3-1 Basic Principles.pdf

Embed Size (px)

Citation preview

  • 8/20/2019 3-1 Basic Principles.pdf

    1/26

    Module 3Module 3

    Solar PhotovoltaicSolar PhotovoltaicOsamu Iso

    Workshop on Renewable Energies

    November 14-25, 2005

    Nadi, Republic of the Fiji Islands

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    2

    3.Solar Photovoltaic3.Solar Photovoltaic

    1. Basic principles of PV1-1. Mechanism of generation1-2. Various type of PV cell1-3. Installation example1-4. Basic characteristic

    2. Potential assessment2-1. Basic principle of assessment2-2. Insolation measurement

    2-3. Estimation of annual generation power 2-4. Case practice

    3. System configuration3-1. Cells, Modules and Arrays3-2. Type of system ( Grid interconnection or not )3-3. Power conditioner (Control system)3-4. Batteries3-5. Wiring3-6. Some tips for system design3-7. Case practice

    • Contents

  • 8/20/2019 3-1 Basic Principles.pdf

    2/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    3

    3.Solar Photovoltaic3.Solar Photovoltaic

    4. Example of equipment price

    4-1. PV module

    4-2. Battery

    4-3. Power conditioner 

    5. Design example of Solar Home System ( SHS in Indonesia )

    5-1. E7 Climate Change Projects

    5-2. Renewable Energy Supply Systems

    5-3. Reference

    6. Design example of independent PV system for small community

    6-1. Basic condition and planning steps

    6-2. Basic load estimation

    6-3. System capacity design

    6-4. Backup generator 6-5. Merits of small grids (compare with SHS )

    6-6. Case practice

    • Contents

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    4

    3.Solar Photovoltaic3.Solar Photovoltaic

    7. Design example of grid-connected PV system and analysis of 

    7-1. String characteristics

    7-2. Energy production

    7-3. Observations and analysis

    8. Design example of grid interconnected PV system ( Philippine )

    8-1. Introduction

    8-2. Outline of Photovoltaic system

    8-3. Lessons Learned8-4. Photo and Drawings

    9. Maintenance

    • Contents

  • 8/20/2019 3-1 Basic Principles.pdf

    3/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    5

    3. Solar Photovoltaic3. Solar Photovoltaic

    1. Basic principles of PV

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    6

    1.Basic principle of PV1.Basic principle of PV

    1. Basic principles of PV

    1-1. Mechanism of generation

    1-2. Various type of PV cell

    1-3. Installation example

    1-4. Basic characteristic

    1-5. Case study

    • Contents

  • 8/20/2019 3-1 Basic Principles.pdf

    4/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    7

       A   d  v  a  n   t  a  g  e  s (1) Clean

    Solar energy is a clean energy. It emits very smallamount of carbon gases or sulfur oxides.

    (2) InfiniteSolar energy is infinite and permanent.

       D   i  s  a   d  v  a  n   t  a  g  e  s

    (1) Volatile in outputThe amount of sunlight varies according to seasonsand weather. Therefore, generating electric power to meet the demand anytime is impossible.

    (2) Low in power densityRegardless of the vast solar energy coming down tothe earth, power density in sunlight can be as low as1,000 watts/m2. Acquisition of vast amount ofenergy needs vast surface area of the solar cell.

    22--11--1. Principle and system configuration1. Principle and system configuration

    • Characteristics of Photovoltaic

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    8

    22--11--2. Installed Capacity in the World2. Installed Capacity in the World

    • Trends in Photovoltaic capacity in the world

    0

    200,000

    400,000

    600,000

    800,0001,000,000

    1,200,000

    1,400,000

    1,600,000

    1,800,000

    2,000,000

    92 93 94 95 96 97 98 99 00 01 02 03

     Year 

    1,809,000kW

    Installed capacityper year Accumulated

    capacityInstalled capacityper year 

    Accumulatedcapacity

    Cap a

    city(kW)

    Other 

    8.2%

    Australia

    2.9%

    Germany 22.7%

    USA

    15.2%

    Netherlands

    2.5%

    Italy 1.4%

    Accumulated capacity[MW]

    at the end of 2003

    JAPAN

    47.5%

  • 8/20/2019 3-1 Basic Principles.pdf

    5/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    9

      +

      +

      +  +

      -  -

      -

      -

    Photo Voltaic cell

    Electrode

    P-Type Semiconductor 

    N-Type Semiconductor 

    Reflect-Proof Film

    Electrode

    Solar Energy

    Load

       E   l  e  c   t  r   i  c   C  u  r  r  e  n   t

    11--1. Mechanism of generation1. Mechanism of generation

    • Mechanism of generation

    The solar cell is composed of a P-type semiconductor and an N-typesemiconductor. Solar light hitting the cell produces two types of electrons,

    negatively and positively charged electrons in the semiconductors.Negatively charged (-) electrons gather around the N-type semiconductor while positively charged (+) electrons gather around the P-typesemiconductor . When you connect loads such as a light bulb, electriccurrent flows between the two electrodes.

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    10

    11--1. Mechanism of generation1. Mechanism of generation

    • Direction of current inside PV cell

    P

    N

    Current appearsto be in the

    reverse direction ?

    • Inside current of PV cell looks like

    “Reverse direction.” Why?

    ?

    • By Solar Energy, current is pumpedup from N-pole to P-pole.

    • In generation, current appears reverse.

    It is the same as for battery.

    P

    N

    Looks likereverse

  • 8/20/2019 3-1 Basic Principles.pdf

    6/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    11

    11--1. Mechanism of generation1. Mechanism of generation

    • Voltage and Current of PV cell ( I-V Curve )

    (V)

    (A)

    Voltage(V)

       C  u  r  r  e  n   t   (   I   )

    P

    N

    A

    Short Circuit

    Open Circuit

    P

    N

    V

    about 0.5V

    (Silicon)

    High intensity insolation

    •Voltage on normal operation point

    0.5V (in case of Silicon PV)

    •Current depend on

    - Intensity of insolation

    - Size of cell

    •Voltage on normal operation point

    0.5V (in case of Silicon PV)

    •Current depend on

    - Intensity of insolation

    - Size of cell

    Low intensity insolation

    Normal operation point

    (Maximum Power point)

    I x V = W

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    12

    11--1. Mechanism of generation1. Mechanism of generation

    • Typical I-V Curve

    (V)

    (A)

    Voltage(V)

       C  u  r  r  e  n   t   (   I   )

    0.49 V

    St and ar d  insolat ion 1.0  k W  / m2 

    0.62 V

    4.95A

    5.55A

    Depend on type

    of cell or cell-

    material

    ( Si = 0.5V )

    Depend on cell-size

    Depend on

    Solar insolation

  • 8/20/2019 3-1 Basic Principles.pdf

    7/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    13

    11--1. Mechanism of generation1. Mechanism of generation

    • Illegal use

    If you charge PV by another power source

    and try to make normal direction current,

    the PV will heat up and cease to function.

    Do not charge PV by another power source.

    Force to make normal

    direction current

    Do not create a short circuit when sunshine is being received.

    P

    N

    If a short circuit is created during insolation,

    large current will heat up PV cell and cellwill cease to function.

    P

    N

    +

    -

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    14

    CrystallineCrystalline

    Non-crystallineNon-crystalline

    Single crystalSingle crystal

    Poly crystallinePoly crystalline

    AmorphousAmorphous

    Gallium Arsenide (GaAs)Gallium Arsenide (GaAs)

    Conversion Efficiencyof Module

    Conversion Efficiencyof Module

    10 - 17%10 - 17%

    10 - 13%10 - 13%

    7 - 10%7 - 10%

    18 - 30%18 - 30%

    Conversion Efficiency =Electric Energy Output

    Energy of Insolation on cellx100%

    Dye-sensitized TypeDye-sensitized Type

    Organic Thin Layer TypeOrganic Thin Layer Type

    7 - 8%7 - 8%

    2 - 3%2 - 3%

    11--2.2. Various type of PV cellVarious type of PV cell

    • Types and Conversion Efficiency of Solar Cell

    Silicon

    Semiconductor 

    Silicon

    Semiconductor 

    CompoundSemiconductor CompoundSemiconductor SolarCell

    SolarCell

    Organic

    Semiconductor 

    Organic

    Semiconductor 

    (Note) Single crystal = Mono crystal

  • 8/20/2019 3-1 Basic Principles.pdf

    8/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    15

    • Crystal cell (Single crystal and Poly crystalline Silicon)

    Single crystal Poly crystalline

    11--2.2. Various type of PV cellVarious type of PV cell

    10cm 10cm

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    16

    • Surface of PV cell

    11--2.2. Various type of PV cellVarious type of PV cell

    Front Surface

    (N-Type side)

    • Aluminum Electrode(Silver colored wire)

    • To avoid shading,electrode is very fine.

    Anti reflection film

    (Blue colored film)

    • Back surface is P-type.

    • All surface isaluminum electrodewith full reflection.

  • 8/20/2019 3-1 Basic Principles.pdf

    9/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    17

    Single crystal Poly crystalline

    120W

    (25.7V ,4.7A)

    1200mm

    800mm800mm

    1200mm

    11--2.2. Various type of PV cellVarious type of PV cell

    • PV Module (Single crystal, Poly crystalline Silicon)

    (3.93ft)

    (2.62ft)

    (3.93ft

    (3.93ft)

    128W

    (26.5V ,

    4.8A)

    Formed by melting high purity

    silicon, then sliced very thinly and

    processed into solar panel.

    “Metal silicon pure enough to

    manufacture solar cell”

    is poured into a mold and crystallized.

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    18

    11--2.2. Various type of PV cellVarious type of PV cell

    • Single crystal silicon production process

    Same as IC’s process Pulled up veryslowly to make

    perfect crystal

    • Perfect crystal growing is possible.

    • Efficiency is high.

    • Process speed is low.

    • Price is high.

    • Perfect crystal growing is possible.

    • Efficiency is high.

    • Process speed is low.

    • Price is high.

  • 8/20/2019 3-1 Basic Principles.pdf

    10/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    19

    11--2.2. Various type of PV cellVarious type of PV cell

    • Poly crystalline silicon production process

    FragmentationFragmentation

    MeltingMelting

    Re-crystallizingRe-crystallizing

    CoolingCooling

    CuttingCutting

    SlicingSlicing

    Cool slowly to make

    larger crystal

    • Crystallization is not perfect.

    • Efficiency is lower than single crystal.

    • Process speed relatively higher.

    • Price is lowerthan single crystal.

    • Crystallization is not perfect.

    • Efficiency is lower than single crystal.

    • Process speed relatively higher.

    • Price is lower than single crystal.

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    20

    11--2.2. Various type of PV cellVarious type of PV cell

    • Improvement of Poly crystalline production process

    Molten silicon

    Meltingpot

    Cooling block

    Ideal control ofingot cooling

    process

    Heater control

    Avoid pollution

    Cool slowly,

    carefully

    Crack ofcrystallinecauses lawefficiency

    Improvement

    To grow big crystalline cell

  • 8/20/2019 3-1 Basic Principles.pdf

    11/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    21

    Glass substrate type Film substrate type

    11--2.2. Various type of PV cellVarious type of PV cell

    • Amorphous (Non-Crystalline) Silicon Solar Panels

    • Manufactured by applying thin-layer manufacturing technology forsemiconductor 

    • Good for mass production. Price is lower than crystal type

    • Efficiency is lower than crystal type

    • Very flexible. Easy to fit on any shape of substrate.

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    22

    11--2.2. Various type of PV cellVarious type of PV cell

    • A-Silicon production processLike “Rotary printer” for news paper (good for mass production)

    PunchingSerial-hole forming

    Metal electrode forming PunchingCorrecting electrode forming

    Amorphous siliconforming

    Transparent electrodeforming

    Back patternelectrode forming

    Electrode patterning

    LASER patterner 

    Lamination

    Protective film

    Plasma formingprocess

    ( Vacuumed chamber )

    SiH4 + O2 Si + 2H2O

  • 8/20/2019 3-1 Basic Principles.pdf

    12/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    23

    11--2.2. Various type of PV cellVarious type of PV cell

    • Comparison of type

    Price Efficiency 1 W size Current Production

    Single crystal High 10 - 17 % 1.0 about 30 %

    Poly crystalline Medium 10 – 13 % 1.3 about 60 %

    Amorphous Low 7 – 10 % 1.7 about 10 %

    (Reference)

    PV cell size for1 W power generation

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    24

    11--2.2. Various type of PV cellVarious type of PV cell

    • Shear of type

    1018.4

    10.2

    0

    9.9

    5.8

    10.1

    2.7

    5

    5.4

    65.4

    10.250.3

    73.9   56

    18.8

    61.3

    36.8

    21.128.7

     

    1

    2

    3

    4

    5

    6

    7

    8

    9

    1

    Japan USA EU Others Total

    Single Crystal

    Poly Crystalline

    Amorphous

    Others

  • 8/20/2019 3-1 Basic Principles.pdf

    13/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    25

    11--2.2. Various type of PV cellVarious type of PV cell

    • Sun shine spectrum and PV

    Wavelength (nm)

       R  e   l  a   t   i  v  e   S  p  e  c   t  r  a   l  r  e  s  p  o  n  s  e

       I  r  r  a   d   i  a  n  c  e   (   W   /  m   )

    Sun SpectrumCrystalline Silicon

    Amorphous Silicon

    Visible light Infra RedUltra Violet

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    26

    11--2.2. Various type of PV cellVarious type of PV cell

    • Production share of the world market

    1,194.7MW

    (2004)

    Japan

    50.3%EU

    26.3%

    USA

    11.6%

    Others

    11.7%SHARP27.1%

    KyoCera8.8%

    SANYO5.4%

  • 8/20/2019 3-1 Basic Principles.pdf

    14/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    27

    Refining

    99.99999999 %

    Raw SiliconSemiconductor 

    Wafer for ICIC Chip

    Refining

    99.9999 %

    PV

    Garbage,Edge,Inferior IC

    Under developing

    (Expensive now)

    11--2.2. Various type of PV cellVarious type of PV cell

    • How to make PV’s silicon

    (Melt again)

    To get cheaper silicon, recycled silicon is used for PV.

     Amount of raw material is affected by IC industry’s production

    To get cheaper silicon, recycled silicon is used for PV.

     Amount of raw material is affected by IC industry’s production

    Refining purity is lower than IC

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    28

    11--2.2. Various type of PV cellVarious type of PV cell

    • Use insolation efficiently and reduce materials

    Anti reflectioncoating

    Back side reflectiveelectrode

    Slice thin wafer 

    Wire saw

    Low resistance finepatterned front electrode

    Texturized surface

    ( like a pyramid )

    Polycrystalline ingot

    Poly Si wafer 

    fine wire saw

    Reduce reflection

  • 8/20/2019 3-1 Basic Principles.pdf

    15/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    29

    11--2.2. Various type of PV cellVarious type of PV cell

    • Hierarchy of PV

    2 – 3 W

    100 - 200 W

    10 - 50 kW

    Cell

    Array

    Module,Panel

    Volt Ampere Watt Size

    Cell 0.5V 5-6A 2-3W about 10cm

    Module 20-30V 5-6A 100-200W about 1m

    Array 200-300V 50A-200A 10-50kW about 30m

    6x9=54 (cells) 100-300 (modules)

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    30

    11--2.2. Various type of PV cellVarious type of PV cell

    • Roughly size of PV Power Station.

    In this conference room, how much PV panel we can install?

    1 kw PV need 10 m21 kw PV need 10 m2 Please

    remember 

    10m(32feet)

       2   0  m   (   6   5   f  e  e   t

       )

    Conference

    Room

    (We are now)

    Our room has about 200 m2

    We can install about

    20 kW PV in this room

  • 8/20/2019 3-1 Basic Principles.pdf

    16/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    31

    11--3.3. Installation exampleInstallation example

    • Roof top style ( Residence )

    •Main grid connected

    •AC supply

    •No battery

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    32

    11--3.3. Installation exampleInstallation example

    • Roof top style ( School , Community-center building)

    •Main grid connected

    •AC supply

    •With battery for emergency

  • 8/20/2019 3-1 Basic Principles.pdf

    17/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    33

    11--3.3. Installation exampleInstallation example

    • Roof top style ( Off grid power supply )

    Relay station on top of mountain Advertising sign beside highway

    •No Grid connection

    •AC supply•With battery

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    34

    11--3.3. Installation exampleInstallation example

    • Roof top style ( Mountain lodge)

    1.2kW system

    Inverter and controller 

    •No Grid connection

    •AC supply

    •With battery

  • 8/20/2019 3-1 Basic Principles.pdf

    18/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    35

    11--3.3. Installation exampleInstallation example

    • Stationary style

    Site: Mongolia

    Installation: May & June in 1999

    Purpose: For lighting, refrigerator

    and outlet in a hospital

    Solar cell capacity: 3.4kW

    Wind Power capacity: 1.8kW

    Inverter capacity: 5kVA

    •Independent small Grid connection

    •AC supply

    •With battery

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    36

    The system supplies alternating currentelectricity to 240 residences in 3 villages.

    *Solar cell capacity: 151kW (total of 3 villages)

    *Type of solar cell: single-crystal

    *Inverter capacity: 100kW

    *Battery:7,700kWh (total of 3 villages)

    *Year of installation: 1986

    22--11--3. Example3. Example

    • Electrification of a village (in Thailand)

    • Small Grid connection(3 villages grid)

    • AC supply

    • With battery

  • 8/20/2019 3-1 Basic Principles.pdf

    19/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    37

    11--3.3. Installation exampleInstallation example

    • Solar Home System (SHS)

    Solar array

    Solar arraySolar array

    Solar array

    Controller 

    Light

    Storage battery

    •No Grid connection

    •DC supply

    •With battery

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    38

    11--4.4. Basic CharacteristicBasic Characteristic

    • I / V curve and P-Max control

    P

    N

    A

    V

    • To obtain maximum power, current

    control (or voltage control) is veryimportant.

    P- Max controlP- Max control

    • “Power conditioner” (mentioned

    later) will adjusts to be most suitablevoltage and current automatically.

    (V)

    (A)

    Voltage(V)

       C  u  r  r  e  n   t   (   I   )

    I x V = W

    P2

    PMAX

    P1

    Vpmax

    Ipmax

    Power curve

    I/V curve

  • 8/20/2019 3-1 Basic Principles.pdf

    20/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    39

    11--4.4. Basic CharacteristicBasic Characteristic

    • Estimate current and voltage by I / V curve

    (V)

    (A)

    Voltage(V)

       C  u  r  r  e  n   t   (   I   )

    12

    10

    8

    6

    4

    2

    0

    0 0.1 0.2 0.3 0.4 0.5 0.6

    )(05.0   Ω= R

     I 

    V  R   =

    P

    N

    A

    )(05.0   Ω= R

    If the load has 0.05 ohm resistance,

    Circuit current is 10 AVoltage is 0.5 V

    Then power is 10x0.5=5 W

      R e s  i s  t a n

     c e  c  h a

     r a c  t e r

    PV character 

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    40

    11--4.4. Basic CharacteristicBasic Characteristic

    • I / V curve vs. Insolation intensity

    P

    NP

    N

    Mismatch

    5A

    1A

    P

    NP

    N

    BypassDiode

    5A

    1A 4A(V)

    (A)

       C  u  r  r  e  n   t   (   I   )

    High intensity insolation

    Low intensity insolation

    I x V = W

    5A

    1A

    •Current is affected largely by change

    of insolation intensity.

    •Partially shaded serial cell will

    produce current mismatch.

    Bypass Diode

  • 8/20/2019 3-1 Basic Principles.pdf

    21/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    41

    11--4.4. Basic CharacteristicBasic Characteristic

    • Temperature and efficiency

    4

    6

    8

    1

    12

    14

      1 2 3 4 5 6 7 8 9 1

    Module Temperature (deg.C)

       E   f   f   i  c   i  e  n  c  y   (   %   )

    Crystalline cell

    Amorphous cell

    0.25 ( % / deg)

    Typical(25C)

    Summer timeon roof top

    (65C)

    2%down 0 .4  – 0 .5  ( %  / d e g  ) 

    •When module temperature rises up, efficiency decreases.

    •The module must be cooled by natural ventilation, etc.

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    42

    11--5.5. Case studyCase study

    • Maximum power control

    P

    N

    P

    N

    P

    N

    )(05.0   Ω= R

    )(10.0   Ω= R

    )(02.0   Ω= R

    Q : Calculate loaded power to resistance.

    ( I / V curve is next page)

    (Work)

  • 8/20/2019 3-1 Basic Principles.pdf

    22/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    43

    11--5.5. Case studyCase study

    • Maximum power control

    (V)

    (A)

    Voltage(V)

       C  u  r  r  e  n   t   (   I   )

    12

    10

    8

    6

    4

    2

    0

    0 0.1 0.2 0.3 0.4 0.5 0.6

    )(05.0   Ω= R

     I 

    V  R   =

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    44

    11--5.5. Case studyCase study

    • Maximum power control

    (V)

    (A)

    Voltage(V)

       C  u  r  r  e  n   t

       (   I   )

    12

    10

    8

    6

    4

    2

    0

    0 0.1 0.2 0.3 0.4 0.5 0.6

    )(05.0   Ω= R

    )(02.0   Ω= R

    )(10.0   Ω= R

     I 

    V  R   =

    )(58.22.1123.0   W  P    =×=

    )(31.37.558.0   W  P    =×=

    )(00.50.1050.0   W  P    =×=

  • 8/20/2019 3-1 Basic Principles.pdf

    23/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    45

    11--5.5. Case studyCase study

    • Maximum power control

    P

    N

    P

    N

    P

    N

    )(05.0   Ω= R

    )(10.0   Ω= R

    )(02.0   Ω= R

    Q : Calculate loaded power to the resistance.

    ( I / V curve is next page)

    )(58.22.1123.0   W  P    =×=

    )(00.50.1050.0   W  P    =×=

    )(31.37.558.0   W  P    =×=

    Maximum

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    46

    11--5.5. Case studyCase study

    • Bypass Diode

    Q : Calculate maximum power of each system.

    a : No bypass diode.

    b : With bypass diode.

    ( I / V curve is next page)

    P

    NP

    N

    P

    NP

    N

    System “a” System “b”

    (Work)

  • 8/20/2019 3-1 Basic Principles.pdf

    24/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    47

    11--5.5. Case studyCase study

    • Bypass Diode

    (V)

    (A)

    Voltage(V)

       C  u  r  r  e  n   t   (   I   )

    12

    10

    8

    6

    4

    2

    0

    0 0.1 0.2 0.3 0.4 0.5 0.6

    P1max (0.5V,10A)

    P2max (0.5V,4A)

    PXmax (0.6V,3A)

    High insolation intensity

    Low insolation intensity

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    48

    11--5.5. Case studyCase study

    • Bypass Diode

    (V)

    (A)

    Voltage(V)

       C  u  r  r  e  n   t

       (   I   )

    12

    10

    8

    6

    4

    2

    0

    0 0.1 0.2 0.3 0.4 0.5 0.6

    P1max (0.5V,10A)

    P2max (0.5V,4A)

    PXmax (0.6V,3A)

    High insolation intensity

    Low insolation intensity

    For system “a”

    )(8.136.01   W  Pa   =×=

    )(8.136.02   W  Pa   =×=

    3.6 W

  • 8/20/2019 3-1 Basic Principles.pdf

    25/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    49

    11--5.5. Case studyCase study

    • Bypass Diode

    (V)

    (A)

    Voltage(V)

       C  u  r  r  e  n   t   (   I   )

    12

    10

    8

    6

    4

    2

    0

    0 0.1 0.2 0.3 0.4 0.5 0.6

    P1max (0.5V,10A)

    P2max (0.5V,4A)

    PXmax (0.6V,3A)

    High insolation intensity

    Low insolation intensity

    For system “b”

    )(0.5105.01   W  Pb   =×=

    )(0.245.02   W  Pb   =×=

    7.0 W

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    50

    11--5.5. Case studyCase study

    • Bypass Diode

    Q : Calculate maximum power of each system.

    a : No bypass diode.

    b : With bypass diode.

    ( I / V curve is next page)

    P

    NP

    N

    P

    NP

    N

    System “a” System “b”

    3A10A

    6A4A

    1.8 W

    1.8 W

    Total = 3.6 W

    5.0 W

    2.0 W

    Total = 7.0 W

  • 8/20/2019 3-1 Basic Principles.pdf

    26/26

            2        2   -

            N      o      v   -        0

           5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o

       p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r   g    i   e   s

    51

    11--5.5. Case studyCase study

    • Temperature vs. Efficiency

    4

    6

    8

     

    2

     4

      2 3 4 5 6 7 8 9

    Module Temperature (deg.C)

       E   f   f   i  c   i  e  n  c  y   (   %   )

    Crystalline cell

    Amorphous cell

    0.25 ( % / deg)

    Typical(25C)

    Summer timeon roof top

    (65C)

    2%down 0 .4  – 0 .5  ( %  / d e g  ) 

    4

    6

    8

     

    2

     4

      2 3 4 5 6 7 8 9

    Module Temperature (deg.C)

       E   f   f   i  c   i  e  n  c  y   (   %   )

    Crystalline cell

    Amorphous cell

    0.25 ( % / deg)

    Typical(25C)

    Summer timeon roof top

    (65C)

    2%down 0 .4  – 0 .5  ( %  / d e g  ) 

    Q: Suppose there is a 50 kW Crystalline PV system.

    If surface temperature rises to 65ºC, what is the system

    capacity?

    (Work)

            2        2   -

            N      o      v   -

            0       5

            (        1       7      :       5        2        )

       e    7    /    P    P    A    W   o   r    k   s    h   o   p   o   n    R   e   n   e   w   a    b    l   e    E   n   e   r

       g    i   e   s

    52

    11--5.5. Case studyCase study

    • Temperature vs. Efficiency

    4

    6

    8

     

    2

     4

      2 3 4 5 6 7 8 9

    Module Temperature (deg.C)

       E   f   f   i  c   i  e  n  c  y

       (   %   )

    Crystalline cell

    Amorphous cell

    0.25 ( % / deg)

    Typical(25C)

    Summer timeon roof top

    (65C)

    2%down 0 .4  – 0 .5 

     ( %  / d e g  ) 

    4

    6

    8

     

    2

     4

      2 3 4 5 6 7 8 9

    Module Temperature (deg.C)

       E   f   f   i  c   i  e  n  c  y

       (   %   )

    Crystalline cell

    Amorphous cell

    0.25 ( % / deg)

    Typical(25C)

    Summer timeon roof top

    (65C)

    2%down 0 .4  – 0 .5 

     ( %  / d e g  ) 

    )(3.4213

    1150   kW =×

    Approx. 15% down

    13

    11

    Q: Suppose there is a 50 kW Crystalline PV system.

    If surface temperature rises to 65ºC, what is the systemcapacity?