27
2.1 2.2 2.3 Stainless Steel Application Material Group

2.12.22 - Geers-Industrie : cat - AMGboekje - RVS en… · Further useful technical information can be found in our brand new 2005 Technical Handbook. Dormer Tools Shireoaks Road

Embed Size (px)

Citation preview

2.1 2.2 2.3

Stainless SteelApplication Material Group

www.dormertools.com

For details on the full Dormer product range, please order a copy of our current tooling catalogue.

For correct tool selection and operation, please also refer to our Product Selector CD.

Further useful technical information can be found in our brand new 2005 Technical Handbook.

Dormer ToolsShireoaks Road Worksop, S80 3HBUK

T: +44 (0)1909 534700F: +44 (0)1909 [email protected]

© DORMER 2006All rights reserved under the “Dormer” registered trademark. Although every effort has been made to ensure the accuracy of the information contained herein, no responsibility for loss or damage occasioned to any person acting from action as a result of any material in this publication can be accepted by the editors, publishers or product manufacturers.

2

BS

SSU

SAU

NS

JIS

2.1

303

S21

416

S37

2301

, 231

2, 2

314

2346

, 238

030

3, 4

1643

0FS

3030

0, S

4160

0S

4302

0S

US

304L

, SU

S43

0F

2.2

304

S15

, 321

S17

31

6 S

, 320

S12

2310

, 233

3, 2

337

2343

, 235

3, 2

377

304,

321

, 316

S30

400,

S32

100

S31

600

SU

S30

4, S

US

321

2.3

317

S16

, 316

S16

2324

, 238

7, 2

570

409,

430

, 436

S40

900,

S43

00,

S43

600

SU

S29

, SU

S33

SU

S43

HB

EN

DIN

2.1

<250

<850

EN

10

088-

3 - X

14C

rMoS

171.

4305

, 1.4

104

X10

CrN

iS18

9,

X12

CrM

oS17

2.2

<250

<850

EN

10

088-

2,0

-3

- 1.4

301+

AT

1.43

01, 1

.454

1,

1.45

71X

5CrN

i89,

X

10C

rNiM

oTi1

810

2.3

<300

<100

0E

N 1

0 08

8-3

- 1.4

460

1.44

60, 1

.451

2,

1.45

82X

BC

rNiM

o275

, X

4CrN

iMoN

6257

Gen

eral

Info

rmat

ion

Exa

mpl

es o

f Wor

kpie

ce M

ater

ials

- C

ateg

oris

atio

n in

to A

pplic

atio

n M

ater

ial G

roup

s (A

MG

)A

pplic

atio

n M

ater

ial G

roup

(AM

G)

Har

dnes

s Te

nsile

St

reng

th

N/m

m2

Nor

mal

Chi

p Fo

rmW

erks

toff

Num

ber

Free

mac

hini

ng S

tain

less

Ste

elm

iddl

e

Aus

teni

ticlo

ng

Ferr

itic

+ A

uste

nitic

, Fer

ritic

, Mar

tens

itic

long

App

licat

ion

Mat

eria

l Gro

up (A

MG

)

Free

mac

hini

ng S

tain

less

Ste

el

Aus

teni

tic

Ferr

itic

+ A

uste

nitic

, Fer

ritic

, Mar

tens

itic

3

Contents

Classification of workpiece materials 2Application Material Groups 4Introduction to Stainless Steels 5Machinability of Stainless Steels 5 Hints when machining Stainless Steels 6AMG 2.1 7AMG 2.2 8AMG 2.3 9General Hints on Drilling 10Drill Feed Chart 11Drill Selection 12General Hints on Tapping 14Drill diameters for cutting taps 15Tap Selection 16General Hints on Milling 18Milling parameters 19Applications 20Milling Feed Charts 20Milling Cutters Selection 24Table of cutting speeds 26

Gen

eral

Info

rmat

ion

4

Application Material Groups

Application Material Groups (“AMGs”) are designed to assist in the selection of the optimum cutting tool for a particular application.

Dormer classifies materials into 10 major Application Material Groups. Each major group is divided into sub-groups on the basis of material properties, such as hardness and strength, and chip formation. This booklet concentrates on sub-groups 2.1 – 2.3 – Stainless Steels.

Examples of national designations within each sub-group are shown on page 2.

This booklet contains a selection of tools that are rated “excellent” for machining Stainless Steels. Please see the Dormer catalogue or Product Selector for the full range, or contact your local Dormer representative or Technical Helpdesk if you need further advice.

Gen

eral

Info

rmat

ion

5

Introduction to Stainless Steels

Stainless steels are alloyed steels used primarily because of their corrosion resistance. Their main alloying element is chromium (Cr). The chromium in the stainless steel forms an ultra-thin oxide film on the surface. As a general rule, corrosion resistance and resistance to oxidation increase in line with chromium content. Other alloying elements, such as nickel and molybdenum, are added to change the structure, increase corrosion resistance and improve strength.

Why are Stainless Steels seen as difficult to machine?

• Most stainless steel materials work harden during deformation, i.e. the process of producing a chip. The work hardening decreases rapidly with an increasing distance from the surface. Hardness values close to the machined surface can increase by up to 100% of the original hardness value if using the incorrect tool.

• Stainless steels are poor heat conductors, which leads to high cutting edge temperatures compared to a steel, in for example, AMG 1.3 with similar levels of hardness.

• High toughness leads to high torque, which in turn results in a high work load for a tap or drill. When combined with the effects of work hardening and poor heat conductivity, the cutting tool has to perform in a relatively hostile environment.

• The materials have a tendency to smear the surface of the cutting tool.

• Chip breaking and swarf management problems, due to the high toughness of the stainless steel.

Gen

eral

Info

rmat

ion

6

Important when machining Stainless Steels

• For drilling operations, use ADX or CDX drills with internal coolant capability. This will counter the work hardening that occurs when machining Stainless Steel. With internal cooling, the work hardening is kept to a minimum, about 10%.

• High feed rates transfer more heat away from the machining area. This is a very important consideration for a trouble-free machining operation.

• When it comes to choosing the correct cutting speed, always start in the lower region of Dormer recommendations. This is due to the fact that different material batches may require different cutting speeds. Also keep in mind that for deeper holes, cutting speed should be reduced by 10-20%, for the chosen application.

• When threading in DUPLEX or in high alloyed stainless steel, keep the cutting speed in the lower region of Dormer recommendations.

• Use preferably a neat cutting oil. If an emulsion is the only option for the operation, a minimum 8% concentration is recommended.

• First choice should always be a coated tool since they have a greater tendency to resist built-up edges.

• Avoid using tools with worn cutting edges, since this will increase work hardening.

Gen

eral

Info

rmat

ion

7

2.1 Free machining Stainless SteelHardness <250 HBTensile strength <850 N/mm2

Typical Composition

The alloys in this sub-group are ferro-magnetic in structure and are not hardenable by heat treatment. They have good machinability and often have good strength. Common alloys contain 11-29% chromium and very low quantities of carbon. Sulphur may be added to improve machinability.

Examples of uses

Stainless steels with 11% chromium content combine a moderate resistance to corrosion with good fabrication properties, to make them widely used in automotive exhaust systems.

Stainless steels with 16-17% chromium content are used for automotive trim, cooking utensils and in food processing applications.

Stainless steels with 18-29% chromium content are used in applications, which require high resistance to oxidation and corrosion, such as parts for furnaces.

Gen

eral

Info

rmat

ion

8

2.2Austenitic Hardness <250 HBTensile strength <850 N/mm2

Typical Composition

The alloys in this sub-group form the most common group of stainless steels, accounting for over 70% of production. They are non-magnetic at normal temperatures and not hardenable by heat treatment. They are characterised by a high coefficient of elongation and their machinability is medium to low. The addition of nickel changes the structure of these alloys from ferritic to austenitic. The most common type of austenitic stainless steel is the 18/8-type (18% Chromium, 8% Nickel), which has good resistance to corrosion. Molybdenum can be added to give improved mechanical properties. Higher alloyed austenitic stainless steel, for example with a chromium content of 26% and a Nickel content of 22%, also have the benefit of improved resistance to corrosion. However, increasing alloy content reduces machinability.

Examples of uses

Examples of applications for austenitic stainless steels are the chemical and petro-chemical industries, marine environment, cutlery manufacture, food processing, power generation and other hot, corrosive environments. The durability, low maintenance and attractive appearance of these stainless steels has led to them being used increasingly in architecture and construction, with many modern buildings favouring stainless steels in roofing and facades.

Gen

eral

Info

rmat

ion

9

2.3 Ferritic + Austenitic/Duplex, Martensitic and Precipitation Hardening Stainless Steels Hardness <300 HB Tensile strength <1000 N/mm2

Ferritic + Austenitic/DuplexThe structure of these stainless steels is a hybrid of the structures of Ferritic and Austenitic, giving them high corrosion resistance and a balanced micro-structure with approximately equal proportions of ferrite and austenite. They have a higher yield strength and tensile strength than stainless steels in groups 2.1 and 2.2. They are often used for dynamically stressed machine parts, such as suction rolls for paper machines. They also find application in the oil, gas and petrochemical industries, as well as offshore industry. They contain relatively high chromium levels (18-28%) and moderate amounts of nickel (4.5–8%) and have low machinability.

MartensiticMartensitic stainless steels are magnetic and hardenable, retaining good mechanical properties. Typically they contain 12–14% chromium with a moderate carbon content. Their main applications are in cutlery manufacture, aerospace and general engineering. Most grades in the annealed (softened) condition are relatively easy-to-machine, but grades with nickel and higher carbon levels have low machinability.

Precipitation hardening stainless steelsThese possess the highest strength of all stainless steel groups and are obtained by heat treatment. Like stainless steels in 2.1, they are difficult to machine.

Gen

eral

Info

rmat

ion

10

General Hints on Drilling

1. Select the most appropriate drill for the application, bearing in mind the material to be machined, the capability of the machine tool and the coolant to be used.

2. Flexibility within the component and machine tool spindle can cause damage to the drill as well as the component and machine - ensure maximum stability at all times. This can be improved by selecting the shortest possible drill for the application.

3. Tool holding is an important aspect of the drilling operation and the drill cannot be allowed to slip or move in the tool holder.

4. The use of suitable coolants and lubricants are recommended as required by the particular drilling operation. When using coolants and lubricants, ensure a copious supply, especially at the drill point.

5. Swarf evacuation whilst drilling is essential in ensuring the correct drilling procedure. Never allow the swarf to become stationary in the flute.

6. When regrinding a drill, always makes sure that the correct point geometry is produced and that any wear has been removed.

Ø [m

m]

12

34

56

810

1215

1620

2530

4050

D0.

016

0.03

80.

053

0.06

00.

068

0.07

80.

098

0.11

90.

130

0.14

90.

155

0.18

80.

210

0.22

80.

253

0.27

5E

0.01

70.

043

0.06

20.

071

0.08

00.

092

0.11

50.

140

0.15

00.

173

0.18

00.

215

0.24

00.

260

0.28

50.

31F

0.01

80.

050

0.07

30.

084

0.09

50.

109

0.13

80.

165

0.17

80.

202

0.21

00.

248

0.27

50.

295

0.32

0.34

3G

0.01

90.

056

0.08

40.

096

0.10

90.

126

0.16

00.

190

0.20

50.

231

0.24

00.

280

0.31

00.

330

0.35

50.

375

H0.

020

0.06

60.

102

0.11

60.

130

0.15

00.

190

0.22

80.

243

0.27

10.

280

0.32

00.

355

0.37

50.

398

0.41

8I

0.02

10.

076

0.11

90.

134

0.15

00.

173

0.22

00.

265

0.28

00.

310

0.32

00.

360

0.40

00.

420

0.44

0.46

J0.

024

0.08

40.

135

0.15

20.

170

0.19

70.

250

0.29

80.

315

0.34

90.

360

0.40

50.

445

0.46

50.

485

0.50

3K

0.02

60.

092

0.15

00.

170

0.19

00.

220

0.28

00.

330

0.35

00.

388

0.40

00.

450

0.49

00.

510

0.53

0.54

5L

0.02

80.

101

0.16

50.

186

0.20

80.

240

0.30

50.

360

0.38

50.

419

0.43

00.

485

0.52

50.

545

0.56

80.

588

M0.

030

0.11

00.

180

0.20

20.

225

0.26

00.

330

0.39

00.

420

0.45

00.

460

0.52

00.

560

0.58

00.

605

0.63

U0.

026

0.04

80.

070

0.08

00.

090

0.10

70.

140

0.17

00.

200

0.22

30.

230

0.24

0V

0.03

80.

069

0.10

00.

115

0.13

00.

153

0.20

00.

250

0.28

00.

310

0.32

00.

340

W0.

049

0.08

90.

130

0.15

00.

170

0.20

00.

260

0.33

00.

380

0.41

80.

430

0.45

0X

0.05

60.

103

0.15

00.

180

0.21

00.

250

0.33

00.

420

0.48

00.

533

0.55

00.

580

11

mm

/rev

± 25

%

2.12.22.3

12

A117 A520 A552 R457 R557 A108 A509 A577 A553 A554 R453 R563

1.0 - 13.0 3.0 - 13.0 5.0 - 20.0 3.0 - 16.0 5.0 - 20.0 1.0 - 16.0 3.0 - 16.0 1.5 - 14.0 5.0 - 20.0 5.0 - 30.0 3.0 - 16.0 3.0 - 16.0

■22F ■30I ■32H ■55V ■80W ●15E ●23G ■32G ■40G ■40G ■55V ■110V■11H ■16I ●17J ■35V ■50U ■9G ■14I ■15K ■19I ■19I ■35V ■65V■15D ■20G ●23H ●30U ■45U ■10D ■16F ■21G ●27G ●27G ●30U ■50U

■ ●

ExcellentGood

13

A117 A520 A552 R457 R557 A108 A509 A577 A553 A554 R453 R563

1.0 - 13.0 3.0 - 13.0 5.0 - 20.0 3.0 - 16.0 5.0 - 20.0 1.0 - 16.0 3.0 - 16.0 1.5 - 14.0 5.0 - 20.0 5.0 - 30.0 3.0 - 16.0 3.0 - 16.0

■22F ■30I ■32H ■55V ■80W ●15E ●23G ■32G ■40G ■40G ■55V ■110V■11H ■16I ●17J ■35V ■50U ■9G ■14I ■15K ■19I ■19I ■35V ■65V■15D ■20G ●23H ●30U ■45U ■10D ■16F ■21G ●27G ●27G ●30U ■50U

2.12.22.3

14

General Hints on Tapping

1. Select the correct design of tap for the component material and type of hole, i.e. through or blind, from the Application Material Groups chart.

2. Ensure the component is securely clamped - lateral movement may cause tap breakage or poor quality threads.

3. Select the correct size of drill (see opposite). Always ensure that work hardening of the component material is kept to a minimum.

4. Select the correct cutting speed as shown in the tap selection pages, the catalogue or the Product Selector.

5. Use appropriate cutting fluid for correct application.

6. In NC applications ensure that the feed value chosen for the program is correct. When using a tapping attachment, 95% to 97% of the pitch is recommended to allow the tap to generate its own pitch.

7. Where possible, hold the tap in a good quality torque limiting tapping attachment, which ensures free axial movement of the tap and presents it squarely to the hole. It also protects the tap from breakage if accidentally ‘bottomed’ in a blind hole.

8. Ensure smooth entry of the tap into the hole, as an uneven feed may cause ‘bell mouthing’.

M mm mm mm1.6 0.35 1.321 1.25 3/641.8 0.35 1.521 1.45 542 0.4 1.679 1.6 1/162.2 0.45 1.833 1.75 502.5 0.45 2.138 2.05 463 0.5 2.599 2.5 403.5 0.6 3.010 2.9 334 0.7 3.422 3.3 304.5 0.75 3.878 3.8 275 0.8 4.334 4.2 196 1 5.153 5 97 1 6.153 6 15/648 1.25 6.912 6.8 H9 1.25 7.912 7.8 5/1610 1.5 8.676 8.5 Q11 1.5 9.676 9.5 3/812 1.75 10.441 10.3 Y14 2 12.210 12 15/3216 2 14.210 14 35/6418 2.5 15.744 15.5 39/6420 2.5 17.744 17.5 11/1622 2.5 19.744 19.5 49/6424 3 21.252 21 53/6427 3 24.252 24 61/6430 3.5 26.771 26.5 1.3/64

15

D = Dnom- P

M mm mm

4 0.70 3.405 0.80 4.306 1.00 5.108 1.25 6.9010 1.50 8.7012 1.75 10.4014 2.00 12.2516 2.00 14.25

Drill diameter can be calculated from:

METRIC COARSE THREAD

RECOMMENDED DIAMETERS WHEN USING DORMER ADX AND CDX DRILLS

The above table for drill diameters refer to ordinary standard drills. Modern drills such as Dormer ADX and CDX produce a smaller and more accurate hole which makes it necessary to increase the diameter of the drill in order to avoid breakage of the tap.Please see the small table to the left.

D = Drill diameter (mm)

Dnom = Tap nominal diameter (mm)

P = Tap pitch (mm)

METRIC COARSE THREAD FOR ADX/CDX

Max. DRILL DRILLInternal

Pitch Diam. Diam. Diam.inch

TAP DRILLPitch Diameter

Drill Diameters for Cutting Taps - Recommendation tables

2.12.22.3

DIN

16

E454 E455 E344 E345 E403 E346 E347

M3 - M10 M12 - M20 M3 - M10 M12

- M30 M3 - M20 M3 - M10 M12 - M30

■14 ■14 ■8 ■8 ■14 ■8 ■8■10 ■10 ■7 ■7 ■10 ■7 ■7■6 ■6 ■5 ■5 ■6 ■5 ■5

■ ●

ExcellentGood

Other thread types available. Please see Dormer catalogue.

E045 E046 E047 E048

M3 - M20 M3 - M20 M3 - M20 M3 - M20

■8 ■14 ■8 ■14■7 ■10 ■7 ■10■5 ■6 ■5 ■6

ISO

2.12.22.3

17

18

General Hints on Milling

1. Where possible, use climb milling (down milling) for longer tool life. Climb milling allows easier chip disposal, less wear, improved surface finish and lower power requirements compared to conventional milling (up milling).

2. Always use a cutter in good condition.

3. Use well-maintained machine tools with sufficient power.

4. Use correct clamping system according to working operation and type of tool.

5. Check for damage or wear on the tool shank or in the holder itself.

6. Use the shortest cutters recommended for your application and work as close to the machine head as possible.

7. For optimum productivity, use coated or Solid Carbide cutters.

19

Milling parameters

1. Identify the type of end milling to be carried out - type of end mill - type of centre

2. Consider the condition and the age of the machine tool.

3. Select the best end mill dimensions in order to minimize the deflection and bending stress

- the highest rigidity - the largest mill diameter - avoid excessive overhand of the tool from the tool

holder.

4. Choose the number of flutes - more flutes - decreased space for chips - increased rigidity - allows faster table feed - less flutes - increased space for chips - decreased rigidity - easy chip ejection.

5. Determining the correct cutting speed and feed rate can only be done when the following factors are known:

- type of material to be machined - end mill material - power available at the spindle - type of finish.

20

For details on how to use the feed charts in the tables which follow, please see below.

Slotting Roughing

Ball nose Finishing

Application

Ø m

mm

m/z

± 2

5%1

23

45

68

1012

1416

1820

2225

2830

3236

40↕

0,5D

↔ D

E0,

007

0,01

20,

018

0,02

40,

035

0,04

20,

063

0,08

70,

105

0,12

20,

140

0,14

10,

140

0,14

40,

153

0,17

10,

157

0,16

80,

157

0,17

5

F0,

007

0,00

90,

013

0,01

80,

021

0,02

50,

033

0,04

10,

050

0,05

50,

064

0,07

20,

079

0,07

90,

085

0,08

50,

085

0,08

50,

085

0,08

5

↕ D

↔ 0

,8D

K0,

035

0,04

70,

065

0,07

90,

092

0,10

50,

088

0,09

80,

097

0,11

00,

110

0,11

00,

110

0,11

50,

118

L0,

010

0,01

30,

017

0,02

00,

025

0,02

80,

030

0,03

20,

033

0,03

40,

036

0,03

80,

039

0,04

00,

042

↕ 1,

5D↔

0,2

5DN

0,00

70,

011

0,01

60,

021

0,02

80,

037

0,05

10,

062

0,07

20,

082

0,09

30,

103

0,08

10,

093

0,07

70,

082

0,08

70,

099

0,09

6

Q0,

009

0,01

40,

021

0,02

60,

036

0,04

80,

066

0,07

90,

092

0,10

60,

089

0,09

90,

098

0,11

10,

111

0,11

90,

127

0,14

30,

139

R0,

012

0,01

60,

020

0,02

50,

029

0,03

80,

047

0,05

60,

065

0,07

30,

083

0,09

20,

092

0,09

20,

092

0,09

20,

104

0,10

40,

108

↕ 1,

5D↔

0,1

DX

0,01

20,

017

0,02

60,

033

0,04

50,

059

0,08

20,

099

0,11

50,

132

0,11

10,

124

0,12

20,

139

0,13

90,

148

0,15

80,

178

0,17

3

Y0,

015

0,02

00,

025

0,03

10,

036

0,04

70,

059

0,07

00,

081

0,09

20,

104

0,11

50,

115

0,11

50,

115

0,11

50,

130

0,13

00,

136

21

Z

Ø m

m

m

m/z

±

25%

>0,5

0.6

0.8

12

34

56

810

1214

1618

20

>4

↕ 1,

5↔

0,0

5

A0.

015

0.02

00.

025

0.03

00.

035

0.04

00.

050

0.06

0

B0.

045

0.05

00.

060

0.07

50.

080

0.09

00.

100

0.11

0

C0.

065

0.07

50.

090

0.11

00.

120

0.13

00.

150

0.17

0

3-4

↕ 1,

5↔

0,1

A0.

010

0.02

00.

030

0.04

00.

045

0.05

00.

060

0.07

50.

080

0.09

00.

100

0.12

0

B0.

015

0.03

00.

040

0.05

50.

065

0.07

50.

090

0.11

00.

120

0.13

00.

150

0.17

0

C0.

015

0.03

00.

040

0.05

50.

085

0.10

00.

120

0.14

00.

150

0.17

00.

200

0.22

0

3-4

↕ 1

↔ 0

,5

A0.

001

0.00

30.

005

0.00

80.

010

0.01

30.

020

0.02

70.

035

0.04

00.

050

0.05

50.

060

B0.

002

0.00

40.

008

0.01

20.

015

0.02

00.

030

0.04

00.

050

0.06

00.

070

0.08

00.

090

C0.

003

0.00

50.

010

0.01

50.

020

0.02

50.

040

0.05

00.

065

0.08

00.

090

0.10

50.

120

2-3

↕ 0,

5↔

1

A0.

001

0.00

10.

002

0.00

20.

005

0.00

90.

013

0.01

70.

020

0.02

30.

035

0.04

00.

050

0.05

50.

060

0.07

0

B0.

001

0.00

20.

003

0.00

30.

007

0.01

30.

020

0.02

50.

030

0.03

50.

050

0.06

00.

070

0.08

00.

090

0.10

0

C0.

002

0.00

30.

004

0.00

40.

009

0.01

70.

025

0.03

30.

040

0.04

50.

065

0.08

00.

090

0.10

50.

120

0.13

0

3-4

↕ 0,

5↔

1

↕ 1

↔ 0

,5

B0.

035

0.04

00.

055

0.06

50.

080

0.09

00.

100

0.11

0

S31

1, S

308,

S31

2, S

259

22

Z

Ø m

m

m

m/z

±

25%

23

45

68

1012

1416

20

3-4

↕ 1,

5↔

0,1

A0.

012

0.01

90.

028

0.03

60.

048

0.04

80.

070

0.08

00.

090

0.10

70.

134

B0.

015

0.02

20.

034

0.04

20.

057

0.05

70.

079

0.09

40.

110

0.12

60.

155

C0.

016

0.02

50.

038

0.04

70.

063

0.06

30.

088

0.10

60.

123

0.14

10.

176

3-4

↕ 1,

5↔

0,2

5

A0.

010

0.01

50.

023

0.02

80.

038

0.03

80.

053

0.06

40.

075

0.08

50.

107

B0.

012

0.01

80.

027

0.03

40.

046

0.04

60.

063

0.07

60.

088

0.10

00.

125

C0.

013

0.02

00.

030

0.03

80.

051

0.05

10.

070

0.08

40.

099

0.11

30.

141

2-3

↕ 0,

5↔

1

A0.

005

0.00

70.

009

0.01

30.

016

0.02

40.

033

0.04

00.

046

0.05

30.

053

B0.

006

0.00

80.

011

0.01

60.

019

0.02

90.

040

0.04

80.

056

0.06

40.

064

C0.

006

0.00

90.

012

0.01

70.

021

0.03

10.

043

0.05

10.

060

0.06

80.

068

2-3

↕ 1

↔ 1

A0.

002

0.00

40.

006

0.00

70.

011

0.01

30.

019

0.02

70.

032

0.03

70.

042

B0.

004

0.00

70.

009

0.01

30.

015

0.02

30.

032

0.03

80.

045

0.05

10.

051

C0.

005

0.00

70.

010

0.01

40.

016

0.02

50.

034

0.04

10.

048

0.05

50.

055

S01

6, S

033

23

2.12.22.3

24

C367 C927 C907 C428 C921 C359 C940

z3 z4 z3-6 z3-6 z3-6 z3 z4

2.0 - 20.0 4.0 - 25.0 3.0 - 32.0 6.0 - 40.0 6.0 - 32.0 10.0- 30.0 6.0 - 25.0

■52F ■52N ■48Y ■48L ■48R ●43F ■47N■44F ■44N ■40Y ■40L ■40R ●36F ■40N■28F ■28R ■26Y ■26L ■26R ●23F ■25R

1.1 1.3 1.1 1.1 1.1 0.6 0.7■ ●

azExcellentGood

2.12.22.3

25

S033 S016 S311 S308 S312 S259

z3 z3 z3 z3 z4-5 z4-5

2.0 - 20.0 2.0 - 20.0 4.0 - 20.0 10.0- 20.0 2.0 - 20.0 6.0 - 20.0

●73A ●73A ■81A ■69A ■115A ■100A●56A ●56A ■54A ●46A ■76A ■66A●44A ●44A ■54A ●46A ■76A ■66A

1 0.3 1 1 1 1 az

58

1015

2025

3040

5060

7080

9010

011

015

0

1626

3250

6682

9813

016

519

723

026

229

633

036

249

5

mm

1,00

1592

2546

3138

4775

6366

7958

9549

1273

215

916

1909

922

282

2546

528

648

3183

135

014

4774

71,

5010

6116

9821

2231

8342

4453

0563

6684

8810

610

1273

214

854

1697

719

099

2122

123

343

3183

12,

0079

612

7315

9223

8731

8339

7947

7563

6679

5895

4911

141

1273

214

324

1591

617

507

2387

32,

5063

710

1912

7319

1025

4631

8338

2050

9363

6676

3989

1310

186

1145

912

732

1400

619

099

3,00

531

849

1061

1592

2122

2653

3183

4244

5305

6366

7427

8488

9549

1061

011

671

1591

63,

181 /

850

080

110

0115

0120

0225

0230

0340

0450

0560

0670

0780

0890

0910

010

1101

115

015

3,50

455

728

909

1364

1819

2274

2728

3638

4547

5457

6366

7176

8185

9095

1000

413

642

4,00

398

637

796

1194

1592

1989

2387

3183

3979

4775

5570

6366

7162

7958

8754

1193

74,

5035

456

670

710

6114

1517

6821

2228

2935

3742

4449

5156

5963

6670

7477

8110

610

4,76

3 /16

334

535

669

1003

1337

1672

2006

2675

3344

4012

4681

5350

6018

6687

7356

1003

15,

0031

850

963

795

512

7315

9219

1025

4631

8338

2044

5650

9357

3063

6670

0395

496,

0026

542

453

179

610

6113

2615

9221

2226

5331

8337

1442

4447

7553

0558

3679

586,

351 /

425

140

150

175

210

0312

5315

0420

0525

0630

0835

0940

1045

1150

1355

1475

197,

0022

736

445

568

290

911

3713

6418

1922

7427

2831

8336

3840

9345

4750

0268

217,

945 /

1620

032

140

160

180

210

0212

0316

0420

0424

0528

0632

0736

0840

0944

1060

138,

0019

931

839

859

779

699

511

9415

9219

8923

8727

8531

8335

8139

7943

7759

689,

0017

728

335

453

170

788

410

6114

1517

6821

2224

7628

2931

8335

3738

9053

059,

533 /

816

726

733

450

166

883

510

0213

3616

7020

0423

3826

7230

0633

4036

7450

1010

,00

159

255

318

477

637

796

955

1273

1592

1910

2228

2546

2865

3183

3501

4775

26

Gen

eral

Info

rmat

ion

Tabl

e of

Cut

ting

Spe

eds,

<10

mm PE

RIP

HE

RA

L C

UTT

ING

SP

EE

D

RE

VO

LUTI

ON

S P

ER

MIN

UTE

(RP

M)

Met

res/

Min

.Fe

et/M

in.

Tool

D

iam

eter in

ch

58

1015

2025

3040

5060

7080

9010

011

015

0

1626

3250

6682

9813

016

519

723

026

229

633

036

249

5

mm

11,1

17 /

1614

322

928

743

057

371

686

011

4614

3317

1920

0622

9225

7928

6531

5242

9812

,00

133

212

265

398

531

663

796

1061

1326

1592

1857

2122

2387

2653

2918

3979

12,7

01 /

212

520

125

137

650

162

775

210

0312

5315

0417

5420

0522

5625

0627

5737

6014

,00

114

182

227

341

455

568

682

909

1137

1364

1592

1819

2046

2274

2501

3410

14,2

99 /

1611

117

822

333

444

655

766

889

111

1413

3715

5917

8220

0522

2824

5033

4115

,00

106

170

212

318

424

531

637

849

1061

1273

1485

1698

1910

2122

2334

3183

15,8

85 /

810

016

020

030

140

150

160

180

210

0212

0314

0316

0418

0420

0422

0530

0716

,00

9915

919

929

839

849

759

779

699

511

9413

9315

9217

9019

8921

8829

8417

,46

11/ 1

691

146

182

273

365

456

547

729

912

1094

1276

1458

1641

1823

2005

2735

18,0

088

141

177

265

354

442

531

707

884

1061

1238

1415

1592

1768

1945

2653

19,0

53 /

484

134

167

251

334

418

501

668

835

1003

1170

1337

1504

1671

1838

2506

20,0

080

127

159

239

318

398

477

637

796

955

1114

1273

1432

1592

1751

2387

24,0

066

106

133

199

265

332

398

531

663

796

928

1061

1194

1326

1459

1989

25,0

064

102

127

191

255

318

382

509

637

764

891

1019

1146

1273

1401

1910

27,0

059

9411

817

723

629

535

447

258

970

782

594

310

6111

7912

9717

6830

,00

5385

106

159

212

265

318

424

531

637

743

849

955

1061

1167

1592

32,0

050

8099

149

199

249

298

398

497

597

696

796

895

995

1094

1492

36,0

044

7188

133

177

221

265

354

442

531

619

707

796

884

973

1326

40,0

040

6480

119

159

199

239

318

398

477

557

637

716

796

875

1194

50,0

032

5164

9512

715

919

125

531

838

244

650

957

363

770

095

5

27

Gen

eral

Info

rmat

ion

Tabl

e of

Cut

ting

Spe

eds,

>10

mm PE

RIP

HE

RA

L C

UTT

ING

SP

EE

D

RE

VO

LUTI

ON

S P

ER

MIN

UTE

(RP

M)

Met

res/

Min

.Fe

et/M

in.

Tool

D

iam

eter in

ch