mm

Gz

md k e k z z k g k

r r

1 2

1 2 1 22 21

0

1 1cos

2i m

m

d k e k z z

2 2

2 21 1 2 1 22 2

1 1 1 1

1, ,m

mk g k

§10.1 1 2,m m mg k k A I k K k

Ex.14.5.11 1m m m mA I k K k I k K k

1A

1 2

1 2 1 2 1 22

0

1, , , cos

2i m

mm

G d k g k e k z z

r r