99
2GLSS P.H. Regan 1 Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 [email protected] Spring Semester Books 1) Discovering Astronomy, Robins, Jefferys and Shawl, Wiley, (RJS) 2) An Introduction to Modern Astrophysics, Carroll and Osterlie, Wiley (CO) 3) Introductory Astronomy, Haliday, Wiley (HAL) 4) Active Galactic Nuclei, Robson, Wiley, (ROB) 5) Large-Scale Structures in the Universe, Fairall, Wiley (FAI)

2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 [email protected] Spring Semester Books 1)

Embed Size (px)

Citation preview

Page 1: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan1

Syllabus for 2GLSS, Galaxies and Large Scale Structures.

Dr. P.H. Regan, 29BC04, x6783

[email protected] Spring Semester

Books

1) Discovering Astronomy, Robins, Jefferys and Shawl, Wiley, (RJS)

2) An Introduction to Modern Astrophysics, Carroll and Osterlie, Wiley (CO)

3) Introductory Astronomy, Haliday, Wiley (HAL)

4) Active Galactic Nuclei, Robson, Wiley, (ROB)

5) Large-Scale Structures in the Universe, Fairall, Wiley (FAI)

Page 2: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan2

2GLSS Course Outline Perspectives

– Size scales

– Nuclei and atoms

– interstellar medium

– Standard Model Galaxies

– Milky Way

– Galaxy types, spirals, ellipticals...

– Colliding Galaxies Large Scale Structure

– Hubble’s Law

– Recognition of large scale structures Active Galaxies

– Active Galactic Nuclei

– Gamma-ray bursters

Page 3: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan3

Is the Universe Infinite ?Olber’s Paradox (RJS p534, CO p1222)

Q. Why is the sky dark at night ?

If the universe was infinitely large and old, you would see a star in your line of sight in all directions, the night sky should be bright!

This is evidently NOT the case, ‘Olber’s Paradox’.

Olber’s ‘solution’, space not transparent BUT this wouldn’t matter as any interstellar dust would be heated to the same temp. as stellar surface and thus glow the same colour .

Also proposed was that the recession velocity moved the light out of visible wavelengths (‘redshifted’), BUT the shift is not large enough.

A. Light has a finite speed (c=3x108 ms-1) and the light from the furthest stars has not reached the earth yet (solution proposed by Lord Kelvin and Edgar Allen Poe!) Thus the observable universe is finite in size (and age).

Page 4: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan4

Size Scales

•Nuclei approx 10-15 m, stellar fuel.

•Atoms approx 10-10m, cosmic probes

•People approx 1m, cosmic observers

•Stars approx 104m->1012m cosmic furnaces

•Galaxies approx 1019m->1021m (this course)

Units of Distance (RJS p320, CO p64)

1 astronomical unit (AU) = 1.5x1011m (= earth - sun distance)

1 Parsec =3.1x1016m (=1 parallax second) d (pc) = 1 Au / p (in seconds of arc)

1 light year (ly) = 9.5x1015m (=distance light travelled in 1 year)

Ro = 7.0x108m (= solar radius)

RO = 8.0(5)kpc (= sun -> centre of galaxy)

Page 5: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan5

Nuclei: Stellar Fuel.

(CO p349) Elements up to Fe (Z=26) can be formed by nuclear fusion, which keeps the star ‘burning’. H (Z=1), burns to He (Z=2), which burns to Carbon (Z=6). Then Carbon, Oxygen (Z=8) and Silicon (Z=14) burning are all allowed in large (heavy, hot and dense) stars. For Z>26 fusion is no longer energetically favourable, but heavier elements can be formed by neutron capture followed by - decay. (via the ‘slow’ (s) or ‘rapid’-neutron processes).

Page 6: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan6

See http://www.orau.gov/ria

Page 7: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan7

From Wiescher, Regan and Aprahamian, Physics World, February 2002, p33

Page 8: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan8

Elemental Abundances(CO p526, RJS p109, 307)

Note x-rays from solar photosphere show evidence of elements up to U (Z=92) in the sun. Large stars live for only around 106-7 years, very short compared to universal time scales. After this, large stars collapse and expel much of their reaction products into space for future star formation.

Page 9: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan9

From 2002 RIA summer school, seehttp://www.orau.gov/ria

Tc( Z=43)

Pm (Z=61)

Page 10: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan10

Atoms, Cosmic Probes.

Page 11: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan11

Emission and Absorption Lines

Star light(black body)

Interstellar medium( diffuse gas and dust)

Absorption lines(observation)

Emission lines(observation)

Most (approx 70%) of the Inter-Stellar Medium (ISM) is made up of hydrogen, in either atomic or molecular form.

For Hydrogen ATOMS the principal lines come from the Lyman, Balmer and Paschen Series

Page 12: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan12

•A hot, dense gas (or solid object) produces a continuous spectrum with no dark spectral lines. (Black-body spectrum)

•A hot, diffuse gas produces bright emission lines when an electron makes a transition from a higher excited state to a lower one. The wavelength of the emitted photon can be calculated from the energy difference between the initial and final levels.

•A cool diffuse gas in front of a black-body source produces dark, absorption lines when an electron is raised from a low-excitation energy orbit to a higher one.

Page 13: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan13

See http::/jersey.uoregon.edu/elements/Elements.html

Fe emission spectrum

Fe absorption spectrum

H absorption

H emission

Page 14: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan14

Where are our body parts made ?(% of human body by weight)

See http://www.orau.gov/ria

Page 15: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan15

Wiescher, Regan and Aprahamian, Physics World (2001) p33

Note that the elements Tc (Z=43) and Pm (Z=61) have no stable isotopes. Longest lived isotopes are 145Pm (T1/2=18 yrs) and 98Tc (4.2x106yrs).

Observation of the atomic spectra of these elements in extra-solar stellar atmospheres is proof of on- going elemental synthesis.

Page 16: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan16

Proposed Creation Sites of Elements.

(taken from http://www.orau.gov/ria

Page 17: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan17

S and R process peaks due to nuclear shell effects

Page 18: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan18

Metallicity (CO p920)

The iron (Fe, Z=26) content can be used as a good indicator of the age of the star. Newer stars have a higher iron content than their predecessors (more generations of reactions).

The metallicity is defined as the iron-to-hydrogen(Fe:H) ratio in the atmosphere of a star comparedto the solar value. This is given by the expression

[Fe/H] = log10 (NFe/NH) - log10(NFe/NH)o

where log10(NFe/NH)o corresponds to the solar value. This stars with metallicities identical to the sun’s have [Fe/H]=0. Typical values range from -4.5 for old, metal-poor stars, to +1 for young, metal-rich ones.

Note that some astronomers believe Type 1a supernovas may distort the local values of the[Fe/H] ratio for different regions of the inter-stellar medium (ISM) and thus prefer the [O/H] ratio instead as an measure of stellar age.

Page 19: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan19

Forbidden Lines, ‘Metastable states, ‘isomers’

CO p404, Certain transitions from excited atomic and molecular states are hindered in their decay, usually by some quantum mechanical decayselection rule. This can give rise to very longlifetimes for such states. For such atomic states to exist in interstellar gas etc. the density must be very small since (as on earth) random atomic collisions would de-excite this state.

Examples of such states at the=21cm decay in the neutral hydrogen atom (H-I) and the green glow associated with some nebular arising from emissions in doubly ionised oxygen (O-III).

Page 20: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan20

HI = hydrogen atoms. Existence is often seen by radiotelescopes via the observation of the electron-proton ‘spin-flip’ transition from hyperfine splitting. This has a wavelength of 21cm ( =1420 MHz, E =5.9x10-6eV).

Hydrogen (see RJS p445)

protone-

Ground state of HI (spins anti-parallel).

protone-

1st excited state of HI (spins parallel).

-13.6 eV

0

Energy Ionisation

n=1

n=2

n=3

Nb. Zeeman effect gives B-field measurement

Page 21: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan21

Hendrik Van de Hulst’s prediction of the observation of the 21 cm line allowed the study of cold, neutral hydrogen in the cosmos.

If H atoms collide with neighbouring atoms, the atom can be raised from its anti-parallel spins ground state to the excited, parallel-spin config. This is a low-energy, excited metastable state (~107 years due to non-conservation of spin, 1s->1s, but photon has intrinsic spin 1). Due to the low density, the atom can remain in this state for a long time before decaying back to the ground state via the 21 cm emission.

This discovery was important because

• It’s a feature of H (most abundant element)

• It occurs only in low density regions

• It indicates the presence of neutral ( i.e.non-ionised and non-molecular) HI atoms

• It is not easily absorbed by interstellar gas. This means that 21cm radiation emission fromalmost anywhere in the galaxy can be measured on earth via radiotelescopes.

Page 22: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan22

Hydrogen Molecules (H2)

Taken from RJS p369

(RJS p445)If the interstellar hydrogen is close to a hot star, the H2 molecules can be ionised and form a region of H-II. Interstellar lines often show different component with slightly different wavelengths. This is caused by Doppler shifts which depend on the relative velocity of the specific cloud. Dust absorption means that emissions in the visible region are not useful in determining the overall structure of the galaxy.

Page 23: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan23

From http://fuse.pha.jhu.edu/Figures/data

Far Ultraviolet Spectroscopic Explorer (FUSE)data on AGN which interstellar absorption from gas in milky way, including H2 molecules.

Page 24: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan24

The Interstellar Medium (ISM)

• Importance of radio-astronomy in seeing further due to less scattering/absorption in interstellar dust.

• Interstellar dust is heated to approx. 10-90k by the stars in the galaxy, which then radiated in the far infra-red region (30-300m).

•Stars radiate strongly in the near infrared region (1-10m). Very little stellar ‘extinction’ of light (as which occurs for the visible region) occurs in this range. See e.g., COBE spectra.

•Spin-flip transition in hydrogen gives rise to a 21cm radiowave emission. Thus, radiotelescope surveys allow the distribution if hydrogen across the plane of the milky way and its Doppler shift allows us to determine the speed at which the (H) gas in the galaxy rotates.

Page 25: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan25

Molecular Gas Clouds (CO p446)

•Typical temperatures of around 20K (c.f. ISM typical temp ~ 100K). •Density in such clouds ~ 102-7 atoms /cm3

(c.f. sea level earth atmosphere ~3x1019 /cm3).•Gas is mostly molecular hydrogen, H2…(ISM gas is mostly H-II, i.e., ionised H2 mols).•Note that the H2 molecule does NOT emit the 21cm line. Thus hard to identify in visible region (use rotational decays)…also need to use tracers with known relative abundances, such as CO, CH, OH and C3H2.

Giant Molecular Clouds (GMC)These are very large collections of dust and gaswith T~20K with typical densities of ~100-300cm-3. They can stretch for distances of 50 parsecs and contain up to 106 solar masses.

Inside the GMCs are more hot and dense cores with dimensions of 0.05-1 parsec, T~100-200K and densities of 107-109 /cm3. 1000s of GMC are known in our galaxy, mostly in the spiral arms (see later)

Page 26: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan26

Bok Globules (RJS p375, CO p446)Names after Bart Bok, these are dark (cold, dense) regions which are often seen projected against bright nebulae. Bok globules are small, dense clouds, with large visual extinctions (a~10) and low temperatures (~10K). They are relatively dense (~104cm-3) and have masses between 1 and 1000 solar masses, with sizes of around 1 parsec. About one quarter of these have young, proto-stars inside.

See http://www.aao.gov.au/images/general

IC-2948

BokGlobules

Inside this emission nebula are groups of dark, opaque clouds, i.e., Bok globules.

Page 27: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan27

Some good web pages for galaxy informantion and figs.

users.erols.com/arendt/Galaxy/mw.html www.whfreeman.com/universe6e antwrp.gsfc.nasa.gov/apod/

archivepix.html adc.gsf.nasa.gov/mw/mmw_sci.html-

maps cdsweb.ustrasbg.fr/astroweb/survey.html skyandtelescope.com www.eso.org/outreach/press-rel/pr-

2002/pr-17-02.html zebu.uoregon.edu/~soper/MilkyWay/

sahpley.html

Page 28: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan28

ISM, Composition (RJS p444)

Interstellar Dust

Early studies of UV radiation showed spectral features at 220 nm wavelength, corresponding to known transitions from graphite (carbon).

Infra-red astronomy then showed that some stars were surrounded by dust shells which heat up and subsequently re-radiate in the infra-red region. Although these spectra are generally continuous, for some stars, an extra continuous peak was superimposed on the usual black body spectrum at wavelengths of approx. 10,000 nm. This was consistent with significant amounts of silicates (e.g. quartz SiO2) in the dust cloud.

It has been suggested that C and Si grains are formed in the carbon-rich atmospheres of giant pulsating stars. At expansion, the outer layers of such stars cool and the carbon atoms can stick together to make ‘grains’. When this region heats up again, the increased radiation pressure from the star pushes these out of the star’s atmosphere and into space.

Page 29: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan29

Interstellar Gas (RJS p366ff,CO p447)

The ISM also contains large amounts of gas, which is mostly made up of hydrogen. Depending on the density and temperature of the regions where this hydrogen is, it can exists either in its natural atomic form (HI), its stable molecular form (H2) or the ionised form of the molecule (HII).

In addition to hydrogen, a number of other molecules have been observed in the ISM, such as

CO (carbon monoxide), SO2 (sulphur dioxide), OH (hydroxyl), H2O (water), NH3 (Ammonia), H2CO (formaldehyde), H2S (hydrogen sulphide) CH3CH2OH (ethyl alcohol!), HC11N (organic?).

These molecules are identified by their emissions which occur in the UV, visible and IR regimes. Usually decays from excited states are by photon with wavelengths in the mm region corresponding from the decay from a rotational state to one with a slightly slower rotation. Such wavelengths can penetrate the earth’s atmosphere and be observed.

Page 30: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan30

(CO p265) Dust particles scatter short wavelengths (blue) more effectively than long (red) ones. (Sky is blue, setting sun is red!)

This effect can give rise to an interstellar reddening effect of stars which are partially obscured by dust clouds. This scattered light also tends to be (partially) polarised.

Dust clouds can obscure the view of stars (and galaxies), and the centre of the Milky Way.The amount of interstellar extinction depends on the wavelength,, and the path length, s.

Interstellar Reddening.

Original lightfrom source

Interstellardust cloud.

Transmitted(red) light

Scattered (blue) light

Page 31: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan31

)1

( 1

bygiven is photons ofpath freemean

)(increment path

).(density

) . (opacity

086.1 extinctionar interstell

less)(dimensiondepth optical

where,)0(

obtain wegintegratin

3

12

s

0

nkl

cmds

cmg

gcmk

ta

t

dskteII

dsIkdI

t

(See CO p265, p438)Absorption includes the scattering of light and true absorption from e.g., electrons being to higher energy states in atoms and molecules. It is wavelength dependent. If dI is the change in intensity through distance ds, then

Opacity is the cross-section for absorbing photons of wavelength, , per gm of stellar material.

Page 32: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan32

Spectral Maps of the Galaxy

Ref http://adc.gsfc.nasa.gov/mw/mmw_images.html

Page 33: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan33

Standard Model of the Universe.

•Big Bang ~2x1010 years ago, created an expanding universe, now 2x1010 ly radius (constant expans.)

•Primordial Abundances: ~80% Hydrogen, ~20% Helium, trace amounts of Li and Be.

•After ~105 years, regions condense, gravitational energies leads to heating, nuclear reactions (proton-proton chain), stars form.

•H burns to He (p-p chain). For heavy stars, nuclear fusion reactions can burn to form elements all the way up to Iron (Fe, Z=26).

•Small stars eject planetary nebula which releases some material into space, but most kept in core (to form white dwarf).

•Large stars (>10Mo) have life cycles of ~107 years followed by cataclysmic supernova. Most of their material is expelled into the ISM.

•New stars form in the ISM which are metals-rich ( i.e., higher metalicities).

Page 34: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan34

•Galaxy formation….a problem. An early period of rapid expansion is need to give sufficient inhomogeneity.

•Inflation theory. Recent distant (> 5 billion ly) supernova type 1A (good ‘standard candles’) red-shifts imply that expansion rate is increasing with time and the universe is older than originally thought? i.e, ‘anti-gravity’ ? Possible evidence for so-called dark energy. (see Burrows, Nature 403 (2000) p727-733).

From SPATIUM, no7. May 2001, p11

Page 35: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan35

See Perlmutter et al., Nature, 391 (1997) p51

See http://physicsweb.org/article/news/2/11/3

Type 1a supernova(see HOL p246) are excellent standardcandles for distancemeasurements usingHubble’s law (see later).

Page 36: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan36

Our Galaxy, The Milky Way

(CO, chapter 22 RJS chapter 20)

Sun located 8(1)kpc from galactic centre.

Orbital period 2.2x108 years, orbital speed of 790,000 km/h.

50kpc disk of 600pc thickness and a central bulge of approx. 3kpc thick.

Total galactic mass of approx 1011-12 solar masses.

10% of mass attributed to 200-400 million stars, gas and dust with other possible 90% ‘dark matter’.

Supermassive black hole in centre with mass of approx. 3x106 solar masses.

Page 37: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan37

Distribution of Globular Clusters.(RJS p436)

(1917) Before effects of dust were known, Harlow Shapley studied the distribution of globular clusters in space.

He calculated their distances using (variable) standard candles known as RR-Lyrae stars located within these clusters. Shapley found that these clusters were further from the sun that thought and thus the galaxy must be larger than previously believed. Shapley reasoned that these large globular clusters were such large components of the galaxy that they would be unlikely to be distributed to one side. He thus proposed that the centre of the globular cluster distribution coincided with the centre of the galaxy, and thus that the sun was actually quite far from the centre. (Modern value is between 25-30Kly).

Page 38: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan38

M2 cluster (‘Messier object’).

First found by Maraldi (1746). Messier (1760) catalogued it as nebula but without individual stars. Hershel (~1780) resolved individual stars within the cluster.

Approx. 150,000 stars and diameter of 140 ly

http://www.seds.org/messier/m/m002.html

Page 39: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan39

http://www.astrophotographer.com/Globular_plot.html

See also great pictures and info at the following.www.ipac.caltech.edu/2mass/gallery/Images_galaxies.htmlwww.astr.ua.edu/choosepic.htmlwww.dir.yahoo/Science/Astronomy/Pictures

Page 40: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan40

http://aether.lbl.gov/www/projects/cobe/cobe_pics.html

http://users.erols.com/arendt/Galaxy/mw.html

Artist’s impression of above view of Milky Way from computer simulation. See web page given below.

Milky Way from combined images at near-infrared wavelengths of 1.2, 2.2 and 3.4microns from the COBE satellite.Note thin disk and central bulge. Redder regions are due to light absorption from dust.

Page 41: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan41

Thin disk is metal-rich, [Fe/H]~0, star formation, lots of young blue stars. Around 325 parsec region of sun. Thick disk, metal-poor [Fe/H]~-0.5, older stars. Disk thickness increases towards the inner regions of galaxy.Gas/dust in disk absorbs visible light, but 21cm H-I line ok. Thus, radiotelescopes can map velocity and distribution of H-I gas.Galactic bulge. Spheroidal region near centre of galaxy. Only certain w.lengths observed due to dust. Disc meets the galactic bulge at a radius of approx. 1kpc. Vertical scale in bulge is around 400 parsecs (along the bulge’s minor axis). Major to minor axis ratio for the bulge is thought to be a ~0.6. Wide range in metallicity, in the bulge with -1 < [Fe/H] <+1, average ~ +0.3, i.e., average Fe to H ratio is about 2 x solar value. i.e., younger stars dominate here. Bulge mass is ~ 1010Mo.

Details of the Structure of the Milky Way (see CO p927ff, RJS p439, p457)

disk

sun

~15kpc

halo

bulgenucleus

Page 42: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan42

The surface brightness of the bulge, I, in units of Lopc-2 is given by the r1/4 law, also known as de Vaucloulers profile (1948). Confirmed by COBE results. Re is the reference radius, Ie is the surface brightness at re. Formally, re is defined as the radius at which one half of the bulge’s light is emitted.

Baade’s window is a gap in the dust clouds in the bulge which allows the observation of RR-Lyrae stars (standard candles) beyong the galactic centre. Appears 3.9o below and within 550 parsecs of the galactic centre. Galactic B-field: Disk field estimated to be approx 0.4nT (~10-5 times solar B-field). Deduced from Zeeman-splitting effect on the two states in H-I resposible for the 21cm line). Also from polarisation of scattered light.

13307.3

)(log

4

1

10ee r

r

I

rI

Page 43: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan43

Two distinct regions of metallicity for globular clusters, Generally, more metal-poor (older) in spherical distribution around galactic centre with more metal-rich (younger) in galactic plane.

(CO p930)

The Stellar Halo is the region around the disk and bulge. It is made up of a few hundred globular clusters and many high-velocity (‘field’) stars. The globular clusters consist of old, metal-poor stars, with the oldest clusters ([Fe/H] <-0.8) scattered throughout the halo. Appear to be approx. 1.6x1010years old ( i.e. as old as the universe, surely not possible..see RJS p930 and chaps. 25 and 27)

Page 44: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan44

Dynamics of the MilkyWay

(CO p935, RJS p448)• Motion of the Sun

Note that the celestial equator ( i.e. the plane through the earth’s equator) is at 63o to the galactic equator ( i.e., the plane through the galaxy’s disk).

•Definition of galactic co-ordinates, b (Galactic latitude) and l (Galactic longitude) are relative to the motion of the sun.

•NGP has co-ordinates of b=90o. By convention•Galactic centre has (almost) l=0o and b=0o .

To north galactic pole (NGP)

galacticcentre

star

rotation

lb

sun

Page 45: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan45

Cylindrical Co-ordinate System (CO p941)

•Cylindrical co-ordinate have centre of galaxy at origin.

galacticcentre

star

rotation

sun R

z

In this co-ordinate system, the corresponding velocity components are given by,

dt

dz Z,

dt

dR ,

dt

dR

Page 46: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan46

Local Standard of Rest (LSR) CO p942)

To investigate the motion of the sun and otherlocal stars, we must first define the Local Standard of Rest (LSR). This is defined as a pointwhich is instantaneously centred on the sun andmoving in a perfect circular orbits about the galactic centre. Thus, by definition, the velocitycomponents about the LSR must be

0 Z, ,0 0 The velocity of star relative to the LSR is known as the peculiar velocity and is given by

ZZZ

v

u

where

vuVVVV

LSR

LSR

LSR

zR

0

),,(),,(

Page 47: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan47

The LSR has km/s and a rotational period of about 230 million years.

To a good approximation, there is no motion relative to the LSR in the R and z directions, but there is a significant effect (see CO p943).

The sun’s peculiar velocity (relative to the LSR) is called the solar motion and has values of:

centre) above 30pc~already note

plane galactic theofout (north, /7

LSR) theg(overtakin /12

centre) galactic the to(towards /9

0

0

skm

skmv

skmuo

Motion of Sun in Galaxy

(see CO p945)

Page 48: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan48

Measuring Velocities

(CO 107, p126-127)Proper motion.

Change over time of stellar co-ordinates. Note that need to know distance (only useful for nearby stars).

r

vrv

dt

drv

observer

star

Doppler ShiftChristian Doppler (1842) found that as the sound waves moved through air, the observed w.length, obs, is compressed in the forward direction and expanded in the backward direction (compared to a stationary observer) by the expression,

ly.respective sound of speed theandvelocity

radialobserver -source theare and sr

s

r

restrest

restobs

vv

v

v

Page 49: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan49

For light however, there is no speed of sound,as there is medium involved and the expressionmust be obtained using special relativity.

Source movingat velocity, u

2nd signalto observer

1st signal to observer

u

2

1

cu

tud rest

cos

12

cu

tux rest

If trest is the time difference between the emission of light crests and tobs is the difference in time between their arrival at the observer then

cos1

1 2

2 c

u

cu

tt rest

obs

Page 50: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan50

Remembering that the frequencies of the lightfrom the source (rest) and and the observed frequency (obs) are given by

1

,1

obsobs

restrest tt

The Relativistic Doppler Shift is then given by

cvcv

cv

cv

cv

cv

cv

uvuv

uv

cu

cu

r

r

restobs

r

rrres

r

rres

obs

rr

r

res

obs

1

1

1

11

1

1

then, 180, (ii) and 0, (i)

observer, fromaway (ii)or

owardsdirectly t (i) ismovement if

cosbut , cos1

1

2

2

2

2

For RADIALMOTIONONLY

Note

v =vel.

= freq

Page 51: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan51

For objects moving away from the observer,there is a shift down in frequency ( i.e. up inwavelength) towards to RED end of the spectrum ( i.e. obs>rest and vr>0). For movement towards the direction of the observer, the shift is to the BLUE (i.e. obs<rest

and vr<0)

Since most astronomical objects are moving away from the earth, a redshift parameter, z,is used to describe the change in observed wavelength (and thus the radial velocity), where

11

11 gives, grearrangin

11

1 thusand

1

1

, since ,

2

2

z

z

c

v

cvcv

z

cvcv

cz

r

r

r

r

r

restobs

restrest

restobs

Page 52: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan52

Galaxy Rotation (CO p955-8, RJS p477)Can use the circular orbits of stars and Newton’s laws for objects far from the galaxy’s interior, equating the centripetal and grav. forces

const! largeat BUT 1

, )(22

2

r, vr

v

G

rvM

r

mv

r

GmMrF r

r

2

22

4 ,4

Gr

v(r)r

dr

dM r

This predicted density dependence (~1/r2) ismuch slower than deduced from the star countsbeyond the centre of the galaxy. The density ofluminous (i.e., visible) stars in the stellar halo appears to fall off as (~1/r3.5)…..This has been put forward as an argument that themajority of mass in the galaxy is actually in the form of Dark Matter.

In a spherically symmetric system, the conditionfor mass conservation is given by (=density)

Page 53: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan53

Measuring Galactic Rotation Curves

The rotation curves for galaxies are the measured velocities (via the Doppler shift) of H-I and carbon mononxide (CO) gases. The z-value observed in these lines can be used to calculate the radial velocity of the gas. Note that CO emits spectral lines which are easier detect through the region of the bright centre of a galaxy (unlike the visible H lines).

//astrosun.tn.cornell.edu/courses/astro201/rotcurve.htm//www.owlnet.rice.edu/~spac250/elio/space.html//www.astro.ruhr_uni_bochum.de/geiers/GAL/gal_rot.htm

Note, max Doppler shift (solid line above) is when motion is directly towards or away from observer.

Page 54: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan54

(RJS p477) From Kepler’s 3rd law as modified by Newton, for a star travelling about a galaxy with a Rotational Period, P in years, Mstar and Mgalaxy are in solar masses and R is the distance to the galaxy’s centre in AU, then

32 RPMM galaxystar

This can be used to estimate mass of galaxies.

CO p960)

Page 55: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan55

(1) measure l for specific spectral line

(2) measure z(v) for eachpoint along galaxy disk

(3) Subtract vrecession

from galactic centre.(4) residual is rotation curve

Page 56: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan56

Measuring the Doppler at each end of the galaxygives the radial velocity as a function of distance from the galaxy centre

This allows the rotationcurve to be measured(Radial velocity, vr as a function of distance from galaxy centre, r)

Page 57: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan57

Examples of galaxy rotation curves, seeY. Sofue, PASJ 49 (1997) p17www.ioa.s.u-tokyo.ac.jp/~sofue/rotation/fig2.htm

Page 58: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan58

The Galaxy (cont). 21cm radiowaves from neutral H gas can penetrate the ISM. Large

hydrogen clouds can be found in the spiral arms of galaxies (see e.g., M31). Looking across the galactic plane, one can observe a series of emission peaks, all slightly shifted with respect to each other. This can be explained by each spiral arm of the Milky Way moving with its own specific rotational velocity (and Doppler shift). It is thus possible to produce maps of the number and orientation of arms in the Milky Way.

Other molecules (as well as H2) such as OH, CH and CO can also be detected via radio frequency emissions. Giant Molecular Clouds (GMC), which represent stellar formation sites. CO which emits radiation at =2.6mm and regions of this molecule suggest that our galaxy has four major spiral arms (Perscus, Sagitarius, Centaurus and Cygnus). The Sun is situated on a smaller branched arm spiral known as Orion.

Page 59: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan59

From Astronomy by Zeilikk (John Wiley and Sons)

Note, artists impression…not data!

Page 60: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan60

•There is optical evidence for the spiral structure of the Milky Way, using so-called SPIRAL TRACERS (see RJS p203). These include the presences of young, (Population I) blue (O and B-type) stars, high-metallicity stars.

• Hot, ionised hydrogen (H-II) regions are also associated with stellar formation and might be expected to be found in the spiral arms.

• Other spiral tracers include (i) Emission Nebula illuminated by hot O and B stars, (ii) Giant Molecular Clouds (GMCs) and (iii) Supernova Remnants

Page 61: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan61

Andromeda galaxy (M31) at various wavelengths

See http://sirtf.caltech.edu/Education/Messier/m31.html

Page 62: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan62

Rotation Curve for the Milky Way (dark matter)

Optical and radioastronomy seem to indicate that all stars in the galaxy travel at the approx. the same rotational speed. Thus stars closer to the centre complete their orbits faster than the ones at the edge. This results in spiral shapes.

But as we know the approx. age of the galaxy and the rate at which the sun rotates around the galactic centre, the Milky Way should be more tightly wound than it is.

Failure of Kepler’s third law…more matter in middle maybe ? Dark matter ?

Why don’t the arms wind up ? Supernovae may stretch new groups of stars into

arms. Also spiral density waves and self-propogating star formation, the ‘ice-skater’ model.

Freeman’s Law (see CO p999, all spirals have ~equal surface brightnesses)

Page 63: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan63

Supermassive Black Hole ?(CO p970, HOL p263)

Our galaxy is probably a ‘barred-spiral’.

The strongest infra-red emission line is found in a

region at the centre of the galaxy called Sagittarius A (SgrA), which is also a strong source of synchrotron radiation (I.e. a point radio-source, Sgr A*.

From around 1995 onwards, infra-red (2.2m) enabled the velocities of ~90 stars close to to SgrA* to be measured.

Implication from Newtonian mechanics, radio-source and x-ray flares is a supermassive black hole with approx 2.6x106 solar masses at centre of Milky Way (see Ghez et al,. Nature 407 (2000) p349, see also http://physicsweb.org/article/news/6/10/12

Distance of galactic centre is approx 26,000 ly from earth

Page 64: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan64

http://www.aoc.nrao.edu/pr/sgr.bhole.html,radio-frequencies between 0.7-6 cm)

Intense radio-source in centre of Galaxy, Sagittarius A*

Page 65: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan65

Baganoff et al.,f rom the CHANDRA X-ray observatory,http://chandra.harvard.edu/press/01_releases/press_09050/flare.html

False colour image of x-ray flare from supermassive black hole at centre of galaxy, associated with the compact radio source, Sagittarius A*. It is suggested that the flare is evidence for local matter falling into the black hole, which fuels energetic activity in the centre of the Milky Way.

Page 66: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan66

Galaxies in General: A Brief History

Messier (1730-1817) recorded 103 fuzzy objects (nebulae) in the Messier catalogue (M@).

Dreyer (1852-1926) published the New General Catalogue (NGC) of almost 8,000 nebulae (NGC@), but not known at this point whether they were galactic or extra-galactic phenomena.

1923, Hubble detected Cephied variables in M31 (Andromeda galaxy, NGC224), showed extra-galactic nature.

Page 67: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan67

Morphology of Galaxies: Galaxy Types.

(RJS p468, CO p990, HOL p257) Galaxies are broadly classified into three types by a scheme known as the Hubble Sequence. This divides galaxies into (i)Ellipticals (E), (ii) Spirals (S) & (iii) Irregulars (Ir). The spirals are further subdivided into two sequences, namely (iia) Normal Spirals (S or SA) and (iib) Barred Spirals (SB). There are also a class of galaxies which are transitional between ellipticals and spirals, known as Lenticulars, which can be either ‘normal’ (SO) or barred (SBO). These are arranged by Hubble’s Tuning Fork Diagram.

ellipticals

normal spirals

barred spiralsHubble thought (wrongly!) this was an evolution of type

Page 68: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan68

•ELLIPTICAL (E) galaxies are ellipsoidal in shape and contain no spiral arms. They contain little interstellar dust and gas and are found mostly in rich clusters of galaxies. Elliptical galaxies typically appear yellow-red in colour. There are few blue, young, recycling stars (in contrast to spiral galaxies, whose spiral arms are full of young stars and appear quite blue). Supergiant Ellipticals have radii up to 106 pc.

(RJS p468, CO p997, HOL p258)

M87 ellipticalgalaxy

http://www.antwrp.gsfc.nasa.gov/apod/lib/ellipticals

NGC4881 Giant Elliptical galaxy)

Page 69: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan69

•SPIRAL (Sa, Sb, etc.) galaxies consist of a large, dominant central bulge and tightly wound spiral arms. Star formation in the bulge region is thought to have taken place long ago and thus light from this region is blue-deficient (since massive, blue stars are relatively short lived), but rather reddish (from red-giants). This contrasts with the spiral arms, where new, blue, stars are formed. Spirals have (i) a flat disk, which usually contains a lot of interstellar matter and (ii) hot, massive, young (blue. O and B type) star clusters, which are usually arranged in spiral patterns structures. Some spirals have a large ‘bar’ through their central region and are known as ‘barred spirals’. (The milky way is thought to be a barred-spiral galaxy). Hubble subdivided spiral galaxies into Sa, Sab, Sb, Sbc, Sc and Sba, Sbab, SBb, SBbc and SBc. Those galaxies with the largest bulge-to-disk luminosity ratios, the most tightly wound spiral arms and the smoothest distribution of stars are classified as Sa or Sba. Conversely, Sc and SBc galaxies have loosely wound arms etc.

Page 70: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan70

Andromeda galaxy (M31)

http://www.antwrp.gsfc.nasa.gov/apod/lib/spirals

closest galaxy ~ 2million ly

Whirlpool Galaxy (M51)

companiongalaxy(NGC 5195)

Page 71: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan71

The ‘Sombrero’sprial galaxy (M104), clearly showing the dust in the disk, the central bulge and globular clusters within the stellar halo.

See http://www.noao.edu/image_gallery

Page 72: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan72

http://licha.de/AtroWeb

NGC7479 barred spiral galaxy

NGC3992, M109 barred spiral galaxy

http://www.smv.org/hastings

Page 73: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan73

•LENTICULAR (SO, SBO) galaxies consist of flat disk with a central bulge but do not show any spiral arms (unlike spiral galaxies). Depending on the orientation relative to the earth, such galaxies can appear circular (if seen face on), elliptical, or thin and elongated.

NGC 4546 (SB0) Lenticular galaxy from http://www.sunspot.noao.edu/sunspot/pr/tree

NGC 3384 (SO) lenticular galaxy

Page 74: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan74

M82 Irregular galaxy

http://www.sunspot.noao.edu/sunspor/pr/tree

•IRREGULAR (Irr) galaxies have a chaotic appearance which does not resemble either spiral or elliptical galaxies. Many of the smallest galaxies are irregular (including the Magellanic clouds which accompany the Milky Way).

Page 75: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan75

Size of Galaxies (CO p998)By mapping contours of constant brightness, (ISOPHOTES), one can infer the matter radius of galaxies. BUT, galaxies do not have have sharp edges,thus radii are not well defined. The effective radius (re ) , is defined as the radius within which half of the galaxieslight is emitted. For the bulges of spirals and large ellipticals, this looks like (from equn, on page 42)

133.8)(

4

1

ee r

rr

where ( r) is the surface brightness in units of magnitude/arcsec2 and me is the surface brightness at the effective radius, re.

(Note, that galaxial disks are usually modelled with an exponential , rather than r1/4 decay).

Page 76: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan76

The Tully-Fisher Relation (CO p1001, RJS p476)

It is reasonable to assume that the greaterthe mass in a given galaxy, the larger itsluminosity. It then follows, the greater the mass,the larger the gravitational force at each pointin the galaxy would be. Since it is the size of thisgravitation force which determines the rotationvelocity of the galaxy (see equn. P52), there willbe a relationship between the rotational velocity and luminosity of galaxies.

The rotational velocity of galaxy can be deducedfrom the Doppler broadening of the 21 cm line. This will be both red and blue shifted. A value for the absolute luminosity for the galaxy can be estimated and compared with the observed brightness. The inverse square law of light can be used to make an estimate of galaxy’s distance.

The relationship between the luminosity and rotational velocity of galaxies is known as the Tully-Fisher relation (1977).

Page 77: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan77

Tully-Fisher Relations at large (0.2<z<1.1) redshift see http://www.nmsu.edu/~nicole/research/VogtNP_fig03.html

The exact form of the Tully-Fisher relation depends on the galaxial mass distribution, and thus the type of galaxy. But to first order, the relationship between the absolute magnitude (M), the luminosity (L) and the maximum rotational velocity, (Vmax) can be given by

cVL

LMM sun

max1010 log10log5.2

c=constant

Page 78: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan78

Stellar Distributions and Metallicities

•H-I gas in our galaxy is distributed in spiral arms, connected to the bulge.

•Most young (blue) stars are in these arms, i.e., these are regions of on-going star formation.

• Since stars form from gas clouds, and massive (blue) stars form and die relatively quickly, one expects (all) massive, main sequence stars to be found in the spiral arms.

•Older stars are red in colour (further down main sequence, red giants..) These are found in the disk, not in the spiral arms. Red stars can are also found in the bulge and halo.

• Observations indicate that the metallicity of a galaxy correlates with its absolute magnitude and thus luminosity. This implies that chemical enrichment is more efficient in luminous, massive galaxies. Possibly due to them having more massive stars in which subsequently go to type II supernova ?

Page 79: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan79

Metallicity-Magnitude Relation (CO p1006)

From Pagel and Edwards, Annu. Rev. Astron. Astrophysics 19 (1981) 77-113

Page 80: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan80

Galaxy Clusters and Colliding Galaxies (CO p1053-10073, p1119ff)

Most galaxies belong to clusters, which can contain 1000s of individual galaxies. Groups of galaxies usually have less than 50 members, with clusters containing between 50 and severalthousand individual galaxies. Galaxy clusters are classified as either regular (spherical and centrally condensed) or irregular.

The Milky Way belongs to the LOCAL GROUP, which consists of approx. 30 galaxies, including the Andromeda Galaxy (M31), M32, M33, M110 and the Small and Large Magellanic Clouds (LMC, SMC). The Milky Way and Andromeda galaxies are by far the largest and most dominant members of the local group.

There are also around 20 small groups of galaxies within approx 14Mpc of the local group, including the Maffei-1, the South Polar or ‘Sculptor’, the M81 and the M83 groups. Out group of galaxies is in gravitational interaction with these galaxy groups.

Page 81: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan81

The M81 Group is one of the closest galaxy groups to our own (~ 12Mly). The group has two large galaxies, M81 (‘Bodes galaxy’) and M82 plus NGC 3077 which all have a mutual gravitational interaction. Note the two dwarf galaxies close to M81 and the common gaseous envelope which are clearly apparent on on the radiowave image.

http://www.seds.org/messier

visible radio

M81 group

M82

M81

NGC 3077

2 dwarfgalaxies

M81

M82

NGC3077

radio

Page 82: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan82

It is thought that a few 10s of million years agoa ‘close encounter’ occurred between M81 and M82, with the result that M82 was dramaticallydeformed by the gravitational attraction of the larger and more massive M81. This encounter also left traces in the spiral pattern of M81, firstly making the overall pattern more pronounced. Note that the M81 and M82 are still relatively close at around 150kly apart.

M81

M82

Page 83: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan83

•Gravitational attraction between nearby galaxies means they can interact and even collide with each other.•Colliding galaxies does not imply colliding stars (size between individual stars too large).• There can be dynamical friction between galaxies due to the gravity (see CO p1055). This dynamical friction force (‘drag’), fd, can be estimated assuming fd ~ ( / v2) where v is the relative speed of the colliding galaxies and is the density of the colliding material.• Energy will also be converted from potential and self-energy into kinetic energy of individually scattered stars.•Kinetic energy from the galaxies’ motions of can be transferred into internal KE of the gravitationally interacting galaxies.• Gravitationally bound galaxies willeventually merge (e.g. Milky Way and LMC & SMC, also some evidence double nucleus in Andromeda, M31 galaxy).• The mergers and tidal interactions ‘tidal stripping’ between colliding galaxies may be responsible for matter transfer and creating new active star-forming regions.

Page 84: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan84

CO p1066

Page 85: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan85

KEK

KU

iumc EquilibrHydrostati

R

GMU

rUr

MmGU

r

MmGF

2U

and E

)pressure' gas' motion, kinetic randomby

balanced attraction nalgravitatio (i.e.

,

in system aFor

5

3

is sphere uniform afor energy -Self

at 0 defined

energy, potential

masses 2between force nalgravitatio

n,gravitatioNewtonian basic from Recalling

2

2

Page 86: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan86

Calculating Galaxy Collisions (CO p1088)

Realistic ‘N-body’ computer simulations can be carried out using Newton’s gravitational equations. Such calculations suggest that many large elliptical galaxies are actually the result of mergers between two spiral galaxies.It is thus thought that over time, spiral galaxies are destroyed by mergers, resulting in the creation of very large elliptical galaxies.

Evidence for this includes

• Computer based N-body simulations

• The observation that elliptical galaxies appear to dominate in the more dense, centres of galaxy clusters

• Observations also suggest that the more distant (and thus younger) galaxies appear to have (had?) a greater fraction of spiral galaxies compared to ellipticals.

Page 87: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan87CO p1088

Page 88: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan88

In hydrotstatic equilibrium, from the VIRIAL THEOREM (CO p56) the Total (E), Potential (U) and Kinetic (K) energies of a galaxies are related by the expression 2K= -U = -2E

For a head-on galaxy collision, we can use the impulse approximation (CO p1061) to assume the encounter between the galaxies occurs so quickly that the individual stars do not have time to move much from their positions.The gravitational potential energy, U, of the galaxy is virtually unaltered by the collision. If a galaxy increases its internal kinetic energy, from K to K+K as a result of the gravitational ‘work’ each galaxy has done on the other one, the total energy will also increase from K to K+K, but the potential energy, U remains unchanged (=K). The galaxy would thus no longer be in hydrostatic equilibrium. To regain equilibrium, the extra 2K of kinetic energy obtained just after collision, must be ‘lost’. One way this can be done is for this excess energy to be converted in to increased (i.e., less negative) gravitational potential energy, by expansion.

Page 89: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan89

http://www.seds.org/hst/Cartwheel.html

The Cartwheel galaxy (approx 500 Mly away), is an example of a ‘ring galaxy’ (see CO p1062) which followed from a nearly head-on collision between galaxies. This figure, from the Hubble Space Telescope, shows the effect of a collision by an intruder galaxy (it is not clear which one of the two objects to the right), which smashed through the core of the host galaxy. Note blue, new stars in the ring. The ring is expanding at approx, 90km/s.

Colliding Galaxies

Page 90: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan90

Sleeping Beauty Galaxy(M64)http://antwrp.gsfc.nasa.gov/apod

There is a central region where the stars rotate in a different direction to the dust and gas. This effect is thought to be result of collision between a large and small galaxywhich has yet to equilibrate out.

Page 91: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan91

http://www.noao.edu/image_gallery/html/im0011.html

Interacting galaxiesArp 273

‘Interacting Galaxies, Arp 273’ distance approx 200Mly, false colour image from the Anglo-Australian telescope.Note the strong tidal distortion of the larger of the two galaxies and the notable ‘extra’ rednucleus in the smaller, side on galaxy in thebotton right of the picture. The lower galaxy has a very active nucleus (see later).

Page 92: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan92

Superclusters

A supercluster is a group of galaxy clusters which appear to be associated (gravitationally)with each other. Unfortunately, this information is not usually known for most galaxy clusters and thus definitions of members of superclusters are made on the basis of how far different galaxy clusters are separated from each other. This definition has some problems, as the distances between galaxies is much more difficult to determine that the distance to them (since we can use the doppler shift to give us more accurate measures of the distance perpendicular to the radial direction, than the radial direction specifically.)

Page 93: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan93

This extra gravity’ which is sufficient to hold the gas in place, has been proposed as further potential evidence for Dark Matter

Perseus galaxy cluster, seehttp://antwrp.gasfc.nasa.gov/apod

False colourx-ray image

The Perseus cluster of galaxies, approx. 300Mly. This is part of the Pisces-Perseus supercluster. Note that the confinement of gas in the large galaxial gravitational field (purple in figure).

ROSAT

Abell 426

Page 94: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan94

Coma cluster, see http://www.astra.au.edu/gifimages/coma.html

http://chandra.harvard.edu/x-ray_sources/coma

The Coma cluster contains >1,000 galaxies,is around 6 Mpc across and lies ~360 Mly away. Centre of galaxy is hot (T~100x106K) gas cloud (see X-ray image) held in by gravity.

visible X ray

Page 95: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan95

The Virgo cluster of galaxies which is over 3Mpc across and consists of more than 2000 individual galaxies lies around 16 Mpc (~60 Mly) away. It represents the centre of the local supercluster which includes the local group.

http://www.seds.org/messier

M87

M84M86

‘Makarian’schain’

NGC4371

NGC4429

M89

M90

Central portion of the Virgo cluster

Page 96: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan96

Expansion of the Universe, Hubble’s Law(CO p1110)Using luminosity of Cephied variable stars, EdwinHubble plotted the recessional velocity of suchstandard candles in extra-galactic objects againsttheir induced distance (deduced using the inversesquare law of light). The resulting (nearly?) linearrelationship is known as Hubble’s Law, which has the form,

HrV Where V is the recessional velocity and r is thedistance from the earth. H is known as the Hubble constant.

Page 97: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan97

From Hubble’s original paper, published in Proceedings of the National Academy of SciencesVolume 15 March 15, (1929), number 3.

‘Distances of extra-galactic nebulae depend ultimately on the application of absolute luminosity criteria to involved stars whose types can be recognised. These include….Cepheid variables, novae and blue stars involved in nebulae emission.……The apparent luminosities of the brightest stars in such nebulae are thus criteria which, although rough and to be applied with caution, furnish reasonable estimates of the distances of extra-galactic systems’.

Page 98: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan98

Value of the Hubble Constant, Scale Factors and Hubble Time

Hubble’s orginal value for H=530kms-1Mpc-1.But subsequent measurements showed that heunderestimated the distances involved as what he thought were the brightest stars were actuallygroups of stars.

The value of H appears to have varied over time, thus while it is still a constant of proportionalitybetween V and r, H=H(t). By convention, we the present day value of theHubble constant is given the symbol, H0 .

There is still much debate and measurement onthe value of the Hubble constant. Currently,it is standard to define constant using the dimensionless quantity, h,

and h has a value between 0.5 and 0.8.

Mpckms100 10

Hh

Page 99: 2GLSS P.H. Regan 1 Syllabus for 2GLSS, Galaxies and Large Scale Structures. Dr. P.H. Regan, 29BC04, x6783 p.regan@surrey.ac.uk Spring Semester Books 1)

2GLSS P.H. Regan99

Hubble’s law implies a universal expansion. In this context, the recessional velocity (due to the expansion of space) is distinct from the peculiar velocity (which is due to the motion through space).

i.e v = Hod + vpec

The recessional velocity arises because space itself is expanding, this is the realm of COSMOLOGY.

The cosmological redshift needs to take into account the curvature of space-time (beyond the scope of this course). However, it is common practice to use the redshift equation to obtain the effective radial velocity.

2for Z 5%)(with good : 11

11

ic)relativist-(non 1for good :

2

2

0

0

z

z

H

cd

zH

czd

Thus, by measuring redshift, the distance can be determined. H0 is poorly known, use H0=75(20)kms-1Mpc-1 (h=0.75(0.2))