50
Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven/ESAT-SISTA 27/4/00 p. 1 Postacademic Course on Telecommunications Module-3 : Transmission Lecture-3 (27/4/00) Marc Moonen Dept. E.E./ESAT, K.U.Leuven [email protected] www.esat.kuleuven.ac.be/sista/ ~moonen/

27/4/00 p. 1 Postacademic Course on Telecommunications Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven/ESAT-SISTA Module-3 :

Embed Size (px)

Citation preview

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven/ESAT-SISTA

27/4/00p. 1

Postacademic Course on Telecommunications

Module-3 : Transmission

Lecture-3 (27/4/00)

Marc Moonen

Dept. E.E./ESAT, K.U.Leuven

[email protected]

www.esat.kuleuven.ac.be/sista/~moonen/

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 2

Lecture-3: Transmitter Design

Overview• Transmitter : Constellation + Transmit filter • Preliminaries : Passband vs. baseband transmission

• Constellations for linear modulation ->M-PAM / M-PSK / M-QAM

->BER performance in AWGN channel for transmission of

1 symbol (Gray coding, Matched filter reception)

• Transmission pulses : ->Zero-ISI-forcing design procedure for transmit pulse

(and receiver front-end filter), Nyquist pulses, RRC pulses

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 3

Lecture-3: Transmitter Design

Lecture partly adopted from

Module T2

`Digital Communication Principles’

M.Engels, M. Moeneclaey, G. Van Der Plas

1998 Postgraduate Course on Telecommunications

Special thanks to Prof. Marc Moeneclaey

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 4

Transmitter: Constellation + Transmit Filter

PS: channel coding (!) not considered here

sk Ea .

r(t)

ka

transmit

pulse

s(t)

n(t)

p(t) +

AWGN

transmitter receiver (to be defined)

h(t)

channel

...

constellationtransmit filter (linear modulation)

k

sks kTtpaEts )(..)(

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 5

Transmitter: Constellation + Transmit Filter

-> s(t) with infinite bandwidth, not the greatest choice for p(t)..

-> implementation: upsampling/digital filtering/D-to-A/S&H/...

sk Ea .

transmit

pulse

s(t)

p(t)

transmitter

discrete-timesymbol sequence

continuous-timetransmit signal

tp(t)

Example:

t

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 6

Preliminaries: Passband vs. baseband transmission (I)

Baseband transmission• transmitted signal is

(linear modulation)• transmitted signals have to be real,

hence = real, p(t)=real• baseband means for

fB-B

0)( fSLPBf ||

)( fSLP

k

sksLP kTtpaEts )(..)(

ka

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 7

Preliminaries : Passband vs. baseband transmission (II)

Baseband transmission model/definitions

g(t)=p(t)*h(t)*f(t) (convolution)

everything is real here!

sk Ea .

r(t)

ka

transmit

pulse

s(t)

n(t)

p(t) + f(t)

front-end

filter

AWGN

1/Ts

transmitterreceiver (first version, see also Lecture4)

h(t)

channel

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 8

Preliminaries : Passband vs. baseband transmission (III)

Bandpass transmission

transmitted signal is modulated baseband signal

)(tsLP

).2cos( 0tf

fB-B

)( fSLP

)(tsBP

-fof

)( fSBP

fo fo+B

`envelope’

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 9

Preliminaries : Passband vs. baseband transmission (IV)

Bandpass transmission:• note that modulated

signal has 2x larger bandwidth, hence inefficient scheme !

• solution = accommodate 2 baseband signals in 1 bandpass signal :

I =`in-phase signal’ Q=`quadrature signal’

such that energy in BP is energy in LP

2

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 10

Preliminaries : Passband vs. baseband transmission (V)

• Convenient notation for `two-signals-in-one’ is complex notation :

• re-construct `complex envelope’ from BP-signal (mathematics omitted)

`com

p le x

env

e lo p

e’

)(.)()( tsjtsts QILP

low-pass filter

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 11

Assignment 2.1

• Prove for yourself that this is indeed a correct complex-envelope reconstruction procedure!

low-pass filter

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 12

Preliminaries : Passband vs. baseband transmission (VI)

Passband transmission model/definitions

(mathematics omitted):

a convenient and consistent (baseband) model can be obtained, based on complex envelope signals, that does not have the modulation/demodulation steps:

ka

f(t)front-end

filter

1/Ts

receiver (first version)

r(t)

n’(t)

+

AWGN

sk Ea .

transmit

pulse

s(t)

p(t)

transmitter

h’(t)

channel

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 13

Preliminaries : Passband vs. baseband transmission (V)

kaf(t)

front-end

filter

1/Ts

receiver (first version)

r(t)

n’(t)

+

AWGN

sk Ea .

transmit

pulse

s(t)

p(t)

transmitter

h’(t)

channel

=complex symbols

=usually a complex filter

)()(' 02 theth tfj =complex AWGN

=complex

=real-valued transmit pulseQkIkk ajaa ,, .

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 14

Preliminaries : Passband vs. baseband transmission (VI)

• In the sequel, we will always use this baseband-equivalent model, with minor notational changes (h(t) and n(t), i.o. h’(t) and n’(t)). Hence no major difference between baseband and passband transmission/models (except that many things (e.g. symbols) can become complex-valued).

• PS: modulation/demodulation steps are transparent (hence may be omitted in baseband model) only if receiver achieves perfect carrier synchronization (frequency fo & phase). Synchronization not addressed here (see e.g. Lee & Messerschmitt, Chapter 16).

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 15

Constellations for linear modulation (I)

Transmitted signal (envelope) is:

Constellations:

PAM PSK QAM pulse amplitude modulation phase-shift keying quadrature amplitude modulation

4-PAM (2bits) 8-PSK (3bits) 16-QAM (4bits)

ps: complex constellations for passband transmission

IR

IR

I

R

k

sks kTtpaEts )(..)(

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 16

Constellations for linear modulation (II)

M-PAM pulse amplitude modulation

• energy-normalized iff

• then distance between nearest neighbors is

larger d -> noise immunity (see below)

IR

PAMPAMPAMk AMAAa )1(,.....,3,

ka1

3)(

2

MMAPAM

1

12)(

2

MMdPAM

d

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 17

Constellations for linear modulation (III)

M-PSK phase-shift keying

• energy-normalized iff ….• Then distance between nearest neighbors is

1,...,1,0|)2.exp( Mm

M

mjak

ka

)sin(.2)(M

MdPSK

d

I

R

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 18

Constellations for linear modulation (IV)

M-QAM quadrature amplitude modulation

• distance between nearest neighbors is 1

6)(

MMdQAM

d

IR

QAMQAMQAMkQkI AMAAaa )1(,.....,3,, ,, kQkIk ajaa ,, .

)()()( MdMdMd QAMPSKPAM

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 19

BER Performance for AWGN Channel

BER=(# bit errors)/(# transmitted bits)

g(t)=p(t)*f(t) (convolution)

n’(t)=n(t)*f(t)

BER for different constellations?

r(t)

ka

transmit

pulse

s(t)

n(t)

p(t) +

sk Ea .

f(t)

front-end

filter

AWGNchannel

1/Ts

transmitter receiver

r’(t)

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 20

BER Performance for AWGN Channel

definitions: - transmitted signal

- received signal (at front-end filter)

- received signal (at sampler)

g(t) =p(t)*f(t) = transmitted pulse p(t) filtered by front-end filter

n’(t) =n(t)*f(t) = AWGN filtered by front-end filter

)(')(..)(' tnkTtgaEtrk

sks

k

sks kTtpaEts )(..)(

)()(..)( tnkTtpaEtrk

sks

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 21

BER Performance for AWGN Channel

Received signal sampled @ time t=k.Ts is...

1 = useful term

2= `ISI’, intersymbol interference (from symbols other than )

3= noise term

Strategy : a) analyze BER in absence of ISI (=`transmission of 1 symbol’)

b) analyze pulses for which ISI-term = 0 (such that analysis under a. applies)

c) for non-zero ISI, see Lecture 4-5

3

2

01

).(').(.)0(..).(' sm

smkkss TknTmgagaETkr

ka

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 22

Transmission of 1 symbol over AWGN channel (I)

BER for different constellations?

ka

transmit

pulse n(t)

p(t) +

sEa .0

f(t)

front-end

filter

AWGNchannel

1/Ts

...take 1 sample at time 0.Tstransmit 1 symbol at time 0.Ts ...

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 23

Transmission of 1 symbol over AWGN channel (II)

Received signal sampled @ time t=0.Ts is..

• `Minimum distance’ decision rule/device :

3

21

0 ).0('0)0(..).0(' sss TngaETr

n

s

s

Mni

s

si

gE

Tr

gE

Tra

)0(.

).0('min

)0(.

).0('ˆ

100

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 24

Transmission of 1 symbol over AWGN channel (III)

`Minimum distance’ decision rule :

Example : decision regions for 16-QAMI

R

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 25

Transmission of 1 symbol over AWGN channel (IV)

Preliminaries :BER versus SER (symbol-error-rate)

• aim: each symbol error (1 symbol = n bits)

introduces only 1 bit error• how? : GRAY CODING

make nearest neighbor symbols correspond to groups of n bits that differ only in 1 bit position…

• …hence `nearest neighbor symbol errors’ (=most symbol errors) correspond to 1 bit error

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 26

Transmission of 1 symbol over AWGN channel (V)

Gray Coding for 8-PSK

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 27

Transmission of 1 symbol over AWGN channel (VI)

Gray Coding for 16-QAM

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 28

Transmission of 1 symbol over AWGN channel (VII)

• Computations : skipped (compute probability that additive noise pushes received

sample in wrong decision region)

• Results:

neighbors ofnumber average)(

)2

exp(.2

1)(

)(

)0(

)(log).(.2

.(.log

)(

2

2

2

22

02

MN

duu

xQ

dffF

g

MMdN

EQ

M

MNBER

x

b

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 29

Transmission of 1 symbol over AWGN channel (VIII)

Interpretation (I) : Eb/No

• Eb= energy-per-bit=Es/n=(signal power)/(bitrate)• No=noise power per Hz bandwidth

lower BER for higher Eb/No

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 30

Transmission of 1 symbol over AWGN channel (IX)

Interpretation (II) : Constellation

for given Eb/No, it is found that…

BER(M-QAM) =< BER(M-PSK) =< BER(M-PAM)

BER(2-PAM) = BER(2-PSK) = BER(4-PSK) = BER(4-QAM)

higher BER for larger M (in each constellation family)

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 31

Transmission of 1 symbol over AWGN channel (X)

Interpretation (III): front-end filter f(t)

It is proven that

and that is obtained only when

this is known as the `matched filter receiver’ (see also Lecture-4)

dffF

g

2

2

)(

)0(

10 1

)()( and )()( i.e. ,)()(2** fPfGtptffPfF

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 32

Transmission of 1 symbol over AWGN channel (XI)

Interpretation (IV)

with a matched filter receiver, obtained BER is independent of pulse p(t)

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 33

Transmission of 1 symbol over AWGN channel (XII)

BER for M-PAM (matched filter reception)

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 34

Transmission of 1 symbol over AWGN channel (XIII)

BER for M-PSK (matched filter reception)

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 35

Transmission of 1 symbol over AWGN channel (XIV)

BER for M-QAM (matched filter reception)

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 36

Symbol sequence over AWGN channel (I)

• ISI (intersymbol interference) results if

• ISI results in increased BER

0).( such that 0 sTmgm

g(t)=p(t)*f(t)

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 37

Symbol sequence over AWGN channel (II)

• No ISI (intersymbol interference) if

• zero ISI -> 1-symbol BER analysis still valid• design zero-ISI pulses ?

0).( : 0 sTmgm

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 38

Zero-ISI-forcing pulse design (I)

• No ISI (intersymbol interference) if

• Equivalent frequency-domain criterion:

This is called the `Nyquist criterion for zero-ISI’

Pulses that satisfy this criterion are called `Nyquist pulses’

0).( : 0 sTmgm

)0(constant)(1

gT

kfG

T k ss

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 39

Zero-ISI-forcing pulse design (II)

• Nyquist Criterion for Bandwidth = 1/2Ts

Nyquist criterion can be fulfilled only when G(f) is constant for |f|<B, hence ideal lowpass filter.

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 40

Zero-ISI-forcing pulse design (III)

• Nyquist Criterion for Bandwidth < 1/2Ts

Nyquist criterion can never be fulfilled

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 41

Zero-ISI-forcing pulse design (IV)

• Nyquist Criterion for Bandwidth > 1/2Ts

Infinitely many pulses satisfy Nyquist criterion

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 42

Zero-ISI-forcing pulse design (V)

• Nyquist Criterion for Bandwidth > 1/2Ts

practical choices have 1/T>Bandwidth>1/2Ts

Example:

Raised Cosine (RC) Pulses

10

factor' off-`roll :

(%)100. Bandwidth Excess

2T

1 Bandwidth

s

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 43

Zero-ISI-forcing pulse design (VI)

Example:

Raised Cosine Pulses

(time-domain)

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 44

Zero-ISI-forcing pulse design (VII)

Procedure:

1. Construct Nyquist pulse G(f) (*)

e.g. G(f) = raised cosine pulse

(formulas, see Lee & Messerschmitt p.190)

2. Construct F(f) and P(f), such that (**)

F(f)=P*(f) and P(f).F(f)=G(f) -> P(f).P*(f)=G(f)

e.g. square-root raised cosine (RRC) pulse

(formulas, see Lee & Messerschmitt p.228)

(*) zero-ISI, hence 1-symbol BER performance

(**) matched filter reception = optimal performance

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 45

Zero-ISI-forcing pulse design (VIII)

• PS: Excess BW simplifies implementation

-`shorter’ pulses (see time-domain plot)

- sampling instant less critical (see eye diagrams)

`eye diagram’ is `oscilloscope view’ of signal before sampler, when symbol timing serves as a trigger

20%

exc

ess-

BW

100%

exc

ess-

BW

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 46

Zero-ISI-forcing pulse design (IX)

• PPS: From the eye diagrams, it is seen that selecting a proper sampling instant is crucial

(for having zero-ISI)

->requires accurate clock synchronization,

a.k.a. `timing recovery’, at the receiver

(clock rate & phase)

->`timing recovery’ not addressed here

see e.g. Lee & Messerschmitt, Chapter 17

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 47

Questions….

1. What if channel is frequency-selective, cfr. h(t) ?

- Matched filter reception requires that F(f)=P*(f).H*(f)

- Zero-ISI requires that P(f).H(f).F(f)=Nyquist pulse

Is this an optimal design procedure ?

ka

f(t)front-end

filter

1/Ts

receiver (see lecture-4)

n(t)

+

AWGN

sk Ea .

transmit

pulse

p(t)

transmitter

h(t)

channel

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 48

Assignment 2.2

Analyze this design procedure for the case where the channel is given as

H(f) = Ho for |f|<B/2

H(f) = 0.1 Ho for B/2<|f|<B

discover a phenomenon known as `noise enhancement’ (=zero-ISI-forcing approach ignores the additive noise, hence may lead to

an excessively noise-amplifying receiver)

ka

f(t)front-end

filter

1/Ts

receiver (see lecture-4)

n(t)

+

AWGN

sk Ea .

transmit

pulse

p(t)

transmitter

h(t)

channel

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 49

Questions….

2. Is the receiver structure (matched filter front-end + symbol-rate sampler + slicer) optimal at all ?

Sampler works at symbol rate. With non-zero excess

bandwidth this is below the Nyquist rate.

Didn’t your signal processing teacher tell you never to do

sample below the Nyquist rate? Could this be o.k. ????

ka

f(t)front-end

filter

1/Ts

receiver (see lecture-4)

n(t)

+

AWGN

sk Ea .

transmit

pulse

p(t)

transmitter

h(t)

channel

Postacademic Course on Telecommunications

Module-3 Transmission Marc MoonenLecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA

27/4/00p. 50

Conclusion

• Transmitter structure: symbol constellation + transmit pulse p(t)

• Symbol constellation: PAM/PSK/QAM BER-analysis for transmission of 1 symbol over AWGN-channel

-> Performance of matched filter receiver is independent of transmit pulse

• Transmit pulse p(t): -> Zero-ISI-forcing design procedure for transmit pulse p(t)

and front-end filter f(t), for AWGN channels (-> RRC pulses)

-> Even though for more general channels this is not an optimal

procedure (see Lecture 4), transmit pulses are usually designed as

RRC’s.