3. Filtros Ativos

Embed Size (px)

Citation preview

  • 8/18/2019 3. Filtros Ativos

    1/63

  • 8/18/2019 3. Filtros Ativos

    2/63

    Prof. Roberto M. Finzi Neto 12/12/14 2

    SUMÁRIOa.  Introduçãob.  Fundamentos de Filtros Passa Baixa

    I. 

    Resposta de Butterworth.

    II.  Resposta de Tschebyscheff.

    III. 

    Resposta de BesselIV.

     

    Fator de Qualidade Q

    c.  Projeto de Filtros Passa BaixaI.

     

    Primeira OrdemII.  Segunda OrdemIII.

     

    Ordens Superiores

    d. 

    Projeto de Filtros Passa AltaI.

     

    Primeira OrdemII.  Segunda OrdemIII.  Ordens Superiores

  • 8/18/2019 3. Filtros Ativos

    3/63

    Prof. Roberto M. Finzi Neto 12/12/14 3

    SUMÁRIO

    e.  Projeto de Filtros Passa BandaI.

     

    Segunda Ordem

    II. 

    Quarta Ordem

    f.  Projeto de Filtros Rejeita BandaI.

     

    Filtro Active Twin-T  

  • 8/18/2019 3. Filtros Ativos

    4/63

    Prof. Roberto M. Finzi Neto 12/12/14 4

    BIBLIOGRAFIA

    ! MANCINI, R. “Op Amps for Everyone: design reference”. 2nd  Edition.Elsevier, 2003. ISBN-13:978-0-7506-7701-1 ISBN-10:0-7506-7701-5

    ! MALVINO, Albert Paul, Princípios de Eletrônica, v ol. 2, 4ª Ed.. Brasil:McGraw-Hill, 2000.

  • 8/18/2019 3. Filtros Ativos

    5/63

    Prof. Roberto M. Finzi Neto 12/12/14 5

    a. Introdução!  Def.: circuito ou dispositivo que permite a passagem de sinais

    elétricos AC em determinadas faixas de frequências, enquanto quebloqueia o sinal em outras faixas.

    !  Principais aplicações:

    Telecomunicações: filtram sinais para que reste apenas a faixa audível dosom (0 – 20kHz).

    Comunicação de dados em RF. Filtram faixas estreitas de sinais em altafrequência (centenas de MHz) para a seleção de canais de comunicaçãode dados digitais.

    Fontes DC de Sistemas de Energia. Usam filtros rejeita-banda parasuprimir a componente de 50Hz/60Hz vinda da rede AC.

    Sistemas de Monitoramento e Aquisição de dados. Remoção de ruído dosinal fora da faixa de frequência de interesse.

  • 8/18/2019 3. Filtros Ativos

    6/63

    Prof. Roberto M. Finzi Neto 12/12/14 6

    a. Introdução!  A altas frequências (> 1MHz) esses filtros são constituídos de

    dispositivos passivos (RLC). A frequências menores o indutor se tornamuito grande e pesado.

    !  Os filtro ativos são compostos de um ou mais amplificadoresoperacionais, resistências e capacitores. Podem gerar a mesmaquantidade de polos de um filtro passivo sem a necessidade deindutores.

    Abordaremos filtros ativos com os três principais tipos de resposta(Butterworth, Tschebyscheff e Bessel) seguido por seções quedescrevem as principais aplicações (passa baixa, passa alta, passafaixa, rejeita faixa e passa tudo).

    just add a linear phase shift to each frequency component, thus contributing to a constant

    time delay. These are called all-pass filters.

    At high frequencies (> 1 MHz), all of these filters usually consist of passive components

    such as inductors (L), resistors (R), and capacitors (C). They are then called LRC filters.

    In the lower frequency range (1 Hz to 1 MHz), however, the inductor value becomes very

    large and the inductor itself gets quite bulky, making economical production difficult.

    In these cases, active filters become important. Active filters are circuits that use an op-

    erational amplifier (op amp) as the active device in combination with some resistors and

    capacitors to provide an LRC-like filter performance at low frequencies (Figure 16-1 ).

    L R

    R1

    V N ~ T

    V O U T

    V N

    c

    C2

    R 1

    T Vouz

    F igu re 16 1. Second O rde r Pass ive Low Pass an d Second O rde r Act ive Low Pass

    261

    nal conditioning stages. System power supplies often use band-rejection filters to sup-

    press the 60-Hz line frequency and high frequency transients.

    In addition, there are filters that do not filter any frequencies of a complex input signal, but

    just add a linear phase shift to each frequency component, thus contributing to a constant

    time delay. These are called all-pass filters.

    At high frequencies (> 1 MHz), all of these filters usually consist of passive c omponents

    such as inductors (L), resistors (R), and capacitors (C). They are then called LRC filters.

    In the lower frequency range (1 Hz to 1 MHz), however, the inductor value becomes very

    large and the inductor itself gets quite bulky, making economical production difficult.

    In these cases, active filters become important. Active filters are circuits that use an op-

    erational amplifier (op amp) as the active device in combination w ith some resistors and

    capacitors to provide an LRC-like filter performance at low frequencies (Figure 16-1).

    L R R1

    V N ~ T

    V O U T

    V N

    c

    C2

    R 1

    T Vouz

    F igu re 16 1 . Second Orde r Pass i ve Low Pass and Second Orde r Ac ti ve Low Pass

    261

    !

  • 8/18/2019 3. Filtros Ativos

    7/63

    Prof. Roberto M. Finzi Neto 12/12/14 7

    b. Fundamentos de Filtros Passa Baixas!  O filtro passa baixa mais simples é composto por uma única rede RC

    e sua função transferência demonstra a existência de um único polo.

    onde s = j ω=j2!f  para qualquer sinal senoidal.! A frequência de corte do filtro ocorre quando o sinal sofre uma

    atenuação de 3dB ( Vo(t) = Vi(t)* 0,708) e é definida como:

    Normalizada, a função transferência do filtro se torna:

    .

    ebyscheff, and Bessel), followed by five sections describing the most common

    applications: low-pass, high-pass, band-pass, band-rejection, and all-pass fil-

    r than resembling just another filter book, the individual filter sections are writ-

    okbook style, thus avoiding tedious mathematical derivations. Each section

    the general transfer function of a filter, followed by the design equations to cal-

    individual circuit components. The chapter closes with a section on practical

    s for single-supply fi lter designs.

    of Low Pas s F i l ters

    imple low pass filter is the pas sive RC low pass network shown in Figure 16 2.

    R

    V IN ~ ~ V OUT

    c

    d e r P a s s i ve R C L o w - P a s s

    function is:

    A(S) =

    1

    a ~ 1

    s + ~ 1 + sR C

    RC

    complex frequency variable, s =~+ (~ , allows for any time variable signals. For

    aves, the damping constant, (~, becomes zero and s = j(o.

    alized p resentation of the transfer function, s is referred to the fi lter's corner

    o r - 3 dB frequency, (oc, and has these relationships:

    s _ J~ f = j ~

    s ~ Jrcc

    16 .2 F u n d a men t a l s o f L o w P ass F i lt e rs

    The most simple low pass filter is the p assive RC low pass network show

    R

    V I N ~ ~ V O U T

    c

    F i gu r e 1 6- 2. F i r s t - O r d e r P a s s i v e R C L o w - P a s s

    Its transfer function is:

    A(S) =

    1

    a ~ 1

    s + ~ 1 + sR C

    RC

    where the complex frequency variable, s =~ +( ~, allows for any time var

    pure sine waves, the dam ping constant, (~, becom es zero and s = j(o.

    For a normalized presentation of the transfer function, s is referred to

    frequency, o r - 3 dB frequency, (oc, and has these relationships:

    s _ J~ f = j ~

    s ~ Jrcc

    With the corner frequency of the low-pass in Figure 16-2 being fc = 1/

    s = sRC and the transfer function A(s) results in:

    1

    A(s ) = 1 + s

    (01)

     f c   =1

    2!"   !

     R!

    #$ c   =1

     R!

    (04)

    (06)

    The most simple low pass filter is the pa ssiv e RC low pass

    R

    V I N ~ ~ V O U T

    c

    F i gu r e 1 6 -2 . F i r s t - O r d e r P a s s i v e R C L o w - P a s s

    Its transfer function is:

    A(S) =

    1

    a ~ 1

    s + ~ 1 + sR C

    RC

    where the complex frequency variable, s =~ +( ~, al lows fo

    pure sine waves, the damping constant, (~, becomes zer

    For a normalized presentation of the transfer function, s i

    frequency, o r - 3 dB frequency, (oc, and has these relatio

    s _ J~ f = j ~

    s ~ Jrcc

    With the corner frequency of the low-pass in Figure 16-2

    s = sRC and the transfer function A(s) results in:

    1

    A(s ) = 1 + s

    The magnitude of the gain response is:

    IAI = 1

    r s w e genera rans er unc on o a er, o owe y e es gn equa ons o ca -

    late the individual circuit components. The chapter closes with a section on practical

    sign hints for single-supp ly fi lter designs.

    enta ls o f Low Pass F i l te rs

    e most simple low pass filter is the pa ssive RC low pass network shown in Figure 16 2.

    R

    V I N ~ ~ V O U T

    c

    i r s t - O r d e r P a s s i v e R C L o w - P a s s

    transfer function is:

    A(S) =

    1

    a ~ 1

    s + ~ 1 + sR C

    RC

    ere the complex frequency variable, s =~ + (~ , allows for any time variable signals. For

    re sine waves, the damp ing constant, (~, becom es zero and s = j(o.

    r a normalized presentation of the transfer function, s is referred to the filter's corner

    quency, o r -3 dB frequency, (oc, and has these relat ionships:

    s _ J~ f = j ~

    s ~ Jrcc

    ith the corner frequency of the low-pass in Figure 16-2 being

    fc = 1/2~RC s

    becomes

    = sRC and the transfer function A(s) results in:

    (05)

    dB = 20 ! log10V Out 

    V  In

    # $

    & '    (03)

  • 8/18/2019 3. Filtros Ativos

    8/63

    Prof. Roberto M. Finzi Neto 12/12/14 8

    b. Fundamentos de Filtros Passa Baixas!

     

    A magnitude da resposta da função de ganho do filtro torna-se:

    !  Quando Ω >> 1 (f >> fc) a função de ganho apresenta uma taxa de atenuação

    de aproximadamente 20dB do década.!  As equações (01) e (07) só são válidas se Iout = 0. Podemos alcançar essa

    condição ao se incluir um Amplificador Seguidor de Tensão na saída docircuito. Podemos ainda aumentar a ordem do filtro serializando N  estágios.

    Cada estágio aumenta a taxa de atenuação em mais 20dB/década de freq.

    s _ J~ f = j ~

    s ~ Jrcc

    With the corner frequency of the low-pass in Figure 16-2 being

    s = sRC and the transfer function A(s) results in:

    1

    A(s ) = 1 + s

    The magnitude of the gain response is:

    IAI = 1

    , /1 +Q2

    For frequencie s O. >> 1, the rolloff is 20 dB/d ecade . For a ste

    can be connected in series as shown in Figure 16-3. To avoid

    operating as impedance converters, separate the individual fil

    262

    (07)

    Fundamentals o f Low Pass Filters

    VIN

    R

    c_

    VOUT

    Figure 16 3. Fourth Order Passive RC Low Pass with Decoupling Amplifiers

    The resulting transfer function is:

    A s) = 1

  • 8/18/2019 3. Filtros Ativos

    9/63

    Prof. Roberto M. Finzi Neto 12/12/14 9

    b. Fundamentos de Filtros Passa Baixas!  A resposta de ganho e fase, do filtro passa baixa para diferentes ordens, são

    apresentadas abaixo. Um filtro de ordem N ideal apresenta f c exatamente em -3dB comdecaimento instantâneo a partir de f c. No real, a atenuação ocorre bem antes, comdecaimento mais suave.

    -10

    -20

    m -30

    o

    I

    ._c -40

    o

    I 5o

    _<

    -60

    -70

    100

    80

    0.01

    1st Order Lowpass

    II

    I[

    4th Order L~ i ' ~ ~ ~1

    ~ 4th Or ~

    0.1 1 10

    F r e q u e n c y

    k

    Pass Filters

    -

    -20

    m -30

    o

    I

    ._c -40

    o

    I 5o

    _<

    -60

    -70

    100

    80

    0.01

    1st Order Lowpass

    II

    I[

    4th Order L~ i ' ~ ~ ~1

    ~ 4th Or ~

    0.1 1 10

    F r e q u e n c y

    k

    - 9 0

    P

    180

    m

    1-

    e

    2 7 0

    - 3 6 0

    0.01

    b

    Order

    Low'asth

    Order

    0,1 1 10

    100

    Frequency

    - -

    Note:

    Curve1 1St-orderpartial ow-pass ilter, Curve 2: 4th-order overall low-pass ilter, Curve 3: Ideal 4th-order ow-pass ilte

  • 8/18/2019 3. Filtros Ativos

    10/63

    Prof. Roberto M. Finzi Neto 12/12/14 10

    b. Fundamentos de Filtros Passa Baixas!  Conforme gráficos anteriores, o filtro real apresenta problemas tanto

    na amplitude do ganho de saída quanto na fase do sinal.!  Podemos otimizar a saída do filtro para algum dos critérios abaixo:

    I.  Saída com ganho maximamente plano para f  < f c. 

    II. 

    Transição imediata e aguda entre a banda de passagem e de atenuação.III.  Resposta linear de variação na fase do sinal.

    !  Para permitir essas otimizações, a função transferência deve permitira existência de polos complexos. A função transferência se torna:

    onde A0 é o ganho DC do filtro e ai  e bi  são os coeficientes dos filtros emcada estágio.! As seções a seguir descrevem as três principais otimizações de filtros

    que garantem os tipos de respostas (I, II e III) citadas.

    A(s) =

    tion (Curve 3).

    In comparison to the ideal low-pass, the RC low-pass lacks in the following characteris-

    tics:

    The passband gain varies long before the corner frequency, fc, thus amplifying the

    upper passband frequencies less than the lower passband.

    The transition from the passband into the stopband is not sharp, but happens

    gradually, moving the actual 80-dB roll off by 1.5 octaves above fc.

    The phase response is not linear, thus increasing the amount of signal distortion

    significantly.

    The gain and phase response of a low-pass filter can be optimized to satisfy one of the

    following three criteria:

    1) A maximum passband flatness,

    2) An immediate passba nd-to-stop band transition,

    3) A linear phase response.

    For that purpose, the transfer function must allow for complex poles and needs to be of

    the following type:

    A0 A 0

    (1 + a ,s + b ,s2)(1 + a2s + b2 s2) ...(1 + anS

    + bn s2

    i[[(1 + ais + bi s2)

    where Ao is the passband gain at dc, and ai and b are the filter coefficients.

    Since the denominator is a product of quadratic terms, the transfer function represents

    a series of cascaded second-order low-pass stages, with ai and bi being positive real coef-

    ficients. These coefficients define the complex pole locations for each second-order filter

    stage, thus determining the behavior of its transfer function.

    The follow ing three types of prede termined filter coefficients are available listed in table

    (08)

  • 8/18/2019 3. Filtros Ativos

    11/63

  • 8/18/2019 3. Filtros Ativos

    12/63

    Prof. Roberto M. Finzi Neto 12/12/14 12

    b. Fundamentos de Filtros Passa BaixasII.  Resposta de Tschebyscheff!  Apresentam alta taxa de atenuação acima de f c,  com ordem inicial

    igual a 2. Entretanto, o ganho não é constante na faixa de frequênciade passagem.

    Fundamentals of Low Pass

    9 , - . . ~ , . . ~ . . . . . ~ , ~ :- . . . . . . , 9 . . - ~ , ~ , ~ ~

    16.2.2 Tschebyscheff Low Pass Filters

    The Tsc hebyscheff low-pass filters provide an even higher gain rolloff above fc. Ho

    as Figure 16-6 shows, the passband gain is not monotone, but contains ripp

    constant magnitude instead. F or a given filter order, the higher the passban d rippl

    higher the filter's roiloff.

    10

    - 1 0

    - 2 0

    - 3 0

    - 4 0

    - 5 0

    --60

    0.01

    m

    d

    Order

    0.1 1 10 100

    Frequency

    Figure 16 6. Gain Responses of Tschebyscheff Low Pass Filters

    Um ripple  (oscilação) é evidenciado eacrescido a medida que a ordem do filtroaumenta.!

      A taxa de atenuação também aumentacom o aumento da ordem do filtro.!

     

    Filtros de ordem impar apresentam oripple com valores menores que 0dB

    (ganho < 1) na faixa de passagem.!

     

    R e q u e r i d o s o n d e a p r i n c i p a lpreocupação é a remoção de faixas defrequências indesejáveis. Ex: equalizadoresde som.

  • 8/18/2019 3. Filtros Ativos

    13/63

    Prof. Roberto M. Finzi Neto 12/12/14 13

    b. Fundamentos de Filtros Passa BaixasIII.  Resposta de Bessel !  Apresentam resposta de variação linear na fase do sinal. Abaixo de f c 

    atraso de grupo das harmônicas (group delay ) é sempre constante. Pass Filters

    360

    0.01

    L

    01

    0

    I ~80

    W

    (=

    a .

    ~ 270 ~

    90

    0.1 1 10 100

    F r e q u e n c y

    3 6 0

    0.01

    0

    I ~80

    W

    (=

    a .

    ~ 270 ~

    1.4

    .~ 1.2

    0.8

    2

    0.6

    0.4

    ~ 0.2

    0

    0.1 1 10 100

    F r e q u e n c y

    Figure 16-7. Comparison of Phase Responses of Fourth-Order Low-Pass Fi lters

    0.01 0.1 1 10 100

    Frequency - -

  • 8/18/2019 3. Filtros Ativos

    14/63

    Prof. Roberto M. Finzi Neto 12/12/14 14

    b. Fundamentos de Filtros Passa BaixasIII.  Resposta de Bessel!  Baixa taxa de atenuação acima de f c  e não possui resposta plana

    abaixo de f c.!  A resposta em atraso constante o torna a melhor escolha para filtrar

    sinais de comunicação digitais (onda quadrada).

    O defasamento linear fazcom que as distorções, deum sinal não senoidal,sejam minimizadas. Ex:

    N=6 e fc = 20kHz.

  • 8/18/2019 3. Filtros Ativos

    15/63

    Prof. Roberto M. Finzi Neto 12/12/14 15

    b. Fundamentos de Filtros Passa BaixasIV.  Fator de qualidade – Q!  Representa um parâmetro de projeto filtro filtros de ordem N .!  Ao invés de se projetar um filtro de ordem N , pode reduzir o problema

    obter um filtro com determinado fator de qualidade Q.

    Para filtros passa baixa e passa alta, Q é definido através da chamada“qualidade do polo”, ou seja:

    !  Já para filtros passa/rejeita faixa, Q é definido como a razão entre afrequência média, f m, e a largura de banda entre os dois pontos de

    frequência em -3dB, ou seja:

    !  Valores muito altos de Q tendem a instabilidade do filtro.

    Q   =bi

    ai(09)

    Q =  f m

     f 2 !   f 

    1

    (10)

  • 8/18/2019 3. Filtros Ativos

    16/63

    Prof. Roberto M. Finzi Neto 12/12/14 16

    b. Fundamentos de Filtros Passa BaixasIV.  Fator de qualidade – Q!  Altos valores de Q podem ser apresentados, nos gráficos de ganho x

    frequência de um filtro, como a distância do maior pico de ganho atéa linha de 0dB. 

    Fundamentals of Low Pass Filters

    . . . . . . . . . . . . . . .

    m

    -o

    I

    c

    m

    (:1

    I

    i

  • 8/18/2019 3. Filtros Ativos

    17/63

    Prof. Roberto M. Finzi Neto 12/12/14 17

    c. Projeto de Filtros Passa Baixas (PB)!  Através da serialização de filtros de 2ª, Eq. (11), e 1ª, Eq. (12),

    ordens, podemos construir filtros PB de qualquer ordem.

    In addition, the ratio v ~ ~ _- Q is defined as the pole quality. T he higher the Q value, the

    ai

    more a filter inclines to instability.

    -Pass Filter Design

    Equation 16-1 represents a cascad e of secon d-orde r low-pass filters. The transfer func-

    tion of a single stage is:

    Ai(s ) = A~ (16-2)

    (1 + ais + bis2 )

    For a first-order filter, the coefficient b is always zero (bl=0), thus yielding:

    A~

    16-3)

    A(s) = 1 +a ls

    The first-order and s econd-order filter stages are the building blocks for higher-order fil-

    ters.

    Often the filters operate at unity gain (Ao=l) to lessen the stringent demands on the op

    amp s open-loop gain.

    Figure 16-11 shows the cascading of filter stages up to the sixth order. A filter with an even

    order number consists of second-order stages only, while filters with an odd order number

    include an additional first-order stage at the beginning.

    16.3 Low-Pass Filter Design

    Equation 16-1 represents a cascade of second-order low-pass filters

    tion of a single stage is:

    Ai(s ) = A~

    (1 + ais + bis2 )

    For a first-order filter, the coefficient b is always zero (bl=0), thus yi

    A~

    A(s ) = 1 +a ls

    The first-order and second-order filter stages are the building blocks

    ters.

    Often the filters operate at unity gain (Ao=l) to lessen the stringent

    amp s open-loop gain.

    Figure 16-11 shows the cascading of filter stages up to the sixth order.

    order number consists of second-order stages only, while filters with a

    include an additional first-order stage at the beginning.

    (11) (12)ow Pass

    Filter Design

    1st order o ]

    1st order

    a=l

    2nd orde r~ J 2nd order

    al , bl

    3rd order o ;

    1st order

    al

    2nd order

    a2, b2

    4th order o

    5th order o ;

    6th order o

    2nd order

    al

    b

    1st order

    al

    2nd order

    al , bl

    2nd order

    a2 b 2

    2nd order

    a2, b2

    2nd order

    a2, b2

    2nd order I

    a3 b3

    2nd order

    a3, b3

    Figure 16 11. Cascading Filter Stages for Higher Order Filters

    Na maioria dos casos, A0  = 1 paraque Av(OL) do AO não tenha de ser muitoalto.!

     

    C a d a e s t á g i o p r e c i s a s e rdimensionado de maneira que o Q  dosestágios anteriores sejam menores do

    que o Q do estágio atual.! Os valores de Q de diversos filtros são

    apresentados em tabela no final destemódulo.

    al

    a2, b2

  • 8/18/2019 3. Filtros Ativos

    18/63

    Prof. Roberto M. Finzi Neto 12/12/14 18

    c. Projeto de Filtros Passa Baixas (PB)I.  Primeira Ordem!  Podemos implementar esse filtro usando as configurações de

    amplificadores inversores e não inversores. Porém, abordaremos aquiapenas a topologia não inversora.

    A função transferência é apresentada na Eq. (13) e os valores doscoeficientes são definidos nas Eq. (14) e (15).

    O projeto do filtro é feito definindo-se f c, o ganho A0 e o capacitor C1.Por fim, resolva as Eq. (16) e (17), obtendo a1 da tabela.

    6th order o

    2nd order

    al , bl

    2nd order

    a2, b2

    a3 b3

    2nd order

    a3, b3

    Figure 16 11 . Cascading Filter Stages for Higher Order Filters

    Figure 16-10 demonst ra ted that the h igher the corner f requency o f a

    er i ts Q. Therefore, to avoid the saturat ion of the individual stages,

    placed in the order of r is ing Q values. The Q values for each f i l ter ord

    order) in Sect ion 16-9 , Tab les 16 -4 through 16-10.

    1 6 .3 . 1 F i r s t - O r d e r L o w - P a s s F i l t e r

    Figures 16 -1 2 and 1 6- 13 show a first-order low-pass filter in the inv

    inverting configuration.

    a 1

    VIN ~~/~/~

    -

    a

    VOUT

    Figure 16 12. First Order Noninverting Low Pass Filter

    272

    Low Pass Filter Design

    ~ ~ ~ ~ ~ : ~ , ~ . ~ ~ ~ , ~ ~ , ~ , ~ ~ . , ~ . ~ ~ ~ ~ , ~ , , : ~ ~ . . . . . . . - ~ . , , ~ ~ . ~ . . :~ , :~.,..~

    V N

    01

    R1 R ~

    V o u T

    16 13. Firs t Order Invert ing Low Pass Fil ter

    The transfer functions of the circuits are:

    R2 R2

    1 + R~ and A(s ) = R~

    A( s) = 1 + cocR1C lS 1 - - cocR2C lS

    The negative sign indicates that the inverting amplifier generates a 180 ~ phase shift from

    the filter input to the output.

    The coefficient comparison between the two transfer functions and Equation 16- 3 yields:

    R2 and Ao = R2

    A 0 = 1 + R~ R~

    (13)

    V N

    R1 R ~

    Vou T

    Figure 16 13. F irst Order Inver ting Low Pass Fil ter

    The transfer functions of the circuits are:

    R2 R2

    1 + R~ and A( s) = R~

    A(s ) = 1 + cocR1ClS 1 - - cocR2C lS

    The negative sign indicates that the inverting amplifier gen erates a 180 ~ phase shift fr

    the filter input to the output.

    The coefficient comparison between the two transfer functions and Equation 16-3 yiel

    R2 and Ao = R2

    A 0 = 1 + R~ R~

    a 1 = cocR1C 1

    and

    a 1 = e)cR2C 1

    To dimension the circuit, specify the corner frequ ency (fc), the dc gain (Ao), and capaci

    C1, and then solve for resistors R1 and R2:

    al and R2 = al

    R1 = 2~fcC1 2~fcC1

    a 2

    R 2 = R3( A 0 - 1) and R1 = Ao

    (14)

    (15)

    The transfer functions of the circuits are:

    R2 R2

    1 + R~ and A(s ) = R~

    A(s ) = 1 + cocR1ClS 1 - - cocR2ClS

    The negative sign indicates that the inverting amplifier generates a 180 ~ phase shift fr

    the filter input to the output.

    The coefficient comparison between the two transfer functions and Equation 16-3 yiel

    R2 and Ao = R2

    A 0 = 1 + R~ R~

    a 1 = cocR1C 1

    and

    a 1 = e)cR2C 1

    To dimension the circuit, specify the corner frequency (fc), the dc gain (Ao), and capaci

    C1, and then solve for resistors R1 and R2:

    al and R2 = al

    R1 = 2~fcC1 2~fcC1

    (16)

    1 + R~

    A(s ) = 1 + cocR1ClS

    The negative sign indicates that the invertin

    the filter input to the output.

    The coefficient comparison between the two

    R2

    A 0 = 1 + R~

    a 1 = cocR1C 1

    To dimension the circuit, specify the corner f

    C1, and then solve for resistors R1 and R2:

    a l

    R1 = 2~fcC1

    R 2 = R3 (A 0 - 1)

    (17)

  • 8/18/2019 3. Filtros Ativos

    19/63

    Prof. Roberto M. Finzi Neto 12/12/14 19

    c. Projeto de Filtros Passa Baixas (PB)I.  Primeira OrdemExemplo: projete um filtro PB com N = 1, ganho unitário e fc = 1kHz.Solução:

    Um filtro com N=1 apresenta o mesmo valor de a1 = 1 para qualquer tipo de

    otimização. Definimos C1  observando a faixa de frequência citada, a qualsugere um capacitor na faixa de dezenas de nF. Faremos C1 = 47nF.

    Os cálculos restantes são:

    Com R 2 = 0, R 3 pode ser removido.

    A simulação usa um LF347 

    r Design

    1. First Order Unity Gain Low Pass Filter

    For a first-order unity-gain low-pass filter with fc = 1 kHz and C1 = 47 nF, R1 calculates

    to-

    a l

    _ 1 _

    R1 = 2~fcC1 - 2~. 103 Hz. 47 90- 9F - 3.38 kQ

    However, to design the first stage of a third-order unity-gain Bessel low-pass filter, assum-

    ing the same value s for fc a nd C1, requires a different val ue for R 1. In this case, obtain

    al for a third-order Bessel filter from Table 16-4 in Section 16.9 (Bessel coefficients) to

    calculate RI:

    a l _ 0.756

    R1 = 2~fcC1 - 2~. 103 Hz. 47 90- 9F = 2.56 kQ

    When operating at unity gain, the noninverting amplifier reduces to a voltage follower (Fig-

    ure 16-14), thus inherently providing a superior gain accuracy. In the case of the inverting

     R2   =  R3 !(1"1) = 0

  • 8/18/2019 3. Filtros Ativos

    20/63

    Prof. Roberto M. Finzi Neto 12/12/14 20

    c. Projeto de Filtros Passa Baixas (PB)II.  Segunda Ordem! Existem duas topologias para filtros de segunda ordem:"

     

    Sallen-Key baseada no amplificador não inversor "

     

    Multiple Feedback (MFB) # baseado no amplificador inversor.

    Abordaremos aqui apenas a topologia Sallen-Key. O livro apresentadetalhes complementares sobre a topologia MFB.

    ! Função transferência do filtro:

    Low Pass Filte

    . . . . . . . . . ~ . . . . . . . . . . . ,~ .

    V I N

    0 2

    C1 3 T "

    V O U T

    Figure 16 15.

    General Sallen Key Low Pass Filter

    0 2

    VOUT

     A0   = 1+ R4

     R3

    (18)

    V I N

    0 2

    C1 3 T"

    V O U T

    16 15.

    General Sallen Key Low Pass F ilter

    0 2

    VOUT

    16 16. Unity Gain Sallen Key Low Pass Filter

    The transfer function of the circuit in Figure 16-15 is:

    A(s) =

    Ao

    For the unity-gain circuit in Figure 16-16 (Ao=I), the transfer function simplifies to:

    (19)

  • 8/18/2019 3. Filtros Ativos

    21/63

    Prof. Roberto M. Finzi Neto 12/12/14 21

    c. Projeto de Filtros Passa Baixas (PB)II.  Segunda Ordem! Filtros que exijam alta precisão de ganho, ou ganho unitário, ou valor

    de Q < 3, não incluem R3 e R4 o AO muda sua topologia para umseguidor de tensão (A0 = 1). A função transferência se torna:

    ! O procedimento de projeto envolve a definição prévia de C1 e C2. Emseguida, Calculamos R1  e R2  usando Eq. (21). A Eq. (22) deve ser

    observada para se obter apenas valores reais na Eq. (21).

    Low

    . . . . . . . . . ~ . . . . . . . . . . .

    V I N

    0 2

    C1 3 T "

    V O U T

    Figure 16 15.

    General Sallen Key Low Pass Filter

    0 2

    VOUT

    Figure 16 16. Unity Gain Sallen Key Low Pass Filter

    The transfer function of the circuit in Figure 16-15 is:

    A(s) =

    Ao

    For the unity-gain circuit in Figure 16-16 (Ao=I), the transfer function s

    A(s) =

    VOUT

    Unity Gain Sallen Key Low Pass Filter

    e transfer function of the circuit in Figure 16-15 is:

    A(s) =

    Ao

    r the unity-gain circuit in Figure 16-16 (Ao=I), the transfer function simplifies to:

    A(s) =

    1 + ~ cC l( R 1 + R2) s + e)c2 R1R2C1C2s2

    e coefficient comparison between this transfer function and Equation 16-2 yields:

    A o = l

    a 1 = mcCl (a 1

    + a2)

    b 1

    =

    o)c2R1R2C1C2

    ven C1 and C2, the resistor values for R1 and R2 are calculated through:

    a1,2

    a,C 2 ::F /a ,2C 2 2- 4bl C, C 2

    4=fcC 1C2

    (20)

    Unity Gain Sallen Key Low Pass Filter

    A(s) =

    Ao

    r the unity-gain circuit in Figure 16-16 (Ao=I), the transfer function simplifies to:

    A(s) =

    1 + ~c Cl (R 1 + R2) s + e)c2 R1R2C1C2s2

    coefficient comparison between this transfer function and Equation 16-2 yields:

    A o = l

    a 1 = mc Cl( a 1 + a2)

    b 1 = o)c2R1R2C1C2

    en C1 and C2, the resistor values for R1 and R2 are calculated through:

    a1,2

    a,C 2 ::F /a ,2 C2 2- 4b lC ,C 2

    4=fcC 1C2

    (21)

    Low Pass Filter Design

    In order to obtain real values under the square ro

    tion

    0 2 > _ 0 1 ~

    4b 1

    2

    a l

    Example 16 2. Second Order Unity Gain Tschebyschef

    (22)

  • 8/18/2019 3. Filtros Ativos

    22/63

    Prof. Roberto M. Finzi Neto 12/12/14 22

    c. Projeto de Filtros Passa Baixas (PB)II.  Segunda OrdemExemplo: projete um filtro PB de 2ª ordem com fc = 1kHz e otimização deTschebyscheff com ripple de 3dB.Solução: da tabela, obtemos os coeficientes a1  =1,0650 e b1 = 1,935.

    Podemos arbitrar C1 em um valor comercial da ordem de dezenas de nF, deacordo com f c. Então, façamos C1 = 22nF.

    Aplicando C1 na Eq. (22), obtemos:

    Calculamos R 1 e R 2 usando Eq. (21) 

    In order to obtain real values under the square root,

    C 2

    must satisfy the following condi-

    tion

    0 2 > _ 0 1 ~

    4b 1

    2

    a l

    Example 16 2. Second Order Unity Gain Tschebyscheff Low Pass Filter

    The task is to design a second-orde r unity-gain Tschebysche ff low-pass fi lter with a corner

    frequency of fc = 3 kHz and a 3-dB passband ripple.

    From Table 16-9 (the Tschebyscheff coefficients for 3-dB ripple), obtain the coefficients

    al and bl for a second-order fi l ter with al = 1.0650 and bl = 1.9305.

    Speci fy ing

    C 1 as 22 nF yield s in

    a C 2

    of:

    02 _

    c14b1~ = 22 .1 0- 9n F . 4 . 1 . 93 05 _-..

    a l 2 i~ 0- ~ - 150 nF

    Inserting al and b l into the r esistor e qua tion for R1, 2 results in

    1 . 06 5 . 150 . 10 - 9 - , / ( 1 . 0 65 . 1 50 . 1 0 - 9 ) 2 -

    4 . 1 . 9 3 0 5 . 2 2 . 1 0 - 9 . 1 5 0 . 1 0 - 9

    R 1 = ~ 4~ . 3 . 1 03 . 22 . 10_ 9 . 1 50 . 10_ 9 = 1 . 26 k Q

    and

    150,1nF # 180nF

     R1   =

    1,065*180*10!9!   1,065*180*10

    !9( )2

    ! 4 *1,9305*22*10!9*180*10

    !9

    4 *"  *1000* 22*10!9*180*10

    !9  # 1632$

     R2  =

    1,065*180*10!9

    +   1,065*180*10!9( )

    2

    ! 4*1,9305*22*10!9*180*10

    !9

    4*"  *1000* 22*10!9*180*10

    !9  # 5431$

    R 1 = ~ 4 ~ . 3 . 1 0 3 . 2 2 . 1 0 _ 9 . 1 5 0 . 1 0 _ 9

  • 8/18/2019 3. Filtros Ativos

    23/63

    Prof. Roberto M. Finzi Neto 12/12/14 23

    c. Projeto de Filtros Passa Baixas (PB)II.  Segunda OrdemSolução (cont...)

    Os valores de R 1  E R 2 devem ser obtidos por

    meio de potenciômetros$

      A s r e s p o s t a s d e

    amplitude e fase dofiltro são apresentadas

    em comparação ao filtro

    de 1ª ordem.$

     

    Observa-se que a taxa

    de atenuação é bemmaior, além do ripple deum pico (2ª ordem) na

    amplitude de saída. 

    and

    1 . 0 6 5 . 15 0 . 1 0 - 9 + ~ ( 1 . 0 6 5 . 1 5 0 . 1 0 - 9 ) 2 - 4 . 1 . 9 3 0 5 . 2 2 . 1 0 - 9 . 1 5 0 . 1 0

    R 2 = 4 g 3 1 0 3 2 2 1 0 _ 9 1 5 0 1 0 _ 9

    with the final circuit shown in Figure 16-17.

    150n

    VouT

    Figure 16 17. Second Order Unity Gain Tschebyscheff Low Pass with 3

    A special case of the general Sallen-Key topology is the application of

    ues an d e qual capa cito r valu es R 1 = R 2 = R and C1 = C2 = C.

    276

    180nF

    1632 5431

  • 8/18/2019 3. Filtros Ativos

    24/63

    Prof. Roberto M. Finzi Neto 12/12/14 24

    c. Projeto de Filtros Passa Baixas (PB)II.  Segunda Ordem! A topologia Sallen-Key apresenta um caso especial onde é possível

    definir R 1 = R 2 = R e C1 = C2 = C.! Nesta simplificação, a Eq. (19) assume a forma descrita em Eq. (23),

    com ganho definido na Eq. (24).

    ! A partir da Eq. (23) e da definição arbitrária de C, obtemos o valor deR e A0.

    ! Eq. (26) mostra que a resposta do filtro será unicamente definida peloganho A0, o qual determina o fator de qualidade do filtro.

    Low-Pass Filter Design

    9 .

    The genera l t rans fe r func t ion changes to

    A s) = A~

    1 + e )cR C( 3 - Ao )s + (eL)cRC)2s 2

    a 4

    with A o = 1 4-R--~

    The coef f ic ien t compar ison wi th Equat ion 16-2 y ie lds :

    a 1 = (JL)oRC(3 - Ao )

    b 1 = (~c RC ) 2

    Given C and solv ing for R and Ao resul ts in

    R = ]~ Ao=3

    2~ fcC and

    al = 3 1

    N Q

    Thus, Ao depends sole ly on the pole qua l i ty Q and v ice versa; Q, and wi th i t the f i lter type,

    (23)

    Low-Pass Filter Design

    9 .

    The general transfer function changes to

    A s) = A~

    1 + e )cR C(3 - Ao )s + (eL)cRC)2s 2

    a 4

    wit h A o = 1 4-R--~

    The coefficient comparison with Equation 16-2 yields:

    a 1 = (JL)oRC(3 - Ao )

    b 1 = (~c RC ) 2

    Given C and solving for R and Ao results in

    R = ]~ Ao=3

    2~fcC and

    al = 3 1

    N Q

    (24)

    Low Pass Filter Design

    9 .

    The general transfer function changes to

    A s) = A~

    1 + e )cRC (3 - Ao )s + (eL)cRC)2s 2

    a 4

    wi th A o = 1 4-R--~

    The coefficient comparison with Equation 16-2 yields:

    a 1 = (JL)oRC(3 - Ao )

    b 1 = (~ cR C) 2

    Given C and solving for R and Ao results in

    R =

    ]~ Ao=3

    2~fcC and

    a l = 3 1

    Q

    Thus, Ao depends solely on the pole quality Q and vice versa; Q, and with it the filter type,

    is determined by the gain setting of Ao:

    Q= 1

    3 - A o

    (25)

    Low-Pass Filter Design

    9 .

    The general transfer function changes to

    A s) = A~

    1 + e)c RC (3 - Ao) s + (eL)cRC)2s 2

    a 4

    with A o = 1 4-R--~

    The coefficient comparison with Equation 16-2 yields:

    a 1 = (JL)oRC(3 - Ao)

    b 1 = (~ cR C) 2

    Given C and solving for R and Ao results in

    R =

    ]~ Ao=3

    2~fcC and

    a l = 3 1

    N Q

    Thus, Ao depends solely on the pole quality Q and vice versa; Q, and with it the filter type,

    is determined by the gain setting of Ao:

    Q= 1

    3 - A o

    (26)

    s = ~

  • 8/18/2019 3. Filtros Ativos

    25/63

    Prof. Roberto M. Finzi Neto 12/12/14 25

    c. Projeto de Filtros Passa Baixas (PB)II.  Segunda Ordem! Podemos usar um potenciômetro no lugar de R4 a ajustar o tipo de

    resposta de interesse através da relação R4/R3.Exemplo: Projete e simule três filtros de Tschebycheff com fc = 1kHz e

    ripple de 0,5dB, 1dB e 2dB. Use a topologia abaixo

    Solução: arbitraremos o valor C = 22nF e R 3  = 1k Ω. Das tabelas temos osseguintes parâmetros:

    1 + e )cR C(3 - Ao) s + (eL)cRC)2s 2

    with A o =

    The coefficient comparison with Equation 16-2 yields:

    a 1 = (JL)oRC(3 - Ao )

    b 1 = (~c RC ) 2

    Given C and solving for R and Ao results in

    R = ]~ Ao=3

    2~fcC and

    al = 3 1

    N Q

    Thus, Ao depends solely on the pole quality Q and vice versa; Q, an

    is determined by the gain setting of Ao:

    Q= 1

    3 - A o

    The circuit in Figure 16-18 allows the filter type to be changed throug

    ratios R4/R3.

    c

    t

    V N Vout

    Figure 16-18. Adjustable Second-O rder Low-Pass Fi l ter

    Ripple bi  Q

    0,5dB 1,3827 0,861,0dB 1,5515 0,96

    2,0dB 1,7775 1,13

  • 8/18/2019 3. Filtros Ativos

    26/63

    Prof. Roberto M. Finzi Neto 12/12/14 26

    c. Projeto de Filtros Passa Baixas (PB)II.  Segunda OrdemPara cada Ripple, calculamos o valor de R, R 4 e A0.

    As respostas em ganho normalizado e fase dos três filtros são apresentadas aseguir.

     R0,5 dB   =

    1,3827

    2!"  !

    1kHz!22nF 

    # 8507$   A0 0,5dB   = 3!  1

    0,86

    = 1,837  R

    4   = R

    3!( A

    0 "1)

     R4 1,0dB   = 1k !(1, 837 "1) = 837#

     R1dB

      =

    1,5515

    2 !"  !1kHz !22nF # 9011$   A

    01,0dB  = 3!

    1

    0,96"1,958   R4 1,0dB   = 1k !(1,958 "1) = 958#

     R2dB   =

    1,7775

    2 !"  !1kHz !22nF 

    # 9638$   A01,0dB

      = 3!1

    1,13

    " 2,115   R4 1,0dB   = 1k !(2,115"1) = 1,115#

  • 8/18/2019 3. Filtros Ativos

    27/63

    Prof. Roberto M. Finzi Neto 12/12/14 27

    c. Projeto de Filtros Passa Baixas (PB)II.  Segunda Ordem

    #  A T a x a d eatenuação aumenta

    com o fator Q  dof i l t ro , ou se ja ,aumenta com aa m p l i t u d e d oripple.#  O defasamentotambém aumento

    com o aumento dofator Q.

  • 8/18/2019 3. Filtros Ativos

    28/63

    Prof. Roberto M. Finzi Neto 12/12/14 28

    c. Projeto de Filtros Passa Baixas (PB)III. Ordens Superiores!  Quanto maior a ordem, mais acentuadas são as características do

    filtro. Ordens superiores são obtidas pela serialização de filtros deprimeira e segunda ordens.

    Com a serialização, o produto das respostas em frequência dosmódulos individuais (estágios) resulta na resposta em frequênciaotimizada e acentuada de todo o filtros.

    !  Cada estágio apresentará seu próprio ai, bi e Qi obtidos das tabelas edependentes da ordem global do filtro sendo projetado.

    !  Filtros de ordens impares apresentarão o primeiro estágio como um

    filtro de 1ª ordem.!  Filtros de ordens pares apresentam apenas filtros de segunda ordem

    em cada um de seus estágios.

    e as s o e s gn a -or er un y-ga n u erwor ow-pass er w e corner re-

  • 8/18/2019 3. Filtros Ativos

    29/63

    Prof. Roberto M. Finzi Neto 12/12/14 29

    c. Projeto de Filtros Passa Baixas (PB)III. Ordens SuperioresExemplo: projete e simule um filtro PB de quinta ordem, f c = 50kHz comresposta de Butterworth.Solução.

    1. 

    Obtenha os coeficientes através das tabelas

    2.  Dimensionar cada filtro parcial usando os coeficientes obtidos2.1 Primeiro estágio  1ª Ordem

    Defina C1 = 1nF e calcule R 1.

    Filter Co

    Table 16 5. Butterworth Coefficients

    n i a i bi ki= Qi

    f c i / f c

    1 1 1.0000 0.0000 1.000

    2 1 1.4142 1.0000 1.000 0.71

    3 1 1 0000

    0.0000 1.000

    2 1.0000 1.0000 1.272 1.00

    4 1 1.8478 1.0000 0.719 0.54

    2 0.7654 1.0000 1.390 1.31

    1 1.0000 0.0000 1.000

    2 1.6180 1.0000 0.859 0.62

    3 0.6180 1.0000 1.448 1.62

    1 1.931 9 1.0000 0.676 0.52

    2 1.4142 1.0000 1.000 0.71

    3 0.5176 1.0000 1.479 1.93

    1 1.0000 0.0000 1.000

    2 1.801 9 1.0000 0.745 0.55

    3 1.2470 1.0000 1.117 0.80

    4 0.4450 1.0000 1.499 2.25

    Filter Coe

    Table 16 5. Butterworth Coefficients

    n i a i bi ki= Qi

    f c i / f c

    1 1 1.0000 0.0000 1.000

    2 1 1.4142 1.0000 1.000 0.71

    3 1 1 0000

    0.0000 1.000

    2 1.0000 1.0000 1.272 1.00

    4 1 1.8478 1.0000 0.719 0.54

    2 0.7654 1.0000 1.390 1.31

    1 1.0000 0.0000 1.000

    2 1.6180 1.0000 0.859 0.62

    quenc y fc = 50 kHz.

    First the coefficients for a fifth-order Butterworth filter are obtained from Table 16-5, Sec-

    tion 16.9:

    ai bi

    Filt er I al = 1 bl = 0

    Filt er 2 a2 = 1.61 80 b2 = 1

    Fi l ter 3 a3 = 0.61 80 b3 = 1

    Then dimension each partial f i l ter by specifying the capacitor values and calculating the

    required resistor values.

    a 1

    VIN~ TiT

    C

    ; VouT

    . F i r s t OrderUn i ty Ga inLow Pass

    With C1 = lnF,

    a l

    R 1 = 2 ~c C 1

    2 ~ . 5 0 . 1 0 3 H z . 1 . 1 0 - 9 F

    = 3 . 1 8 k ~

    The closest 1 valu e is 3.16 k.Q.

    Higher-order low-pass f i lters are required to sharpen a desired f i lte

    that purpose, f irst-order and second-order f i lter stages are connect

    the product of the individual frequency responses results in the opti

    spons e of the overall f i l ter.

    In order to simplify the design of the partial filters, the coefficients ai

    type are listed in the coeff icient tables (Tables 16-4 through 16-10 i

    each table providing sets of coeff icients for the f irst 10 f i lter orders.

    Exam ple 16 3. Fifth Orde r Fi l ter

    The task is to design a fifth-order unity-gain Butterworth low-pass filte

    quency fc = 50 kHz.

    First the coefficients for a fifth-order Butterworth filter are obtained fro

    tion 16.9:

    ai bi

    Fil ter I al = 1 bl = 0

    Filt er 2 a2 = 1.61 80 b2 = 1

    Fi l ter 3 a3 = 0.61 80 b3 = 1

    Then dimension each partial f i l ter by specifying the capacitor values

    required resistor values.

    irst

    Fil ter

    a 1

    VIN~ TiT

    C

    ; VouT

    F igu re16 20 . F i rs t Orde rUn i ty Ga inLow Pass

    Second i l ter

  • 8/18/2019 3. Filtros Ativos

    30/63

    Prof. Roberto M. Finzi Neto 12/12/14 30

    c. Projeto de Filtros Passa Baixas (PB)III. Ordens SuperioresSolução (cont...)

    2.2 Segundo Estágio!  2ª Ordem

    Como o segundo estágio já recebe um sinal pré-filtrado, podemos definir um

    capacitor menor, ou seja C1 = 820pF. Calculando C2, temos:

    Vamos definir C2 em 1.5nF e calcular R 1 e R 2 deste estágio.

    s Filter Design

    ilter

    VIM

    02

    II

    01 T

    VOUT

    16 21. Second Order Unity Gain Sallen Key Low Pass Filter

    With

    C 1 =

    820 pF,

    4b 2

    C 2 >_ C 1- = 82 0.1 0-1 2F. ~

    a22

    4.1

    1.6182

    = 1.26 nF

    The closest 5% value is 1.5 nE

    With C 1 = 820 pF and C 2 = 1.5 nF, calculate the values for R1 and R2 through"

    v

    2

    a2C 2 - a22 0 2 - 4b 20 10 2

    4~fcC1C2 and R1 =

    2

    a 2 C 2 H-- a22 C 2 - 4 b 2 0 1 0 2

    4~:fcC1C 2

    Second i l ter

    VIM

    02

    II

    01 T

    VOUT

    Figure 16 21. Second Order Unity Gain Sallen Key Low Pass Filter

    With

    C 1 =

    820 pF,

    4b 2

    C 2 >_ C 1 - = 82 0 . 10 - 1 2F . ~

    a22

    4.1

    1 .6182

    = 1.26 nF

    The closest 5% value is 1.5 nE

    With

    C 1 =

    820 pF and

    C 2 =

    1.5 nF, calculate the values for R1 and R2 thro

    v

    2

    a2C 2 - a22 0 2 - 4 b 20 10 2

    R1 = 4~f cC 1C 2 and R1 =

    2

    a 2 C 2 H-- a22 C 2

    4~:fcC1C

    and obtain

    Second i l ter

    VIM

    02

    II

    01 T

    VOUT

    Figure 16 21. Secon d Order Unity Gain Sallen Key Low Pass Filter

    With

    C 1 =

    820 pF,

    4b 2

    C 2 >_ C 1 - = 82 0 .1 0 - 12 F . ~

    a22

    4.1

    1 .6182

    = 1.26 nF

    The closest 5% value is 1.5 nE

    With

    C 1 =

    820 pF and

    C 2 =

    1.5 nF, calculate the values for R1 and R2 through"

    v

    2

    a2C 2 - a22 0 2 - 4b 20 10 2

    R1 = 4~fc C1C 2 and R1 =

    2

    a 2 C 2 H-- a22 C 2 - 4 b 2 0 1 0 2

    4~:fcC1C 2

    and obtain

    a 1 --

    1 . 6 1 8 . 1 . 5 . 1 0 - 9 - V / / (1 . 6 18 . 1 .5 . 1 0- 9 ) 2 - 4 . 1 . 8 2 0 . 1 0 - 1 2 . 1 . 5 . 1 0 - 9

    4 ~ . 5 0 . 1 03 . 8 2 0 . 1 0 - 1 2 . 1 . 5 . 1 0 - 9

    = 1 .87 kQ

    a 2 -

    1 .618 .1 .5 .10 -9 + V / (1 .618 .1 .5 .10 -9 ) 2

    _ 4 . 1 . 8 2 0 . 1 0 - 1 2 . 1 . 5 . 1 0 - 9

    4~ .50 .103 .820 90 - 1 2 . 1 . 5 . 1 0 - 9

    = 4 .42 kQ

    R1 and R2 are available 1% resistors.

    VIM

    02

    II

    01 T

    VOUT

    Figure 16 21. Second Order Unity Gain Sallen Key Low Pass Filter

    With

    C 1 =

    820 pF,

    4b 2

    C 2 >_ C 1 - = 82 0 . 10 -1 2F . ~

    a22

    4.1

    1 . 6182

    = 1 .26 nF

    The closest 5% value is 1.5 nE

    With

    C 1 =

    820 pF and

    C 2 =

    1.5 nF, calculate the values for R1 and R2 through"

    v

    2

    a2C 2 - a22 0 2 - 4b 20 10 2

    R1 = 4~fcC 1C2 and R1 =

    2

    a 2 C 2 H-- a22 C 2 - 4 b 2 0 1 0 2

    4~:fcC1C 2

    and obtain

    a 1 --

    1 . 6 1 8 . 1 . 5 . 1 0 - 9 - V / / (1 . 6 1 8 .1 . 5 .1 0 - 9 ) 2 - 4 . 1 . 8 2 0 . 1 0 - 1 2 . 1 . 5 . 1 0 - 9

    4 ~ . 5 0 .1 0 3 . 8 20 . 1 0 - 1 2 . 1 . 5 . 1 0 - 9

    = 1 .87 kQ

    a 2 -

    1 . 618 . 1 . 5 . 1 0 -9 + V / (1 . 61 8 . 1 . 5 . 1 0 -9 ) 2

    _ 4 . 1 . 8 2 0 . 1 0 - 1 2 . 1 . 5 . 1 0 - 9

    4~ . 50 . 103 . 820 90 - 1 2 . 1 . 5 . 1 0 - 9

    = 4 . 42 kQ

    R1 and R2 are available 1% resistors.

    . . . . . . . . . . . . . .

    = 1.8

  • 8/18/2019 3. Filtros Ativos

    31/63

    Prof. Roberto M. Finzi Neto 12/12/14 31

    c. Projeto de Filtros Passa Baixas (PB)III. Ordens SuperioresSolução (cont...)

    2.2 Terceiro Estágio!  2ª Ordem

    Definimos agora C1 = 330pF e calculamos C2 deste estágio.

    Vamos definir C2  = 4.7nF. Com o mesmo procedimento de cálculoapresentado no estágio 2, calculamos R 1 ≅ 1,45k  e R 2 ≅ 4,51k . 

    a 1 --

    4 ~ . 5 0 .1 0 3 . 8 20 . 1 0 - 1 2 . 1 . 5 . 1 0 - 9

    a 2 -

    1 . 6 1 8 . 1 . 5 . 1 0 - 9 + V / ( 1 . 6 1 8 . 1 . 5 . 1 0 - 9 ) 2

    _ 4 . 1 . 8 2 0 . 1 0 - 1 2 . 1 . 5 . 1 0 - 9

    4 ~ .5 0 .1 0 3 .8 2 0 90 - 1 2 . 1 . 5 . 1 0 - 9

    = 4.4

    R1 and R2 are available 1% resistors.

    Third Fi l ter

    The calculation of the third fi l ter is identical to the calculation of the second fi l t

    that a 2 and b2 are rep laced by a 3 and b 3, thus resulting in different c apa citor a

    values.

    Specify C1 as 330 pF, and obtain 0 2 with"

    4b 3

    C 2 >_ C 1 - - = 3 3 0 . 1 0 - 1 2 F . ~

    a32

    4.1

    0 .6 1 8 2

    = 3 . 46 nF

    The closest 10% value is 4.7 nF.

    280

    High Pass Filter Design

    With C 1 = 330 pF an d C 2 = 4.7 nF, the valu es for R1 an d R2 are"

    9 R1 = 1.45 k.Q, with the closes t 1% valu e bein g 1 .47 k..O.

    9 R2 = 4.51 k.Q, with the clo sest 1% value being 4.53 k.O.

    Figure 16-22 shows the final fi l ter circuit with its partial fi l ter stages.

    3.16k

    ViN~

    --

    1.5n

    L

    820p - ]

    4.7n

    II

    330p " I

    VOUT

    Figure 16 22 . Fifth Ord er Unity Gain Butterworth Low Pass Filter

  • 8/18/2019 3. Filtros Ativos

    32/63

    Prof. Roberto M. Finzi Neto 12/12/14 32

    c. Projeto de Filtros Passa Baixas (PB)III. Ordens SuperioresSimulação

    - Fc não é exatamente50kHz dev ido àsaproximações feitasem C2  do segundo eterceiro estágio.- D e v i d o à saproximações, ocorreum pequeno overshoot  

    na resposta, perto def c. 

    820p - ]

    VOUT

  • 8/18/2019 3. Filtros Ativos

    33/63

    Prof. Roberto M. Finzi Neto 12/12/14 33

    d.  Projeto de Filtros Passa Alta (PA)!  A topologia de um filtro PA é muito similar a de um filtro PB. Basta

    trocar as posição de resistores e capacitores.

    330p " I

    Figure 16 22. Fifth OrderUnity G ain Butterworth Low Pass Filter

    16.4 High Pass Filter Design

    By replacing the resistors of a low-pass filter with capacitors, and its capacitors with resis-

    tors, a high-pass filter is created.

    0 2

    ..... c >

    c~ T Voo~ > v ~ ~ t t qt

    R1 I

    _

    VOUT

    Figure 1 6 23 . Low Pas s o High Pass Transition Through Components Exchange

    To plot the gain response of a high-pass filter, mirror the gain response of a low-pass filter

    at the corner frequency, .Q=I, thus replacing .0. with 1/.Q and S with 1/S in Equation 16-1.

    PB PAigh Pas s Filter Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    m

    o

    I

    r

    o . , ,

    I

  • 8/18/2019 3. Filtros Ativos

    34/63

    Prof. Roberto M. Finzi Neto 12/12/14 34

    d. 

    Projeto de Filtros Passa Alta (PA)I.  Primeira Ordem!  Se fizermos bi = 0 na Eq. (27), obtemos a função transferência de um

    filtro PA de 1ª ordem.!  O circuito não inversor que implementa o PA é apresentado abaixo em

    conjunto com sua função transferência. Versões inversoras podem serconsultadas no livro referência.!  O ganho na faixa de passagem é definido pela Eq. (30) e os valores de

    R1 e C1 pelas Eqs. (31) e (32). 

    0.1

    1

    10

    Frequency

    Develop ing The Gain Response of a High Pass Filter

    general transfer function of a high-pass filter is then:

    A s) = A= 16-4)

    ]-[ ai b,)

    i 1 + ~ +

    Aoo being the passb and gain.

    ce Equation 16-4 represents a cascade of second-order high-pass filters, the transfer

    Ai s ) = Aoo 16-5 )

    a

    + ~ + ~

    h b=0 for all first-order filters, the transfer function of a first-order filter simplifies to:

    A(s) - A~ (16-6)

    (28)

    High Pass Filter Design

    9 . , - . . . . . . . ~ ~ ~ . . . . . . .

    1 6 . 4 . 1 F i r s t O r d e r H i g h P a s s F i l t e r

    Figure 1 6-25 and 16-26 show a first-order high-pass filter in the noninverting and the in-

    verting configuration.

    VIN

    01

    R1

    -- R2

    R3

    VOUT

    Figure 16 25. First Order Noninverting High Pass Filter

    Ra

    C1 R1

    Figure 16 25. First Order Noninverting High Pass Filter

    V N

    Ra

    C1 R1

    1

    V

    Figure 16 26. First Order Inverting High Pass Filter

    The trans fer functions of the circuits are:

    a 2

    1 + ~ and

    A s) =

    ocR1C 1 s

    The negative sign indicates that the inverting amplifi

    the filter input to the output.

    The coefficient comparison between the two transf

    vides two different passband gain factors:

    (29)

    igure 16 25. First Order Noninverting High Pass Filter

    V N

    Ra

    C1 R1

    1

    VOUT

    igure 16 26. First Order Inverting High Pass Filter

    The transfer functions of the circuits are:

    a 2

    1 + ~ and

    A s ) =

    ocR1C 1 s

    oJcR1C 1 s

    A s) = -

    a 2

    1 1

    The negative sign indicates that the inverting amplifier gene rates a 180 ~ phase shift from

    the filter input to the output.

    The coeff icient comparison between the two transfer functions and Equation 1 6-6 pro-

    vides two different passband gain factors:

    R2 and A = R2

    A= =I +R 3 = R~

    while the term for the coefficient al is the same for both circuits:

    a 1

    o)cR1C 1

    (30)

    High Pass Filter Design

    . . . . . .

    To dimension the circuit, specify the corner f requen cy (fc), the dc gain (Aoo), and

    (C1), and then solve for R1 and R2:

    _ 1

    R 1 - 2~ f ca lC 1

    R 2 = R3(Aoo -

    1)

    and

    R 2 = -R 1

    A oo

    1 6 . 4 . 2 S e c o n d - O r d e r H i g h - P a s s F i l t e r

    (31)

    High Pass Filter Design

    . . . .

    To dimension the circuit, specify the corner frequency (fc), th

    (C1), and then solve for R1 and R2:

    _ 1

    R 1 - 2~ f ca lC 1

    R 2 = R3(Aoo - 1) and R 2

    1 6 . 4 . 2 S e c o n d - O r d e r H i g h - P a s s F i l t e r

    (32)

  • 8/18/2019 3. Filtros Ativos

    35/63

    Prof. Roberto M. Finzi Neto 12/12/14 35

    d. 

    Projeto de Filtros Passa Alta (PA)I.  Primeira Ordem!  Exercício: projete um Filtro PA com f c = 4kHz e ganho unitário.Resolução: Um filtro com N=1 apresenta o mesmo valor de a1  = 1 paraqualquer tipo de resposta (otimização). Definimos C1  observando a faixa de

    frequência citada, a qual sugere um capacitor na faixa de dezenas de nF.Faremos C1 = 33nF.

    Procedendo ao cálculo de R 1:  R1   =1

    2 !"  ! 4000 !33!10#9

      =1205,7  $ 1,2k %

    ave c ange .

  • 8/18/2019 3. Filtros Ativos

    36/63

    Prof. Roberto M. Finzi Neto 12/12/14 36

    d. 

    Projeto de Filtros Passa Alta (PA)II.  Segunda Ordem!  Novamente, abordaremos aqui apenas a topologia de Salen-Key e

    deixaremos a topologia MFB para estudo no livro.!  A topologia do circuito é praticamente igual à do Filtro PB de segunda

    ordem, com a diferença da substituição das posições dos resistores ecapacitores. 

    To dimension the circuit, specify the corner frequency (fc), the dc gain (Aoo)

    (C1), and then solve for R1 and R2:

    _ 1

    R 1 - 2~ fc a lC 1

    R 2 = R3(Aoo -

    1)

    and

    R 2 = -R 1

    A oo

    1 6 . 4 . 2 S e c o n d - O r d e r H i g h - P a s s F i l t e r

    High-pas s filters use the same two topologies as the low-pass filters: Sallen

    tiple Feedback. The only difference is that the positions of the resistors and

    have changed.

    16.4.2.1 Sallen Key Topology

    The general Sallen-Key topology in Figure 16-27 allows for separate g

    Ao = 1+R4/R3.

    C1 [ C2

    V N III - I I

    a 2

    k/k/k,

    R, - _ m

    - - a 4

    VOUT

    Figure 16 27. GeneralSallen Key High Pass Filter

    16.4.2.1 Sallen Key Topology

    The general Sallen-Key topology in Figure 16-27 allows for separate gain setting via

    Ao = 1+R4/R3.

    C1 [ C2

    V N III - I I

    a 2

    k/k/k,

    R, - _ m

    - - a 4

    VOUT

    Figure 16 27. Gene ralSallen Key High Pass Filter

    A(s) =

    The transfer function of the circuit in Figure 16-27 is:

    cz

    1 +

    R2(C1+ C2)+ RIC2(1 a 1 1

    ~ .1 1 - eOc 2 R1 R2 C1C 2 S-

    wi th o~ = 1 +

    a 4

    R3

    The unity-gain topology in Figure 16-28 is usually applied in Iow-Q filters with high gain

    accuracy.

    l

    v , . I I -

    a 2

    ~/k/k,

    a l T

    m

    VOUT

    (33)

    ass filters: Sallen-Key and Mul-

    the resistors and the capacitors

    s for separate gain setting via

    VOUT

    h o~ = 1 +

    a 4

    R3

    d in Iow-Q filters with high gain

    (34)

    ~ . ~ ~ ~ . . . ~ ~ ~ ~ ~ ~ ~ . . ~ . ~ . . ~ ~ . ~ ~ ~ ~ ~ . ~ ~ ~ . ~ . ~ ~ ~

  • 8/18/2019 3. Filtros Ativos

    37/63

    Prof. Roberto M. Finzi Neto 12/12/14 37

    d.  Projeto de Filtros Passa Alta (PA)II.  Segunda Ordem!  Podemos simplificar o projeto do filtro definindo C1 = C2 = C e ganho

    unitário (α=1) . A função transferência reduz-se à Eq. (35).

    !  Os coeficientes A", a1 e b1 são obtidos diretamente de (35).

    !  E os valores de C  será arbitrário. Já os valores de R 1  e R 2  são

    calculados pelas Eq. (36) e (37). 

    High-Pass Filter Design

    . ~ ~ ~ ~ ~ ~ ~ . . ~ . ~ . . ~ ~ . ~ ~ ~ ~ ~ . ~ ~ ~ . ~ . ~ ~ ~ ~ . . . .

    simplify the circuit design, it is com mon to cho ose unity -gain (c~ = 1), and C1 = 02 = C.

    e transfer function of the circuit in Figure 16-28 then simplifies to:

    A(s) =

    2 1 + 1 .I__

    cocalC s eoc2alR2C2 s 2

    e coefficient comparison between this transfer function and Equation 16-5 yields:

    A o o = l

    a 1 --

    b 1 =

    cocR1C

    1

    O)c2R1R2 02

    (35)

    High-Pass Filter Design

    . ~ ~ ~ ~ ~ ~ ~ . . ~ . ~ . . ~ ~ . ~ ~ ~ ~ ~ . ~ ~ ~ . ~ . ~ ~ ~ ~ . . ..

    To simplify the circu it design, it is com mon to choose unity -gain (c~ = 1), and C1 = 02 = C.

    The transfer function of the circuit in Figure 16-28 then simplifies to:

    A(s) =

    2 1 + 1 .I__

    cocalC s eoc2alR2C2 s 2

    The coefficient comparison between this transfer function and Equation 16-5 yields:

    A o o = l

    a 1 --

    b 1 =

    cocR1C

    1

    O)c2R1R2 02

    Given C, the resistor values for R 1 and R2 are calculated through:

    High-Pass Filter Design

    ~ . ~ ~ ~ . . . ~ ~ ~ ~ ~ ~ ~ . . ~ . ~ . . ~ ~ . ~ ~ ~ ~ ~ . ~ ~ ~ . ~ . ~ ~ ~ ~ . . . .

    To simplify the circuit de sign, it is com mo n to cho ose unity-gain (c~ = 1), and C1 = 02 = C.

    The transfer function of the circuit in Figure 16-28 then simplif ies to:

    A(s) =

    2 1 + 1 .I__

    cocalC s eoc2alR2C2 s 2

    The coeff icient comparison between this t ransfer funct ion an d Equat ion 16- 5 yields:

    A o o = l

    a 1 --

    b 1 =

    cocR1C

    1

    O)c2R1R2 02

    Given C, the resistor values for R 1 and R2 are calculate d through:

    =

    R1 =fcCal

    a l

    ~ . ~ ~ ~ . . . ~ ~ ~ ~ ~ ~ ~ . . ~ . ~ . . ~ ~ . ~ ~ ~ ~ ~ . ~ ~ ~ . ~ . ~ ~ ~

    To simplify the circuit design, it is com mon to choos e unity-gain (c~

    The transfer function of the circuit in Figure 16-28 then simplif ies

    A(s) =

    2 1 + 1 .I__

    coca lC s eoc2alR2C2 s 2

    The coefficient comparison between this transfer function and Eq

    Ao o = l

    a 1 --

    b 1 =

    cocR1C

    1

    O)c2R1R2 02

    Given C, the res istor values for R 1 and R2 are calc ulated throug h:

    =

    R1 =fcCal

    a l

    R 2 = 4=fcCb 1

    High-Pass Filter Design

    . ~ ~ ~ ~ ~ ~ ~ . . ~ . ~ . . ~ ~ . ~ ~ ~ ~ ~ . ~ ~ ~ . ~ . ~ ~ ~ ~ . . . .

    To simplify the circuit de sign, it is com mon to choose unity-gain (c~ = 1), and C1 = 02 = C.

    The transfer function of the circuit in Figure 16-28 then simplifies to:

    A(s) =

    2 1+ 1 .I__

    cocal C s eoc2alR2C2 s 2

    The coefficient comparison between this transfer function and Equation 16-5 yields:

    A o o = l

    a 1 --

    b 1 =

    cocR1C

    1

    O)c2R1R2 02

    Given C, the resistor value s for R 1 and R2 are calcu lated through :

    =

    R1 =fcCal

    a l

    R 2 = 4=fcCb 1

    (36)

    To simplify the circuit design, it is common to choose unity-gain (c~

    The transfer function of the circuit in Figure 16-28 then simplifies

    A(s) =

    2 1 + 1 .I__

    cocalC s eoc2alR2C2 s 2

    The coefficient comparison between this transfer function and Eq

    A o o = l

    a 1 --

    b 1 =

    cocR1C

    1

    O)c2R1R2 02

    Given C, the resistor values for R 1 and R2 are calcu lated through:

    =

    R1 =fcCal

    a l

    R 2 =

    4=fcCb 1

    16 4 2 2 Multiple Feedback Topology

    (37)

    b 1 = e)cR1C C2

  • 8/18/2019 3. Filtros Ativos

    38/63

    Prof. Roberto M. Finzi Neto 12/12/14 38

    d. 

    Projeto de Filtros Passa Alta (PA)III.  Ordens Superiores!  Para N  > 2, faremos o processo de serialização de filtros PA de ordens

    1 e 2 da mesma forma que fizemos para os filtros PB.!  Os coeficientes dos filtros serão os mesmos obtidos pelas tabelas

    constantes no final deste material, seguindo o mesmo procedimentode projeto apresentados para os filtros PB.!  Exercício: Projete um Filtro PA de terceira ordem com f c  = 1kHz e

    resposta de Bessel.Resolução:

    O primeiro passo é obter os coeficientes dos dois estágios que comporão

    esse filtro.

    Para o primeiro estágio (N = 1), definimos

    C = 100nF e calculamos

    Given capacitors C and C2, and solving for resistors R 1 and R2:

    _ 1 2A=

    R1 - 2=fc.C .al

    a l

    R2 = 2~;fc .blC2 1 - 2Aoo)

    The passba nd ga in Aoo) of a MFB high-pass filter can vary significantl

    tolerances of the two capacitors C and C2. To keep the gain variation

    necessary to use capacitors with tight tolerance values.

    16.4 .3 Higher Order High Pass Fi lter

    Likewise, as with the low-pass filters, higher-order high-pass filters are

    cading first-order and seco nd-order filter stages. Th e filter coefficients

    used for the low-pass filter design, and are listed in the coefficient ta

    through 16-10 in Section 16.9).

    Exam ple 16 4. Third Order High Pass Fi l ter with fc = 1 kHz

    The task is to design a third-order unity-gain Bessel high-pass filter w

    quency fc = 1 kHz. Obtain the coefficients for a third-order Bessel filte

    Section 16.9:

    ai bi

    Filt er I al = 0.756 bl = 0

    Filt er 2 a2 = 0.9996 b2 = 0.4772

    and compute each partial filter by specifying the capacitor values and

    quired resistor values.

    First Filter

    Band Pass Filter Design

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    R1 = 1 = 2.1 05 kQ

    2 = fca l C 1 2 ~ .1 0 3 H z .0 .7 5 6 .1 0 0 .1 0 - 9 F

    Closes t 1 value is 2.1 k~.

    an ass e r es gn

  • 8/18/2019 3. Filtros Ativos

    39/63

    Prof. Roberto M. Finzi Neto 12/12/14 39

    d. 

    Projeto de Filtros Passa Alta (PA)III.  Ordens Superiores

    O Segundo estágio (N=2) é projetando arbitrando-se C = 100nF e calculandoR 1 e R 2 usando as Eq. (36) e (37).

    O Circuito resultante é apresentado abaixo, usando valores de componentescomerciais:

    Faça a simulação !!!!

    Band Pass Filter Design

    R1 = 1 = 2.1 05 kQ

    2= f ca l C 1 2~ . 103 H z . 0 . 75 6 . 100 . 10 - 9F

    Close st 1 value is 2.1 k~.

    ilter

    With C = 100nF,

    _ 1 = 3.18 kQ

    R 1 - ~ f cCa l ~ .10 3 .10 0 .10-9 .0 .756

    Close st 1 value is 3.16 k~.

    _ a

    R 2 _ 1 0.999 6 = 1.67 kQ

    4=fcCb 1 4=-103 .100.10 - 9 . 0 . 4 7 7 2

    Closest 1 value is 1.65 k ~

    Figure 16-30 shows the final fi lter circuit.

    V I N

    1.65k

    1 0 0 n - ~ k A ,

    i i_~ l~1761~176 _ ~ T

    I ~ II II 1

    2.1 0k . . - VouT

    3 . 1 6 k

    R1 = 1 = 2.1 05 kQ

    2= f c a lC 1 2~ . 10 3Hz . 0 . 756 . 10 0 . 10 - 9F

    Clos est 1 value is 2.1 k~.

    ilter

    With C = 100nF,

    _ 1 = 3.18 kQ

    R 1 - ~ f c Ca l ~ . 103 . 100 . 10 -9 . 0 . 756

    Closest 1 value is 3.16 k~.

    _ a

    R 2 _ 1 0.99 96 = 1.67 kQ

    4=fcCb 1 4=-103.100.10 - 9 . 0 . 4 7 7 2

    Closest 1 value is 1.65 k ~

    Figure 16- 30 shows the final f i lter circuit.

    V I N

    1.65k

    1 0 0 n - ~ k A ,

    i i_~ l~1761~176 _ ~ T

    I ~ II II

    1

    2.1 0k . . - VouT

    3 . 1 6 k

    w

    Close st 1 value is 2.1 k~.

    Second i l ter

    With C = 100nF,

    _ 1 = 3.18 kQ

    R 1 - ~ f cCa l ~ .103 .1 00 .10 -9 .0 .756

    Closest 1 value is 3.16 k~.

    _ a

    R 2 _ 1 0.99 96 = 1.67 kQ

    4=fcCb 1 4=-103.100.10 - 9 . 0 . 4 7 7 2

    Closest 1 value is 1.65 k ~

    Figure 16-30 shows the final fi lter circuit.

    V I N

    1.65k

    1 0 0 n - ~ k A ,

    i i_~ l~1761~176 _ ~ TI ~ II II

    1

    2.1 0k . . - VouT

    3 .1 6 k

    w

    Figure 16 30. Third Order Unity Gain Bessel High Pass

    0 ^ -.~ 0 / -,.

  • 8/18/2019 3. Filtros Ativos

    40/63

    Prof. Roberto M. Finzi Neto 12/12/14 40

    e. Projeto de Filtros Passa Banda (PBn)! Representa a união de dois filtros, um PB e outro PA, de maneira a

    permitir a passagem de uma banda estreita de frequência.! Haverão duas frequências de corte, Ω1  e Ω2, que representam os

    pontos de -3dB da faixa de passagem inferior e superior,

    respectivamente.! Usamos o filtro PB como base e espelhamos sua resposta a partir desua frequência de corte, conforme figura abaixoand-Pass Filter Design~ . ~ ~ < ` ~ ` ~ ~ ~ ~ < ~ ` ~ ~ < ~ < ` ~ ~ ~ ~ ~ ~ ` ~ / : ~ < ~ .~ . ~ . . . . ~ . ~ . ~ - ~ .~ ~ < . ~ ~ ~ ~ : ~ ~ ~ ~ ~ ~

    IAI [dB] ' ~ ~ . ~ _ ~

    0 ^ -.~ 0 / -,.

    -3

    v

    -3

    v

    I

    .~ 0 1 ~ ~..0

    F igu re 16 -31 . Low-Pa ss to Band-P ass T rans it i on

    -3

    v

    -3

    v

    I

    .~ 0 1 ~ ~..0

    ow-P ass to Ban d-Pas s Trans it ion

    orner frequency of the low-pass filter transforms to the lower and upper-3 dB fre-

    cies of the band-p ass, ~21 and .0-2. The difference betwe en both freq uencies is de-

    as the normalized bandwidth A.Q:

    ormalized mid frequency, where Q = 1, is

    Qm = = Q2.~ 1

    alogy to the resonant circuits, the quality factor Q is defined as the ratio of the mid

    ency (fm) to the bandw idth (B)

    (38)

    v v

    .~ 0 1 ~ ~..0

    Low-P ass t o Band -Pass Transi ti on

    corner frequency of the low-pass f i lter transforms to the lower and u pp er -3 dB fre-

    ncie s of the band-pass, ~21 and .0-2. The differen ce betw een both fre que ncie s is de-

    as the normalized bandwidth A.Q:

    normalized mid frequency, where Q = 1, is

    Qm = = Q2 .~1

    nalogy to the resonant circuits, the quality factor Q is defined as the ratio of the mid

    uen cy (fm) to the band width (B)

    Q = fm = fm = 1 = 1 (1 6- 8)

    B f 2 - f l ~'~2 - ~'~1 A~'-~

    simplest design of a band-pass filter is the connection of a high-pass filter and a low-

    filter in series, which is commonly done in wide-band filter applications. Thus, a first-

    r high-pass and a first-order low-pass provide a second-order band-pass, while a

    (39)

  • 8/18/2019 3. Filtros Ativos

    41/63

    Prof. Roberto M. Finzi Neto 12/12/14 41

    e. Projeto de Filtros Passa Banda (PBn)I.  Segunda Ordem! A partir de um filtro PB podemos obter o PBn executando a

    transformação abaixo na função transferência do filtro PB.

    Band Pass Filter Design

    d Orde r Band Pass F i lte r

    develop the frequency response of a second-order band-pass filter, apply the trans-

    rmation in Equation 16-7 to a first-order low-pass transfer function"

    A0

    A(s ) - 1 + s

    placing s with A-- -~(s+ 1 )

    lds the general transfer function for a second-order band-pass filter:

    A~ (16-9)

    A(s) = 1 + A ~. s + S 2

    hen designing band-pass filters, the parameters of interest are the gain at the mid fre-

    ency (Am) and the quality factor (Q), which represents the selectivity of a band-pass

    er.

    erefore, replace Ao with Am and A.O. with 1/Q (Equation 16-7) and obtain:

    Am

    A(s) -e-.s

    (16-10)

    Função Transf.Filtro PB

    Band Pass Filter Design

    16 .5 .1 Seco nd Orde r Band Pass F i lt e r

    To develop the frequency response of a second-order band-pass filter, apply the trans-

    formation in Equation 16-7 to a first-order low-pass transfer function"

    A0

    A(s ) - 1 + s

    Replacing s with A-- -~(s+ 1 )

    yields the general transfer function for a second-order band-pass filter:

    A~ (16-9)

    A(s) = 1 + A~. s + S 2

    When designing band-pass filters, the parameters of interest are the gain at the mid fre-

    quency (Am) and the quality factor (Q), which represents the selectivity of a band-pass

    filter.

    Therefore , replace Ao with Am and A.O. with 1/Q (Equation 16- 7) and obtain:

    Am

    A(s) -e-.s

    (16-10)

    1 + $.s +

    S 2

    LJ

    Figure 16-32 shows the normalized gain response of a second-order band-pass filter for

    Substituir spelo termo acima

    16.5.1 Sec ond O rde r Band Pass F i lt e r

    To develop the frequency response of a second-order band-

    formation in Equation 16-7 to a first-order low-pass transfer

    A0

    A(s ) - 1 + s

    Replacing s with A-- -~(s+ 1 )

    yields the general transfer function for a second-order band-

    A~

    A(s) = 1 + A ~. s +

    S 2

    When designing band-pass filters, the parameters of interest

    quency (Am) and the quality factor (Q), which represents th

    filter.

    There fore, replace Ao with Am and A.O. with 1/Q (Equation 1

    Am

    A(s) -e-.s

    1 + $.s + S 2

    LJ

    Figure 16-32 shows the normalized gain response of a seco

    different Qs.

    (40)Função Transf. Filtro PBn

    n d Or d e r B an d Pass F il te r

    To develop the frequency response of a second-order band-pass filter, apply the trans-

    formation in Equation 16-7 to a first-order low-pass transfer function"

    A0

    A(s ) - 1 + s

    Replacing s with A-- -~(s+ 1 )

    yields the general transfer function for a second-order band-pass filter:

    A~ (16-9)

    A(s) = 1 + A ~ .s + S 2

    When designing band-pass filters, the parameters of interest are the gain at the mid fre-

    quency (Am) and the quality factor (Q), which represents the selectivity of a band-pass

    filter.

    There fore, replace Ao with Am and A.O. with 1/Q (Equation 16-7) and obtain:

    Am

    A(s) -e-.s

    (16-10)

    1 + $.s + S 2

    LJ

    Figure 16-32 shows the normalized gain response of a second-order band-pass filter for

    different Qs.

    (41)

    1 6 .5 . 1 S e c o n d O r d e r B a n d P a s s F i l te r

    To develop the frequency response of a second-order band-pass filter, apply the trans-

    formation in Equation 16-7 to a first-order low-pass transfer function"

    A0

    A(s) - 1 + s

    Replacing s with A-- -~(s+ 1)

    yields the general transfer function for a second-order band-pass filter:

    A~ (16-9)

    A(s) = 1 + A~ .s + S 2

    When designing ba nd-pass filters, the parameters of interest are the gain at the mid fre-

    quency (Am) and the quality factor (Q), which represents the selectivity of a band-pass

    filter.

    Therefore, replace Ao with Am and A.O. with 1/Q (Equation 16-7) and obtain:

    Am

    A(s) -e-.s

    (16-10)

    1 + $.s +

    S 2

    LJ

    Figure 16 -32 shows the normalized gain response of a second-order band-pass filter for

    different Qs.

    - 5

    - 1 0

    II1

    15

    I

    c

    ~ 20

    I

    ~ 25

    - 3 0

    0=1/

    /

    J

    35 /

    0.1

    /

    /

    /

    /

    r

    \

    1

    Frequency

    \

    k

    \

    \

    lO

    F igure 16 32 . Ga in Response o f a Second Order Band Pass F i lt e r

    !  Em Eq. (40), Devemos substituir A0  por

    Am  para representar o ganho na bandamédia e aplicar Eq. (39) para incluir ofator de qualidade. Então:

    %-

    %-

  • 8/18/2019 3. Filtros Ativos

    42/63

    Prof. Roberto M. Finzi Neto 12/12/14 42

    e. Projeto de Filtros Passa Banda (PBn)I.  Segunda Ordem! Podemos usar a topologia de Sallen-Key para implementar o PBn de 2ª

    ordem usando redes RC em PA e PB.! Sua função transferência se torna a Eq. (41), onde: 

    shows that the frequency response of second-order band-pass filters gets

    ith rising Q, thus making the filter more selective.

    opology

    R

    %-

    Vow

     Key Topology

    R

    %-

    Vow

    Sallen KeyBand Pass

    e Sallen-K ey band-pass circuit in Figure 1 6-3 3 has the following transfer function:

    A(s) = G.RC~m.S

    1 + RC e0 m (3 - G ) s + R2C2(.Om2.S2

    rough coefficient comparison with Equation 16-10, obtain the following equations:

    1

    mid-frequency: fm = 2~RC

    a 2

    inner gain: G = 1 R~

    G

    gain at fm Am = 3 - G

    filter quality: Q =

    3 - G

    (41)

    Figure16 33. Sallen KeyBand Pass

    The Sallen-Key band-pass circuit in Figure 16-33 has the foll

    A(s) = G.RC~m .S

    1 + R Ce 0m (3 - G ) s + R2C2(.Om2.S2

    Through coefficient comparison with Equation 16-10, obtain t

    1

    mid-frequency: fm = 2~RC

    a 2

    inner gain:

    G = 1 R~

    G

    gain at fm Am = 3 - G

    f i l te r q u a l i t y : Q =

    3 - G

    The Sallen-Key circuit has the advantage that the quality facto

    inner gain (G) without modifying the mid frequency (fm). A dra

    (42)

    Figure16 33. Sallen KeyBand Pass

    The S allen-Key band-pass circuit in Figure 16 -33 has the follo

    A(s) = G.RC~m.S

    1 + RC e0 m (3 - G ) s + R2C2(.Om2.S2

    Through coefficient comparison with Equation 16-10, obtain th

    1

    mid-frequency: fm = 2~RC

    a 2

    inner gain:

    G = 1 R~

    G

    gain at fm Am = 3 - G

    filter qual ity: Q =

    3 - G

    The Sallen-Key circuit has the advantage that the quality factor

    inner gain (G) without modifying the mid frequency (fm). A dra

    and Am cannot be adjusted independently.

    (43)

    %-

    Figure16 33. Sallen KeyBand Pass

    The Sallen-Key band-pass circuit in Figure 16- 33 has the following

    A(s) = G.RC~m.S

    1 + R C e0 m (3 - G ) s + R2C2(.Om2.S2

    Through coefficient comparison with Equation 16-10, obtain the foll

    1

    mid-frequency: fm = 2~RC

    a 2

    inner gain: G = 1 R~

    G

    gai n at fm Am = 3 - G

    filter quality : Q =

    3 - G

    The Sallen-Key circuit has the advan tage that the quality factor (Q) c

    inner gain (G) without modifying the mid frequency (fm). A drawback

    and Am cannot be adjusted independently.

    Care mus t be taken when G approaches the value of 3, because then

    (44)

    Figure16 33. Sallen KeyBand Pass

    The Sallen-Key band-pass circuit in Figure 16-33 has the followi

    A(s) = G.RC~m .S

    1 + R Ce 0m (3 - G ) s + R2C2(.Om2.S2

    Through coefficient comparison with Equation 16-10, obtain the

    1

    mid-frequency: fm = 2~RC

    a 2

    inner gain:

    G = 1 R~

    G

    gain at fm Am = 3 - G

    f i l t e r qua l i t y : Q =

    3 - G

    The Sallen-Key circuit has the advantage that the quality factor (Q

    inner gain (G) without modifying the m id frequency (fm). A drawb

    and Am cannot be adjusted independently.

    Care must be taken when G approaches the value of 3, because th

    (45)

  • 8/18/2019 3. Filtros Ativos

    43/63

    Prof. Roberto M. Finzi Neto 12/12/14 43

    e. Projeto de Filtros Passa Banda (PBn)I.  Segunda Ordem! Procedimento de projeto:①  Definir fm, C e depois calcular②  Devido à dependência entre Q e Am podemos calcular R 2 de duas

    formas diferentes. A equação escolhida dependerá se o projeto iráseguir algum requisito de Q ou de Am. 

    ③  Use as Eq. (43), (44) e (45) para definir o ganho do filtro.

    Exercício: projete um Filtro PBn com frequência central de 1kHz, largurade banda de 200Hz.

    f i l te r q u a l i t y : Q =

    3 - G

    The Sallen-Key circuit has the advantage that the quality factor (Q) can b

    inner gain (G) without modifying the mid frequency (fm ). A drawback is, h

    and Am cannot be adjusted independently.

    Care mus t be taken when G approaches the value of 3, because then A m b

    and causes the circuit to oscillate.

    To set the mid frequency of the band-pass, specify fm and C and then so

    a

    2~mC

    290

    (46)Band Pass Filter Design

    Beca use of the dependency between Q and Am, there are two options to solve for R2: ei-

    ther to set the gain at mid frequency:

    a 2 -

    2 A m - 1

    1

    + A m

    or to design for a specified Q:

    R2 = 2 Q - 1

    Q

    1 2 Multiple Feedback Topology

    c

    (47.a)

    Because of the dependency between Q and Am, there are t

    ther to set the gain at mid frequency:

    a 2 -

    2 A m - 1

    1

    + A m

    or to design for a specified Q:

    R2 = 2 Q - 1

    Q

    16 5 1 2 Multiple Feedback Topology

    a 1

    VIN

    c

    VOUT

    (47.b)

  • 8/18/2019 3. Filtros Ativos

    44/63

    Prof. Roberto M. Finzi Neto 12/12/14 44

    e. Projeto de Filtros Passa Banda (PBn)I.  Segunda OrdemResolução.

    Com base em f m = 1kHz , podemos definir C = 100nF e calcular R.

    Como foi especificada a largura de banda (200Hz), estamos fazendo umprojeto voltado ao fator de qualidade do filtro. Usando Eq. (39), temos Q.

    Podemos calcular G e Am usando Eq. (43) e (44).

    O Alto valor de Am  implicará num valor limitado de V in devido à saturação doamplificador operacional. 

     R =1

    2 !"  !103 !100 !10#9  $1592%

    Q = f m

     B=

    1000

    200= 5

    G =3!Q

    "1

    Q=

    3!5"1

    5= 2, 8

     Am  =

    G

    3!G=

    2,8

    3! 2,8=14

    Definindo R 1

     = 1k e usandoEq. (43), temos:

     R2  =  R

    1!   G "1( )

     R2  = 1000 !   2,8 "1( )

     R2  = 1,8k #

  • 8/18/2019 3. Filtros Ativos

    45/63

    Prof. Roberto M. Finzi Neto 12/12/14 45

    e. Projeto de Filtros Passa Banda (PBn)I.  Segunda Ordem

    Deve-se tomar cuidado com o projeto baseado no Q pelos seguintes motivos:- Grandes valores de Q geram valores bem altos de Am.- Se G se aproxima de 3, teremos Am infinito, o que nos obriga a alterar o valorde Q. 

    Q _ 10 = 31 8 kQ

    R2 - ~frnC =. 1 kHz . 100 nF "

  • 8/18/2019 3. Filtros Ativos

    46/63

    Prof. Roberto M. Finzi Neto 12/12/14 46

    e. Projeto de Filtros Passa Banda (PBn)II.  Quarta Ordem! Filtros PBn de 4ª ordem permitem a especificação do tipo da resposta.

    A serialização de dois filtros PBn leva ao filtro de 4ª ordem com afunção transferência abaixo, onde:

    Ami, fmi  e Qi  representa o ganho, frequência média e fator de qualidade doenésimo estágio, respectivamente."  α e 1/α são os fatores que definem o quão distante estão fm1 e fm2 do f m 

    de projeto do total do filtro. Filtros com alto valor de Q têm fm1 e fm2 muitopróximos de f m.

    O fator α  é calculado pela Eq. (49) usando o método de aproximaçõessucessivas, com a1 e b1 sendo os coeficiente do filtro PB de 2ª ordem.

    R2 _- 31.8 kQ = 7.96 k~

    R1 = - 2Am 4

    - AmR1 2.7.96 kQ = 80.4

    R 3 = 2 Q 2 + A m = 2 0 0 - 2

    -Order Band-Pass Filter Staggered Tuning)

    gure 16-32 shows that the frequency response of second-order band-pass filters gets

    eeper with rising Q. However, there are band-pass applications that require a flat gain

    sponse close to the mid frequency as well as a sharp passband-to-stopband transition.

    ese tasks can be accomplished by higher-order band-pass filters.

    particular interest is the application of the low-pass to band-pass transformation onto

    second-order low-pass filter, since it leads to a fourth-order band-pass filter.

    eplacing the S term in Equation 16-2 with Equation 16-7 gives the general transfer func-

    n of a fourth-order band-pass:

    s2.A0(AQ) 2

    A(s ) = b, (16-1 1)

    a, [ (Aa)2 ]-S2 4- a,

    1 +~ /k Q. S+ 2+ b~ _1 ~A Q' S3 + s4

    milar to the low-pass filters, the fourth-order transfer function is split into two second-or-

    r band-pass terms. Further mathematical modifications yield:

    Ami Ami s

    A(s) =

    [os ] [ ]

    1

    q u a t io n 1 6 - 1 2 r e p r e s e n t s t h e c o n n e c t i o n o f t w o s e c o n d - o r d e r b a n d - p a s s f il te rs in s e -

    es where

    (16-12)

    (48)

    Band Pass Filter De

      9 - . .̂ . . 9 , . .. ~ , ~ . ~ \ . . ~ ~ . . ~ ~

    9 Ami is the gain at the mid frequency, fmi, of each partial filter

    9 Qi is the pole qual ity of each filter

    9 o~ and 1/0~ are the factors by which th e mid fr eque ncies of the individ ual filters,

    and fm2, derive from the mid frequency, fm, of the overall bandpass.

    In a fourth-order band-pass filter with high Q, the mid frequencies of the two partial filt

    differ only slightly from the overall mid frequency. This method is called staggered tuni

    Factor ~ needs to be determined through successive approximation, using equat

    16-13:

    b 1

    = 0 (16-

    with al and bl being the second-order low-pass coefficients of the desired filter type

    (49)

    ,

    16-13:

  • 8/18/2019 3. Filtros Ativos

    47/63

    Prof. Roberto M. Finzi Neto 12/12/14 47

    e. Projeto de Filtros Passa Banda (PBn)II.  Quarta Ordem! Para facilitar a tarefa de projeto, a tabela abaixo sumariza as três

    principais respostas com os respectivos valores de α, ai, bi  eQ=1;10;100.

    Através deα calculamos: 

    Table 16 2.

    b 1

    = 0 (16-1 3)

    with al and bl being the second-order low-pass coefficients of the desired filter type.

    To simplify the filter design, Table 16 -2 lists those coefficients, and provides the o~ values

    for three different quality factors, Q = 1, Q = 10, and Q = 100.

    Values of o~ Fo r Different Filter Types and Differen t Q s

    al

    b l

    O

    X

    Bessel

    1.3617

    100

    0 01

    1.0032

    0.6180

    10 1

    0.1 1

    1.0324 1.438

    Butterworth

    al 1.4142

    bl 1.0000

    Q 100 10

    A~ 0 01 0 1

    1.0035 1.036

    1

    1

    1.4426

    Tschebyschef f

    al 1 0650

    bl 1.9305

    O 100 10

    A~ 0 01 0 1

    o~ 1.00 33 1.03 38

    1

    1

    1.39

    ign

    o~ has been determined, all quantities of the partial filters can be calcu lated using the

    ing equations:

    id frequency of filter 1 is:

    fm (16-14)

    fml = -E

    id frequency of filter 2 is:

    (50)

    Band Pass Filter Design

    Afte r o~ has been determined, all quantities of the partial filters can be calcu lated using

    following equations:

    The mid frequency of filter 1 is:

    fm (16-

    fml = -E

    the mid frequency of filter 2 is:

    fm2 = fm'~ (16 -

    with fm being the mid frequency of the overall forth-order band-pass filter.

    (51)

    Band Pass Filter Design

    After o~ has been determined, all quantities of the partial filters can be calcu lated

    following equations:

    The mid frequency of filter 1 is:

    fm

    fml = -E

    the mid frequency of filter 2 is:

    fm2 = fm'~

    with fm being the mid frequency of the overall forth-order band-pass filter.

    The individual pole quality, Qi, is the same for both filters:

    Qi = Q (1 + (~2)b 1

    a-a 1

    with Q being the quality factor of the overall filter.

    (52)

    Afte r o~ has been determined, all quantities of the p

    following equations:

    The mid frequency of filter 1 is:

    fm

    fml = -E

    the mid frequency of filter 2 is:

    fm2 = fm'~

    with fm being the mid frequency of the overall fort

    The individual pole quality, Qi, is the same for bot

    Qi = Q (1 + (~2)b 1

    a-a 1

    with Q being the quality factor of the overall filter.

    The individual gain (Ami) at the partial mid frequen

    filters:

    Am = e i ll///Am

    with Am being the gain at mid frequency, fm, of th

    (53)

  • 8/18/2019 3. Filtros Ativos

    48/63

    Prof. Roberto M. Finzi Neto 12/12/14 48

    e. Projeto de Filtros Passa Banda (PBn)II.  Quarta Ordem! Exercício. Projete um Filtro PBn com freq. central de 10kHz, largura de

    banda de 1kHz, ganho unitário e resposta maximamente plana na faixade passagem e resposta de ButterWorth.

    Resolução.Da tabela, obtemos os coeficientes: a1 =1.4141, b1 = 1 eα=1.036, porque

    Q =10kHz/1kHz = 10, Eq. (39).

    Usando as Eq. (50) e (51) calculamos as freq. médias de cada estágio.

    O fator de qualidade e o ganho dos dois estágio são sempre iguais. Seuscálculos são feitos abaixo:

    Band Pass Filter Design

    ================= =============== . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : : : : : . . . . . . . . ~ . . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    In accordance with Equations 16-14 and 16-15, the mid frequencies for the partial filters

    are:

    fmi -- 10 kH z = 9.6 53 kH z and

    1.036

    fro2 = 10 kHz .1.0 36 = 10.36 kHz

    The overall Q is defined as Q = frn/B, and for this example results in Q = 10.

    Using Equation 16-16, the Qi of both filters is:

    Qi = 10 (1 + 1 0362)'1

    1.6-36:1~1~,2 = 14.15

    Band Pass Filter Design

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : : : : : . . . . . . . . ~ . . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    In accordance with Equations 16-14 and 16-15, the mid frequencies for the partial filters

    are:

    fmi -- 10 kH z = 9.6 53 kHz and

    1.036

    fro2 = 10 kHz .1.0 36 = 10.36 kHz

    The o verall Q is defined as Q = frn/B, and for this examp le results in Q = 10.

    Using Equation 16-16, the Qi of both filters is:

    Qi = 10 (1 + 1 0362)'1

    1.6-36:1~1~,2 = 14.15

    Band Pass Filter Design

    = = = = = = = = = == = = = = = = = = = = = = == = . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : : : : : . . . . . . . . ~ . . . . . . . . . . . . . . . . :

    In accordance with Equations 16-14 and 16-15, the mid frequencies for the partial fi l ters

    are:

    fmi -- 10 kH z = 9.6 53 kH z and

    1.036

    fro2 = 10 kHz .1 .03 6 = 10.36 kHz

    The overall Q is defined as Q = frn/B, and for this example results in Q = 10.

    Using Equation 16-16, the Qi of both fi lters is:

    Qi = 10 (1 + 1 0362)'1

    1.6-36:1~1~,2 = 14.15

    With Equation 16- 17, the passb and gain of the partial fi lters at