16
Lifting Line Theory AOE 5104 Advanced Aero- and Hydrodynamics Dr. William Devenport and Leifur Thor Leifsson

22 Online Lifting Line Theory

  • Upload
    nhat-vu

  • View
    36

  • Download
    3

Tags:

Embed Size (px)

Citation preview

Page 1: 22 Online Lifting Line Theory

Lifting Line Theory

AOE 5104Advanced Aero- and Hydrodynamics

Dr. William Devenport andLeifur Thor Leifsson

Page 2: 22 Online Lifting Line Theory

2

Flow over a low aspect ratio wing

Bottom surface

Top surface

Page 3: 22 Online Lifting Line Theory

3

Lifting Line Theory• Applies to large aspect ratio unswept wings at small angle of attack.• Developed by Prandtl and Lanchester during the early 20th century. • Relevance

– Example of a phenomenological model in which elementary ideal flows are used to represent real viscous phenomena

– Basis of much of modern wing theory (e.g. helicopter rotor aerodynamic analysis, extends to vortex lattice method,)

– Basis of much of the qualitative understanding of induced drag and aspect ratio

1875-19531868-1946Γ h

Vπ4Γ

=

h

Biot Savart Law:Velocity produced by a semi-infinite segment of a vortex filament

Page 4: 22 Online Lifting Line Theory

4

Large Aspect Ratio? Unswept?

Page 5: 22 Online Lifting Line Theory

5

Page 6: 22 Online Lifting Line Theory

6

Physics of an Unswept Wing

Head, 1982, Rectangular Wing, 24o, Re=100000

Werle, 1974, NACA 0012, 12.5o, AR=4, Re=10000

Bippes, Clark Y, Rectangular Wing 9o, AR=2.4, Re=100000

Page 7: 22 Online Lifting Line Theory

7

Cessna Citation

Aircraft DataVelocity = 165 knots Wing Area = 29 m^2 Wing Span = 16 m

Mean Aerodynamic Chord = 2 m Weight = 8000 kg

Chord Reynolds Number = 1.18E7

Page 8: 22 Online Lifting Line Theory

8

Out

was

h

Physics of an Unswept Wingl, Γ

y

pu<pl pu≈ pl

Downwash

Inwash

s-s

Lift varies across span

Circulation is shed (Helmholz thm)

Vortical wake

Vortical wake induces downwash on wing…

…changing angle of attack just enough to produce variation of lift across span

Page 9: 22 Online Lifting Line Theory

9

Wing Nomenclature

l, Γ

y

Section A-A

αε

V∞

-w

l

ε

di

s-s

c

α=α (y) Geometric angle of attackε=ε (y) Downwash angle-w=-w (y) Downwash velocityc=c (y) ChordlengthS Planform areas Half spanb Spanc = S/b Average chordAR=b/c=b2/S Aspect ratioΛ Sweep angle of ¼ chord linel Lift per unit spandv Drag per unit span

Induced drag

bs

Area S

Total drag coeff

SVLCL 2

21

SVDC i

Di 221

Total lift coeff

A

A

Page 10: 22 Online Lifting Line Theory

10

LLT – The Wake ModelΓ

y1

ydy1

Strength of vortex shed at y1=

• Assume role up of wake unimportant• Assume wake remains in a plane parallel to the free stream• Model wake using single vortex sheet starting at the quarter chord

Downwash at y due to vortex shed at y1 )(4

)(1

11

yy

dydyd

ydw y

Γ−=−

π

Downwash at ydue to entire wake ∫

− −

Γ

=s

s

y

yy

dydyd

yw)(4

)(1

11

π

s-s

1

1

dydyd

y

Γ−

Page 11: 22 Online Lifting Line Theory

11

LLT – The Section Model

αε

V∞

-w

l

ε

di

==∞

∞ cVV

cVlCl 2

212

21 ρ

ρρ

wccV πααπ +−=Γ ∞ )( 0

Sectional lift coefficient

• Assume flow over each section 2D and determined by downwash at ¼ chord, and thin airfoil theory

So,

Sectional forces Γ≈ ∞Vl ρ Γ−≈Γ≈ ∞ wVdv ρερ

∫−

∞ Γ≈s

s

dyVL ρ ∫−

Γ−≈s

si dywD ρ

∫−∞∞

Γ≈=s

sL dy

SVSVLC 2

221 ρ ∫

−∞∞

Γ≈=s

s

iD dyw

SVSVDC

i 2221

Total Forcesintegrated over span

Total Coefficients

( )εααπ −− 02

Page 12: 22 Online Lifting Line Theory

12

The Monoplane EquationWake model

Section model∫− −

Γ

=s

s

y

yy

dydyd

yw)(4

)(1

11

π

wccV πααπ +−=Γ ∞ )( 0

l, Γ

ys-s

∫−

∞ −

Γ

+−=Γs

s

y

yy

dydyd

ccV1

1

01

4)( ααπ

0 π θ

θcos/ −=sy

Substitute for θ, and express Γ as a sine series in θ

∑∞

=∞=Γ

oddnn nAsU

,1)sin(4 θ

⎥⎦⎤

⎢⎣⎡ +=− ∑

=

θπθθααπ sin4

)sin(sin)(4 ,1

0 scnnA

sc

oddnn The Monoplane Eqn.

Page 13: 22 Online Lifting Line Theory

13

Solving the Monoplane Eqn.: Glauert’s method

⎥⎦⎤

⎢⎣⎡ +=− ∑

=

θπθθααπ sin4

)sin(sin)(4 ,1

0 scnnA

sc

oddnn

ys-s0 π θ

θcos/ −=sy

1. Decide on the number of terms Nneeded for the sine series for Γ

2. Select N points across the half span, evenly spaced in θ

3. At each point evaluate c, α, α0 and write down the corresponding monoplane equation

4. Solve the resulting N equations for the N unknown coefficient An

5. Evaluate Γ(y) and then the integrals for w(y), L and Di, and thus the aero coefficients

∑∞

=∞=Γ

oddnn nAsU

,1)sin(4 θ

∫− −

Γ

=s

s

y

yy

dydyd

yw)(4

)(1

11

π

∫−∞

Γ=s

sL dy

SVC 2

∫−∞

Γ=s

sD dyw

SVC

i 2

2

Page 14: 22 Online Lifting Line Theory

14

Glauert’s Method Example

⎥⎦⎤

⎢⎣⎡ +=− ∑

=

θπθθααπ sin4

)sin(sin)(4 ,1

0 scnnA

sc

oddnn

ys-s0 π θ

θcos/ −=sy

∑∞

=∞=Γ

oddnn nAsU

,1)sin(4 θ

-10 -8 -6 -4 -2 02

4

6

8

10

12

∫− −

Γ

=s

s

y

yy

dydyd

yw)(4

)(1

11

π

∫−∞

Γ=s

sL dy

SVC 2

∫−∞

Γ=s

sD dyw

SVC

i 2

2

Page 15: 22 Online Lifting Line Theory

15

Other results

∫− −

Γ

=s

s

y

yy

dydyd

yw)(4

)(1

11

π∫−∞

Γ=s

sL dy

SVC 2 ∫

−∞

Γ=s

sD dyw

SVC

i 2

2

∑∞

=∞=Γ

oddnn nAsU

,1)sin(4 θSubstituting

into

gives 1AARCL π=

)1(2

δπ

+=ARCC L

Di

∑∞

=

=oddn

n AAn,3

21)/(δ θ

θ

sin

)sin(,1∑∞

=

−= oddnn nnA

Vw

• Lift increases with aspect ratio

• For planar wings at least lift goes linearly with angle of attack and lift curve slope increases with aspect ratio (to 2π at ∞) ?

• Drag decreases with aspect ratio and goes as the lift squared.

• Downwash tends to be largest at the wing tips ?

• Drag is minimum for a wing for which An=0 for n≥3 ?

So,

α

Page 16: 22 Online Lifting Line Theory

16

The Elliptic WingSo the minimum drag occurs for a wing for which An=0 for n≥3. For this wing:

)sin(4 1 θsAU∞=Γ

1AVw

−=∞ AR

CC LDi π

2

=

)/arccos( sy−=θ14

22

1

=⎟⎠⎞

⎜⎝⎛+⎟⎟

⎞⎜⎜⎝

⎛ Γ⇒

∞ sy

sAVsince

andπααπ 10 )( AVV

c∞∞ −−

Γ=