222_ACS_PM25_sem

Embed Size (px)

Citation preview

  • 7/28/2019 222_ACS_PM25_sem

    1/34

    Quanti tat ive Scann ing Electron Microsco py Method s to

    Character ize A m bient A ir PM 2.5

    D. V. Martello, R. R. An derson, C. M. White - NETLG. S. Casuc cio , S. F. Sch laegle, - R. J. Lee Group , Inc .

    [email protected]

  • 7/28/2019 222_ACS_PM25_sem

    2/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Different Missions

    EPA Protect the public health

    DOE Assist the private sector in supplying

    clean, abundant, and affordable energy

  • 7/28/2019 222_ACS_PM25_sem

    3/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    PM 2.5 Regulatory Process

    1997 National Ambient Air Quality Standards(NAAQS) for PM 2.5 based on health effects

    Mean annual concentration < 15 g/m 3 Maximum concentration < 65g/ m 3

  • 7/28/2019 222_ACS_PM25_sem

    4/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Why Is DOE Concerned About PM 2.5 ?

    Coal-based power systems contribute to PM 2.5 Primary particles:

    Ultra-fine fly-ash (Spherical Alumino-silicates,SAS), carbon soot

    Gaseous precursors: SO 2, SO 3, NO x React with NH 3 in the atmosphere to form ammonium sulfate and

    ammonium nitrate particles

    SIPs will likely restrict emissions from coal power plants.

  • 7/28/2019 222_ACS_PM25_sem

    5/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Ambient PM Monitoring and CharacterizationCurrent Project Portfol io

    Upper Ohio River

    Valley Project (UORVP)

    Southeastern AerosolResearch andCharacterization Program(SEARCH)

    Bravo Project

    Great Smoky MountainsProject (GSMP)

    Aerosol Research InhalationEpidemiology Study (ARIES)

    Stuebenvil le Comp rehensive Air Monitoring Project (SCAMP)

    DOE-NETL Prim ary Funding

    DOE-NETL Cost-sharing

    NETL-PGH In-hous e Monitorin g Stat ion

    CMU/EPASupersite

  • 7/28/2019 222_ACS_PM25_sem

    6/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Regional Ambient PM Monitoring Sites

    Coal-firedpower plants

    1

    2

    UORVP Sites- Lawrenceville

    - Holbrook

    - Satellites

    1

    2

    SCAMP Sites- Primary

    - Satellites

    1

    1

    - NETL In-house site

  • 7/28/2019 222_ACS_PM25_sem

    7/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Project Objective

    Measure the degree that coal-fired utilitiescontribute to the primary fine-particulatematter load in ambient air.

    Use Spherical Alumino-Silicates (SAS) as themeasure of coal-fired utilities contribution to theprimary fine-particulate matter load in ambient air.

    Experimental Approach

  • 7/28/2019 222_ACS_PM25_sem

    8/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Experimental Objectives

    Quantitatively validate the SEM methods.

    Assess comparability of polycarbonate filters toFRM teflon filters.

    Improve methods to account for most particlespecies on the filters.

    Identify particle species including SAS, sulfates,and carbonaceous.

  • 7/28/2019 222_ACS_PM25_sem

    9/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Secondary Electron Image

    SAS Particle

    Carbon-rich Particle

    Sulfur Droplet1 m

  • 7/28/2019 222_ACS_PM25_sem

    10/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Experimental Sample Collection

  • 7/28/2019 222_ACS_PM25_sem

    11/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Experimental Sample Collection

    Andersen RAAS 400 Speciation Sampler

    Four flow channels

    One at 16.7 L/m, teflon filter for FRM comparison

    Two at 7 L/m, polycarbonate filters for SEM

    One at 16.7 L/m, quartz filter for EC/OC

  • 7/28/2019 222_ACS_PM25_sem

    12/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Experimental Sample Collection

    Channel configurations

    1: FRM teflon filter

    2: Carbon denuder, Pd coated polycarbonatefilter, Nylasorb filter

    3: Carbon denuder, uncoated polycarbonatefilter, Nylasorb filter

    4: Carbon denuder, quartz filter, carbon filter

  • 7/28/2019 222_ACS_PM25_sem

    13/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Experimental Sample Collection

    Pre-weigh and post-weigh filters.

    Sample SEM flow channels at 7 L/m found toproduce good particle dispersion at typical15 g/m 3 ambient air loading.

    Sample ambient air for 24 hours.

    Analyze SEM filters ASAP after sampling or store particle filters under controlledconditions.

  • 7/28/2019 222_ACS_PM25_sem

    14/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Comparison of Gravimetric Filter LoadingVariation:

    RAAS Polycarbonate versus FRM andRAAS Teflon versus FRM

    Filter TypeNumber of Filters

    Avg. abs.difference,%

    StandardDeviation

    Polycarbonate 46 9.6 6.8

    Teflon 163 5.6 6.8

  • 7/28/2019 222_ACS_PM25_sem

    15/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Scanning Electron Microscopy (SEM)

    SEM analysis can provide both morphologyand composition information for use inindividual particle species determination.

  • 7/28/2019 222_ACS_PM25_sem

    16/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Scanning Electron Microscopy (SEM)

    Image information

    Secondary Electron (SE): Morphology

    Backscattered Electron (BSE): Chemistry,Morphology

    Composition information

    X-ray (EDX/EDS): Chemistry

  • 7/28/2019 222_ACS_PM25_sem

    17/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Secondary Electron Image

    SAS Particle

    Carbon-rich Particle

    Sulfur Droplet1 m

  • 7/28/2019 222_ACS_PM25_sem

    18/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Backscattered Electron Image

    SAS Particle

    Carbon-rich Particle

    Sulfur Droplet1 m

  • 7/28/2019 222_ACS_PM25_sem

    19/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    SEM Technique Validation

    Test for uniform particle dispersion over thefilter surface.

    Test for reasonable particle size distributionswithin measured fields.

  • 7/28/2019 222_ACS_PM25_sem

    20/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Experimental SEM Analysis

    Mount filters with double-sided silver tape; no filter postsampling coating with carbon or metals

    SEM conditions: 15kV; stable beam current; fixed WD

    SE image fields at 1000x; center to perimeter of filter wedge analyzed; particle ID threshold monitored

    Reference spectra used; 7 sec spectra acquisition

    Pd coated filters for carbon particle identification C:Pd EDX ratio used for ID particle threshold

  • 7/28/2019 222_ACS_PM25_sem

    21/34

  • 7/28/2019 222_ACS_PM25_sem

    22/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Perim.Number

    %

    Center Number

    %

    Perim.Volume

    %

    Center Volume

    %Particle TypeSAS 1.8 1.4 4.1 4.3C-rich 85.5 79.6 69.7 68.8Crustal 8.6 14.4 21.3 23.8S-rich 4.1 4.6 4.9 3.1

    Comparison of Particle Species from filter Center and filter Perimeter, Excluding

    Ammonium Sulfate Blobs

  • 7/28/2019 222_ACS_PM25_sem

    23/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    23KX 0.2 m 33KX 0.2 m

    Secondary Electron ImagesSAS

  • 7/28/2019 222_ACS_PM25_sem

    24/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Secondary Electron ImagesCarbon Chain Agglomerates

    15KX 0.5 m 1 m7500X

  • 7/28/2019 222_ACS_PM25_sem

    25/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    16KX 0.5 m 22KX 0.2 m

    Secondary Electron ImagesCrustal

  • 7/28/2019 222_ACS_PM25_sem

    26/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Secondary Electron ImagesSulfur Deposits

    15KX 0.5 m 0.2 m27KX

  • 7/28/2019 222_ACS_PM25_sem

    27/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Secondary Electron ImagesPlant Material

    19KX 0.2 m 22KX 0.2 m

  • 7/28/2019 222_ACS_PM25_sem

    28/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Distributions - Spherical ParticlesAll Quads, Aspect < 1.5, - 2198 Particles

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 . 2

    0

    0 . 4

    4

    0 . 6

    8

    0 . 9

    2

    1 . 1

    6

    1 . 4

    0

    1 . 6

    4

    1 . 8

    8

    2 . 1

    2

    2 . 3

    6

    2 . 6

    0

    2 . 8

    4

    3 . 0

    8

    3 . 3

    2

    3 . 5

    6

    3 . 8

    0

    Average Diameter, um

    # o

    f P a r

    t i c

    l e s

    All Quads, Aspect 0, 948 Particles

    0

    50

    100

    150

    200

    250

    0 . 2

    0

    0 . 4

    5

    0 . 6

    9

    0 . 9

    4

    1 . 1

    8

    1 . 4

    3

    1 . 6

    7

    1 . 9

    2

    2 . 1

    6

    2 . 4

    1

    2 . 6

    5

    2 . 9

    0

    3 . 1

    4

    3 . 3

    9

    3 . 6

    3

    3 . 8

    8

    Average Diameter, um

    # o

    f P a r t

    i c l e s

    All Quads, Aspect < 1.5, Si=0, S>0,1065 Particles

    0

    50

    100

    150

    200

    250

    300

    0 . 2

    0

    0 . 3

    9

    0 . 5

    9

    0 . 7

    8

    0 . 9

    7

    1 . 1

    6

    1 . 3

    6

    1 . 5

    5

    1 . 7

    4

    1 . 9

    4

    2 . 1

    3

    2 . 3

    2

    2 . 5

    1

    2 . 7

    1

    2 . 9

    0

    3 . 0

    9

    3 . 2

    8

    Average Diameter, um

    # o

    f P a r t

    i c l e s

    All Quads, Aspect < 1.5, Si=0, S=0,185 Particles

    0

    510

    1520

    2530

    35

    40

    45

    50

    0 . 2

    0

    0 . 3

    0

    0 . 4

    0

    0 . 5

    0

    0 . 6

    0

    0 . 7

    0

    0 . 8

    0

    0 . 9

    0

    1 . 0

    0

    1 . 1

    0

    1 . 2

    0

    1 . 3

    0

    1 . 4

    0

    1 . 5

    0

    Average Diameter, um

    # o

    f P a r t

    i c l e s

    From Quantitative Scanning Electron Microscopy of Ambient Air 2.5m Particles Using, Air Quality II Conference, McLean, Virginia, September 19-21, 2000.

  • 7/28/2019 222_ACS_PM25_sem

    29/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Non-spherical ParticlesAll Quads, Aspect >= 1.5, Si>0,

    2166 Particles

    0

    100

    200

    300

    400

    500

    600

    0 . 2

    0

    0 . 5

    0

    0 . 8

    1

    1 . 1

    1

    1 . 4

    1

    1 . 7

    1

    2 . 0

    2

    2 . 3

    2

    2 . 6

    2

    2 . 9

    3

    3 . 2

    3

    3 . 5

    3

    3 . 8

    3

    4 . 1

    4

    4 . 4

    4

    4 . 7

    4

    Average Diameter, um

    # o

    f P a r t

    i c l e s

    All Quads, Aspect >= 1.5, Si=0, S>0,2533 Particles

    0

    100

    200

    300

    400

    500

    600

    700

    0 . 2

    0

    0 . 5

    6

    0 . 9

    1

    1 . 2

    7

    1 . 6

    2

    1 . 9

    8

    2 . 3

    3

    2 . 6

    9

    3 . 0

    4

    3 . 4

    0

    3 . 7

    5

    4 . 1

    1

    4 . 4

    6

    Average Diameter, um

    # o f

    P a r t

    i c l e s

    All Quads, Aspect >= 1.5, Si=0, S=0,382 Particles

    0

    50

    100

    150

    200

    250

    300

    0 . 2

    0

    0 . 3

    9

    0 . 5

    9

    0 . 7

    8

    0 . 9

    7

    1 . 1

    6

    1 . 3

    6

    1 . 5

    5

    1 . 7

    4

    1 . 9

    4

    2 . 1

    3

    2 . 3

    2

    2 . 5

    1

    2 . 7

    1

    2 . 9

    0

    3 . 0

    9

    3 . 2

    8

    Average Diameter, um

    # o f

    P a r

    t i c l e s

    All Quads, Aspect >= 1.5, - 5081 Particles

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    0 . 2

    0

    0 . 5

    3

    0 . 8

    5

    1 . 1

    8

    1 . 5

    1

    1 . 8

    4

    2 . 1

    6

    2 . 4

    9

    2 . 8

    2

    3 . 1

    4

    3 . 4

    7

    3 . 8

    0

    4 . 1

    2

    4 . 4

    5

    4 . 7

    8

    Average Diameter, um

    # o

    f P a r t

    i c l e s

    From Quantitative Scanning Electron Microscopy of Ambient Air 2.5m Particles Using, Air Quality II Conference, McLean, Virginia, September 19-21, 2000.

  • 7/28/2019 222_ACS_PM25_sem

    30/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    SampleStartDate

    24Hour FRMug/m 3

    SEM Ammonium

    Sulfate

    SEMCarbon

    Particles

    SEM AllCrustalParticleTypes

    SEMSpherical Alumino-Silicates

    SEMCrustal

    SEMCa/SRich

    SEM FeRich

    Spheres

    SEMMetalOxide

    Particles

    SEMMisc.

    Particles

    08/06/00 20.8 9.77 5.97 5.06 0.87 3.79 0.30 0.06 0.02 0.0308/08/00 23.4 13.95 4.93 4.51 0.24 3.67 0.51 0.00 0.01 0.0708/10/00 15.7 7.94 6.34 1.37 0.03 0.92 0.00 0.09 0.30 0.0308/12/00 7.6 2.08 3.57 1.95 0.09 1.10 0.07 0.09 0.39 0.2108/14/00 17.8 9.07 6.20 2.53 0.08 2.04 0.03 0.22 0.15 0.0108/16/00 9.5 4.76 2.72 2.02 0.26 0.60 0.67 0.00 0.37 0.1308/18/00 14.0 8.17 3.66 2.17 0.07 1.17 0.41 0.22 0.24 0.07

    Analysis ResultsFRM and SEM particle class data

    normalized to g/m 3

    FRM and SEM particle class data normalized to g/m 3 (SEM particle class volume fraction x daily FRM). SEM datanormalized to IC ammonium sulfate analysis . From Quantitative Analysis of Ambient Air 2.5m Particles Using ScanningElectron Microscopy, 11 th International Conference on Coal Science, San Francisco, Oct. 2001.

  • 7/28/2019 222_ACS_PM25_sem

    31/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Carbon Values

    0.000

    1.000

    2.000

    3.000

    4.000

    5.000

    6.000

    7.000

    8.000

    0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

    R&P 5400 Total Carbon ug/m3

    C C S E M C a r

    b o n

    u g

    / m 3

    R&P Carbon versus SEM Carbon

    From Quantitative Analysis of Ambient Air 2.5m Particles Using Scanning Electron Microscopy, 11 th International Conferenceon Coal Science, San Francisco, Oct. 2001.

  • 7/28/2019 222_ACS_PM25_sem

    32/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Conclusions

    SEM sampling methodology is reasonablycomparable to the FRM, based on ug/m 3 filter loading.

    The SEM technique provides satisfactoryresults to continue the method development.

    Although the methodology may be subject toimprovement, it is of sufficient quality to applyit to the comparative measurement of SASparticles in a more comprehensive study.

  • 7/28/2019 222_ACS_PM25_sem

    33/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Future Work

    Correlate the SEM results with bulk analysesof companion filters.

    Analyze more filters to develop statistics on

    distributional analysis of particle classes.

    Use the palladium coating as an internalstandard for quantifying the particle species.

    Revisit uncoated filters (check validity of calculating carbon by difference).

  • 7/28/2019 222_ACS_PM25_sem

    34/34

    ACS-222 / DVM / ST-10 / 8-28-2001

    Acknowledgements

    Dr. Elias J. George NETL EnvironmentalSafety and Health Division

    Traci Lersch R.J. Lee Group

    The other PM 2.5 Sampling and Analysis team

    members

    Mr. Thomas J. Feeley Product Manager:Environmental and Water Resources, NETL