2unit Formulae

Embed Size (px)

Citation preview

  • 8/12/2019 2unit Formulae

    1/5

    MATHEMATICS REVISION OF FORMULAE AND RESULTS

    Surds

    ab =ab

    a

    b=a

    b

    (a)2=aAbsolute Value

    a= a if a 0a=a if a

  • 8/12/2019 2unit Formulae

    2/5

    Trigonometric Results

    sin=opposite

    hypotenuse (SOH)

    cos=adjacent

    hypotenuse (CAH)

    tan=opposite

    adjacent (TOA)

    Complementary ratios:

    sin90 =coscos90 =sintan90 =cot

    sec90 =coseccosec(90 )=sec

    Pythagorean Identities

    sin2+cos2=1

    1+cot2=cosec2

    tan2+1=sec2

    tan=sin

    cos and cot=

    cos

    sin

    The Sine Rule

    a

    sinA=

    b

    sinB=

    c

    sinC

    The Cosine Rule

    a2=b2+c2 2bcCosA

    CosA=b

    2+c2a2

    2bc

    The Area of a Triangle

    Area=1

    2abSinC

    The Quadratic Polynomial

    The general quadratics is: y=ax2+bx+c

    The quadratic formula is: x=bb24ac

    2a

    The discriminant is: =b2 4ac

    If 0 the roots are real

    If

  • 8/12/2019 2unit Formulae

    3/5

    Differentiation

    First Principles:

    f' (x) = limh

    f(x+ h) f(x)h

    or

    f' (c) = limx

    c

    f

    (x) f(c)h

    Ify=xn thendy

    dx=nxn1

    Chain Rule:d

    dxf (u)=f '(u) du

    dx

    Product Rule: Ify=uvthendy

    dx=

    udv

    dx+v

    du

    dx

    Quotient Rule: Ify=u

    vthen

    dy

    dx=

    v

    du

    dx udv

    dx

    v2

    Trigonometric Functions:

    d

    dxsinx= cosx

    d

    dxcosx= sinx

    d

    dxtanx= sec2x

    Exponential Functions:

    d

    dx ef(x)

    =f '(x)ef(x)

    d

    dxax= ax.lna

    Logarithmic Functions:d

    dxlog

    ef(x)= f '(x)

    f (x)

    Geometrical Applications of Differentiation

    Stationary points:dy

    dx=0

    Increasing function:dy

    dx> 0

    Decreasing function:dy

    dx< 0

    Concave up:d

    2y

    dx2< 0

    Concave down:d

    2y

    dx2> 0

    Minimum turning point:dy

    dx=0and

    d2y

    dx2> 0

    Maximum turning point:dy

    dx=0and

    d2y

    dx2< 0

    Points of inflexion:d

    2y

    dx2=0and concavity changes

    about the point.

    Horizontal points of inflexion:dy

    dx=0and

    d2y

    dx2= 0and

    concavity changes about the point.

  • 8/12/2019 2unit Formulae

    4/5

    Approximation Methods

    The Trapezoidal Rule:

    fxdx= h2y

    0+y

    n+ 2y

    1+y

    2+y

    3+ +y

    n1b

    a

    Simpsons Rule:

    fxdx= h3y

    0+y

    n+ 4y

    1+y

    3++ 2y

    2+y

    4+

    b

    a

    In both rules, h=ba

    nwhere nis the number of strips.

    Integration

    Iff(x) 0 for axb, the area bounded by the

    curvey=f(x), thex-axis andx=aandx=bis given

    by fxdxba

    .

    The volume obtained by rotating the curvey=f(x)about the x-axis betweenx=aandx=bis given by

    fx2ba

    Ifdx

    dx

    =x

    n theny=xn+1

    n+1

    Ifdx

    dx= ax+bn then y =ax+ bn

    a(n + 1)

    Trigonometric Functions:

    sinxdx = cosx+C

    cosxdx = sinx+C

    sec2xdx

    = tanx+ C

    Exponential Functions:

    eaxdx= eaxa

    + C and axdx= 1ln a

    .ax

    Logarithmic Functions:

    f' (x)f(x) dx= logex +C

    Sequences and Series

    Arithmetic Progression

    d= U2 U1Un=a+n 1dSn=

    n

    2 [2a+n 1d]Sn=

    n

    2[a

    +l] wherelis the last term

    Geometric Progression

    r=U2

    U1

    Un=arn1

    Sn=arn1 1 =

    a1rn1r

    S=a

    1 r

    The Trigonometric Functions

    radians = 180

    Length of an arc: l=r

    Area of a sector: A=1

    2r2

    Area of a segment: A=1

    2r2( sin)

    [In these formulae, is measured in radians.]

    Small angle results:

    sinx0

    cosx1

    tanx

    0lim

    x 0sinx

    x= lim

    x 0tanx

    x= 1

    Fory=sin

    nxandy=cos

    nxthe period is2

    n

    For y=sinnxthe period is

    n

  • 8/12/2019 2unit Formulae

    5/5

    Logarithmic and Exponential Functions

    The Index Laws:

    ax ay= ax+y

    axay= axy

    ax

    y

    = axy

    ax= 1ax

    ax

    y= axy a0=1

    The logarithmic Laws:

    If logab=c then ac

    =b

    logax + log

    ay= log

    axy

    logax log

    ay= log

    axy

    logan + nlog

    ax

    logaa=1 and log

    a1 =0

    The Change of Base Result:

    logab=

    logeb

    logea=

    log10b

    log10a