13
2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR Page-1 Method of Moment Area Equations Introduction Perform deformation analysis of flexure-dominated structures   Beams Frames Provide equations to determine   Displacement Rotation Basic Assumptions Small displacement (u,v) and small rotation ( θ)  |u/L|, |v/L|, |θ| << 1; L ~ characteristic dimension of th e struc ture Rotation is approximated by θ = dv/dx Curvature is approximated by κ = d 2 v/dx 2   Kinematics of the cross section  Plane section remains plane   No shear deformation Plane section always normal to Neutral Axis NA NA Deformed state Undeformed state Y  X Deformed state Undeformed state Deformed state  X Y Undeformed state 2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR Page-2  Basic Assumptions (Cont.) No axial deformation (axially rigid members) no change in length of all members   L = Lo  uA = uB  Material behavior  Linearly elastic, i.e. linear stress-strain relation Isotropic, i.e. material properties are directional independent Equilibrium of the structure  Equilibrium equations are set up on undeformed state ε σ E = Young Modulus 1 A B L Lo uA vA uB vB Deformed state Undeformed state

3 Moment Area

  • Upload
    isi444

  • View
    237

  • Download
    0

Embed Size (px)

Citation preview

8/9/2019 3 Moment Area

http://slidepdf.com/reader/full/3-moment-area 1/13

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-1 

Method of Moment Area Equations

Introduction

Perform deformation analysis of flexure-dominated structures 

Beams Frames

Provide equations to determine 

Displacement Rotation

Basic Assumptions

Small displacement (u,v) and small rotation (θ) 

|u/L|, |v/L|, |θ| << 1; L ~ characteristic dimension of the structure

Rotation is approximated by θ = dv/dx

Curvature is approximated by κ = d2v/dx2 

Kinematics of the cross section 

Plane section remains plane  

No shear deformation Plane section always normal to Neutral Axis

NA NA

Deformed stateUndeformed state

 X Deformed state

Undeformed state

Deformed state

 X 

Undeformed state

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-2  

Basic Assumptions (Cont.)

No axial deformation (axially rigid members) no change in length of all members 

L = Lo 

uA = uB 

Material behavior 

Linearly elastic, i.e. linear stress-strain relation

Isotropic, i.e. material properties are directional independent

Equilibrium of the structure 

Equilibrium equations are set up on undeformed state

ε

σ

E = Young Modulus

1

A

B

L

Lo 

uA 

vA 

uB 

vB Deformed state

Undeformed state

8/9/2019 3 Moment Area

http://slidepdf.com/reader/full/3-moment-area 2/13

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-3  

Moment Area Equations

  Basic Equations 

Kinematics

Plane sections remain plane

Material behavior

Equilibrium of the cross section

Static equilibrium

  Moment-Curvature Relation 

BMD in terms of applied loads

EI 

dx 

dx 

v d 2 

==θ  

BMD

L

 x 

 A

B

u  A 

u B 

v  A 

v B 

θ  A 

θ B 

dx 

v d 

dx 

d ==κ

θ  

y κ−=ε  

ε=σ E   

κ= EI M   

qdx 

dV = ; V 

dx 

dM =  

I is the moment of inertia of the cross section

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-4  

  First Moment Area Equation 

EI 

M  

dx 

d =

θ  

L

 A

B

dx 

d θ 

 x 

M/EI diagram

dx EI 

M  

dx 

Change of angle over the portion dx 

Moment-Curvature Relationship

dx EI 

M  d  =θ

Graphical Interpretation

8/9/2019 3 Moment Area

http://slidepdf.com/reader/full/3-moment-area 3/13

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-5  

  First Moment Area Equation (Cont.) 

Change of angle over the portion dx dx EI 

M  d  =θ

Total change of angle over the portion AB dx EI 

M  d 

L

B

 A

∫ ∫  =θθ

θ

 AB

M/EI B/A AB  Area =θ=θ−θ  

Sign Convention and Remarks 

  θ A, θB are positive when they aremeasured CCW from undeformed

state

  θB/A is positive when it is measuredCCW from tangent line from A

Sign convention of bending momentM follows the local coordinate x-y  

 x 

M+

 x 

M-

Graphical Interpretation  

 A

B

M/EI diagram

L

θB/A

θB

θ A  x 

 Assume no discontinuity of slopewithin portion AB (e.g. no hinge  )

 Area under M/EI diagram over portion AB

Total change of angle over the portion AB

1st 

MOMENT AREA EQUATION  

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-6  

  Second Moment Area Equation 

EI 

M  

dx 

d =

θ  

L

 A

dx  

d θ 

 x 

y  

M/EI diagram

dx EI 

M  

dx  dt 

 x 

 x 

 

L-x 

L-x  

Change of angle over the portion dx  

Moment-Curvature Relationship

dx EI 

M  d  =θ

Graphical Interpretation

dt = deviation of element dx measured 

on a normal line at point B

( ) ( ) ⎟

 ⎠

 ⎞⎜

⎝ 

⎛ −=θ−= dx 

EI 

M  x Ld  x Ldt   

 Assume small rotation

8/9/2019 3 Moment Area

http://slidepdf.com/reader/full/3-moment-area 4/13

8/9/2019 3 Moment Area

http://slidepdf.com/reader/full/3-moment-area 5/13

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-9  

Length Constraint Equation

  No Axial Deformation 

  Small Displacement and Rotation 

  No Change in Length of Member 

  Longitudinal Displacement are Constant 

L L =′  

B A u  u u  ==  

Graphical Interpretation  

L A

B

 x 

u  A 

u B 

C´  A´ 

B´ L´ 

Sign Convention and Remarks 

  L´ is the length of the member AB measured in the longitudinal directionof the undeformed state of the member

  u is the longitudinal component of thedisplacement at any point with themember AB 

  u  A, u  A, and u are positive when theydirect in positive x -direction

The real length of the deformed statecan be approximated by the projectedlength L´ provided that displacementand rotation of the member are small

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-10  

Application of Moment Area and Length Constraint Equations

  Summary of Equations 

3 independent equations per member

Remark: The superscript or subscript “AB” is used to emphasize that quantities are associated with the member AB 

  Kinematical Unknowns 

3 unknowns at point A :  AB

 Au  ,  AB Av  , and  AB

 Aθ  

3 unknowns at point B :  ABBu  ,  AB

Bv  , and  ABBθ  

Total 6 unknowns per member

The rotations {  AB

 Aθ ,  AB

Bθ } and the transverse components of the displacement {  AB

 Av  ,  AB

Bv  }

are related by the 1st and 2nd moment area equations

The longitudinal components of the displacement {  AB

 Au  ,  AB

Bu  } are related by length

constraint equation

 AB

M/EI 

 AB

 A

 AB

BB/A  Area =θ−θ=θ  

( ) ( ) B

 AB

M/EI  AB

 AB

 A

 AB

 A

 AB

BB/A  x  Area Lθ v v  t  ⋅=+−=

( ) ( )  A

 AB

M/EI  AB

 AB

B

 AB

B

 AB

 A A/B  x  Area Lθ v v  t  ⋅=−−=

 AB

B

 AB

 A u  u  =  

L AB 

 A

B

 x 

B x 

t B/A 

 A x 

t  A/B 

M/EI diagram

Centroid 1st Moment Area Equation

2 nd Moment Area Equation

Length Constraint Equation

 AB

 Aθ  

 AB

Bθ  

 AB

 Au   

 AB

 Av   

 AB

Bu   

 AB

Bv   

8/9/2019 3 Moment Area

http://slidepdf.com/reader/full/3-moment-area 6/13

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-11 

  Useful Remarks 

Remark1: If one of {  AB Au  ,  AB

Bu  } is known, the other can be obtained from length 

constraint equation  

Remark2: If one of {  AB

 Aθ ,  AB

Bθ } and one of {  AB

 Av  ,  AB

Bv  } are known, the other two of

{  AB

 Aθ ,  AB

Bθ ,  AB

 Av  ,  AB

Bv  } can be computed from the 1st  moment area equation  and then

follow by the 2 nd moment area equations  

Remark3: If {  AB

 Av  ,  AB

Bv  } are known, one of rotations {  AB

 Aθ ,  AB

Bθ } is computed from 2 nd  

moment area equation  and the other rotation is obtained from 1st  moment area equations  

Remark4: If all three unknowns are known at one end, other three unknowns at theother end of the member can be computed from 1st  and 2 nd  moment area equations  and the length constraint equation  

One of {  AB Au  ,  AB

Bu  } is known  Length Constraint Equation  

One of {  AB

 Aθ ,  AB

Bθ } is known 1st & 2 nd Moment Area 

Equations  One of {  AB

 Av  ,  AB

Bv  } is known 

2 nd Moment Area Equations  {  AB Av  ,  AB

Bv  } are known 

1st Moment Area Equations  

{  AB

 Au  ,  AB

 Av  ,  AB

 Aθ } are known  1st & 2 nd Moment Area Equations  

or 

{  AB

Bu  ,  AB

Bv  ,  AB

Bθ } are known  Length Constraint Equation  

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-12  

  Useful Remarks (Cont.) 

Remark5: If there exists a point within the structure where the rotation and the twocomponents of the displacement are known (e.g. a point at a fixed supports or a pointwhere their rotation and displacement were already computed), the rotations anddisplacements at all other points can be determined from 1st  and 2 nd  moment area 

equations and the length constraint equation  

Remark6: A member or a segment used in the calculation must not contain hinge except at its ends  

Segments AC and CE (contain hinge inside) are not allowed

Segments AB, BC,CD, and DE (contain hinge at the ends) can be used

 A

 A

u  A=v  A=θ A=0 

 A

u  A=v  A=θ A=0 

B

C D

 A

B

C  D E 

8/9/2019 3 Moment Area

http://slidepdf.com/reader/full/3-moment-area 7/13

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-13  

Example 1 Given a statically determinate frame subjected to a concentrated load P asshown in the figure. The Young’s modulus and moment of inertia of the cross section areconstant and denoted by E and I, respectively. Determine the displacements and rotations atA, B, C, D, and E.

Solution  

  Define local coordinate systems for the segments ABC, BD and DE 

  Compute support reactions from static equilibrium equations (i.e. ΣF X = ΣF Y = ΣM = 0 ) 

L

A X B 

L L

L

x,y 

AB 

AB 

R AX =0 

R AY =2P/3 R CY =P/3 

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-14  

  Obtain BMD and M/EI diagram based on the local coordinate systems 

  Sketch Qualitative Elastic Curve 

  Start at segment AC since 3 quantities are already known (u A = v A = 0 & v C = 0)

AB 

R AX =0 

R AY =2P/3 R CY =P/3 

-PL/EI 

4PL/3EI 

PL/3EI 

-PL/EI 

A B 

Length Constraint Equation  0  u  u  AC AAC C  ==  

2 nd Moment Area Equation  ( ) ( ) C 

AC M/EI AC A

AC A

AC C C/A x Area  Lv v  t  ⋅=+−= θ

( ) ( )

( )3EI 

7PL

2LL

3EI 

PL

2LL2L

3EI 

4PL

1 3L0 0 

AC A

=⎟ ⎠

 ⎞⎜⎝ 

⎛ ⎟ ⎠

 ⎞⎜⎝ 

⎛ +

⎟ ⎠

 ⎞⎜⎝ 

⎛ +⎟

 ⎠

 ⎞⎜⎝ 

⎛ =+− )(θ

 

9EI 7PL

9EI 7PL 

2 2 AC A =−=θ

1st Moment Area Equation  AC M/EI 

AC A

AC C C/A Area  =θ−θ=θ   ( ) ( )

2EI 

3PLL

3EI 

PL

12L

3EI 

4PL

9EI 

7PL 2 2 AC C  =⎟

 ⎠

 ⎞⎜⎝ 

⎛ +⎟

 ⎠

 ⎞⎜⎝ 

⎛ =⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ −−θ  

18EI 

13PL2 AC C  =θ  

A B 

θC/A 

t C/A 

AC Aθ   AC 

C θ  

8/9/2019 3 Moment Area

http://slidepdf.com/reader/full/3-moment-area 8/13

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-15  

  Move to segment AB displacement and rotation at point A are already known 

  Move to segment BD displacement and rotation at point B are already known 

Length Constraint Equation  

1st Moment Area Equation  

( ) ( ) B AB M/EI AB 

AB A

AB A

AB B B/A x Area  Lv v t  ⋅=+−= θ ( )

9EI 

8PL 

2L2L

3EI 

4PL

1 2L

9EI 

7PL0 v 

2 AB B 

=

⎟ ⎠

 ⎞⎜⎝ 

⎛ ⎟ ⎠

 ⎞⎜⎝ 

⎛ =⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −+− )(

3EI 

2PL

3EI 

2PL v 

3 3 AB B  =−=

2 nd Moment Area Equation  

AB M/EI 

AB A

AB B B/A Area  =θ−θ=θ  

( )3EI 

4PL2L

3EI 

4PL

9EI 

7PL 2 2 AB B  =⎟

 ⎠

 ⎞⎜⎝ 

⎛ =⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ −−θ  

9EI 

5PL2 AB B  =θ  

A B 

θB/A t B/A 

y 0  u  u  AB 

AAB B  ==  

0  v AB 

A =  

0  u AB A =  

9EI 

7PL 

2 AC A

AB A −=θ=θ

 

0  u  v  AB 

DB 

B  ==  

3EI 

2PL v u 

3 AB B 

DB B  =−=

9EI 

5PL 

2 AB 

DB 

B  =θ=θ  

AB 

Aθ  AB B θ  

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-16  

  Move to segment BD displacement and rotation at point B are already known 

Length Constraint Equation  

1st 

Moment Area Equation  

2 nd Moment Area Equation  

DB M/EI 

DB D 

DB B B/D  Area  =θ−θ=θ  

( )EI 

PLL

EI 

PL 

9EI 

5PL 2 DB D 

−=⎟ ⎠

 ⎞⎜⎝ 

⎛ −=θ−  

9EI 

14PL2 DB D  =θ  

A B 

θB/D  t D/B  

3EI 

2PL u  u 

3 DB B 

DB D  ==  

( ) ( ) D 

DB 

M/EI DB 

DB 

DB 

DB 

D D/B  x Area  Lv v t ⋅=−−= θ

  ( ) 2EI 

PL

 2 

L

LEI 

PL

 L9EI 

5PL

0 v 

3 2 DB 

D −=

⎟ ⎠

 ⎞

⎜⎝ 

⎛ 

⎟ ⎠

 ⎞

⎜⎝ 

⎛ −=

⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ −−

)(  

18EI 

19PL

18EI 

19PLv 

3 3 DB D  =−=  

3EI 

2PL u v 

3 DB D 

ED D  −=−=

18EI 

19PL v u 

3 DB D 

ED D  −==

9EI 

14PL 

2 DB D 

ED D  =θ=θ  

Length Constraint Equation  

1st Moment Area Equation  ED M/EI 

ED E 

ED D D/E  Area  =θ−θ=θ  

( )2EI 

PLL

EI 

PL 

9EI 

14PL 2 ED E 

−=⎟ ⎠

 ⎞⎜⎝ 

⎛ −=θ−  

18EI 

37PL2 ED E  =θ  

A B 

θD/E  

t E/D  

18EI 

19PL

18EI 

19PL u  u 

3 3 ED D 

ED E  =−==  

2 nd Moment Area Equation  ( ) ( ) E 

ED M/EI ED 

ED D 

ED D 

ED E E/D  x Area  Lv v t  ⋅=−−= θ  

( )

3EI 

PL 

2LL

2EI 

PL L

9EI 

14PL

3EI 

2PLv 

2 3 ED E 

−=

⎟ ⎠

 ⎞⎜⎝ 

⎛ ⎟ ⎠

 ⎞⎜⎝ 

⎛ −=⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −−− )(

 

9EI 

23PL

9EI 

23PLv 

3 3 DB D  =−=  

DB B θ  DB 

D θ  

ED D θ  

ED E θ  

8/9/2019 3 Moment Area

http://slidepdf.com/reader/full/3-moment-area 9/13

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-17  

Example 2 Given a statically determinate beam subjected to external loads as shown in thefigure. The Young’s modulus E is constant and the moment of inertia of the cross section isdenoted by 2I  for a segment AB and by I  for segments BC and CD . Determine the relativerotation at the hinge and the displacements at the end point D .

Solution  

  Local coordinate systems for all segments are the same as the global coordinate system 

  Compute support reactions from static equilibrium equations (i.e. ΣF X = ΣF Y = ΣM = 0 ) 

  Obtain BMD and M/EI diagram based on the local coordinate systems 

2L

AX 

2L L

C D 

2q 

R AX =0 

R AY =3qL/2  R CY =3qL/2 

qL

AX 

C D 

2q qL

M A=3qL2  

-qL2  /2EI 

R AX =0 

R AY =3qL/2  R CY =3qL/2 

AX 

C D 

2q qL

M A=3qL2  

-2qL2  /EI 

-qL2  /EI 

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-18  

  Sketch Qualitative Elastic Curve 

  Start at segment AB displacement and rotation at point A are already known 

A

B  C D 

Length Constraint Equation  

1st Moment Area Equation  

( ) ( ) B AB M/EI AB 

AB A

AB A

AB B B/A x Area  Lv v t  ⋅=+−= θ ( )( ) ( )

( ) ⎟ ⎠

 ⎞⎜⎝ 

⎛ ⎟⎟ ⎞

⎜⎜⎝ 

⎛ +

 ⎠

 ⎞⎜

⎝ 

⎛ ⎟⎟

 ⎠

 ⎞⎜⎜

⎝ 

⎛ −=+−

4L2L

2EI 

qL

3L2L

EI 

2qL

1 2L0 0 v 

2 AB B  )(

 

3EI 

4qL

3EI 

4qL v 

4 4 AB B  =−=

2 nd Moment Area Equation  

AB M/EI AB AAB B B/A Area  =θ−θ=θ  

( ) ( )2L2EI 

qL

12L

EI 

2qL

1 0 

2 2 AB B  ⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ +⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ −=−θ  

6EI 

5qL

6EI 

5qL 3 3 AB B  =−=θ  

A B  C D 

θB/A 

t B/A AB B θ  

y 0  u  u  AB 

AAB B  ==  

0  v AB A =  

0  u AB A =  

0  AB A =θ  

8/9/2019 3 Moment Area

http://slidepdf.com/reader/full/3-moment-area 10/13

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-19  

  Move to segment BC 3 quantities at both ends of segment BC are already known 

Length Constraint Equation  

2 nd Moment Area Equation  ( ) ( ) C 

BC M/EI BC 

BC B 

BC B 

BC C C/B  x Area  Lv v t  ⋅=+−= θ

( ) ⎟ ⎠

 ⎞⎜⎝ 

⎛ ⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −=⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ θ+−−

2L2L

EI 

qL

1 2L

3EI 

4qL0 

2 BC B 

)(

2 nd Moment Area Equation  BC M/EI 

BC B 

BC C C/B  Area  =θ−θ=θ   ( )2L

EI 

qL

EI 

qL 2 3 BC C  ⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ −=−θ  

0 BC C  =θ  

A B 

θC/B  t C/B  

BC B θ  

y 0  u  u  BC 

B BC C  ==  

3EI 

4qL v  v 

4 AB B 

BC B  −==

0  u u  AB B 

BC B  ==  

0  v BC C  =  

EI 

qL3 BC B  =θ  

Relative rotation at hinge  

AB 

BC 

B B 

  θ−θ=θ∆  

 ⎠

 ⎞

⎝ 

⎛ −−=θ∆

6EI 

5qL

EI 

qL 3 3 

 

6EI 

11qL3 

B  =θ∆  

BC C θ  

AB B θ  

B θ∆  

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-20  

  Move to segment CD displacement and rotation at point A are already known 

Length Constraint Equation  

2 nd Moment Area Equation  ( ) ( ) D 

CD M/EI CD 

CD C 

CD C 

CD D D/C  x Area  Lv v t  ⋅=+−= θ

( ) ( ) ⎟ ⎠

 ⎞⎜⎝ 

⎛ ⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −=+−

2LL

EI 

qL

1 L0 0 v 

2 CD D  )(  

2 nd Moment Area Equation  CD M/EI 

CD C 

CD D D/C  Area  =θ−θ=θ   ( )L

EI 

qL

1 0 

2 CD D  ⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ −=−θ  

A B 

D θD/C =  CD 

D θ  

t D/C   x 

0  u  u  CD 

CD 

D  ==  

0  v CD 

C  =  

0  u u  BC C 

CD C  ==  

0   BC C 

CD C  =θ=θ

3EI 

qL

3EI 

qLv 

4 4 CD D  =−=  

2EI 

qL

2EI 

qL 

3 3 CD D  =−=θ  

2101 310 St t l A l i I M th d f M t A E ti

2101 310 St t l A l i I M th d f M t A E ti

8/9/2019 3 Moment Area

http://slidepdf.com/reader/full/3-moment-area 11/13

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-21 

Example 3 Given a statically determinate frame subjected to external loads as shown in thefigure. The Young’s modulus and moment of inertia of the cross section are constant anddenoted by E and I , respectively. Determine the displacements and rotations A, B, C , and D .

Solution  

  Define local coordinate systems for the segments ABC, BD and DE 

  Compute support reactions from static equilibrium equations (i.e. ΣF X = ΣF Y = ΣM = 0 ) 

R AX =-P 

R AY =-2P 

R DY =2P 

L 2L

2L

P 2PL

A X 

A

D x 

x y 

P 2PL

AX 

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-22  

  Obtain BMD and M/EI diagram based on the local coordinate systems 

  Sketch Qualitative Elastic Curve 

  Two components of displacement at point A and the transverse component of displacement at point D are prescribed equal to zero while the displacement and rotation at point B and C are still unknowns. Thus, the segments BC and BD contain too many unknowns to be solved by the moment area and length constraint equations.

  By applying Remark1 to the segment AB , we obtain 

4PL/EI 

A

B C  D 

2PL/EI 

2PL/EI 

A

B C D 

Length Constraint Equation  

0  u  u  AB 

A

AB 

B  ==  

2101 310 Structural Analysis I Method of Moment Area Equations

2101 310 Structural Analysis I Method of Moment Area Equations

8/9/2019 3 Moment Area

http://slidepdf.com/reader/full/3-moment-area 12/13

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-23  

  Move to segment BD The transverse components of displacement at both ends of this segment are already known. By using Remark3, we obtain 

  Return to segment AB  Now, four kinematical quantities of the segment BD are already known.

1st Moment Area Equation  

( ) ( ) B BD M/EI BD 

BD D 

BD D 

BD B B/D  x Area  Lv v t  ⋅=−−= θ  

( ) ( )3EI 

8PL 

2L2L

EI 

4PL

1 2L0 0 

3 BD D  =⎟

 ⎠

 ⎞⎜⎝ 

⎛ ⎟ ⎠

 ⎞⎜⎝ 

⎛ =θ−− )(  

2 nd Moment Area Equation  

BD M/EI 

BD B 

BD D D/B  Area  =θ−θ=θ   ( )

EI 

4PL2L

EI 

4PL

3EI 

4PL 2 BD B 

=⎟ ⎠

 ⎞⎜⎝ 

⎛ =θ−  

3EI 

8PL

3EI 

8PL 2 2 BD B  =−=θ  

A

θD/B  

t B/D  

0  v BD 

D  =  

0  v BD B  =  

BD B θ   BD 

D θ  

3EI 

4PL 

2 BD D  =θ  

0  v AB A =  

0  u AB 

A =  

0  u AB 

B  =  

3EI 

8PL 

2 BD B 

AB B  −=θ=θ

2101-310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-24  

  Return to segment BD The longitudinal component of the displacement at point B of the segment BD is already known; thus, the longitudinal component of the displacement at point D can be readily  computed from the length constraint equation.

1st Moment Area Equation  

( ) ( ) B AB M/EI AB 

AB A

AB A

AB B B/A x Area  Lv v t  ⋅=+−= θ   ( )

3EI 

4PL 

2L2L

EI 

2PL

1 2L

3EI 

14PL0 v 

2 AB B 

=

⎟ ⎠

 ⎞⎜⎝ 

⎛ ⎟ ⎠

 ⎞⎜⎝ 

⎛ =⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −+− )(

 

2 nd Moment Area Equation  

AB M/EI 

AB A

AB B B/A Area  =θ−θ=θ  

( )EI 

2PL2L

EI 

2PL

3EI 

8PL 2 AB A

=⎟ ⎠

 ⎞⎜⎝ 

⎛ =θ−−  

3EI 

14PL

3EI 

14PL 2 2 AB A =−=θ  A

θB/A 

t B/A 

AB Aθ  

AB B θ  

EI 

8PL

EI 

8PL v 

3 3 AB B  =−=  

Length Constraint Equation  

EI 

8PLv  u  u 

3 AB B 

BD B 

BD D  =−==  

2101-310 Structural Analysis I Method of Moment Area Equations

8/9/2019 3 Moment Area

http://slidepdf.com/reader/full/3-moment-area 13/13

2101 310 Structural Analysis I Method of Moment Area Equations Note provided by JRR  Page-25  

  Finally move to segment CB The displacement and rotation at point C are already known 

1st Moment Area Equation  

( ) ( ) C CB M/EI CB 

CB B 

CB B 

CB C C/B  x Area  Lv v t  ⋅=−−= θ  

( )

EI 

PL 

LL

EI 

2PL L

3EI 

8PL0 v 

2 CB C 

=

⎟ ⎠

 ⎞⎜⎝ 

⎛ ⎟ ⎠

 ⎞⎜⎝ 

⎛ =⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −−− )(

 

2 nd Moment Area Equation  

CB M/EI 

CB C 

CB B B/C  Area  =θ−θ=θ   ( )

EI 

2PLL

EI 

2PL 

3EI 

8PL 2 CB C 

=⎟ ⎠

 ⎞⎜⎝ 

⎛ =θ−−  

3EI 

14PL

3EI 

14PL 2 2 CB C  =−=θ  

A

B C D 

θB/C  

t C/B  

0 v  v  BD B 

CB B  ==  

EI 

8PL

 u  u 

3 BD 

CB 

B  ==  

CB B θ  

CB C θ  

3EI 11PL v 

CB C  =  

3EI 

8PL 

2 BD 

CB 

B  −=θ=θ  

Length Constraint Equation  

EI 

8PL u  u 

3 CB B 

CB C  ==