30
2D Flow Applications 2D Flow Applications 1. Shock Interactions 2. Engine Intakes 2. Engine Intakes 3. Supersonic Jets

2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

2D Flow Applications2D Flow Applications

1. Shock Interactions

2. Engine Intakes2. Engine Intakes

3. Supersonic Jets

Page 2: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

1. Shock fl

βB1

3

βCReflection

δ=12oβA

23

M1 =6

Find M2, M3, p2/p1, p3/p1δ=12oβA

TABLES

Page 3: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

βBM1 =6

M3 =3.41

1

2

3

1

βC

δ=12oβA δ 12βA

More Reflections?More Reflections?

TABLES

Page 4: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

1b. Shock  βB

3

δB=5o

Intersection1

OPPOSITE FAMILIES

δ 12β

1

2M1 =3

δA=12oβA

Page 5: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

1b. Shock  βB

3

δB=5o

Intersection1

OPPOSITE FAMILIES

4

5

φ

δ 12β

1

2M1 =3

4

δA=12oβA

Page 6: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

1c. Shock Intersection

1

SAME FAMILY

ββB

1

2

3

M1 =3 δB=6o

δ 12βA δA=12o

Page 7: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

2. Supersonic Engine Intakes2. Supersonic Engine Intakes

• Designed toDesigned to– Compress the flow– Decelerate it to subsonic speed

– Minimum p0 loss

• Most intakes are designed to direct the flow more than one shock wave

Page 8: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

Why Multiple Shocks?Why Multiple Shocks?Consider deceleration of a Mach 2 flow to subsonic….

SINGLE NORMAL SHOCKSINGLE NORMAL SHOCK

M=2

OBLIQUE / NORMAL SHOCK COMBINATION

1 2

OBLIQUE / NORMAL SHOCK COMBINATION

M=2

1 2

3M 2

45o

Page 9: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

Two‐Dimensional InletTwo Dimensional Inlet

M∞M∞

Page 10: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

Wind‐Tunnel VisualizationMach number 1.95

history.nasa.gov/SP‐4302/ch2.12.htm

Page 11: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

Northrup F‐5

Page 12: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

F‐4 Phantom

Page 13: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

Concorde/ Olympus 563Concorde/ Olympus 563TAKE OFF

http://www.concordesst.com/powerplant.html

SUPERSONIC CRUISE

Page 14: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

Axisymmetric InletAxisymmetric Inlet

M∞ = MDESIGN

M∞ < MDESIGN

M∞ > MDESIGNDESIGN

Page 15: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

Mirage F1

Page 16: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

General Dynamics F‐111 

Page 17: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

SR‐71

Page 18: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

SR‐71 InletSR 71 Inlet

Page 19: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

3. Supersonic Jets SATURN V ROCKET(APOLLO 15, 11, 11)

TAKEOFF 39 MILES ALTITUDETRANSONIC

Page 20: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6
Page 21: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

XCOR 5M15 Liquid Methane/Oxygen Rocket EngineRocket Engine

http://www.xcor.com/

Page 22: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

2D Over‐Expanded JetREGULAR REFLECTION

E i M 1

pbAmbient

Exit Me>1p=pe>pb p=pb p>pb

p=pb

P i i d f i l h l b• Pressure is raised from pe to pb as it leaves the nozzle by an oblique shock.

• Shock also deflects flow down toward plane of symmetry.• Deflection can’t be sustained at symmetry plane so a 2nd

shock is formed to deflect the flow parallel to the symmetry plane once more.

• This also raises the pressure above pb• To bring the pressure back down to pb the shock as to 

reflect from the jet edge as an expansion wave, but this j g p ,then deflects the flow away from the plane of symmetry.

Page 23: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

pb=0.2pcAmbientExampleMe=2pe=0.1278pc p=pb p>pb

p=pbFind pressures, Mach numbers and flow directions

1

2

3

4

Page 24: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

pb=0.2pcAmbientExampleMe=2pe=0.1278pc p=pb p>pb

p=pbFind pressures, Mach numbers and flow directions

1

2

3

4M2=1.702

M3=1.409p3=0.3pc

Page 25: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

2D Over Expanded JetMACH REFLECTION

E i M 1

pbAmbient

Exit Me>1p=pe>pb

p=pbp>pb

p=pb

• Occurs when the Mach number downstream  of the 1stshock is too low for regular reflection (i e theshock is too low for regular reflection (i.e. the maximum turn angle for the second wave would be less than the deflection produced by the first.)B k i t th th t f l fl ti• Back pressure is greater than that for regular reflection, and less than that for a shock at the exit.

Page 26: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

pbAmbientExampleMe=2pe=0.1278pc p>pb

p=pbFind back pressure at which Mach reflection first appears

1

2

3

4p=pb

appears

TABLES

Page 27: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

Axisymmetric Over‐Expanded Jet

http://www.aerospaceweb.org/ Space Shuttle Main Engine 

Page 28: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

2D Under‐Expanded JetpbAmbient

p=pbp=pb

Exit Me>1p=pe<pb

p=pb

P<pb

p=pb

• Pressure is reduced from pe to pb as it leaves the nozzle by an expansion wave centered on the nozzle lipW l d fl fl f h l f• Wave also deflects flow up away from the plane of symmetry.

• Deflection can’t be sustained at symmetry plane so a another expansion is formed to deflect the flow parallel to the symmetry plane once moreplane once more.

• This also lowers the pressure below pb• To bring the pressure back up to pb the expansion reflects from the 

jet edge as an compression wave, but this then deflects the flowjet edge as an compression wave, but this then deflects the flow toward the plane of symmetry.

Page 29: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

ExampleAmbientpb=0.05pc

Exit Me=2pb=0.1278

p=pb

P<p

p=pbCompute angle and Mach number of flow after first turn

1

2

P<pb1

Page 30: 2D Flow Applications - Virginia Techdevenpor/aoe3114/15 - 2D Flow...Shock Interactions 2. Engine Intakes 3. Supersonic Jets 1. Shock fl β B 1 3 β C Re ection βA δ=12o 2 3 M 1 =6

Axisymmetric Under‐Expanded Jet

http://www.aerospaceweb.org/

Kinki University, Japan