110
UNIT - 5 TRIVANDRUM: T.C.No: 5/1703/30, Golf Links Road, Kowdiar Gardens, H.B. Colony, TV M, 0471-2438271 KOCHI: Bldg.No.41/352, Mulloth Ambady Lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094 Today’s Mathiit’ians..... Tomorrow’s IITi’ians..... CONTENTS * Synopsis Questions * Level - 1 * Level - 2 * Level - 3 Answers * Level - 1 * Level - 2 * Level - 3 e- Learni ng Resources w w w . m a t h i i t . i n Definite Integration Material SYNOPSIS Definite Integral Mathiit e- Learni ng Res ources [email protected] www.mathiit.in 1. a b f(x) dx = F(b) - F(a) where f(x) dx = F(x) + c 2. If a b f(x) dx = 0 ⇒ then the equation f(x) = 0 has atleast one root lying in (a, b) provided f is a continuous function in (a, b) . 3. PROPERTIES OF DEFINITE INTEGRAL : P - 1 a b f(x) dx = a b f(t) dt P - 2 a b f(x) dx = - b a f(x) dx P - 3 a

26716055 Today s Mathiit Ians Tomorrow s IITi Ians

Embed Size (px)

DESCRIPTION

ah

Citation preview

Page 1: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

UNIT - 5TRIVANDRUM: T.C.No: 5/1703/30, Golf Links Road, Kowdiar Gardens, H.B. Colony, TVM, 0471-2438271KOCHI: Bldg.No.41/352, Mulloth Ambady Lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094Today’s Mathiit’ians..... Tomorrow’s IITi’ians.....CONTENTS* SynopsisQuestions* Level - 1* Level - 2* Level - 3Answers* Level - 1* Level - 2* Level - 3e- Learni ng Resourcesw w w . m a t h i i t . i nDefinite IntegrationMaterialSYNOPSISDefinite IntegralMathiit e- Learni ng Res ources [email protected] www.mathiit.in1.ab∫f(x) dx = F(b) - F(a) where ∫f(x) dx = F(x) + c2. If ab∫f(x) dx = 0 ⇒ then the equation f(x) = 0has atleast one root lying in (a, b) providedf is a continuous function in (a, b) .3. PROPERTIES OF DEFINITE INTEGRAL :P - 1ab∫f(x) dx = ab∫f(t) dtP - 2ab∫f(x) dx = -ba∫f(x) dxP - 3 a

Page 2: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

b∫f(x) dx = ac∫f(x) dx + cb∫f(x) dx , where cmay lie inside or outside the interval [a, b] . Thisproperty is to be used when f is piecewisecontinuous in (a, b) .P - 4−∫aaf(x) dx = 0 if f(x) is an oddfunction i.e. f(x) = � f(�x) .= 20a∫f(x) dx if f(x) is an even functioni.e. f(x) = f(�x) .P � 5ab∫f(x) dx = ab∫f(a + b � x) dx,In particular 0a∫f(x) dx = 0a∫f(a � x)dxP � 602a∫f(x) dx = 0a∫f(x) dx +

Page 3: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

0a∫f(2a � x) dx= 2 0a∫f(x) dx if f(2a � x) = f(x)= 0 if f(2a � x) = � f(x)P � 70na∫f(x) dx = n0a∫f(x) dx ; where‘a’is theperiod of the function i.e. f(a + x) = f(x)P � 8a nTb nT++∫ f(x) dx = ab∫f(x) dx where f(x)is periodic with period T & n ∈ I .P � 9mana∫f(x) dx = (n � m) 0a∫f(x) dx if f(x)is periodic with period �a� .P �

10 If f(x) ≤ φ (x) �or a ≤ x ≤ b thenab∫�(x) dx ≤ ab∫ φ (x) dxP

Page 4: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

- 11 ∫ab� x d x ( ) ≤ ab∫ |�(x) | dx .P - 12 I� �(x) ≥ 0 on the interval [a, b], thenab∫ �(x) dx ≥ 0 .4. WALLI’S FORMULA :02 π/∫sinnx . cosmx dx=[ ] [ ] ( ) ( ) ( ).... ( ) ( )....( ) ( ) ( )....n n n or m m orm n m n m n or− − − − −+ + − + −1 3 5 1 2 1 3 1 22 4 1 2Kwhere K = 2π i� both m & n are even(m, n ∈ N) = 1 otherwise5. I� h(x) & g(x) are di��erentiable �unctions o� x then,dd x g xh x( )( )∫ �(t) dt = � [h (x)] . ) x ( h′ - � [g (x)] . ) x ( g′6. Limitn→∞1n|.

`

Page 5: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

, ∑·−rn11 f rn|.

�, = 01∫f(x) dx .7. For a monotonic decreasing function in (a, b) ;f(b).(b � a) < ab∫ f(x) dx < f(a).(b � a)8. For a monotonic increasing function in (a, b) ;f(a).(b � a) < ab∫f(x) dx < f(b).(b � a)DEFINITIONS AND RESULTSw w w. m a t h i i t . i n LEVEL � 1 (Fundamentals of Definite Integration)Mathiit e� Learni ng Res ources [email protected] www.mathiit.in1. 1210nxe dx ·∫ (a) 0 (b) 12(c) 13(d) 14.2. / 420tan xdxπ

Page 6: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

·∫(a) 14π− (b) 14π+ (c) 14π− (d) 4π.3. / 20sin1 cosx xdxxπ +·+∫(a) log 2e− (b) log 2e (c) 2π(d) 0.4. / 20sinxe xdxπ·∫(a) ( )/ 2112 eπ− (b) ( )/ 2112 eπ

Page 7: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

+ (c) ( )/ 2112 eπ−(d) ( )/ 22 1 eπ+ .5.2211 1xe dxx x| `− · . ,∫(a) 22ee + (b) 22ee − (c) 22ee −(d) None of these.6.( )( )/ 20cos1 sin 2 sinxdxx xπ·+ +∫(a) 4log3

Page 8: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

(b) 1log3 (c) 3log4(d) None o� these.7.( )/ 25/ 321 cos1 cosxdxxππ+·−∫(a) 52 (b) 32 (c) 12(d) 25.8.12211xe dxx−·∫(a) 1 e + (b) 1 e − (c) 1 ee+(d) 1 ee

Page 9: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

−.Mathiit e� Learni ng Res ources [email protected] www.mathiit.in9. 11202sin1xdxx− | �· +. ,∫(a) 2log 22π− (b) 2log 22π+ (c) log 24π−(d) log 24π+.10. The value o� ( )232ax bx c− + +∫ depends on(a) The value of a (b) The value of b (c) The value of c (d) The value of a and b.11. / 4/ 6cos 2 ec x dxππ

Page 10: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

·∫(a) log 3 (b) log 3 (c) log9 (d) None o� these.12. logbaxdxx ·∫(a) logloglogba| ` . , (b) ( ) log log baba| ` . , (c) ( )1log log2baba| ` . , (d) ( )1log log2aabb| ` . ,13. 110tan x dx−·∫

Page 11: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

(a) 1log 24 2π− (b) 1log 22π − (c) log 24π− (d) log 2 π − .14.( ) ( )1201dxax b x·+ −∫(a) ab (b) ba (c) ab (d) 1ab.15. / 22/ 4cos cos ec dππ θ θ θ ·∫(a) 2 1 − (b) 1 2 − (c) 2 1 +(d) None of these .16.( )11/ 23/ 20 2sin1xdxx−·

Page 12: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

−∫(a) 1log 24 2 eπ+ (b) 1log 24 2 eπ− (c) log 22 eπ+(d) log 22 eπ−.17. / 202 cosdxxπ·+∫(a) 11 1tan3 3− | � . , (b) ( )13 tan 3− (c) 12 1tan3 3− | �

Page 13: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

. , (d) ( )12 3 tan 3−.Mathiit e� Learni ng Res ources [email protected] www.mathiit.in18.1120tan1xdxx−·+∫(a) 28π (b) 216π (c) 24π(d) 232π.19. The value o� integral ( )2/21/sin 1/ xdxxππ ·∫(a) 2 (b) -1 (c) 0 (d) 1.20.2/ 20.sin2 4x

Page 14: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

xe dxπ π | `+ · . ,∫(a) 1 (b) 2 2 (c) 0 (d) None o� these.21. 101xxedxe−− ·+∫(a) 1 1log 1ee e+ | `− + . , (b) 1 1log 12ee e+ | �− + . , (c) 1 1log 12ee e+ | �+ − . , (d) None of these.22. / 40sin cos9 16sin 2x xdx

Page 15: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

xπ +·+∫(a) 1log320 (b) log3 (c) 1log520(d) None o� these.23. ( )/ 2/ 4logsin cotxe x x dxππ + ·∫(a) / 4log 2 eπ (b) / 4log2 eπ− (c) / 41log 22eπ(d) / 41log 22eπ− .24.11/ 22 0sin1x xdxx−·

Page 16: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

−∫(a) 1 32 12π+ (b) 1 32 12π− (c) 1 32 12π− (d) None of these.25. 2022xdxx+·−∫(a) 2 π + (b) 32π + (c) 1 π + (d) None o� these.26.01 sindxxπ·+∫(a) 0 (b) 12 (c) 2 (d) 32.27. 201 sin2xdxπ+ ·∫(a) 0 (b) 2 (c) 8 (d) 4.28. 1

Page 17: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

10cos x dx−·∫(a) 0 (b) 1 (c) 2 (d) None o� these.29. / 20cos1 cos sinxdxx xπ·+ +∫(a) 1log 24 2π+ (b) log 24π+ (c) 1log 24 2π−(d) log 24π−.30. ( )/ 6202 3 cos3 x xdxπ+ ·∫(a) ( )11636 π + (b) ( )11636

Page 18: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

π − (c) ( )211636 π −(d) ( )211636 π +.31. / 240sin cos1 sinx xdxxπ·+∫(a) 2π (b) 4π (c) 6π(d) 8π.32. / 46 20tan sec x x dxπ·∫(a) 17 (b) 27 (c) 1(d) None o� these.33. / 63

Page 19: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

0sincosxdxxπ·∫(a) 23 (b) 16 (c) 2 (d) 13.34. / 220sin coscos 3cos 2x x dxdxx xπ·+ +∫(a) 8log9| ` . , (b) 9log8| ` . , (c) ( ) log 8 9 × (d) None o� these.35. The value o� the de�inite integral 12002 cos 1dx�orx x α πα < <+ +

Page 20: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

∫ is equ�l to(�) sinα (b) ( )1t�n sinα− (c) sin α α (d) ( ) 1sin2αα −M�thiit e� Le�rni ng Res ources doubt@m�thiit.in www.m�thiit.in36. The integr�l 231 1211t�n t�n1x xdxx x− −−| ` ++ · +. ,∫(a) π (b) 2π (c) 3π (d) None o� these.37. I� 221 21,logxeedx eI and I dxx x· ·∫ ∫then(a) 1 2I I · (b) 1 2I I > (c) 1 2I I < (d) None o� these.

Page 21: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

38. / 2/ 4sinxe xdxππ−− ·∫(a) / 212e π −− (b) / 422 e π −− (c) ( )/ 4 / 42 e eπ π − −− + (d) 0.39.( )/ 2201 2cos2 cosxdxxπ +·+∫(a) 2π (b) π (c) 12(d) None o� these.40. 201 2 cosdxa x aπ

Page 22: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

·− +∫(�) ( )22 1 �π− (b) ( )21 � π − (c) 21 �π−(d) None of these.41. ( )1 901 x dx − ·∫(a) 1 (b) 110 (c) 1110(d) 2.42. / 30cos3xdxπ·∫(a) π (b) 0 (c) 2π(d) 4π.43. The value o� / 401 tan1 tanxdxxπ +−∫ is(�)

Page 23: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

1log 22− (b) 1log 24 (c) 1log 23(d) None of these.44. The v�lue of 10 x xdxe e−+∫ is(�) 1 1t�n1ee− − | ` +. , (b) 1 1t�n1ee− − | ` +. , (c) 4π(d) 1t�n4e π−+ .M�thiit e� Le�rni ng Res ources doubt@m�thiit.in www.m�thiit.in45.1

Page 24: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

1 loge xdxx+·∫(a) 32 (b) 12 (c) 1e(d) None o� these.46. I� 102log 1 log ,2 3xx dx a b| ` | `+ · + . , . ,∫ then(a) 3 3,2 2a b · · (b) 3 3,4 4a b · · − (c) 3 3,4 2� b · · (d) a b · .47.101dxx x ·+ −∫(�) 2 23 (b) 4 23

Page 25: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

(c) 8 23(d) None of these.48. / 44 404sin 2sin cosdπ θ θθ θ ·+∫(a) / 4 π (b) / 2 π (c) π (d) None o� these.49.( )( )13011xe xdxx−·+∫(a) 4e (b) 14e− (c) 14e+(d) None of these.50. If ( ) ( )41 1, x x x φ + · then ( )21x dx φ ·∫(a)

Page 26: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

1 32log4 17 (b) 1 32log2 17 (c) 1 16log4 17(d) None o� these.51.1/ 22 1/ 4dxx x·−∫(�) π (b) 2π (c) 3π(d) 6π.52. The v�lue of 203 xdxx∫ is(�) ( )223 1log3 − (b) 0 (c) 2 2log 3(d) 232.53. ( )20sin cos x x dxπ+ ·∫

Page 27: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

(a) 0 (b) 2 (c) -2 (d) 1.Mathiit e- Learni ng Res ources [email protected] www.mathiit.in54. / 420sec1 2sinxxπ+∫ is e�ual to(a) ( )1log 2 13 2 2π ]+ + ] ](b) ( )1log 2 13 2 2π ]+ − ] ](c) ( )3 log 2 12 2π ]+ − ] ](d) ( )3 log 2 12 2π ]+ + ] ]55. The v�lue of / 220sin1 cosxdxxπ+∫ is(�) / 2 π (b) / 4 π (c) / 3 π (d) / 6 π .

Page 28: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

56. The v�lue of 21log x dx∫ is(�) log 2 / e (b) log 4 (c) log 4 / e (d) log 2 .57. The v�lue of 25234xdxx −∫ is(�) 152 log7e| `− . , (b) 152 log7e| `+ . ,(c) 2 4log 3 4log 7 4log 5e e e+ − + (d) 1 152 t�n7− | `− . ,.58. The v�lue of 2 2sin cos1 10 0sin cosx xt dt t dt− −+∫ ∫

Page 29: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

(�) 2π (b) 1 (c) 4π(d) None of these.59. If for non�zero x , ( ) 1 15, �f x bfx x| `+ · − . , where , � b ≠ then ( )21f x dx ·∫(a) ( )2 21 7log2 52a a ba b ]− + ]+ ](b) ( )2 21 7log 2 52� � b� b ]− + ]− ](c) ( )2 21 7log 2 52� � b� b ]− − ]− ](d) ( )2 2

Page 30: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

1 7log 2 52� � b� b ]− − ]+ ].60. If / 40t�n ,nnI dπθ θ ·∫ then 8 6I I + e�uals(a) 14 (b) 15 (c) 16(d) 17.61. 2/ 3204 9dxx ·+∫(a) 12π (b) 24π (c) 4π(d) 0.62. The value o� 412

Page 31: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

011xdxx++∫ is(a) ( )13 46 π − (b) ( )13 46 π − (c) ( )13 46 π +(d) ( )13 46 π +.M�thiit e� Le�rni ng Res ources doubt@m�thiit.in www.m�thiit.inM�thiit e� Le�rni ng Res ources doubt@m�thiit.in www.m�thiit.in63. 2 30sin�

x x dx∫ equ�ls(�) ( )31 cos � − (b) ( )33 1 cos � − (c) ( )311 cos3 � − − (d) ( )311 cos3 � −64.

Page 32: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

( )/ 40t�n cot x x dxπ+∫ equ�ls(�) 2π (b) 2π (c) 2π(d) 2π.65. 1011xdxx−+∫ equ�ls(�) 12π | `− . , (b) 12π | `+ . , (c) 2π(d) ( ) 1 π + .66.11edxx∫ is equ�l to(�) ∞ (b) 0 (c) 1 (d) ( ) log 1 e + .67.2

Page 33: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

1logx xdxx ·∫(a) ( )2log x (b) ( )2 1log2 x (c) 2log2x(d) None o� these.68. / 22 2 2 20cos sindxa x b xπ·+∫(a) ab π (b) 2ab π (c) abπ(d) 2abπ.69. ( ) ( ) ( )/ 4 5 / 4 / 40 / 4 2cos sin sin cos cos sin x x dx x x dx x x dxπ π ππ π− + − + −∫ ∫ ∫ is equ�l to(�) 2 2 − (b) 2 2 2 − (c) 3 2 2 −(d) 4 2 2 −.70. ( ) ( )0

Page 34: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

4 ,�

x dx � ≤ +∫ then(�) 0 4 � ≤ ≤ (b) 2 4 � − ≤ ≤ (c) 2 0 � − ≤ ≤ (d) 2 4 � or � ≤71. 0212 2dxx x− ·+ +∫(a) 0 (b) / 4 π (c) / 2 π (d) / 4 π − .72. 32111 dxx +∫ is equ�l to(�) /12 π (b) / 6 π (c) / 4 π (d) / 3 π .73. 31( 1)( 2)( 3) x x x dx − − − ·∫(a) 3 (b) 2 (c) 1 (d) 0.74. 322dxx x ·−∫(�) ( ) log 2/ 3 (b) ( ) log 1/ 4 (c) ( ) log 4/ 3 (d) ( ) log 8/ 3 .75.( )1583 1dxx x ·− +∫(�) 1 5log2 3

Page 35: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

(b) 1 5log3 3 (c) 1 3log2 5(d) 1 3log5 5.76. The v�lue of 30sin dπθ θ∫ is(a) 0 (b) 3/ 8 (c) 4/ 3(d) π .77.1101sin 2tan1xdxx−| `+· −. ,∫(�) / 6 π(b) / 4 π (c) / 2 π(d) π .78. 3203 19xdx

Page 36: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

x+·+∫(a) ( )log 2 212π+ (b) ( )log 2 22π+ (c) ( )log 2 26π+ (d) ( )log 2 23π+79. The value o� ( )2411dxx x +∫ is(a) 1 17log4 32 (b) 1 17log4 2 (c) 17log2(d) 1 32log4 17.80. The value o� ( )32211

Page 37: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

xdxx x+−∫ is(�) 12log 26− (b) 16 1log9 6− (c) 4 1log3 6−(d) 16 1log9 6+ .81. The v�lue of 1logex dx∫ is(�) 0 (b) 1 (c) 1 e − (d) 1 e + .82. The v�lue of ( )2/ 20sin cos1 sin 2x xI dxxπ +·+∫ is(a) 3 (b) 1 (c) 2 (d) 0.Mathiit e- Learni ng Res ources [email protected] www.mathiit.in83. / 830cos 4 dπθ θ ·∫(a) 2

Page 38: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

3 (b) 14 (c) 13(d) 16.84. ( )832 31xdxx x−+∫ is equ�l to(�) ( )32log 3/ 2e (b) ( )3log 3/ e (c) ( )34log 3/ e (d) None of these85. The v�lue of 120xx e dx∫is equ�l to(�) 2 e − (b) 2 e + (c) 22 e − (d) 2e .86. Let 2 21 22 1 11dx dxI �nd Ixx· ·+∫ ∫ then

Page 39: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

(a) 1 2I I > (b) 2 1I I > (c) 1 2I I · (d) 1 221 I > .87. The value o� ( )tan cot2 21/ /1 1x xe I et dt dtt t t+ ·+ +∫ ∫(a) -1 (b) 1 (c) 0 (d) None o� these.88. 3 / 4/ 4 1 cosdxxππ +∫ is e�ual to(a) 2 (b) -2 (c) 12(d) 12− .89. The v�lue of ( )2211e dxx ln x +∫ is(�) 2/ 3 (b) 1/ 3 (c) 3/ 2(d) ln 2.90. / 2

Page 40: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

2/ 4cosec xdxππ ·∫(a) -1 (b) 1 (c) 0 (d) 12.91. I� ( )1/ 2log2,61xudueπ·−∫ then xe ·(a) 1 (b) 2 (c) 4 (d) -1.92. I� ( ) ( ) 1 2 , g g · then ( ) ( ) ( ) ( )2 11� ( ) � �g x � g x g x dx−∫ is equ�l to(�) 1 (b) 2 (c) 0 (d) None of these.M�thiit e� Le�rni ng Res ources doubt@m�thiit.in www.m�thiit.inM�thiit e� Le�rni ng Res ources doubt@m�thiit.in www.m�thiit.inw w w. m � t h i i t . i n LEVEL � 2 (Pro�erties of Definite Integr�tion)1. ( )0sin xf x dxπ·∫(a) ( )0sin � x dxππ∫ (b) ( )0sin2 � x dxπ

Page 41: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

π∫ (c) ( )/ 20sin2 � x dxππ∫ (d) None o� these.2./ 20cotcot tanxdxx xπ·+∫(a) π (b) 2π (c) 4π(d) 3π.3. / 201 tandπ θθ ·+∫(a) π (b) 2π (c) 3π(d) 4π.4. I� ( ) 3,xt

Page 42: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

a� x t e dt ·∫ then ( )d� xdx ·(a) ( )3 23xe x x + (b) 3 xx e (c) 3 aa e (d) None o� these.5. 11x x dx− ·∫(a) 1 (b) 0 (c) 2 (d) -2.6. / 20log tan x dxπ·∫(a) log 22 eπ (b) log 22 eπ− (c) log 2eπ (d) 0.7. / 20logsin x dxπ·∫(a) log 22π | `− . ,

Page 43: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

(b) 1log2π (c) 1log2π − (d) log22π.8. / 20cos sin1 sin cosx xdxx xπ −·+∫(a) 2 (b) -2 (c) 0 (d) None o� these.9. 112log2xdxx−− | `· +. ,∫(a) -2 (b)1 (c) -1 (d) 0.10. 117 41cos x xdx− ·∫(a) -2 (b)-1 (c) 0 (d) 2.11.3/ 2/ 23/ 2 3/ 20sincos sin

Page 44: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

xdxx xπ·+∫(a) 0 (b) π (c) / 2 π(d) / 4 π.12. ( )/ 40log 1 tan dπθ θ + ·∫(a) log 24π (b) 1log4 2π (c) log 28π(d) 1log8 2π.13. 20sin 2cos da bπ θθθ ·−∫(�) 1 (b) 2 (c) 4π(d) 0.14. ( )101 f x dx −∫

Page 45: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

h�s the s�me v�lue �s the integr�l(�) ( )10f x dx∫ (b) ( )10f x dx −∫ (c) ( )101 f x dx −∫(d) ( )11f x dx−∫.15. ( )1/ 21/ 21cos log1xx dxx− − ] | `· ]+. , ]∫(a) 0 (b) 1 (c) 1/ 2e(d) 1/ 22e .16. The value o� 12 01dxx x + −∫ is(�) 3π (b) 2π (c)

Page 46: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

12(d) 4π.17. If ( )110, f x− ·∫ then(a) ( ) ( ) � x � x · − (b) ( ) ( ) f x f x − · − (c) ( ) ( ) 2 f x f x · (d) None o� these.18. 111 x dx− − ·∫(a) -2 (b) 0 (c) 2 (d) 4.Mathiit e- Learni ng Res ources [email protected] www.mathiit.inMathiit e- Learni ng Res ources [email protected] www.mathiit.in19. 30sin x x dxπ·∫(a) 43π (b) 23π (c) 0 (d) None o� these.20. 2221 x dx− − ·∫(a) 2 (b) 4 (c) 6 (d) 8.21./ 20cossin cosxdxx xπ

Page 47: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

·+∫(a) 2 (b) 2π (c) 4π(d) None o� these.22. / 24 40sin coscos sinx x xdxx xπ·+∫(a) 0 (b) 8π (c) 28π(d) 216π.23. The correct evaluation o� / 20sin4x dxπ π | `− . ,∫ is(�) 2 2 + (b) 2 2 − (c) 2 2 − + (d) 0.24. ( )0�

f x dx ·∫(a) ( )0a� a x dx +∫ (b) ( )

Page 48: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

02a� a x dx +∫ (c) ( )0a� x a dx −∫(d) ( )0�

f � x dx −∫.25. / 20sin cos x x dxπ− ·∫(a) 0 (b) ( )2 2 1 − (c) 2 1 −(d) ( )2 2 1 + .26.0cos x dxπ·∫(a) π (b) 0 (c) 2 (d) 1.27. The value o� the integral / 44/ 4sin x dxππ−− ·∫(a) 3/2 (b) -8/3 (c) 3/8 (d) 8/3.28. 1.520, x dx ] ] ∫ where [ . ] denotes the greatest integer �unction, e�uals(a) 2 2 + (b) 2 2 − (c) 2 2 − + (d) 2 2 − − .29.0t�n

Page 49: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

sec t�nx xdxx xπ·+∫(a) 12π− (b) 12ππ | `+ . , (c) 12π+(d) 12ππ | `− . ,.30.0t�nsec cosx xdxx xπ·+∫(a) 24π (b) 22π (c) 232

Page 50: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

π(d) 23π.31. 13 21sin cos x xdx− ·∫(a) 0 (b) 1 (c) 12(d) 2.32. For any integer n, the integral ( )2sin 30cos 2 1xe n x dxπ+ ·∫(a) -1 (b) 0 (c) 1 (d) π .33.1/logeex dx ·∫(a) 11e− (b) 12 1e| `− . , (c) 11 e−−(d) None of these.34. [ ] ( )/ 20sin x x dxπ

Page 51: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

−∫is equ�l to (where [.] re�resents gre�test integer function)(�) 28π (b) 218π− (c) 228π− (d) None of these.35. The v�lue of the integr�l ( )101nI x x dx · −∫ is(�) 11 n + (b) 12 n + (c) 1 11 2 n n−+ +(d) 1 11 2 n n++ +.36. The v�lue of [ ]22sin , x dxππ∫ where [ . ] re�resents the gre�test integer function, is(�) π − (b) 2π − (c) 53π−(d) 5

Page 52: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

3π.37. The v�lue of / 2301 t�ndxxπ+∫ is(�) 0 (b) 1 (c) 2π(d) 4π.38. The v�lue of 3 / 4/ 4,1 sin dππφφφ +∫ is(a) tan8ππ (b) log tan8π (c) tan8π(d) None o� these.Mathiit e- Learni ng Res ources [email protected] www.mathiit.in39. I� ( ) ( ) ( ), ba� a b x � x then x � x dx + − · ·∫(a) ( )2baa b� b x dx

Page 53: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

+−∫ (b) ( )2b�

� bf x dx+∫ (c) ( )2b�

b �f x dx−∫ (d) None of these.40.0sin x x dxπ·∫(a) π (b) 0 (c) 1 (d) 2π.41. I� ( ) ( )20 02 ,a a� x dx � x dx ·∫ ∫ then(a) ( ) ( ) 2 � a x � x − · − (b) ( ) ( ) 2 f � x f x − · (c) ( ) ( ) � a x � x − · − (d) ( ) ( ) f � x f x − · .42. I� / 4 / 42 20 0sin cos , I x dx and J x dx then Iπ π· · ·∫ ∫(a) 4 Jπ− (b) 2J (c) J(d) 2

Page 54: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

J.43. The v�lue of ( )513 1 x x dx − + −∫ is(�) 10 (b) 56 (c) 21 (d) 12.44. The v�lue of 325xdxx x − +∫ is(�) 1 (b) 0 (c) �1 (d) 12.45. The v�lue of 2cos 50cos 3xe x dxπ∫ is(�) 1 (b) �1 (c) 0 (d) None of these.46./ 2011 t�n dxxπ·+∫(a) 2π (b) 4π (c) 6π(d) 1.47. The value o� 21

Page 55: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

1sin3x xdxx−−−∫ is(�) 0 (b) 10sin23xdxx −∫ (c) 21023xdxx−−∫(d) 210sin23x xdxx−−∫.48. 1111sin xdx−∫ is equ�l to(�) 10 8 6 4 2. . . .11 9 7 5 3 (b)

Page 56: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

10 8 6 4 2. . . . .11 9 7 5 3 2π (c) 1 (d) 0.M�thiit e� Le�rni ng Res ources doubt@m�thiit.in www.m�thiit.in49. To find the numeric�l v�lue of ( )222, �x qx s dx− + +∫ it is necess�ry to know the v�lues of const�nts(�) � (b) q (c) s (d) � �nd s.50.111log1xdxx−+ | `· −. ,∫(�) 2 (b) 1 (c) 0 (d) π .51. / 2/ 2cos1 xxdxeππ − ·+∫(a) 1 (b) 0 (c) -1 (d) None o� these.52. I� [ ] x denotes the greatest integer less than or e�ual to x , then the value o� the integral [ ]220x x dx∫ e�uals(a) 5/3 (b) 7/3 (c) 8/3 (d) 4/3.53. 3

Page 57: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

0cos x dxπ·∫(a) -1 (b) 0 (c) 1 (d) π .54. 20logsin x dxπ·∫(a) 12 log2eπ | ` . , (b) log 2eπ (c) 1log2 2eπ | ` . ,(d) None o� these.55. I� ( ) � x is an odd �unction o� x , then ( )22cos � x dxππ−∫ is equ�l to(�) 0 (b) ( )20cos f x dxπ∫ (c) ( )202 sin f x dxπ∫ (d) ( )0cos f x dxπ

Page 58: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

∫.56. 20sin x dxπ∫ is equ�l to(�) π (b) 2π (c) 0 (d) None of these.57. / 20sinsin cosxdxx xπ+∫ equ�ls(�) 2π (b) 3π (c) 4π(d) 6π.58. 111t�n x x dx−−∫ equ�ls(�) 12π | `− . , (b) 12π | `+

Page 59: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

. , (c) ( ) 1 π − (d) 0.M�thiit e� Le�rni ng Res ources doubt@m�thiit.in www.m�thiit.in59. ( ) sin cos�

x f x dx− ·∫(a) ( )02 sin cosax� x dx∫ (b) 0 (c) 1 (d) None o� these.60. The value o� 230sin dπθ θ∫ is(a) 0 (b) 3 / 8 (c) 8 / 3 (d) π .61. 21x dx−∫(�) 5 / 2 (b) 1 / 2 (c) 3 / 2 (d) 7 / 2.62. 302 x dx −∫ equ�ls(�) 2 / 7 (b) 5 / 2 (c) 3 / 2 (d) �3 / 2.63. The v�lue of sin/ 2sin cos022 2xx x dxπ+∫ is(�) 4π (b) 2

Page 60: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

π (c) π (d) 2π.64. The v�lue of 1203 1 x dx −∫is(�) 0 (b) 4/ 3 3 (c) 3 / 7 (d) 5 / 6.65. 2 / 2cos2/ 2sin1 cosxxe dxxππ−−+∫ is equ�l to(�) 12e− (b) 1 (c) 0 (d) None of these.66. ( ) ( ) 2 , f x f x · − then ( )1.50.5xf x dx∫ equ�ls(�) ( )10f x dx∫ (b) ( )1.50.5f x dx∫ (c) ( )1.50.52 f x dx∫(d) 0.67.22

Page 61: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

2/ 202xxxedxe eππ | `− . ,+∫ is(�) / 4 π (b) / 2 π (c) 2/16 eπ(d) 2/ 4 eπ.68. If [ ] x denotes the gre�test integer less th�n or equ�l to x , then the v�lue of 513 x dx − ] ] ∫ is(�) 1 (b) 2 (c) 4 (d) 8.M�thiit e� Le�rni ng Res ources doubt@m�thiit.in www.m�thiit.in69.22| | x dx− ·∫(a) 0 (b) 1 (c) 2 (d) 4.70. Su��ose � is such that ( ) ( ) � x � x − · − for every re�l x �nd ( ) ( )1 00 15, f x dx then f t dt−· ·∫ ∫(a) 10 (b) 5 (c) 0 (d) -5.71. Let ( ) ( )1 2sin , sin ,a aa a

Page 62: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

I x� x dx I � x dxπ π − −· ·∫ ∫then 2I is e�ual to(a) 12 Iπ (b) 1I π (c) 12Iπ(d) 12I .72. 1/ 21/ 21cos .1xx ln dxx−+ | ` −. ,∫ is equ�l to(�) 0 (b) 1 (c) 2 (d) ln 3.73. The v�lue of 21logeeexdxx− ∫ is(�) 32 (b) 52 (c) 3 (d) 5.74. If ( ) ( )3

Page 63: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

2sin , 2,2,cos xe x xf x then f x dxotherwise −� ≤· �¹ ∫ is e�ual to(a) 0 (b) 1 (c) 2 (d) 3.75. I� : : � R Rand g R R → → are one to one, real valued �unctions, then the value o� the integral( ) ( ) ( ) ( ) ( ) ( )� x � x g x g x dxππ − + − − −∫ is(�) 0 (b) π (c) 1 (d) None of these.76. / 3/ 61 cotdxxππ+∫ is(�) / 3 π (b) / 6 π (c) /12 π(d) / 2 π.77. The v�lue of 2/ 3/ 22/ 3 2/ 30sinsin cosxdxx xπ+∫ is

Page 64: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

(�) / 4 π (b) / 2 π (c) 3 / 4 π(d) π .78. ( )121log 1 x x dx− + + ·∫(a) 0 (b) log 2 (c) 1log2(d) None o� these.Mathiit e- Learni ng Res ources [email protected] www.mathiit.inMathiit e- Learni ng Res ources [email protected] www.mathiit.in79. The value o� the integral ( ) ( )2cos sin , int ax bx dx a and bare egerππ − −∫ is(�) π − (b) 0 (c) π (d) 2π .80. 01 cos 22xdxπ +∫is equ�l to(�) 0 (b) 2 (c) 1 (d) �1.81. ( )20�

f x dx ·∫(a) ( )02 a� x dx∫ (b) 0 (c) ( ) ( )0 02a a

Page 65: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

� x dx � a x dx + −∫ ∫ (d) ( ) ( )20 02� �f x dx f � x dx + −∫ ∫.82. 2sin 30cosxe x dxπ∫ is equ�l to(�) �1 (b) 0 (c) 1 (d) π .83. Find the v�lue of 902 , x dx ]+ ]∫where [ . ] is the gre�test integer function(�) 31 (b) 22 (c) 23 (d) None of these.84. The v�lue of 220, x dx ] ] ∫where [ . ] is the gre�test integer function(�) 2 2 − (b) 2 2 + (c) 2 1 − (d) 2 2 − .85. [ ]10000x xe dx−∫is(�) 10001 e − (b) 100011ee−− (c) ( ) 1000 1 e − (d)

Page 66: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

11000e −.86. The v�lue of the ingr�l 11�nnnxdx� x x−− +∫ is(�) 2�

(b) 22n�n+ (c) 22n�n−(d) None of these.87. / 20sin 2 log t�n x x dxπ∫ is equ�l to(�) π (b) / 2 π (c) 0 (d) 2π.88. The integr�l [ ]1/ 21/ 21log1xx dxx−| + ` | `+ −. , . ,

Page 67: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

∫ equ�l ( where [.] is the gre�test integer function )(�) 12− (b) 0 (c) 1 (d) 12log2.89. ( )20sin sin x x dxπ+ ·∫(a) 0 (b) 4 (c) 8 (d) 1.90. The value o� ( )/ 23/ 23sin sin x x dxππ − +∫ is(�) 3 (b) 2 (c) 0 (d) 103.91. The v�lue of 1012I x x dx · −∫ is(�) 1/3 (b) 1/4 (c) 1/8 (d) None of these.92. The v�lue of 805 x dx −∫(�) 17 (b) 12 (c) 9 (d) 18.93. 201 x dx − ·∫(a) 0 (b) 2 (c) 1/2 (d) 1.94. [ ]22x dx−

Page 68: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

·∫ (where [.] denotes greatest integer �unction)(a) 1 (b) 2 (c) 3 (d) 4.95. 11201tan1 dxx x− | ` − +. ,∫(�) 2 ln (b) 2 ln − (c) 22 lnπ+(d) 22 lnπ−.96. The v�lue of , 0b�

xdx � bx < <∫ is(�) ( )� b − + (b) b � − (c) � b − (d) � b + .97. The v�lue of 2221 11 1x x�ln qln r dxx x−−| `+ − | ` | `+ +

Page 69: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

− +. , . ,. ,∫de�ends on(�) The v�lue of � (b) The v�lue of q (c) The v�lue of r (d) The v�lue of � �nd q.98. 01 sinxdxxπ+∫ is equ�l to(�) π − (b)2π (c) π (d) None of these.M�thiit e� Le�rni ng Res ources doubt@m�thiit.in www.m�thiit.inM�thiit e� Le�rni ng Res ources doubt@m�thiit.in www.m�thiit.in99. The v�lue of 3221 x dx− −∫ is(�) 13 (b) 143 (c) 73(d) 283.100. If ( ) ( )201 , f x x then f x dx · −∫ is(�) 1 (b) 0 (c) 2 (d) �2.101. If ( ) ( )/ 20 0sin sin , xf x dx A f x dx then Aπ π·∫ ∫is(a)

Page 70: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

2π (b) π (c) 4π(d) 0.102. ( ) ( )/ 20sin cos log sin cos x x x x dxπ− + ·∫(a) -1 (b) 1 (c) 0 (d) None o� these.103. The �unction ( )1x dtL xt·∫ satis�ies the e�uation(a) ( ) ( ) ( ) L x y L x L y + · + (b) ( ) ( )xL L x L yy| `· + . , (c) ( ) ( ) ( ) L xy L x L y · + (d) None o� these.104. The value o� integral 2 10xe dx∫lies in the interval(a) ( 0,1 ) (b) ( -1,0 ) (c) ( 1, e ) (d) None o� these.105. I� ( ) ( )32 20 0cos cos , P � x dx and Q � x dx thenπ π· ·∫ ∫(a) P - Q = 0 (b) P - 2Q = 0 (c) P - 3Q = 0 (d) P - 5Q = 0.106. Let a, b, c be non - zero real numbers such that( ) ( )3 32 20 13 2 3 2 , ax bx c dx ax bx c dx then + + · + +∫ ∫(a) a + b + c = 3 (b) a + b + c = 1 (c) a + b + c = 0 (d) a + b + c = 2.107. ( )2

Page 71: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

cos sin �x �x dxππ − −∫ is equ�l to ( where � �nd q �re integers )(�) π − (b) 0 (c) π (d) 2π.108. If ( ) ( )40cos ,xg x t dt then g x π · +∫ e�uals(a) ( ) ( ) g x g π + (b) ( ) ( ) g x g π − (c) ( ) ( ) g x g π (d) ( ) ( ) / g x g π .M�thiit e� Le�rni ng Res ources doubt@m�thiit.in www.m�thiit.in109. The v�lue of ( )2 101 xe dx−+ ·∫(a) -1 (b) 2 (c) 11 e−+ (d) None of these.110. ( )( ) ( )202� f xdxf x f � x ·+ −∫(�) � (b) 2�

(c) 2�(d) 0.111. The v�lue of 0sinnx dxπ υ +∫

Page 72: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

is(a) 2 1 cos n υ + + (b) 2 1 cos n υ + − (c) 2 1 n +(d) 2 cos n υ +.112. If / 420tan ,nn n n� x dx then� �π−· + ·∫(a) 11 n − (b) 11 n + (c) 12 1 n −(d) 12 1 n +.113. 10logsin2 x dxπ | `· . ,∫(a) log 2 − (b) log 2 (c) log 22π(d) log 22π−.114. 12 0log

Page 73: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

1xdxx·−∫(a) log 22π (b) log 2 π (c) log 22π−(d) log 2 π − .115. / 20cot x x dxπ∫ eq�als(a) log 22π− (b) log 22π (c) log 2 π (d) log 2 π − .116. The integral val�e ( ) ( ) ( )03 223 3 3 1 cos 1 x x x x x dx− + + + + + +∫ is(a) 2 (b) 4 (c) 0 (d) 8 .117. If ( )12sin11 sin , 0,2 3xt f t dt x x then fπ | ` | `· − ∈ . , . ,∫ eq�al to(a) 3 (b)

Page 74: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

13 (c) 13(d) 3118. 201sin sin2nx x dxπ | `− . ,∫ eq�als(a) n (b) 2n (c) � 2n (d) None of these119. The val�e of 31aadxx x−+∫ is(a) 0 (b) 6011adxx +∫ (c) 30121adxx +∫(d) ( )3011a

Page 75: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

dxa x + −∫.120. / 3/ 61 tandxxππ ·+∫(a) /12 π (b) / 2 π (c) / 6 π (d) / 4 π121. 44 4sinsin cosxdxx xππ − ·+∫(a) / 4 π (b) / 2 π (c) 3 / 2 π(d) π122. I� � is continuous �unction, then(a) ( ) ( ) ( )2 22 0� x dx � x � x dx− · − − ] ] ∫ ∫(b) ( ) ( )5 103 62 1 f x dx f x dx− −· −∫ ∫(c) ( ) ( )5 4

Page 76: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

3 41 f x dx f x dx− −· −∫ ∫(d) ( ) ( )5 63 21 f x dx f x dx− −· −∫ ∫123. The val�e of 2 2 21lim .....1 4 9 2nn n nn n n n→∞ ]+ + + + ]+ + + ] is eq�al to(a) 2π (b) 4π (c) 1 (d) None of these.124. 3 3 3 31 4 1lim .....1 2 2nn n n→∞+ + ++ + is eq�al to(a) 1log 33 e (b) 1log 23 e (c) 1 1log3 3e

Page 77: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

(d) None of these.125. 99 99 99 991001 2 3 ....limnnn→∞+ + +·(a) 9100 (b) 1100 (c) 199(d) 1101.126. 1/!limnnnnn→∞ ] ] ] e�uals(a) e (b) 1/ e (c) / 4 π(d) 4/ π.127. 22 211limnnrre�ualsn n r→∞

Page 78: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

· +∑(a) 1 5 + (b) 1 5 − + (c) 1 2 − + (d) 1 2 + .Mathiit e� Learni ng Res o�rces do�[email protected] www.mathiit.inMathiit e� Learni ng Res o�rces do�[email protected] www.mathiit.in128. 1 1 1 1lim .....1 2 2nn n n n→∞ ]+ + + · ]+ + ](a) 0 (b) log 4e (c) log 3e(d) log 2e.129. 2 21limnnkkn k→∞· +∑ is e�ual to(a) 1log 22 (b) log 2 (c) / 4 π (d) / 2 π .130. ( )2 2 21 1 1 1lim .....2 1nn n n n n n n n→∞ ] ] + + + + ]

Page 79: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

+ + + − ] is eq�al to(a) 2 2 2 + (b) 2 2 2 − (c) 2 2 (d) 2.131. 11 2 3 ......lim� � � ��

nnn +→∞+ + + +·(a) 11 � + (b) 11 � − (c) 1 11 � �−−(d) 12 � +.132. 11limrnnnren→∞·∑ is e�ual to(a) 1 e + (b) 1 e − (c) 1� e (d) e.133. The correct eval�ation of 40sin x dxπ∫ is(a) 83π (b) 2

Page 80: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

3π (c) 43π(d) 38π.134. The �oints of intersection of ( ) ( )122 5xF x t dt · −∫ and ( )202 ,xF x tdt ·∫ are(a) 6 36,5 25| ` . , (b) 2 4,3 9| ` . , (c) 1 1,3 9| ` . ,(d) 1 1,5 25| ` . ,.135. ( )0"b c� x a dx

Page 81: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

−+ ·∫(a) ( ) ( ) � � � a � b − (b) ( ) ( ) ' ' f b c a f a − + − (c) ( ) ( ) ' ' f b c a f a + − + (d) None of these.136. The greatest val�e of the f�nction ( )1xF x t dt · ·∫ on the interval 1 1,2 2 ]− ] ] is given by(a) 38 (b) 12− (c) 38−(d) 25.137. ( )/ 22 2/ 2sin cos sin cos x x x x dxππ − + ·∫(a) 215 (b) 415 (c) 615(d) 815.Mathiit e- Learni ng Res ources [email protected] www.mathiit.in138. ( )

Page 82: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

3021dxx x∞·+ +∫(a) 38 (b) 18 (c) 38−(d) None of these.139. If ( ) 2221,xtxf x e dt+−·∫ then ( ) � x increases in(a) ( ) 2, 2 (b) No value o� x (c) ( ) 0, ∞ (d) ( ) , 0 −∞40. If ( ) ( )log,xf x dx xe f x−· +∫ then ( ) � x is(a) 1 (b) 0 (c) xce (d) log x .141. The value o� ( )3/ 20sin cos dπθ θ θ∫ is

Page 83: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

(a) 2/9 (b) 2/15 (c) 8/45 (d) 5/2.142. 201log1dxxx x∞| `+ +. ,∫ is e�ual to(a) log 2 π (b) log 2 π − (c) ( ) / 2 log2 π (d) ( ) / 2 log 2 π − .143. ( )20 21xln x dxx∞+∫ is eq�al to(a) 0 (b) 1 (c) ∞ (d) None of these.144. If ( ) 2,1ttdxf tx−·+∫ then ( ) � 1 � is(a) Zero (b) 2 / 3 (c) -1 (d) 1.145. I� ( ) ( )32 log , 0 ,xxF x t dt x · >∫ then ( ) F x ′ ·(a) ( )29 4 log x x x − (b) ( )2

Page 84: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

4 9 log x x x − (c) ( )29 4 log x x x + (d) None of these.146. 11202sin1d xdxdx x− ] | ` ]+. , ]∫ is eq�al to(a) 0 (b) π (c) / 2 π(d) / 4 π.147. Let ( ) 212 .xf x t dt · −∫ Then real roots of the eq�ation ( )2' 0 x f x − · are(a) 1 t (b) 12t (c) 12t (d) 0 and 1.Mathiit e- Learni ng Res ources [email protected] www.mathiit.in148. ( )( )201 1xdxx x∞·+ +∫(a) 0 (b) / 2 π (c) / 4 π(d) 1.

Page 85: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

149. Let ( ) ( ) ( )3sin4sin13; 0. 1 ,xxd eF x x I� e dx F k Fdx x x| `· > · − . , ∫ then one of the �ossible val�e of ‘k’, is(a) 15 (b) 16 (c) 63 (d) 64.150. If ( ) ( )0sin , �xf x t t dt then f x · ·∫(a) cos sin x x x + (b) sin x x (c) cos x x (d) None o� these.151. 2 2 22 2 2 21 1 2 4 1lim sec sec .... sec 1nn n n n n→∞ ]+ + + ] ] e�uals(a) tan1 (b) 1tan12 (c) 1sec12(d) 1cos 12 ec

Page 86: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

.152. Area bounded by the curve log , y x · x axis − and the ordinates 1, 2 x x · · is(a) log 4 . s� unit (b) ( ) log 4 1 . s� unit + (c) ( ) log 4 1 . s� unit − (d) None of these.153. Area bo�nded by the �arabola 24 , y x y axis · − and the lines 1, 4 y y · · is(a) 3 . s� unit (b) 7.5 s� unit (c) 7.3 s� unit(d) None o� these.154. I� the ordinate x a · divides the area bounded by the curve 281 , y x axisx| `· + − . , and the ordinates 2, 4 x x · · into two e�ual �arts, then ‘a’ =(a) 8 (b) 2 2 (c) 2 (d) 2 .155. Area bounded by y x s in x · and x axis − between 0 x · and 2 x π · , is(a) 0 (b) 2 . s� unit π (c) . s� unit π (d) 4 . s� unit π .156. Area under the curve 2 cos 2 y s in x x · + between 0 x · and ,4x π· is(a) 2 . s� unit (b) 1 . s� unit (c) 3 . s� unit (d) 4 . s� unit .157. Area under the curve 3 4 y x · + between 0 x · and 4, x · is(a) 56.9 s� unit (b) 64.9 s� unit (c) 8 . s� unit (d) None o� these.158. Area bounded by �arabola 2y x · and straight line 2y x · is(a) 43

Page 87: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

(b) 1 (c) 23(d) 13.159. Area bounded by lines 2 , 2 y x y x · + · − and 2 x · is(a) 3 (b) 4 (c) 8 (d)16.160. The ratio o� the areas bounded by the curves cos y x · and cos 2 y x · between 0, / 3 x x π · ·and , x axis − is(a) 2:1 (b) 1: 1 (c) 1 : 2 (d) 2 : 1.161. The area bo�nded by the c�rve 3, y x x axis · − and two ordinates 1 x · to 2 x · e�ual to(a) 15.2 s� unit (b) 15.4 s� unit (c) 17.2 s� unit(d) 17.4 s� unit.162. The area bounded by the x axis − and the c�rve sin y x · and 0 x · , x π · is(a) 1 (b) 2 (c) 3 (d) 4.163. For 0 , x π ≤ ≤ the area bounded by y x · and sin , y x x · + is(a) 2 (b) 4 (c) 2π(d) 4π.164. The area o� the region bounded by the x axis − and the c�rves defined by ( ) tan , / 3 / 3 y x x π · − ≤ ≤ is(a) log 2 (b) log 2 − (c) 2log 2 (d) 0.165. If the area above the x axis − , bo�nded by the c�rves 2kxy · and 0 x · and 2 x · is 3

Page 88: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

,2 Inthen the value o� ‘ k ’ is(a) 12 (b) 1 (c) �1 (d) 2.166. The area bounded by the x�axis, the curve ( ) y f x · and the lines 1, x x b · · is e�ual to 21 2 b + − forall 1, b > then ( ) f x is(a) 1 x − (b) 1 x + (c) 21 x +(d) 21xx +.Mathiit e� Learni ng Res o�rces do�[email protected] www.mathiit.in167. The area bo�nded by the c�rve ( ) y f x · , x axis − and ordinates 1 x · and x b · is ( ) ( ) 1 sin 3 4 , b b − +then ( ) f x is(a) ( ) ( ) ( ) 3 1 cos 3 4 sin 3 4 x x x − + + + (b) ( ) ( ) ( ) 1 sin 3 4 3cos 3 4 b x x − + + + (c) ( ) ( ) ( ) 1 cos 3 4 3sin 3 4 b x x − + + + (d) None of these.168. The area of the region (in the sq�are �nit) bo�nded by the c�rve 24 , x y · line 2 x · and x axis is(a) 1 (b) 23 (c) 43(d) 83.169. Area under the curve 24 y x x · − within the x axis − and the line 2 x · , is(a) 16.3 s� unit (b) 16.

Page 89: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

3 s� unit − (c) 4.7 sq �nit(d) Cannot be calc�lated.170. Area bo�nded by the c�rve 3 2 10 0, xy x y x axis − − − · − and the lines 3, 4 x x · · is(a) 16log 2 13 − (b) 16 log 2 3 − (c) 16log 2 3 + (d) None of these.171. The area bo�nded by c�rve 2, 4 y x line y · · and y axis − is(a) 163 (b) 643 (c) 7 2(d) None of these.172. The area bo�nded by the straight lines 0, 2 x x · · and the curves 22 , 2xy y x x · · − is(a) 4 13 log 2− (b) 3 4log 2 3+ (c) 41log 2 −(d)3 4log 2 3− .173. The area between the c�rve 2sin , y x x axis · − and the ordinates 0 x · and 2x π· is(a) 2π (b) 4π (c) 8

Page 90: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

π(d) π .174. The area bounded by the circle 2 24, x y + · line 3 x y · and x axis − lying in the first q�adrant, is(a) 2π (b) 4π (c) 3π(d) π .175. The area bo�nded by the c�rve 24 y x x · − and the x axis − , is(a) 30.7 sq �nit (b) 31.7 sq �nit (c) 32.3 sq �nit(d) 34.3 sq �nit.Mathiit e� Learni ng Res o�rces do�[email protected] www.mathiit.in176. Area of the region bo�nded by the c�rve tan , y x · tangent drawn to the curve at 4x π· and the x axis − is(a) 14 (b) 1log 24+ (c) 1log 24− (d) None of these.

Page 91: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

177. The area between the c�rve 24 3 y x x · + − and x axis − is(a) 125 / 6 (b) 125 / 3 (c) 125 / 2 (d) None of these.178. Area inside the �arabola 24 y ax · , between the lines x a · and 4 x a · is e�ual to(a) 24a (b) 28a (c) 2283 a(d) 2353 a.179. The area o� the region bounded by 1 y x · − and 1 y · is(a) 2 (b) 1 (c) 12(d) None o� these.180. The area between the curve 24 , y ax x axis · − and the ordinates 0 x · and x a · is(a) 243 a (b) 283a (c) 223 a(d) 253 a.181. The area o� the curve ( )2 2xy a a x · − bo�nded by y axis − is(a) 2a π (b)

Page 92: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

22 a π (c) 23 a π(d) 24 a π.182.The area enclosed by the �arabolas 21 y x · − and 21 y x · − is(a) 1 / 3 (b) 2 / 3 (c) 4 / 3 (d) 8 / 3.183. The area of the smaller segment c�t off from the circle 2 29 x y + · by 1 x · is(a) ( )119sec 3 82−− (b) ( )19sec 3 8−−(c) ( )18 9sec 3−− (d) None of these.184.The area of the region bo�nded by the c�rves 2 , 1, 3 y x x x · − · · and the x axis − is(a) 4 (b) 2 (c) 3 (d) 1.185. The area bo�nded by the c�rves logey x · and ( )2logey x · is (a) 3 e − (b) 3 e − (c) ( )132 e −(d) ( )132 e −.Mathiit e� Learni ng Res o�rcesMathiit e� Learni ng Res o�rces do�[email protected] www.mathiit.in186. The area of fig�re bo�nded by ,

Page 93: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

x xy e y e−· · and the straight line 1 x · is(a) 1ee+ (b) 1ee− (c) 12 ee+ − (d) 12 ee+ + .187. The area bo�nded by the c�rves , 2 3 y x y x · + ·and x axis − in the 1st q�adrant is(a) 9 (b) 274 (c) 36 (d) 18 .188. The area enclosed between the c�rve ( ) logey x e · + and the co - ordinate axes is(a) 3 (b) 4 (c) 1 (d) 2 .189. The �arabolas 24 y x · and 24 x y · divide the s�uare region bounded by the lines 4 x · , 4 y · and thecoordinate axes. I� 1 2 3, , S S S are res�ectively the areas o� these o� these �arts numbered �rom to� to bottom, then 1 2 3: : S S S is(a) 2 : 1 : 2 (b) 1 : 1 : 1 (c) 1: 2 : 1 (d) 1 : 2 : 3.190. I� A is the area o� the region bounded by the curve 3 4, y x x axis · + and the line 1 x · −and B is that areabo�nded by c�rve 23 4, y x x axis · + · and the lines 1 x · − and 4 x · then A : B is e�ual to(a) 1 : 1 (b) 2 : 1 (c) 1: 2 (d) None o� these.191. The area bounded by the curve ( ) ( )2 21 , 1 y x y x · + · − and then line 1

Page 94: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

4y · is(a) 1/6 (b) 2/3 (c) 1/4 (d) 1/3.192. Let ( ) � x be a non - negative continous �unction such that the area bounded by the curve ( ) y � x · ,x axis − and the ordinates ,4 4x xπ πβ · · > is sin cos 24πβ β β β| `+ + . , then 2f π | ` . , is(a) 1 24π | `− − . , () 1 24π | `− + . , (c) 2 14π | `+ − . ,(d) 2 14π | `− + . ,.193. Let y e the function which �asses through ( 1, 2 ) having slo�e ( 2x + 1) . The area ounded etween the curveand x axis · is(a) 6 . s� unit (b) 5/ 6 . s� unit (c) 1/ 6 . s� unit (d) None o� these.w w w. m a t h i i t . i n LEVEL - 3 (Tougher Problems)Mathiit e- Learni ng Res [email protected] www.mathiit.in1. Let ( ) � x be a �unction satis�ying ( ) � x ′= ( ) � x with ( ) 0 1 � · and ( ) g x be the �unction satis�ying

Page 95: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

( ) ( ) 2� x g x x + · . The value o� integral ( ) ( )10� x g x dx∫is e�ual to(a) ( )174 e − () ( )124 e − (c) ( )132 e −(d) None of these.2. Let f e a �ositive function . Let 1 21 1( (1 )) , ( (1 ))k kk kI xf x x dx I f x x dx− −· − · −∫ ∫ when 2 1 0. k − > Then 1 2/ I I is(a) 2 () k (c)1/2 (d) 1.3. 714 01xdxx −∫ is equal to(a) 1 () 13 (c) 23(d) 3π.4. If n is any integer, then ( )2

Page 96: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

cos 30cos 2 1xe n xdxπ+ ·∫(a) x (b) 1 (c) 0 (d) None o� these.5. Let a, b, c be non-zero real numbers such that ( )( ) ( )( )1 28 2 8 20 01 cos 1 cos x ax bx c dx x ax bx c dx + + + · + + +∫ ∫.Then the �uadratic e�uation 20 ax bx c + + · has(a) No root in (0, 2) (b) At least one root in (0, 2)(c) A double root in (0, 2) (d) None o� these .6. I� ( )1, 1,x� x t dt x−· ≥ −∫ then(a) f and ' f are continous for 1 0 x + > () f is continous ut f ′ is not continous for 1 0 x + >(c) f and f ′ are not continous at 0 x · (d) � is continous at 0 x · but � ′ is not so.7. Let ( ) ( )0xg x � t dt ·∫ where ( ) [ ]11, 0,12 � t t ≤ ≤ ∈ and ( ) 102� t ≤ ≤ �or ( ]1, 2 , t ∈ then(a) ( )3 122 2g − ≤ < () ( ) 0 2 2 g ≤ < (c) ( )

Page 97: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

3 522 2g < ≤ (d) ( ) 2 2 4 g < < .8. The value of 2cos, 0,1 xxdx aaππ − >+∫ is(a) π () aπ (c) 2π(d) 2π.9. If ( ) ( ) ( )( )( )1, 1 ,1xf axf aef x I xg x x dxe −· · −+ ∫ and ( ) ( )( )( )2 1 ,f af aI g x x dx−· −∫ then the value of 21II is

Page 98: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

(a) 1 () 3 − (c) 1 −(d) 2.10. Let ( ) ( )1 10 01, , f x dx x f x dx a · ·∫ ∫ and ( )12 20, x � x dx a ·∫ then the value o� ( ) ( )1 20x a � x dx − ·∫(a) 0 (b) 2a (c) 21 a − (d) 22 2 a a − + .11. Given that ( )( )( ) ( )( )( )22 2 2 2 2 202x dxa c c a x a x x cπ∞·+ + + + + +∫ then the value o� ( )( )22 204 9x dxx x∞+ +∫ is(a) 60π (b) 20

Page 99: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

π (c) 40π(d) 80π.12. I� ( ) ( )10, 1 ,nml m n t t dt · +∫ then the ex�ression �or ( ) , l m n in terms o� ( ) 1, 1 l m n + − is(a) ( )21, 11 1nnl m nm m− + −+ + () ( ) 1, 11nl m nm + −+ (c) ( )21, 11 1nnl m nm m+ + −+ + (d) ( ) 1, 11ml m nn + −+13. 4 4 4 3 3 35 51 2 3 ..... 1 2 3 ....lim limn nn nn n

Page 100: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

→∞ →∞+ + + + + + + +− ·(a) 130 (b) Zero (c) 14(d) 15.14. I� ( )2502, 0,5tx� x dx t t · >∫ then 425�

| `· . ,(a) 25 (b) 52 (c) 25−(d) None of these.15. For which of the following values of ‘m’, the area of the region bounded by the curve 2y x x · − and theline y mx · e�uals 92(a) - 4 (b) - 2 (c) 2 (d) 4.16. Area enclosed between the curve ( )2 32 y a x x − · and line 2 x a · above x axis − is(a) 2a π () 232

Page 101: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

a π (c) 22 a π (d) 23 a π .17. What is the area ounded y the curves 2 29 x y + · and 28 y x · is(a) 0 (b) 12 2 9 19sin3 2 3π − | `+ − . ,(c) 16π(d) None of these.18. The area ounded y the curves 1 y x · − and 1 y x · − + is(a) 1 () 2 (c) 2 2 (d) 4.Mathiit e� Learni ng Res ources [email protected] www.mathiit.in19. If for a real numer [ ] , y y is the greatest integer less than or equal to y , then the value of the integral[ ]3 / 2/ 22sin x dxππ∫ is(a) π − () 0 (c) 2π− (d) 2π.20. If ( ) 1sin , ' 22 2xf x A B fπ | ` | `· + · . , . , and ( )1

Page 102: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

02,A� x dxπ·∫ then the constants A and B are res�ectively(a) 2 2andπ π (b) 2 3andπ π (c) 40 andπ(d) 40andπ− .21. / 40tan ,nnI x dxπ·∫ then [ ]2lim n nnI I −→∞ + equals(a) 1/ 2 () 1 (c) ∞(d) 0.22. The area ounded y the curves , , y In x y In x y in x · · · and y in x · is(a) 4 . s� unit (b) 6 . s� unit (c) 10 . s� unit (d) None o� these.23. ( )01sin2,

Page 103: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

sinn xdx n Nxπ| `+ . ,∈∫ e�uals(a) nπ (b) ( ) 2 12n π+ (c) π (d) 0.24. I� ( )2 100,xe x dx α − ·∫ then(a) 1 2 α < < (b) 0 α < (c) 0 1 α < <(d) None of these.25. 10sin x dxππ∫ is(�) 20 (b) 8 (c) 10 (d) 18.26. ( )22 1 sin1 cosx xdxxππ −++∫ is(�) 2/ 4 π (b) 2

Page 104: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

π (c) 0 (d) / 2 π.27. If 2 2 3 1 1 2 231 2 3 40 0 1 12 , 2 , 2 , 2 ,x x xI dx I x dx I dx I dx · · · ·∫ ∫ ∫ ∫ then(a) 3 4I I · (b) 3 4I I > (c) 2 1I I > (d) 1 2I I > .28. I� ( ) 12 3 , � x � xx| `− · . , then ( )21� x dx∫ is e�ual to(a) 325 In (b) ( )31 25 In−+ (c) 325 In−(d) None of these.Mathiit e� Learni ng Res ources [email protected] www.mathiit.inLEVEL � 1 (Fundamentals of Definite Integration)ANSWER KEYMathiit e� Learni ng Res ources [email protected] www.mathiit.in

Page 105: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

1. c2. a3. c4. 5. c6. a7. 8. d9. a10. c11. d12. c13. a14. d15. a16. 17. c18. d19. d20. c21. 22. a23. c24. 25. a26. c27. c28. 29. c30. d31. d32. a33. 34. 35. d36. 37. a38. a39. c40. c41. 42. 43. a44. 45. a46. c47. 48. c49. 50. a51. d52. a53. a54. a55. 56. c57. 58. c59. 60. d

Page 106: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

61. 62. a63. d64. c65. a66. c67. a68. d69. d70. 71. 72. a73. d74. c75. a76. c77. 78. a79. d80. 81. 82. c83. d84. a85. a86. 87. 88. a89. a90. 91. c92. cLEVEL � 2 (Pro�erties of Definite Integration)ANSWER KEYMathiit e� Learni ng Res ources [email protected] www.mathiit.in1. 2. c3. d4. 5. 6. d7. a8. c9. d10. c11. d12. c13. d14. a15. a16. d17. 18. c19. 20. 21. c22. d23. 24. d25.

Page 107: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

26. c27. 28. 29. d30. a31. a32. 33. 34. a35. c36. c37. d38. a39. 40. a41. 42. a43. d44. d45. c46. 47. c48. d49. d50. c51. a52. 53. 54. a55. c56. 57. c58. a59. 60. c61. a62. 63. a64. 65. c66. 67. a68. 69. d70. d71. c72. a73. 74. c75. a76. c77. a78. a79. d80. 81. c82. 83. a84. c85. c

Page 108: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

86. c87. c88. a89. 90. c91. c92. a93. d94. d95. d96. 97. c98. c99. d100. a101. 102. c103. c104. c105. c106. c107. d108. a109. d110. a111. 112. a113. a114. c115. 116. 117. a118. 119. a120. a121. d122. d123. 124. 125. 126. 127. 128. d129. a130. 131. a132. 133. d134. a135. 136. c137. 138. a139. d140. c141. c142. a143. a144. d145. a

Page 109: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

146. c147. a148. c149. d150. 151. 152. c153. c154. 155. d156. 157. d158. a159. 160. d161. 162. 163. a164. c165. 166. d167. a168. 169. a170. c171. 172. d173. 174. c175. c176. d177. a178. c179. 180. 181. a182. d183. 184. d185. a186. c187. a188. c189. 190. a191. d192. 193. cLEVEL � 3 (Tougher Prolems)ANSWER KEYMathiit e� Learni ng Res ources [email protected] www.mathiit.in1. d2. c3. 4. c5. 6. a7. 8. c9. d

Page 110: 26716055 Today s Mathiit Ians Tomorrow s IITi Ians

10. a11. a12. a13. d14. a22. a23. c24. c25. d26. 27. d28. 15. 16. 17. 18. 19. c20. c21.