21 Month Review

Embed Size (px)

Citation preview

  • 8/16/2019 21 Month Review

    1/53

    PhD Monitoring – 21 Months Review Report

    Aeroelastic Efects and Tailoring o 

    Morphing High Lit Devices

    ha!eel Ah"ed

    #pervised $% Dr& h#'in (#o

    chool o Engineering

    A#g#st 2)1)

  • 8/16/2019 21 Month Review

    2/53

    E*ec#tive #""ar%

  • 8/16/2019 21 Month Review

    3/53

    List o +ontents

    Executive Summary...............................................................................................2

    List of Figures.........................................................................................................5

    List of Equations.................................................................................................... 8

    List of Tables.......................................................................................................... 9

    1. ntro!uction.....................................................................................................1

    2. "im an! #b$ectives.........................................................................................2

    %. Literature &evie'............................................................................................%

    %. 1. "eroelasticity an! ts (o!elling.................................................................%

    %.1.1. (onolit)ic *roce!ure...........................................................................%

    %.1.2. *artitione! *roce!ure..........................................................................+

    %. 2. Flui!,Structure nteraction........................................................................+

    %. %. Structural "nalysis....................................................................................-

    %.%.1. Static "nalysis.....................................................................................-

    %.%.2. Transient ynamic "nalysis................................................................/

    %.%.%. (o!elling T)in Structures.................................................................../

    +. 0ali!ation of F............................................................................................. 9

    +. 1. 0ali!ation of lean "erofoil.......................................................................9

    +. 2. 0ali!ation of t)e Fla !eloye! con3guration.........................................18

    +. %. 0ali!ation of T)e roo 4ose an! Fla eloye! on3guration.............19

    +.%.1. 0ali!ation of T)e roo 4ose an! Fla eloye! in Lan!ing

    on3guration.................................................................................................19

    +.%.2. 0ali!ation of T)e roo 4ose an! Fla eloye! in Tae,o6 

    on3guration.................................................................................................21

    +. +. 0ali!ation of T)e roo 4ose 7it) T)e Fla (or)e! on3guration..... .22

    5. Structural (o!el............................................................................................2-

    -. Flui!,Structure (o!el....................................................................................29

  • 8/16/2019 21 Month Review

    4/53

    /. onclusion an! *roose! 7or......................................................................%-

    8. ibliogra)y..................................................................................................%8

  • 8/16/2019 21 Month Review

    5/53

    List o ,ig#res

    Figure 1 lean geometry ro3le for S"E :left;< 4"" ++12 aerofoil :rig)t;.........9

    Figure 2 lean aerofoil mes) :to; 4"" ++12 aerofoil mes) :bottom;................9

    Figure % =ra) comaring t)e ressure ro3le of t)e 4"" ++12 'it) t)e

    exerimental !ata an! t)e con!itions mentione! in >8?......................................11

    Figure + escribes t)e locations for t)e see! velocity ro3le measurements>8?.

    ............................................................................................................................ 12

    Figure 5 =ra)s comaring t)e velocity ro3les of t)e calculate! values tot t)e

    exerimental results. lac line reresents t)e comutational !ata an! t)e re!asteriss are t)e exerimental !ata oints. :To; gra) comaring t)e ro3les at

    rae 2 from 3gure +< :mi!!le; gra) comaring t)e ro3les at rae + from 3gure

    +< :bottom; gra) comaring t)e ro3les at rae / from 3gure +.......................1%

    Figure - T)e y@ measure! over t)e c)or! of t)e 4"" ++12 aerofoil................1+

    Figure / =ra)s comaring t)e velocity ro3les of t)e calculate! values tot t)e

    exerimental results. lac line reresents t)e comutational !ata an! t)e re!

    asteriss are t)e exerimental !ata oints. :To; gra) comaring t)e ro3les at

    rae 2 from 3gure +< :mi!!le; gra) comaring t)e ro3les at rae + from 3gure

    +< :bottom; gra) comaring t)e ro3les at rae / from 3gure +.......................15

    Figure 8 omarison of t)e ressure !istribution calculate! using t)e

    k −ωSST   mo!el 'it) t)e gamma,t)eta mo!el active :!as)e!; o6 :soli!; an!

    also from exerimental 'or :re! asteris;.........................................................1-

    Figure 9 =ra) comaring t)e ressure !istribution of t)e !i6erent mes)

    re3nement stes..................................................................................................1/

    Figure 1A =ra) comaring t)e ressure !istribution calculate! using t)e

    =amma,T)eta mo!el enable! :!as)e!; an! !isable! :soli!;...............................18

    Figure 11 lose u of mes) for t)e SLE @ Ba !eloye! con3guration..............2A

    Figure 12 =ra) comaring t)e results rovi!e! L& :blue; to t)e comute!

    results :re!; for t)e lan!ing con3guration...........................................................2A

    Figure 1% lose u of t)e Ba section :left; an! t)e lea!ing e!ge ea :rig)t;.. 21

  • 8/16/2019 21 Month Review

    6/53

    Figure 1+ omaring t)e SLE @ Ba !eloye! aerofoil in t)e lan!ing an! tae,o6 

    con3gurations......................................................................................................21

    Figure 15 =ra) comaring t)e results rovi!e! L& :blue; to t)e comute!

    results :re!; for t)e tae,o6 con3guration...........................................................22

    Figure 1- escribes t)e SLE @ Ba mor)e! con3guration................................22

    Figure 1/ lose u of t)e mes) for t)e SLE @ Fla mor)e! con3guration........2%

    Figure 18 =ra) comaring t)e ressure !istribution comute! :soli! green;

    'it) t)e reference !ata :!as)e! re!; sulie!....................................................2+

    Figure 19 =ra) comaring t)e ressure !istribution comute! using t)e

    =amma,T)eta mo!el :soli! green; 'it) t)e reference !ata :!as)e! re!; sulie!

    an! t)e revious results :!as)e! green;.............................................................2+

    Figure 2A =ra) comaring t)e ressure !istribution comute! using t)e

    =amma,T)eta mo!el :soli! green; 'it) t)e reference !ata :!as)e! re!; sulie!

    an! t)e revious results :!as)e! green;C over t)e Ba region :left; an! lea!ing

    e!ge :rig)t;..........................................................................................................25

    Figure 21 Structural mo!el of t)e clean aerofoil :left; 'it) a close u of t)e

    lea!ing e!ge mes) an! loa! con!itions :rig)t;....................................................2-

    Figure 22 &esults from t)e loa! case !escribe! above.......................................2-

    Figure 2% Structural mo!el of t)e clean aerofoil 'it) sars :left; 'it) a close u

    of t)e lea!ing e!ge mes) an! loa! con!itions :rig)t; t)e resonse from t)e

    u!ate! structural mo!el :bottom;.....................................................................2/

    Figure 2+ ontour lot of t)e resonse !ue to an arbitrary alie! loa!

    resembling t)e correct !irection vectors.............................................................28

    Figure 25 Flui!,Structure mo!el :left; s)o's t)e far 3el! Bui! mo!el an! :rig)t;

    s)o's t)e structural soli!....................................................................................29

    Figure 2- Flui!,Structure mo!el :left; s)o's t)e far 3el! Bui! mes) an! :rig)t;

    s)o's t)e structural soli! mes)..........................................................................29

    Figure 2/ Figure !escribing t)e results obtaine! from t)e initial couling mo!el.

    ............................................................................................................................ %A

    Figure 28 D!ate! structural mo!el for t)e Bui!,structure mo!el......................%A

  • 8/16/2019 21 Month Review

    7/53

    Figure 29 S)o's t)e mes) elements create! in t)e !e!icate! structural solver

    :left;C :rig)t; image s)o's t)e elements create! by t)e Bui!,structure solver....%1

    Figure %A T)e converge! solution of t)e faile! aerofoil mo!el...........................%1

    Figure %1 Structural mo!el 'it) contact alie!................................................%2

    Figure %2 mage of t)e lea!ing e!ge create! using t)e Bui!,structure soft'areC

    :left; close,u of t)e roblematic region< :rig)t; s)o's t)e overall structural

    geometry..............................................................................................................%2

    Figure %% :To; s)o's t)e results of t)e coule! mo!el at a time,ste of A.A5

    secon!sC :bottom; s)o's t)e same mo!el at a time,ste of A.%5 secon!s.........%%

    Figure %+ Structural mo!el inclu!ing t)e trailing e!ge section...........................%+

    Figure %5 Figure !escribing t)e mes) !islacement an! velocity contour of t)e

    lea!ing an! trailing e!ge mo!el..........................................................................%+

    Figure %- :To left; gra) !escribing t)e resi!uals for t)e mass an! momentum

    equation< :to rig)t; gra) !escribing t)e convergence of t)e structural mo!el<

    :bottom left; gra) !escribing t)e convergence across t)e interface boun!ary<

    :bottom rig)t; gra) !escribing t)e !islacement calculate! at eac) iteration.. %5

    List of Equation

  • 8/16/2019 21 Month Review

    8/53

    Equation 1 =overning equation for a !ynamic analysis......................................../

  • 8/16/2019 21 Month Review

    9/53

    List o Ta$les

     Table 1 Table of aero!ynamic arameters use! in t)e in!ivi!ual analysis>8?.. .. .1A

  • 8/16/2019 21 Month Review

    10/53

    1& -ntrod#ction

     T)e stu!y of aircraft !ynamics is troublesome enoug) 'it) t)e creation of a

    comutational gri! or mo!elling of turbulence. o'ever t)is only gives a small

    icture of t)e real )ysical 'orl!. t )as been of great interest to many eole to

    be able to mo!el t)e true 'orl! in its entiretyC one ste to'ar!s t)is 'oul! be to

    combine t)e )ysical mo!els ')ic) are alrea!y in existence. For examle t)e

    aeroelastic e6ects of a 'ing submerse! in a moving Bui! 'oul! usually require

    t)e comletion of t'o searate stu!ies< combining t)e results later. o'ever t)e

    interactivity of t)ese t'o ')olly !i6erent 3el!s is more lie a continuum< ')ere

    one 3el! can an! !oes a6ect t)e ot)er instantaneously. Furt)ermore< a solution

    conforming to suc) true to life !etail 'oul! be consi!ere! too comutationally

    exensive to be of any useful value< esecially !uring t)e !esign rocess ')ere

    one requires quic analytical tools to assess t)e strengt) of an i!ea. Dsing t)is

    analysis met)o! it 'oul! also allo' t)e ractitioner to !esign an! otimise for a

    truer to 'orl! solution>1?.

    (oreover< re!uction in emissions of aircrafts )as become one of t)e umost

    imortant !esign factors< not $ust to save t)e environment but to also re!uce t)e

    !ra' on a !eleting resource. "s !escribe! in t)e revious interim reort t)e

    overall aim of t)e ro$ect is to tacle t)e issue of noise an! air ollution aroun!

    airorts. T)e S"E consortium 'ill tacle t)is issue by !eveloing a next

    generation mor)ing 'ing. T)is 'oul! require careful mo!elling of bot) t)e

    aero!ynamic an! structural asect of t)e !esign< as t)ere 'ill be large

    !eformations in t)e structure altering t)e aero!ynamics results signi3cantly. "s

    aforementione! t)e re!uction in noise an! !rag 'ill be ac)ieve! by removing t)e

    slot from t)e slat< t)e loss in any lift 'ill be recovere! by t)e mor)ing t)e

    trailing e!ge of t)e Ba an! increasing t)e curvature of t)e nose.

     T)e 3rst stage of t)e researc) 'as use! to gain a better un!erstan!ing of 

    general mo!elling tec)niques< some of ')ic) are common to bot) structural an!

    Bui! engineering. Several comutational Bui! gri!s 'ere create! for t)e various

    con3gurations t)at 'ere roose! by t)e consortium. T)e convergence of t)e

    gri!s 'ere also c)ece! to $u!ge ')et)er t)e aut)or )a! !eveloe! a !ee

    enoug) un!erstan!ing to ro!uce accurate !ata for t)e comlex geometries.

     T)e aerofoils use! in t)e revious stu!y 'ere of our o'n !esign an! it 'as notinten!e! to be use! in t)e 3nal calculationC but 'as meant as a gui!e to

    1

  • 8/16/2019 21 Month Review

    11/53

    !eveloing t)e basic sills require! to mo!el t)e true aerofoils once t)ey )a!

    been ma!e available. 7)at is more a s)ort intro!uctory revie' of some couling

    roce!ures 'ere stu!ie! to !evelo a better un!erstan!ing for t)e in,!et)

    researc) carrie! out in t)is aer.

    2& Ai" and .$'ectives

     T)e aim of t)is reort 'as to summarise t)e 'or comlete! by t)e aut)or

    over t)e last 12 mont) erio! since t)e last revie' in "ugust 2AA9. T)e main

    goal of t)e ro$ect 'as to !evelo a met)o! for analysing t)e Bui!,structure

    interaction of a mor)ing structureC lea!ing to t)e otimisation of t)e structure

    for t)e inten!e! urose. T)is 'ill be ac)ieve! t)roug) several ob$ectives< t)e

    3rst of ')ic) 'as to attain a comutational mes) for t)e roose! aerofoil

    !esigns. T)is 'as to generate ressure !ata for t)e use 'it) a structural mo!el

    to ro!uce some basic static aeroelastic !ata. Follo'ing on from t)is vali!ation

    of t)ese results 'oul! rove invaluable in !eci!ing ')et)er t)e !ata 'as correct

    an! t)e aut)ors mo!elling tec)niques 'ere suGcient. T)e next ob$ective 'as to

    ro!uce a suitable structural mo!el for t)e aerofoils beginning 'it) t)e clean

    aerofoil. "fter ')ic) t)e Bui! solution 'as combine! 'it) t)e aroriate

    structural mo!el using t)e (FH rotocol to generate a more !etaile! automate!Bui!,structure interaction mo!el. Servo loa!s can t)en be alie! to t)e sin of 

    t)e structure to generate t)e !islacements rescribe! by t)e consortium. T)e

    aut)or 'oul! t)en be in a osition to convert t)e t'o !imensional mo!els into

    t)ree !imensional mo!els. Finally t)e ositions of t)e sars 'oul! be otimise!

    to tae a!vantage of t)e aeroelastic forces.

     

    2

  • 8/16/2019 21 Month Review

    12/53

    /& Literat#re Review

    /& 1& Aeroelasticit% and -ts Modelling

    "eroelasticity is simle in context it is merely t)e interaction of inertial<

    elastic an! aero!ynamic forcesC )o'ever t)e interaction of t)ese forces can

    lea! to very comlex resonses. "eroelasticity can be broen !o'n into t'o

    sections< static an! !ynamicC t)e former ignores t)e inertial forces ')ile t)e

    latter inclu!es e6ects suc) as vibrations. T)e aeroelastic tailoring of aircrafts

    is becoming of increasing imortance 'it) t)e !rive to re!uce costs an!

    emissions. efore t)e !ays of suc) a!vance! comuting o'er< structures

    'ere sti6ene! to t)e oint at ')ic) t)e natural frequencies 'ere far above

    t)e !ive see! of t)e aircraft. T)is require! extra 'eig)t< bulier structures

    an! left no room for !eviation from t)e rigi! structure. y incororating t)e

    aeroelastic ben!ing an! t'ist into t)e !esign it is )oe! t)at t)e 'eig)t of 

    t)e aircraft can be re!uce! by removing or reositioning t)e suort

    structure. Furt)ermore< one can tailor t)e structure to reac) an otimise!

    s)ae 'it) t)e )el of t)e aero!ynamic.

     T)e comlexity of t)e results meant it 'as only ossible to 'or

    analytically an! usually only in t)e frequency !omain>2?. 7)at is more< t)e

    comlex non,linear be)aviours of t)e equations )a! to be eliminate! limiting

    t)e vali!ity of t)e analysis ast small erturbations aroun! t)e set state. t

    )as only been since numerical tec)niques 'ere !eveloe! an! our ability to

    use t)ese tec)niques in stu!ying t)e mo!al resonse )ave 'e )a! t)e

    c)ance of stu!ying some of t)e un!erlying rinciles. o'ever< no'a!ays

    t)ese tec)niques )ave a!vance! to t)e oint ')ere t)ey are quicly

    relacing )ours of live testing an! comlex )an! calculations. T)ere are t'omain aroac)es to mo!elling Bui!,structure roblemsC t)ey are t)e

    monolit)ic met)o! an! t)e artitione! coule met)o!.

    %.1.1. (onolit)ic *roce!ure

     T)e monolit)ic roce!ure strives to combine t)e t'o sets of 

    governing equation into a single system. T)is is )ar!er t)an one 'oul!

    3rst imagine !ue t)e combination of linear an! non,linear terms< matrices

    may be symmetrical an! unsymmetrical. T)is increases t)e comlexity

    an! maes t)e resulting governing equation comutationally very

    %

  • 8/16/2019 21 Month Review

    13/53

    exensive. Secon!ly< t)e verity of circumstances encomasse! by t)e

    aeroelastic 3el! is immense ranging from t)e 2 resonse of a bri!ge to

    t)e )ig)ly % resonse of a 3g)ter lane. 7)at is more t)e many

    variations to t)e governing equations exist< suc) as subsonic Bo'<

    transient Bo'< incomressible Bo'< linear an! non,linear structural

    equations. T)is maes it !iGcult to create a rogramme to cover all t)e

    tyes of couling )enomena.

    %.1.2. *artitione! *roce!ure

    *artitione! roce!ures as t)e name suggests< solves t)e t'o

    )ysical !omains searately. T)erefore< it is correct to t)in t)at t)e

    resent in!een!ent solver co!es suc) as FH an! "nsys can be use! in

    con$unction 'it) an a!!itional tool to )an!le !ata transfer. T)is tool in

    "nsys is no'n as (FH. T)e a!vantages of t)e searate! !omains

    become aarent ')en one consi!ers t)e interface layerC allo'ing t)e t'o

    3el!s to be solve! in!een!ently using ')atever sc)eme an! mo!el suits

    t)e situation. T)ere are !isa!vantages associate! 'it) t)is met)o!

    inclu!ing t)e issue of stability an! $u!ging ')et)er t)e correct loa!s an!

    !islacements )ave been transferre!. To overcome t)is issue an extra

    level of iteration is a!!e!< inevitably increasing t)e time taen to comutet)e converge! value. T)is extra convergence also means t)e

    comutational time increases s)arly 'it) a re!uction in t)e time,ste.

    Furt)ermore< for !iGcult Bo' roblems convergence time may alrea!y be

    an issueC by a!!ing t)is extra stage t)e rocessing time may become

    unaccetable at a !esign stage.

    /& 2& ,l#id0tr#ct#re -nteraction

     To !evelo structures t)at can 'it)stan! t)e 'ear an! tear of every!ayuse but still be otimise! for its articular !uties is a troublesome tas to say

    t)e least. esign solutions are lague! 'it) comromise< some of ')ic)

    cannot be avoi!e!C ot)ers )o'ever are only !ue to t)e limitations of our

    no'le!ge an! our ability to !e!uce an! manufacture t)e i!eal solution. "n

    aircraft 'ing is a erfect examle of comromise an! otimisation. T)e

    aero!ynamic s)ae of t)e 'ing )as been otimise! for cruise. T)is is not a

    very suitable s)ae for lan!ing as t)e 'ings 'ill inevitably stall at t)e )ig)

    angles of attac or not rovi!e enoug) lift at t)e lo' see!s. o'ever t)is is

    +

  • 8/16/2019 21 Month Review

    14/53

    overcome by attac)ing )ig) lift !evices to t)e 'ing to alleviate some of t)ese

    roblems< but t)ey t)emselves albeit necessary increase t)e comlexity an!

    emissions of t)e aircraft. t 'as foun! earlier t)at t)e resence of t)e slot at

    t)e lea!ing e!ge of t)e 'ing accounte! for a consi!erable roortion of t)e

    noise of an aroac)ing aircraft in its lan!ing )ase.

    ue to t)e limitations of t)e comutational resources a natural !ivision

    bet'een t)e !i6erent )ysical be)aviours gre'. t 'as comutationally

    easier to analyse t)e soli! mec)anics searately to t)e Bui! !ynamics to t)e

    t)ermal !ynamics. Furt)ermore t)e segregation gre' !eeer as !i6erent

    referre! met)o!s 'ere !eveloe! for t)e !i6erent governing equations.

    #nly in recent times )ave 'e )a! t)e comutational ability to run large scale

    cases to account for )ysical be)aviour reviously misse!C an! t)e ability tosolve coule! solutions by combining t)e t'o )ysics. n !oing so< it 'oul!

    allo' engineers to !esign to closer tolerances an! ac)ieve greater eGciency

    in t)e !esign being roose!. ouling of !i6erent )ysical )enomena is

    not limite! to aeroelastic 'or by any meansC couling of electromagnetic

    forces 'it) structural resonses< t)ermal c)anges coule! 'it) structural

    resonse< an! so on. n interfacing t)e t'o searate )enomena it is ossible

    to see motions an! stresses ')ic) ot)er'ise 'oul! )ave only been foun!

    !uring t)e testing )ase. t lea!s one to 'on!er if t)e structures in use to!ay

    )ave been fully otimise! for t)e aeroelastic 'or alie! to t)em an!

    ')et)er 'e truly un!erstan! t)e )ysics occurring. t can be seen in >%? t)at

    t)e couling of Bui!s 'it) structures can be consi!ere! in several 'ays

    !een!ing on bot) t)e Bo' con!itions an! t)e structural comlexity. T)e

    strengt) of couling in general can be aroximate! by $u!ging t)e see! of 

    t)e Bui! Bo'< as t)e structural resonse of lo' see! Bo's can be consi!ere!

    'ealy coule!.

    7)en trying to tacle t)e interfacing of t)ese t'o 3el!s t)e greatest

    )in!rance must be t)e !omain tyeC t)e t'o coul! not be any more !i6erent

    from eac) ot)er. Structural solvers ten! to use t)e Lagrangian met)o! ')ere

    t)e !omain remains attac)e! to t)e structure t)roug)out t)e roce!ure.

    o'ever< t)e Bui! !omain locs its coor!inate system to t)e satial 3el!<

    ot)er'ise no'n as t)e Eulerian aroac). T)erefore t)e oint to oint

    transfer of arameters may be ossible but as t)e solution rogress an! t)e

    !eformation increases t)ese oints 'ill move furt)er aart. n ot)er 'or!s

    t)e no!e transfer cannot be loce! t)roug)out t)e solution stageC t)us a

    5

  • 8/16/2019 21 Month Review

    15/53

    couling sc)eme is imerative to ensure t)at t)e correct no!es are receiving

    t)e correct information at t)e aroriate time,ste.

    (any couling roce!ures )ave been !evise!< ranging from t)e simle

    manual transfer of !ata>+? to t)e more comlex algorit)ms t)at account for

    t)e energies 'it)in t)e boun!ary layer. (anual transfers require running t'o

    searate analyses an! transferring t)e loa!s bet'een t)em t)roug) ressure

    an! !islacement tables. t is a very laborious an! long 'in!e! rocess 'it)

    t)e least accuracy of all t)e met)o!s< but can rove useful ')en one is

    carrying out a structural analysis ')ic) incororates signi3cant monotonous

    aero,loa!s. " met)o! !escribe! in >5? no'n as geometry smoot)ing met)o!

    'as !eveloe! for )an!ling comlex geometries in ')ic) t)e mes) is et

    t)e same but t)e geometry is u!ate!. (oreover< t)is met)o! is useful ')ent)e structural comlexity may cause instability in t)e Bui! solver. o'ever<

    t)e mes) !ensity aroun! t)e moving boun!ary 'oul! )ave to be resolute

    enoug) to cature t)e imortant features. T)is tec)nique may lea! to a Bui!

    !omain ')ic) is of oor or even unaccetable quality. T)e met)o! ays

    secial attention to maintaining a smoot) geometry 'it) ey no!e values

    transferre! !irectly to t)e Bui! systemC t)e remaining no!e values are

    transferre! using a 'eig)te! average tec)nique. T)is interfacing tec)nique

    best suite! ')en t)e structural mes) is more re3ne! t)an t)e Bui! mes)C

    once again t)is is best suite! for a 'ealy coule! system in ')ic) t)e Bui!

    ressure nee! not be resolve! so accurately.

     T)e next transfer met)o! 'ort) noting is t)e intersection met)o! in ')ic)

    t)e element face of one mes) is ro$ecte! onto t)e secon! surface. T)e

    intersecting roortion gives t)e !egree of inBuence of t)is articular

    :sen!ing; element on t)e receiving element. T)is met)o! is best suite! for

    more strongly coule! solutions in ')ic) a 3ner Bui! gri! resolution isrequire!. Furt)ermore< t)is met)o! is !iGcult to imlement on comlex

    geometries because in areas of s)ar curvature an! mismatc)e! mes) can

    lea! to a loss of conservation of forces. "ccor!ing to >-? all t)e interolation

    sc)emes mentione! above use t)e same un!erlying rincile< aart from t)e

    manual met)o!. T)ey all use t)e notion of conservation of energy to !e!uce

    t)e formulation an! )ence if conservation is not maintaine! t)e equations are

    no longer vali!. T)is is an imortant consi!eration as t)e "nsys manual >/?

    states t)at if t)e sen!ing surface !oes not conform to t)e receiving surface

    any unmae! surface region 'ill not be transferre!C t)erefore lea!ing to a

    -

  • 8/16/2019 21 Month Review

    16/53

    loss of conservation of forces across t)e interface. t 'as foun! in >8? t)at t)e

    time ste an! level of Bexibility of t)e structure lay an imortant role in

    maintaining stability of t)e numerical solution. n essence t)e more Bexible

    a structure an! t)e s)orter t)e time,ste t)e greater t)e numerical instability

    an! t)e )ar!er it 'ill be to mo!el.

    /& /& tr#ct#ral Anal%sis

     To ro!uce an accurate Bui! structure interaction mo!el bot) t)e Bui! an!

    structural mo!el must be of a certain !egree of accuracyC if eit)er one of t)e

    mo!els is inaccurate in its resonse t)en t)is inaccuracy 'ill be systemic in

    t)e entire mo!el. t is t)erefore necessary to gain a basic un!erstan!ing of 

    t)e rincile of a structural analysis so one can $u!ge t)e Icorrectness of t)e

    solutions. T)ere are many tyes of structural analysis available all of ')ic)

    )ave been use! an! otimise! for t)eir seci3c !uties for many years. T)ese

    tec)niques can be broen !o'n into six main tyesC static< mo!al< )armonic<

    transient !ynamic< sectrum or a bucling analysis. For t)e uroses of t)is

    stu!y only t)e static an! transient !ynamic analysis 'ill be looe! at closer.

    %.%.1. Static "nalysis

    " static analysis is similar to t)at in an aeroelastic analysis< ')ere

    t)e inertial an! !aming terms are neglecte!. " static analysis assumes

    t)at t)e variations are slo' 'it) resect to time. T)is is fairly obvious as a

    static analysis can be assume! to )ave a very large time ste lea!ing to a

    3nal solution.

    %.%.2. Transient ynamic "nalysis

     Transient !ynamic analysis en!eavours to cature t)e time )istory

    of t)e structure as t)e loa! is alie! :or remove!;. 7)ereas t)e static

    analysis ignore! t)e inertia an! !aming terms by only inclu!ing t)e

    sti6ness matrix in t)e governing equationC t)e !ynamic analysis

    incororates t)ese terms by inclu!ing t)e mass matrix an! !aming

    matrix in t)e governing equation.

    ( M ) {ú }+(C ) {ú }+ ( K ) {u }={ F  (t )

    E#ation 1 =overning equation for a !ynamic analysis.

    /

  • 8/16/2019 21 Month Review

    17/53

    7)ere  M ,C    an!  K   are t)e mass< !aming an! sti6ness matrices<

    resectively. ú ,ú   an! u   are t)e no!al acceleration< velocity an!

    !islacement< resectively.  F ( t )   is t)e loa! vector. T)e analyses are

    run using t)e 4e'mar time integration tec)nique ')ic) assumes t)at

    t)ere is a linear c)ange in t)e acceleration over t)e time,ste. T)e

    met)o! e6ectively creates t'o a!!itional equations ')ic) are t)en use!

    to solve t)e equations.

    ot) t)ese met)o!s )ave t)e a!!e! ability to be in linear or a non,linear

    fas)ion. " linear analysis as t)e name suggests is best suite! ')en t)ere

    is little c)ange from t)e !atum< any large !eviations or abrut c)anges in

    t)e stress level. T)is may be true ')en steel is still un!ergoing elastic

    !eformation or t)e !eviation of a Bat lat 'it) a mo!erate 'eig)t alie!C

    )o'ever ast t)e yiel! strengt) or for large Bexes an! non,linear

    be)aviour begins to ex)ibit itself. T)e solutions stes to generating a

    non,linear system

    • brea t)e solution into several loa! stes<

    • brea eac) loa! ste into a substes<

    • calculate a converge! solution for eac) subste using t)e 4e'ton,

    &a)son or t)e arc,lengt) sc)emes

    "nalysis of structures 'it) large !eformation oses anot)er roblem in

    terms of t)eir loa! !irection. n some cases t)e force orientation may

    never c)ange an! in ot)ers t)e force orientation may stay t)e same 'it)

    resect to t)e structure. T)erefore one coul! say a sense of foresig)t or

    initial mo!elling is require! ')en selecting an! alying t)e loa!s.

    %.%.%. (o!elling T)in Structures

     T)e structural mo!elling of an aerofoil 'oul! )ave to be stu!ie!

    before one coul! reasonably assume t)eir mo!el 'as a!equate for an

    analysis. T)e use of a full % element ')en mo!elling t)in surfaces 'oul!

    lea! to elements of )ig) asect ratios along t)e surfaceC furt)er t)e

    matrices 'oul! become cumbersome an! ineGcient. t 'as foun! in >9? in

    or!er to use t)ese full t)ree,!imensional elements one )a! to ensure a

    !i6ering or!er across t)e axes. For examle< in >9? along t)e so calle!c)or! t)e olynomial or!er 'as set to 3ve ')ereas t)e or!er 'as set at

    8

  • 8/16/2019 21 Month Review

    18/53

    t'o along t)roug) t)icness !irection. "s t)is feature is unique to t)e

    above case it 'oul! not suitable to use t)is tec)nique. T)e use of s)ell

    elements )els to alleviate t)is roblem by mo!elling t)e t)icness

    numerically rat)er t)an )aving a )ysical no!e at eac) corner. "ll s)ell

    elements )ave interolation oints t)roug) t)e t)icness< ')ic) can be

    altere! to increase t)e accuracy !een!ing on t)e loa!ing an! stress

    con!itions. "ccor!ing to t)e "nsys Structural Dser =ui!e an integration

    ste of 2 is require! for elastic be)aviour. To resolve nonlinear an! lastic

    strain regions more integration oints are require! t)roug) t)e t)icness.

     T)e s)ae function of t)e element re!icts a constant s)ear strains an!

    stresses t)roug) t)e t)icness. 7)at is more< t)e normal stresses are set

    to t)e negative value of t)e alie! ressure on t)e element surface an!

    are linearly interolate! to t)e bottom surface.

    9

  • 8/16/2019 21 Month Review

    19/53

    3& 4alidation o +,D

    3& 1& 4alidation o +lean Aerooil

    omutational Flui! ynamics :F; 'or 'as comlete! on t)e 'ing

    sulie! for t)e S"E ro$ect. T)e 'or 'as carrie! out to begin reliminary

    static aeroelastic analysis an! to gain a comlete un!erstan!ing of t)e Bui!

    solver. nitial vali!ation 'as comlete! for t)e clean section 3gure! belo'

    Figure 1 lean geometry ro3le for S"E :left;< 4"" ++12 aerofoil :rig)t;.

    4o aero!ynamic !ata existe! for t)is aerofoil con3gurationC )ence it 'as

    t)e aut)ors !ecision to mo!el a similar aerofoil using t)e same mes) as

    cross reference t)ose results to $u!ge t)e accuracy of t)e roose! mes). "

    stu!y of t)e 4"" ++12 aerofoil 'as foun! 'it) !etails of an exerimental

    stu!y carrie! out for t)is articular aerofoil>1A?. T)e creation of t)e ne'

    mes) 'as easily !one by relacing t)e aerofoil in t)e existing mes)C altering

    areas of !issimilarity an! a!ating t)e mes) for t)e Bo' con!ition. For

    comarison t)e t'o mes)es )ave been !islaye! belo'

    1A

  • 8/16/2019 21 Month Review

    20/53

    ,ig#re 2 lean aerofoil mes) :to; 4"" ++12 aerofoil mes) :bottom;.

     T)e aerofoils t)emselves are not similar by any means as can be seen

    from t)e revious ageC )o'ever t)is analysis s)oul! rovi!e a sense of t)e

    accuracy of t)e clean S"E aerofoil. For a!!e! con3!ence t)e 'in! tunnel

    results rovi!e bot) ressure !istributions as 'ell as boun!ary layer velocity

    measurementsC by comaring bot) sets of !ata it 'ill be ossible to evaluate

    bot) t)e results generate! close to t)e surface as 'ell as t)e more general

    ressure !ro calculation. From t)e reviously mentione! !ocumentation t)e

    correcte! initial an! boun!ary con!itions for t)is articular case 'ere foun!

    an! )ave been tabulate! along 'it) t)e !etails of t)e S"E 'ing belo'

    *arameter S"E 'ing 4"" ++12

    )or! :m; + 1

    (ac) A.15 A.18

    &eynol!s 4umber   20×106

    4.17×106

    "ngle of "ttac (α ) 12 12.+9

    Ta$le 1 Table of aero!ynamic arameters use! in t)e in!ivi!ual analysis>1A?.

    11

  • 8/16/2019 21 Month Review

    21/53

    "gain t)e similarities are fe' but t)e )ig) inci!ence rovi!es a goo!

    reference to ')et)er stalle! Bo' 'as being cature!. Secon!ly t)e (ac)

    numbers are of similar or!er )ence t)e comressibility e6ects s)oul! be

    similar too< i.e. minimal. T)e ressure !istribution calculate! for t)e 4""

    ++12 aerofoil can be seen belo'

    A.A A.1 A.2 A.% A.+ A.5 A.- A./ A.8 A.9 1.A 1.1

    ,/

    ,-

    ,5

    ,+

    ,%

    ,2

    ,1

    1

    2

      *ressure istribution alculate! Dsing t)e 4"" ++12 "erofoil 7it)

    Exerimental omutational ata

    )or!

    ,ig#re / =ra) comaring t)e ressure ro3le of t)e 4"" ++12 'it) t)e exerimental!ata an! t)e con!itions mentione! in >1A?.

     T)ere is a clear similarity 'it) t)e t'o gra)sC )o'ever t)ere also exists a

    clear !issimilarity as t)e F )as overestimate! t)e ressure !istribution

    across t)e un!er surface of t)e aerofoil. 7)at is more !ue to t)e oor

    resolution of t)e exerimental !ata over t)e lea!ing e!ge it is !iGcult to

     $u!ge t)e accuracy of t)e ressure ea. 4evert)eless< t)ese !i6erences can

    be consi!ere! negligible ')en one comares t)e C  L   values. T)e

    exerimental solution foun! aC  L  of 1.+%9 ')ereas t)e

    C  L  for t)e F

    solution 'as 1.+-AC a !i6erence of 1.5J. T)e !rag coeGcient s)o'e! a

    slig)tly )ig)er ercentage error of 8.8J< but still 'it)in t)e tolerances of t)is

    stu!y. T)e searation Kone 'as not re!icte! 'ell< 'it) t)e F results

    estimating a searation oint of A.89JcC )o'ever it t)e exerimental results

    lace t)is oint at A.8Jc. T)is can also be seen in t)e above gra) as t)e

    !iscreancy aroun! t)e stalle! region is by far t)e greatest. T)is !i6erence is

    12

  • 8/16/2019 21 Month Review

    22/53

    most liely !ue to t)e large irregularities t)at 'oul! arise from t)e large angle

    of attac< ')ic) t)e turbulence mo!el !i! not cature. 7)at is more< t)is

    rovi!es an insig)t as to ')y t)eC  L   an!

    C  D   values 'ere over an!

    un!er,estimate!< resectively. "s aforementione! a comarison of t)e

    velocity ro3le at t)e locations seci3e! in t)e investigationC t)e icture

    belo' !escribes t)ese ositions

    ,ig#re 3 escribes t)e locations for t)e see! velocity ro3le measurements>1A?.

    "s t)e velocity ro3les are create! !ue to t)e viscous forces close to t)e

    surface< a close matc) of t)ese results s)oul! verify ')et)er or not t)e

    correct turbulence mo!el 'as c)osen. o'ever< one coul! not rig)tly say

    t)at t)e results 'ere a close matc)< as can be seen in t)e grou of 3gures

    belo'.

     T)e to gra) from 3gure 5 !escribes t)e fully turbulent boun!ary t)at

    one 'oul! exect to !evelo so far !o'nstream of t)e Bo'. T)e comute!

    velocity ratio< )ere s)o'n as t)e soli! blac lines< 'as un!er re!icte!

    lea!ing one to t)in t)at t)e turbulence is being over estimate!. T)is may

    exlain t)e !elaye! searation exerience! in t)e calculate! !ataC t)e

    searation oint 'as foun! to occur close to line +. o'ever< t)e

    exerimental !ata s)o'e! severe stall by t)is oint of t)e Bo'. T)is s)oul!

    be execte! as t)e turbulence mo!el 'as e6ectively run as a fully turbulent

    Bo'< ')ic) 'oul! not be t)e case in t)e exeriment. T)us in an e6ort to

    increase t)e accuracy a transition mo!el 'as alie! in con$unction 'it) t)e

    turbulence mo!el.

    1%

  • 8/16/2019 21 Month Review

    23/53

    1+

  • 8/16/2019 21 Month Review

    24/53

    ,A.1A

    A.AA

    A.1A

    A.2A

    A.%A

    A.+A

    A.5A

    A.-A

    A./A

    A.8A

    A.9A

    1.AA

    1.1A

    1.2A

    ,A.A1

    A.A1

    A.A%

    A.A5

    A.A/

    0elocity *ro3les at Line 2

    Exerimental omutational ata

    DDM

    !c

    ,A.1AA.AA

    A.1AA.2A

    A.%AA.+A

    A.5AA.-A

    A./AA.8A

    A.9A1.AA

    1.1A1.2A  ,   A

     .   A   1

       A .   A   %

       A .   A   /

       A .   1   1

       A .   1   5

    0elocity *ro3les at Line +

    Exerimental omutational ata

    DDM

    !c

    ,A.2A

    ,A.1A

    A.AA

    A.1A

    A.2A

    A.%A

    A.+A

    A.5A

    A.-A

    A./A

    A.8A

    A.9A

    1.AA

    1.1A

    ,A.A5

    A.AA

    A.A5

    A.1A

    A.15

    A.2A

    A.25

    0elocity *ro3les at Line /

    Exerimental omutational ata

    DDM

    !c

    15

  • 8/16/2019 21 Month Review

    25/53

    ,ig#re 5  =ra)s comaring t)e velocity ro3les of t)e calculate! values tot t)eexerimental results. lac line reresents t)e comutational !ata an! t)e re! asterissare t)e exerimental !ata oints. :To; gra) comaring t)e ro3les at rae 2 from 3gure+< :mi!!le; gra) comaring t)e ro3les at rae + from 3gure +< :bottom; gra) comaringt)e ro3les at rae / from 3gure +.

     T'o transitions mo!els 'ere available for calculating t)is osition< namely

    t)e =amma an! t)e =amma,T)eta mo!el. T)e =amma mo!el a!!s an

    a!!itional equation for t)e intermittency of t)e Bo' but requires t)e user to

    inut t)e aroriate transition &eynol!s number. T)is 'oul! be ossible to

    estimate 'it) t)e follo'ing equation

     T)e =amma,T)eta mo!el a!!s a secon! equation to verify ')et)er t)e

    transition onset criterion )as been met. t 'as foun! t)at for e6ectively use

    t)e =amma,t)eta mo!el one )a! to ensure t)e+¿ y

    ¿ of t)e mes) remaine!

    'it)in A.AA1N+¿ y

    ¿N5. f t)e

    +¿ y

    ¿'ere to go belo' A.AA1< t)e transition

    oint arti3cially moves !o'nstreamC t)e oosite is true for ')en t)e+¿ y

    ¿is

    greater t)an 8. "ny value above 25 an! t)e transition Kone 'oul! be too far

    ustream creating a re!ominately turbulent Bo'. T)e+¿ y

    ¿ of t)e above

    mes) 'as c)ece! to verify ')et)er it conforme! to t)e seci3cation given

    above. T)e 3gure! belo' !escribes t)e variation of t)e+¿ y

    ¿along t)e c)or!

    of t)e aerofoil.

    1-

  • 8/16/2019 21 Month Review

    26/53

    ,A.1 A.A A.1 A.2 A.% A.+ A.5 A.- A./ A.8 A.9 1.A 1.1  ,   A .   1

       A .   2

       A .   5

       A .   8

       1 .   1

       1 .  +

       1 .   /

       2

    y@ (easure! "long T)e )or! of T)e 4"" ++12 "erofoil

    )or!

    y@

    ,ig#re 6 T)e y@ measure! over t)e c)or! of t)e 4"" ++12 aerofoil.

    t can be seen t)at t)e+¿ y

    ¿!oes remain 'it)in t)e seci3c range to

    a!equately resolve t)e transition region. T)e lea!ing e!ge s)o'e! a large

    sie in comarison to t)e remain!er of t)e c)artC )o'ever t)e ea only )a!

    an amlitu!e of 1.9 ')ic) can be consi!ere! 'it)in t)e boun!s of t)e

    equation. Furt)ermore< t)is ea 'as execte! as t)is section 'oul! contain

    t)e t)innest fraction of t)e boun!ary layer. " large !i close to t)e stall

    region 'as also notice!< 'it) t)e+¿ y

    ¿!roing to A.A2. T)is area is of 

    greater concern as t)e bottom limit of t)e =amma mo!el 'as almost

    reac)e!. To comlete a 'ort) ')ile comarison t)e same t)ree osition

    revie'e! earlier< namely line 2< + an! /< ')ere once again overlai! on t)e

    exerimental !ata.

    1/

  • 8/16/2019 21 Month Review

    27/53

    ,A.1A

    A.AA

    A.1A

    A.2A

    A.%A

    A.+A

    A.5A

    A.-A

    A./A

    A.8A

    A.9A

    1.AA

    1.1A

    1.2A  ,   A .   A   1

       A .   A   1

       A .   A   %

       A .   A   5

       A .   A   /

    0elocity *ro3les at &ae 2

    Exerimental

    omutational ata 'it) imrove! y@

    7it)out =amma,T)eta (o!el

    DDM

    !c

    ,A.1A

    A.AA

    A.1A

    A.2A

    A.%A

    A.+A

    A.5A

    A.-A

    A./A

    A.8A

    A.9A

    1.AA

    1.1A  ,   A

     .   A   1

       A .   A   %

       A .   A   /

       A .   1   1

       A .   1   5

    0elocity *ro3les at &ae +

    Exerimental

    omutational ata 'it) imrove! y@

    7it)out =amma,T)eta (o!el

    DDM

    !c

    ,A.2A

    ,A.1A

    A.AA

    A.1A

    A.2A

    A.%A

    A.+A

    A.5A

    A.-A

    A./A

    A.8A

    A.9A

    1.AA

    1.1A

    1.2A  ,   A

     .   A   5

       A

     .   A   5

       A .   1   5

       A .   2   5

    0elocity *ro3les at &ae /

    Exerimental

    omutational ata 'it) imrove! y@

    7it)out =amma,T)eta (o!el

    DDM

    !c

    ,ig#re 7  =ra)s comaring t)e velocity ro3les of t)e calculate! values tot t)eexerimental results. lac line reresents t)e comutational !ata an! t)e re! asterissare t)e exerimental !ata oints. :To; gra) comaring t)e ro3les at rae 2 from 3gure+< :mi!!le; gra) comaring t)e ro3les at rae + from 3gure +< :bottom; gra) comaring

    t)e ro3les at rae / from 3gure +.

    18

  • 8/16/2019 21 Month Review

    28/53

     T)e !i6erences are not clear at 3rst glanceC ')ence t)e revious results are

    suer,ositione! it becomes clear t)at t)e =amma,T)eta mo!el !oes imrove

    t)e correlation along t)e turbulent section of all t)e measurement lines.

    o'ever< along t)e trailing e!ge of t)e aerofoil ')ere t)e Bo' is searate!

    t)e =amma,T)eta mo!el seems to un!er,re!icte! t)e velocity ration.

    4evert)eless t)e most imortant arameter to matc) 'as t)e ressure

    !istribution as t)is 'oul! be t)e information being transferre!< t)us a

    comarison of t)e ne' ressure !istribution can be seen belo'.

    A.A A.1 A.2 A.% A.+ A.5 A.- A./ A.8 A.9 1.A 1.1

    ,/

    ,-

    ,5

    ,+

    ,%

    ,2

    ,1

    1

    2

      )e *ressure istribution alculate! Dsing t)e 4"" ++12 "erofoil 7it) Ex

    Exerimental omutational ata 7it) =amma,T)eta (o!el

    )or!

    ,ig#re 8 omarison of t)e ressure !istribution calculate! using t)e k −ωSST 

    mo!el 'it) t)e gamma,t)eta mo!el active :!as)e!; o6 :soli!; an! also from exerimental'or :re! asteris;.

    #nce again t)e !i6erence 'as minimal< 'it) no increase of accuracy in t)e

    trailing e!ge region. t is t)erefore of no use to imlement t)e a!!e!

    comlexity of t)e =amma,T)eta mo!el as no signi3cant imrovement 'as

    foun!. T)is lac of imrovement coul! be !ue to t)e !een!ence of t)e

    =amma,T)eta mo!el on t)e inlet viscosity ratio. t may also be because t)e

    simle geometrical Bo' is being resolve! to t)e best of t)e turbulence

    mo!els accuracy 'ill allo'. " 3nal c)ec for gri! in!een!ence 'as carrie!

    out to ensure t)is 'as t)e most accurate !ata available.

    19

  • 8/16/2019 21 Month Review

    29/53

    ,A.A5 A.A5 A.15 A.25 A.%5 A.+5 A.55 A.-5 A./5 A.85 A.95

    ,/

    ,-

    ,5

    ,+

    ,%

    ,2

    ,1

    A

    1

    =ra) omaring T)e Exerimental *ressure istribution 7it) T)e Lo'< (e!ium< ig) ensity =ri!s

    Exerimental ata ig) (es) ensity

    (e!ium (es) ensity Lo' (es) ensity

    )or!

    ,ig#re 9 =ra) comaring t)e ressure !istribution of t)e !i6erent mes) re3nementstes.

     T)e lo' !ensity mes) execte!ly ro!uce! t)e 'orst results< 'it) t)e

    me!ium an! )ig) mes) !ensity gri!s ro!ucing a similar ressure

    !istribution. T)e gri! sacing 'as re3ne! by a factor of √ 2  t)roug) eac)

    ste as t)is 'oul! give a large enoug) c)ange to inBuence calculations

    'it)out maing t)e )ig) !ensity mo!el too large. " furt)er ste increase 'as

    trie! but t)e mo!el 'oul! not converge< failing !ue to t)e overestimation of 

    t)e (ac) number an! causing an overBo' error.

     T)e clean aerofoil 'as mo!elle! using t)e same gri! siKe as t)e me!ium

    mes) !ensity 'it) bot) t)e gamma,t)eta mo!el activate! an! !isable!. T)e

    ressure !istributions can be seen in t)e 3gure belo'

    2A

  • 8/16/2019 21 Month Review

    30/53

    A A.1 A.2 A.% A.+ A.5 A.- A./ A.8 A.9 1

    ,1A

    ,8

    ,-

    ,+

    ,2

    A

    2

    ing T)e *ressure istribution of T)e lean "erofoil on3guration 7it) T)e =amma,T)eta (o!el "ctivate!

    =amma,T)eta Enable! =amma,T)eta isable!

    )or!

    A A.A2 A.A+ A.A- A.A8 A.1

    ,1A

    ,8

    ,-

    ,+

    ,2

    A

    2

    )or!

    ,ig#re 1) =ra) comaring t)e ressure !istribution calculate! using t)e =amma,T)eta

    mo!el enable! :!as)e!; an! !isable! :soli!;.

    "s 'it) t)e 4"" ++12 investigation little !i6erence 'as seen over t)e

    ma$ority of t)e aerofoil< 'it) slig)t !eviations near t)e lea!ing e!ge of t)e

    aerofoil. T)erefore no 3rm !ecision 'as taen to !iscontinue t)e use of t)e

    =amma,T)eta mo!el as it may rove useful in t)e more comlex mo!els t)at

    are to follo'.

    21

  • 8/16/2019 21 Month Review

    31/53

    3& 2& 4alidation o the ,lap deplo%ed con:g#ration

    0ali!ation of t)e Ba !eloye! con3guration 'as comlete! using !ata

    sulie! for t)e S"E consortium in t)e form of a ressure !istribution. #ne

    )as to ay careful attention ')en comaring t'o comutational !ata sets asany number of arameters coul! alter t)e Bo'. 7)at is more t)e c)oice of 

    turbulence mo!el< even t)e c)oice of co!e one c)ooses to solve t)e Bo' 'it)

    can cause !eviations. T)erefore ot)er met)o!s 'ere foun! to c)ec t)e

    convergence an! accuracy of t)e aut)ors solutions in!een!ently of t)e !ata

    rovi!e! by t)e S"E consortium. T)e 3gure belo' is a comarison of t)e

    ressure !ata obtaine! from t)e aut)ors comute! mo!el to t)e reviously

    mentione! !istribute! !ata.

    A A.1 A.2 A.% A.+ A.5 A.- A./ A.8 A.9 1 1.1 1.2

    ,25

    ,2A

    ,15

    ,1A

    ,5

    A

    =ra) omaring T)e *ressure istribution alculate! 'it) T)e &esults Sulie!

    L& &esults omute! &esults

    )or!

    ,ig#re 11 =ra) comaring t)e ressure !istribution calculate! 'it) t)e results sulie!by t)e consortium.

     T)e ressure ea coul! not be evaluate! roerly as t)e original !ata 'as

    rovi!e! on a gra) 'it) t)e y axis limite! to $ust ,1%. o'ever t)e ressure!istribution s)o'e! some goo! agreement 'it) t)e !atum. T)e Ba region

    s)o'e! excellent correlation ')ile t)e uer surface an! lea!ing e!ge 'ere less

    accurate. T)e aut)or trie! c)anging many arameters< suc) as t)e increase of 

    t)e gri! !ensity an! t)e a!!ition of t)e =amma,T)eta mo!el< 'it) no avail.

    Furt)ermore< !ue to t)e limite! !ata of t)e results it 'as almost imossible to

    tell ')et)er t)e ea Kone 'as being mo!elle! correctly.

    22

  • 8/16/2019 21 Month Review

    32/53

    3& /& 4alidation o The Droop ;ose and ,lap Deplo%ed

    +on:g#ration

    +.%.1. 0ali!ation of T)e roo 4ose an! Fla eloye! in Lan!ing

    on3guration

    *articular attention 'as ai! to mes)ing t)e !roo nose

    con3guration as no !ata 'as available for any sort of comarison.

    Furt)ermore t)is 'as t)e con3guration t)at 'oul! be use! t)e most

    t)roug)out t)e couling rocess. T)e mes) can be seen belo'

    ,ig#re 12 lose u of  mes) for t)e SLE @ Ba !eloye! con3guration.

     T)e ressure !istribution 'as exorte! an! comare! to t)e !ata rovi!e!

    by t)e S"E consortium ')ic) can be seen belo'

    A.A A.1 A.2 A.% A.+ A.5 A.- A./ A.8 A.9 1.A 1.1

      ,   1   %

      ,   9

      ,   5

      ,   1

    =ra) omaring T)e *ressure istributions of T)e omute! &esults an! T)at *rovi!e! y S"E

    L&Os &esults omute! &esults

    )or!

    ,ig#re 1/ =ra) comaring t)e results rovi!e! L& :blue; to t)e comute! results :re!;for t)e lan!ing con3guration.

    2%

  • 8/16/2019 21 Month Review

    33/53

     T)e a!!ition of t)e =amma,T)eta mo!el imrove! t)e results greatlyC t)e

    region over t)e Ba 'as re!icte! 'it) very little errors. o'ever t)ere

    'as a re!uction in t)e ressure ea over t)e lea!ing e!ge resulting in

    larger errors. T)is re!uction may be !ue to t)e inaccuracy in 3n!ing t)e

    stagnation oint at t)e lea!ing e!ge. " close u of t)e lea!ing e!ge an!

    t)e Ba region is 3gure! belo'

    A./A A.8A A.9A 1.AA 1.1A

    ,2.AA

    ,1.AA

    A.AA

    1.AA

      ring T)e *ressure istributions #ver t)

    L&Os &esults omute! &esults

    )or!

    A.AA A.1A A.2A

      ,   1   % .   A   A

      ,   5 .   A   A

      aring T)e *ressure istributions #ver L

    L&Os &esults omute! &esults

    )or!

    ,ig#re 13 lose u of t)e Ba section :left; an! t)e lea!ing e!ge ea :rig)t;.

    +.%.2. 0ali!ation of T)e roo 4ose an! Fla eloye! in Tae,o6 

    on3guration

     T)is con3guration is not going to be use! extensively in t)e

    remain!er of t)e ro$ectC )o'ever t)e aerofoil 'as use! to furt)er con3rm

    t)e accuracy of t)e aut)ors mo!elling tec)nique. T)ere 'ere subtle

    !i6erences in t)e lan!ing an! tae,o6 con3guration. T)e lea!ing !roo

    e!ge 'as unc)ange! )o'ever t)e Ba section 'as otimise! for t)e t'o

    Big)t )asesC t)e !i6erences are note! in t)e 3gure belo'

    ,ig#re 15  omaring t)e SLE @ Ba !eloye! aerofoil in t)e lan!ing an! tae,o6 con3gurations.

    2+

  • 8/16/2019 21 Month Review

    34/53

     T)e s)allo'er Ba osition reresents t)e location at tae,o6C !ue

    to t)e geometrical similarities t)e same mes) create! for t)e lan!ing

    con3guration 'as mo!i3e! for t)is case. omarison of t)e rovi!e!

    ressure !ata 'it) t)at comute! can be seen belo'

    A A.1 A.2 A.% A.+ A.5 A.- A./ A.8 A.9 1 1.1

      ,   1   1

      ,   8

      ,   5

      ,   2

       1

    omarison of T)e roo 4ose in Tae,#6 comarison

    L& &esults omute! &esults

    )or!

    ,ig#re 16 =ra) comaring t)e results rovi!e! L& :blue; to t)e comute! results :re!;for t)e tae,o6 con3guration.

    #nce again t)e correlation 'as excellent 'it) very fe' !eviations from t)e

    !atum gra)C ')at is more t)e inaccuracy seen over lea!ing e!ge 'as not

    as revalent in t)e above case. T)e cause for t)is irregularity in t)e

    re!iction of t)e ressure )as not been foun! an! furt)er stu!ies are

    continuing. T)is may be an issue as t)e roose! !esign solution 'oul!

    )ave a Bexible lea!ing e!geC )ence t)e e6ect of t)e increase! ressure

    'ill inevitably )ave an e6ect. T)e level of inBuence 'ill of course !een!

    on t)e Bexibility of t)e structure an! 'ill be analyse! at a later !ate. t is

    t)e aut)ors belief t)at t)e results obtaine! are of reasonable accuracy to

    use at least to'ar!s t)e initial alication of t)e Bui!,structure interaction

    )ase.

    3& 3& 4alidation o The Droop ;ose

  • 8/16/2019 21 Month Review

    35/53

    t)e aerofoilC )o'ever as t)is !ata 'as sulie! one 'oul! )ave to assume t)e

    !ata is correct. T)e aerofoil is 3gure! belo'

    ,ig#re 17 escribes t)e SLE @ Ba mor)e! con3guration.

     T)e mes) 'as create! similar to t)e revious mes) as once again t)e lea!ing

    e!ge remaine! unc)ange!C t)e Ba region require! more attention !ue to t)e

    irregular geometry. T)e Ba 'oul! nee! to be mo!elle! accurately as t)e

    Bo' over t)is region 'oul! greatly a6ect t)e Bo' over t)e lea!ing e!ge. "

    close u of t)e mes) can be seen belo'

    ,ig#re 18 lose u of t)e mes) for t)e SLE @ Fla mor)e! con3guration.

    #nce again t)e ressure !ata 'as sulie! by t)e artner resonsible for t)e

    creation an! otimisation of t)is caseC moreover for vali!ity a s)ort

    comarison stu!y of t)e comute! results an! t)e results given by &" 'as

    starte!. To begin t)e aut)or t)oug)t it 'oul! be best to mo!el using t)e

    same arameters as t)ose use! in section +.%.1C t)is 'as because t)e overall

    geometric sace )a! not been signi3cantly c)ange!. T)e ressure

    !istribution can be seen belo' suerimose! on t)e gra) sulie! &".

    2-

  • 8/16/2019 21 Month Review

    36/53

    A.AA A.2A A.+A A.-A A.8A 1.AA 1.2A

    ,1A.AA

    ,8.AA

    ,-.AA

    ,+.AA

    ,2.AA

    A.AA

    2.AA

    =ra) omaring T)e &" &esults 7it) T)ose omute!

    &" &esults Lo' !ensity

    )or!

    ,ig#re 19 =ra) comaring t)e ressure !istribution comute! :soli! green; 'it) t)ereference !ata :!as)e! re!; sulie!.

     T)e 3rst 21J s)o'e! great !issimilarity to t)e reference !ataC )o'ever t)e

    remaining /9J s)o'e! excellent agreement. T)e erroneous region in!icate!

    t)ere may )ave meant an imroer resolution 'as c)osen for t)e lea!ing

    e!ge. "s 'it) t)e revious results t)e same mes) 'as run using t)e =amma,

     T)eta mo!el enable!C it 'as t)e aut)ors belief t)at t)e a!!ition of t)e

    =amma,T)eta mo!el may assist in 3n!ing t)e stagnation oint more

    accurately. T)e gra) belo' s)o's t)e u!ate! ressure !istribution

    A.AA A.2A A.+A A.-A A.8A 1.AA 1.2A

    ,1A.AA

    ,8.AA

    ,-.AA

    ,+.AA

    ,2.AA

    A.AA

    2.AA

    =ra) omaring T)e &" &esults 7it) T)ose omute!

    omute! ata &" &esults

    Lo' !ensity

    )or!

    ,ig#re 2) =ra) comaring t)e ressure !istribution comute! using t)e =amma,T)eta

    mo!el :soli! green; 'it) t)e reference !ata :!as)e! re!; sulie! an! t)e revious results:!as)e! green;.

    2/

  • 8/16/2019 21 Month Review

    37/53

    From t)e above one can see t)e =amma,T)eta mo!el )a! a great inBuence

    on t)e ressure !istribution imroving t)e correlation over t)e Ba region an!

    re!icting a larger ressure sie. T)e ressure over t)e Ba region an!

    lea!ing e!ge )as been exan!e! belo' to better comare t)e results.

    A.8A 1.AA

    ,+

    ,%

    ,2

    ,1

    A

    1

    2

      aring T)e &" &esults 7it) T)ose

    )or!

    A.AA A.1A A.2A

    ,1A

    ,8

    ,-

    ,+

    ,2

    A

    2

      maring T)e &" &esults 7it) T)ose

    omute! ata

    &" &esults

    Lo' !ensity

    )or!

    ,ig#re 21 =ra) comaring t)e ressure !istribution comute! using t)e =amma,T)etamo!el :soli! green; 'it) t)e reference !ata :!as)e! re!; sulie! an! t)e revious results:!as)e! green;C over t)e Ba region :left; an! lea!ing e!ge :rig)t;.

    t is clear t)at t)e =amma,T)eta assiste! in t)e re!iction of t)e Ba region

    s)o'ing very little !eviation from t)e reference !ata u until t)e extreme

    curvature of t)is section. o'ever< t)e lea!ing e!ge continue! to s)o' large

    !isagreementC as a 3nal c)ec for gri! in!een!ence a convergence stu!y

    'as comlete! for t)e aerofoil.

    28

  • 8/16/2019 21 Month Review

    38/53

    A.AA A.2A A.+A A.-A A.8A 1.AA 1.2A

    ,1A.AA

    ,8.AA

    ,-.AA

    ,+.AA

    ,2.AA

    A.AA

    2.AA

    =ra) omaring T)e &" &esults 7it) T)ose omute!

    &" &esults (e!ium ensity Lo' ensity

    ig) ensity

    )or!

    ,ig#re 22 omarison of ressure !istribution for t)e gri! convergence stu!y along 'it)t)e !atum results.

     

    5& tr#ct#ral Model

    For t)e Bui! structure mo!el to be trut)ful bot) t)e Bui! mo!el an! t)e

    structural mo!el )ave to be of a similar accuracyC as t)e least accurate mo!el

    'ill !etermine t)e overall correctness of t)e results. T)erefore t)e aut)or felt it

    best to create several structural mo!els to assist 'it) t)e initial mo!elling. t

    'as !eci!e! t)at t)e clean aerofoil 'oul! be mo!elle! initially !ue to t)e

    relatively simle geometry. T)e 3rst mo!el to be create! 'as a s)ell mo!el of 

    t)e aerofoilC t)e interior of t)e mo!el 'as left )ollo' so not to comlicate t)esolution. " simle qua! mes) 'as create! aroun! t)e aerofoil ')ile trying to

    maintain regularity over t)e lea!ing e!ge. T)e 3gures belo' icture t)e above

    case.

    29

  • 8/16/2019 21 Month Review

    39/53

    ,ig#re 2/ Structural mo!el of t)e clean aerofoil :left; 'it) a close u of t)e lea!ing e!gemes) an! loa! con!itions :rig)t;.

     T)e material roerties of stan!ar! aluminium 'ere c)osen an! a constant

    t)icness of 2mm 'as alie! to t)e s)ell elements "s t)ere 'as no internal

    structure t)e mo!el 'as constraine! along t)e e!gesC an! a force of ,25P4

    :negative signifying ulling !o'n; 'as alie! to t)e no!es of t)e lea!ing e!ge.

     T)e 3rst mo!el use! a linear s)ell element an! ro!uce! t)e follo'ing results

    ,ig#re 23 &esults from t)e loa! case !escribe! above.

    t is clear t)at t)e solution is on nonsensical value but it !oes s)o' t)atrestraining t)e mo!el at t)e e!ges is an incorrect aroac). 7)at is more< t)e

    QSR s)ae! contortions signify t)e force loa!ing is incorrect 'it) t)e structures

    lea!ing e!ge moving !o'n rat)er t)an rotating. T)erefore< to rovi!e an area

    for suorting t)e structure 'it)out )in!ering t)e analysis a simle 'ing box

    structure 'as create!.

    %A

  • 8/16/2019 21 Month Review

    40/53

    ,ig#re 25 Structural mo!el of t)e clean aerofoil 'it) sars :left; 'it) a close u of t)elea!ing e!ge mes) an! loa! con!itions :rig)t; t)e resonse from t)e u!ate! structuralmo!el :bottom;.

     T)e resonse is once again not ')at is sort afterC )o'ever by altering t)eloa!ing magnitu!es !irections it 'as ossible to generate a s)ae of reasonable

    aroximation. T)e loa!ing reresents t)e force alie! by an actuation system

    to maintain t)e !esire! s)ae. "n arbitrary loa!ing attern 'as alie! to mimic

    t)e actuation system an! ro!uce t)e ben!ing. #nce t)e couling roce!ure

    )a! been 3nalise! t)e correct internal loa!ing attern 'oul! be alie!C as

    alication of comlex loa!ing early on in t)e rocess 'ill only )in!er t)e

    rogress.

    %1

  • 8/16/2019 21 Month Review

    41/53

    ,ig#re 26 ontour lot of t)e resonse !ue to an arbitrary alie! loa! resembling t)ecorrect !irection vectors.

     T)e image above 'as create! using t)is arbitrary loa! attern an! t)e resonse

    is not unreasonable )o'ever not accurate eit)er. t 'oul! be foolis) to come to

    t)e conclusion t)at a very 3ne mes) is require! as !islacement vectors can

    easily be calculate!< to a reasonable accuracy< 'it) a very course. 4onet)eless<

    one cannot say a course mes) 'ill suGce as t)e Bui! elements close to t)e

    interface may require more elements t)an a stan!ar! structural analysis to )el

    maintain t)e smoot)ness of t)e Bui! surface. t 'as t)erefore t)e aut)ors belief 

    t)at t)e structural mo!el coul! be imrove! to t)e necessary level once t)e

    couling roce!ure )a! been resolve! an! t)e level of accuracy require!

    un!erstoo! furt)er.

    %2

  • 8/16/2019 21 Month Review

    42/53

    6& ,l#id0tr#ct#re Model

    Dsing t)e above mo!els it 'oul! be t)eoretically simle to coule t)emC

    )o'ever !ue to t)e comlexity in setting u t)e rocess a ste,by,ste rocess

    'as imlemente!. #ne tutorial 3le existe! for t)is feature 'it) very little

    a!!itional resources. T)e tutorial 'as comlete! to gain an un!erstan!ing of 

    some of t)e arameters involve! in t)e couling rocess. T)e tutorial 3le 'as

    mo!i3e! to resemble t)e aerofoil )o'ever some ey features 'ere ignore!. T)e

    geometry create! can be seen belo'

    ,ig#re 27 Flui!,Structure mo!el :left; s)o's t)e far 3el! Bui! mo!el an! :rig)t; s)o'st)e structural soli!.

    ot) t)e structural an! Bui! sace can be seen in t)e above 3gureC "nsys

    7orbenc) 'as use! as t)e initial couling rogram. T)is require! t)at t)e

    structural mo!el an! Bui! mo!el be mes)e! searatelyC )o'ever t)e mo!el can

    be consi!ere! as a single simulation. " basic mes) 'as create! for bot) 3el!s

    an! can bee seen belo'

    ,ig#re 28 Flui!,Structure mo!el :left; s)o's t)e far 3el! Bui! mes) an! :rig)t; s)o's t)estructural soli! mes).

     T)e mes) 'as of a very course nature for bot) t)e structure but esecially for

    t)e Bui! 3el!. Furt)ermore< an unstructure! gri! 'as use! for t)e Bui! mes)

    %%

  • 8/16/2019 21 Month Review

    43/53

    ')ic) require! a!!itional attention to t)e mes)ing rocess an! t)e results from

    t)e comlete! simulation. 4o signi3cant results 'ere execte! from t)e test

    caseC t)e only real value 'as to !evelo t)e mo!elling tec)nique to furt)er t)e

    researc). T)e results from t)e case can be seen belo'

    ,ig#re 29 Figure !escribing t)e results obtaine! from t)e initial couling mo!el.

     T)e above !iagram s)o's t)e results generate! by t)e above mo!el

    con3guration< no force !ata 'as alie! to t)e aerofoil as t)e exc)ange of !ata'as t)e toic of stu!y. T)e structural mo!el 'as )el! in lace at t)e trailing

    e!geC obviously t)is 'oul! be consi!ere! an incorrect form of mo!elling )o'ever

    for initial uroses t)e aut)or felt allo'ing t)e aerofoil to move 'as more

    imortant t)an realism. (inor !eBections 'ere exerience! signi3e! by t)in

    green line )ig)lig)te! in t)e 3gure< t)e !eBection 'ere of t)e or!er one 'oul!

    exect from motion !ue to aero!ynamic forces.

     T)is )o'ever 'as only an exercise of rinciles as t)e structural mo!el 'as

    clearly of no useful value. T)e structural mo!el 'as imrove! by mo!elling t)e

    sin as a surfaceC in !oing so t)e same roblem of suorting t)e structure face!

    in t)e revious section )a! to be tacle!. T)e ne' structural 'as of similar

    !esign to t)e 3nal structural mo!el 'it) t)e sar ositions.

    %+

  • 8/16/2019 21 Month Review

    44/53

    ,ig#re /) D!ate! structural mo!el for t)e Bui!,structure mo!el.

     T)e mo!el )o'ever faile! to solve !ue to ')at t)e error 3le !escribe! as a rea!

    error. T)e cause of t)e error 'as unno'n t)erefore a c)ec of t)e t'o 3el!s

    )a! to be run to !e!uce some correct measures. T)e structural mo!el 'as

    rec)ece! for inaccuraciesC uon ')ic) t)e aut)or !iscovere! t)e fatal Ba' in

    mo!elling t)e aerofoil as !escribe!. t 'as foun! t)at in t)e !e!icate! solver t)e

     T,$oint at ')ic) t)e sar connects to t)e sin 'as resolve! as a single structureC

    ')ereas in t)e Bui!,structure mo!el t)e rogram misinterrete! t)e geometry

    3le. T)e 3gure belo' s)o's t)e !i6erences in t)e mo!els. T)e left image s)o's

    t)e mes) elements create! in t)e !e!icate! structural solverC ')ile t)e rig)t

    image s)o's t)e elements create! by t)e Bui!,structure solver.

    ,ig#re /1 S)o's t)e mes) elements create! in t)e !e!icate! structural solver :left;C:rig)t; image s)o's t)e elements create! by t)e Bui!,structure solver.

    From t)e images it can be seen t)e Bui!,structure mo!el !oes not mo!el t)e T,

     $oint correctly. n fact t)e $oint in mo!elle! as t'o sections< signi3e! by t)e

    c)ange in colour. T)e cause of t)is misinterretation must be in)erent to t)e

    imorting of Q.igsR 3les as t)e same geometry 3le 'as use! for bot) t)e above

    versions. T)is )yot)esis 'as vali!ate! ')en t)e above structural mo!el 'as

    solve! in!een!ently of t)e Bui! mo!el.

    %5

  • 8/16/2019 21 Month Review

    45/53

    ,ig#re /2 T)e converge! solution of t)e faile! aerofoil mo!el.

    7it)out a s)a!o' of a !oubt one can say t)e connections at eac) in!ivi!ual

    lanes e!ge )a! not been mo!elle! correctly. Furt)ermore t)e contact bet'een

    t)e sar lane an! t)e lea!ing e!ge )a! not been resolve!< t)us allo'ing t)e

    e!ge to travel t)roug) t)e structure. Don closer insection one can see t)e left

    corner :facing t)e aerofoil; of t)e lea!ing )a! remaine! attac)e! ')ile t)e

    oosite corner remaine! attac)e! to t)e sar. Furt)ermore t)e bottom e!ge

    exerience! no !eviation from its !atum s)ae signifying motion 'it) no

    contact. ontact 'as alie! to t)e aroriate locations to e6ectively glue t)e

    structure toget)er.

    ,ig#re // Structural mo!el 'it) contact alie!.

    o'ever t)e mo!el once again faile! !ue to a negative volume errorC in ot)er

    'or!s elements 'it)in t)e mo!el eit)er Bui! or structural collase! in on

    t)emselves causing a catastro)ic failure of t)e solver. Furt)ermore< by a!!ing

    an arti3cial connection one may have inadvertently altered  t)e loa! Bux over t)e

    surface by reresenting t)e structure 'it) a non,)ysical mo!el. " furt)er

    comlication arises in t)e c)oice of t)e contact mo!el several c)oice 'ere given

    to t)e aut)orC eac) )aving t)eir a!vantages for t)eir resective alication. n

    t)e above case a Qfxed body-body”   contact 'as use! ')ic) restricts t)e

    movement of t)e contact Kones in all !egrees of free!om.

    #nce again a test case 'as run for t)e aut)or to familiarise )imself 'it) t)e

    arametersC t)e structural mo!el 'as u!ate! by exclu!ing everyt)ing be)in! of 

    t)e 3rst sar. T)e sar osition 'as left in lace to suort t)e structure an!

    avoi! rigi! bo!y movement. T)e mo!el can be seen belo'

    %-

  • 8/16/2019 21 Month Review

    46/53

    ,ig#re /3 mage of t)e lea!ing e!ge create! using t)e Bui!,structure soft'areC :left;close,u of t)e roblematic region< :rig)t; s)o's t)e overall structural geometry.

     T)e above mo!el is similar to t)e mo!el mentione! earlier in ')ic) t)e manual

    static aeroelastic loa! transfer 'as alie! to. t 'as t)e aut)ors belief t)at as

    t)e lea!ing e!ge 'oul! be t)e most !iGcult to mo!el accurately t)erefore it

    s)oul! be t)e 3rst tacle!. T)e sills learnt from comleting t)e above case 'ill

    )oefully be easily extraolate! to t)e full mo!el. T)e above mo!el !escrition

    'as taen from anot)er *) stu!ent currently mo!elling t)e lea!ing e!ge of t)e

    above aerofoil>+?. T)e ne' con3guration 'as not as straig)t for'ar! to

    imlement as one 'oul! )ave )oe! as t)e interface region )a! to be mo!i3e!

    to account for t)e correct loa!. "ccor!ing to >/? if t)e region Bagge! to sen!

    !ata !oes not matc) t)e receiving si!e t)e !iscreant region is ignore!Cfurt)ermore< t)e receiving si!e be 'ill automatically set t)e unmae! Kone to

    Kero. T)erefore to avoi! mo!elling errors as muc) as ossible t)e aut)or

    recreate! t)e Bui! mes) to allo' one to select t)e lea!ing e!ge as t)e interface.

    %/

  • 8/16/2019 21 Month Review

    47/53

    ,ig#re /5 :To; s)o's t)e results of t)e coule! mo!el at a time,ste of A.A5 secon!sC:bottom; s)o's t)e same mo!el at a time,ste of A.%5 secon!s.

     T)e t'o images above !escribe t)e mes) !islacement an! velocity 3el! of t)e

    coule! mo!elle! at varying time,stes. T)e structural mo!el can be seen to

    u!ate t)roug) eac) of t)e time,stes )o'ever t)e Bui! mo!el looe! to )ave

    remaine! fairly stea!y state. T)is may be !ue to relatively small !eviations from

    t)e original s)ae< 'it) t)e largest !islacement being a mere A.AA%m. T)e

    above !iagram also s)o's t)at t)e Bui! mes) is of oor quality< in fact severely

    ina!equate if t)is 'ere anyt)ing ot)er t)an a test case. T)e mes) quality 'as

    left intentionally very course so as to revent t)e early roblem !escribe!<

    namely t)e collase of elements.

     T)e above mo!el 'as t)en exan!e! to inclu!e t)e trailing e!ge section 'it)

    t)e sarC )o'ever still ignoring t)e 'ing box section of t)e aerofoil. T)e

    geometry an! mes) of t)e structural section )as been )ig)lig)te! belo' for

    clarity.

    ,ig#re /6 Structural mo!el inclu!ing t)e trailing e!ge section.

    "s can be seen t)e t'o arts are comletely searate from one anot)er< t)is

    may be vali! for an analysis in ')ic) t)e local !islacements an! stresses are of 

    %8

  • 8/16/2019 21 Month Review

    48/53

    rimary concern. T)e imortance of t)e 'ing box section on t)e overall

    aeroelastic resonse cannot be ignore! for a full t)ree !imensional mo!el<

    t)erefore t)e 3nal mo!el s)oul! inclu!e in t)e 'ing box section. T)is 'ill be of 

    imortance ')en t)e full t)ree !imensional mo!el 'ill be analyse!C )o'ever as

    mentione! for t)e reliminary stu!y t)is level of !etail 'ill suGce.

    ,ig#re /7 Figure !escribing t)e mes) !islacement an! velocity contour of t)e lea!ingan! trailing e!ge mo!el.

     T)e above mo!el ro!uce! similar if not t)e same results for t)e lea!ing e!ge as

    t)e revious mo!el ')ic) only incororate! t)e name! section. T)e mo!el

    converge! to some basic rerequisitesC )o'ever convergence 'as not obtaine!

    for every time,ste t)roug)out t)e analysis. T)e resi!ual )istory for bot) t)e

    Bui! an! structure can be seen belo' accomanie! 'it) t)e convergence of t)e

    loa! transfer an! mes) !islacement at t)e lea!ing e!ge.

    %9

  • 8/16/2019 21 Month Review

    49/53

    ,ig#re /8 :To left; gra) !escribing t)e resi!uals for t)e mass an! momentum equation< :torig)t; gra) !escribing t)e convergence of t)e structural mo!el< :bottom left; gra) !escribing t)econvergence across t)e interface boun!ary< :bottom rig)t; gra) !escribing t)e !islacementcalculate! at eac) iteration.

    "ccor!ing to t)e manual convergence for t)e t'o !omains is attaine! in t)e

    normal fas)ionC )o'ever at eac) time,ste convergence is restarte! t)erefore

    one s)oul! exect t)e results to converge before siing an! settling to a ne'

    asymtote level. T)e user oint monitore! t)e mes) !islacement at t)e

    lea!ing e!geC t)e curve! section s)o's t)e convergence of t)is !islacement.

    onvergence over t)e interface is $u!ge! !i6erently< t)e manual states once t)e

    variables )ave settle! to a value belo' Kero t)e interface can be consi!ere!

    converge!. T)e Bui! mo!el s)o'e! a su!!en $um in t)e resi!uals aroun! t)e

    +At) iteration steC t)is ste correson!e! to t)e contour lot s)o'n in bottom

    image of 3gure %%. T)e structural mo!el )o'ever s)o'e! little convergence

    )o'ever t)e target convergence level 'as set to 1×10−2

    .

    +A

  • 8/16/2019 21 Month Review

    50/53

    7& +oncl#sion and Proposed

  • 8/16/2019 21 Month Review

    51/53

     T)e roo nose 'it) t)e Ba mor)e! 'as t)e last con3guration to be

    mo!elle! an! vali!ate!. #nce again t)e only !atum for comarison 'as anot)er

    set of comutational !ata sulie! by a artner comany. areful attention 'as

    given to lea!ing e!ge as t)is region )as s)o'n to be a roblematic area. t 'as

    foun! t)at t)e lea!ing e!ge once again s)o'e! oor agreement 'it) t)e !ata

    sulie! by t)e artnerC strangely )o'ever t)e trailing e!ge 'as mo!elle! 'it)

    great recision. 7it) t)e =amma,T)eta mo!el activate! t)e trailing e!ge results

    'ere re!icte! almost i!entically as t)ose rovi!e!. Furt)ermore< a gri!

    convergence stu!y s)o'e! t)e course mes) ro!uce! inaccurate resultsC

    )o'ever t)e )ig)est gri! mes) increase! t)e accuracy by ')at t)e aut)or

    believe! insigni3cant. T)e cause of t)e consi!erably large !i6erence in ressure

    eas over t)e lea!ing e!ge is still un!er investigation.

    " s)ort stu!y on mo!elling t)e structural asect of t)e Bui!,structure mo!el

    'as comlete!. T)is allo'e! t)e user to gain some un!erstan!ing of t)e

    mo!elling rocess ')en creating a structural mo!el. T)e 3rst mo!el 'as of $ust

    t)e sinC it 'as foun! t)at t)e constraints alie! to t)e aerofoil 'ere unrealistic.

     T)e mo!el 'as u!ate! a sin structure 'it) some internal suorts lace! in

    t)eir aroriate ositions. T)e aut)or 'as t)en able to constrain t)e mo!el in a

    more realistic fas)ion )o'ever t)e loa!ing attern use! 'ere incorrect. t 'as

    t)e aut)ors belief t)at t)e a!!ition of comlex loa!ing atterns 'oul! )in!er

    t)e couling rocess !ue to resulting comlex motion.

     T)e 3rst Bui!,structure mo!el 'as create! to !evelo an un!erstan!ing of 

    setting u t)e couling rocess. T)e Bui! mo!el 'as left similar to one create!

    an! vali!ate! above )o'ever for ease of mo!elling t)e aut)or !eci!e! to use a

    soli! aerofoil. T)e structural mo!el 'as t)en mo!i3e! to resemble t)e structural

    mo!el create! earlier. o'ever t)e mo!i3cations may )ave been too large of a

    ste in t)e mo!elling rocess as t)e mo!el faile! to solve. t 'as foun! t)e error'as !ue to an imroer use of t)e imorting function< ')ic) left a anel

    !etac)e! from its )ost. Several interme!iate structures 'ere create! to )el

    over t)e couling issue. T)e Bui! mo!el 'as mo!i3e! to allo' t)e selection of 

    articular sectionsC t)is 'as utilise! ')en t)e structure 'as slit into t)e lea!ing

    e!ge an! trailing e!ge sections.

     T)e aut)or inten!s to exten! t)e current by inclu!ing t)e 'ing box in t)e

    structural mo!elC t)e aut)or rooses to ac)ieve t)is by imroving t)e structural

    mo!elling tec)niques imlemente!. n !oing so t)e aut)or 'ill )ave enoug)

    +2

  • 8/16/2019 21 Month Review

    52/53

    exerience to begin mo!elling t)e Ba !eloye! con3guration from ')ic) all t)e

    ot)er con3gurations 'ill arise. T)e above mo!els !o not inclu!e any servo force

    alie! to t)e sin to cause t)e !eBections. etaile! analysis of t)e loa!ing

    attern require! to create! t)e require! !eformation )as been comlete!>+? an!

    can be use! 'it)in t)e current mo!el. n fact !ue to t)e use of t)e reference

    geometry t)e loa!ing atterns an! tec)niques can be !irectly imorte! into t)e

    structural mo!elC giving an insig)t into t)e aeroservoelastic resonse of t)e

    aerofoil. T)e concet is )oe! to be exan!e! to a t)ree !imensional mo!el so

    as t)e t'ist an! ben!ing exerience! by t)e 'ing can also be incororate! into

    t)e analysis of t)e )ig) lift !evice. Finally t)e aircraft structure can t)en be

    otimise! for t)e for t)e aeroservoelastic e6ects.

    +%

  • 8/16/2019 21 Month Review

    53/53

    8& =i$liograph%

    1. . "n)alt< .*.(.< E. reitbac)< Interdisciplinary Wing Design - Structural

     Aspects. 2AA%.2. Prger< 7.&. an! (. Siec<  Aeroelastic Eects in Multibody Dynamics.

    0e)icle System ynamics nternational ournal of 0e)icle (ec)anics an!(obility< 2AA+. 31:5; . %8% , %99.

    %. E. . o'ell< P...< Modelling o !luid-Structure Interaction.  "nnual&evie' of Flui! (ec)anics< 2AA1. //:1; . ++5,+9A.

    +. (oris)ima< &.<  Aeroelastic Analysis o "omposite Wing Structures #it$%ig$ &it De'ices< in Department o Aerospace Engineering. 2AA/<ran3el! Dniversity ran3el!. . /9.

    5. TeK!uyar< T.< et al.< Interace (ro)ection *ec$ni+ues or !luid,Structure

    Interaction Modeling #it$ Mo'ing-Mes$ Met$ods.  omutational(ec)anics< 2AA8. 3/:1; . %9,+9.

    -. !e oer< ".< ".. van Uui$len< an! . i$l< e'ie# o "oupling Met$ods or on-Matc$ing Mes$es.  omuter (et)o!s in "lie! (ec)anics an!Engineering< 2AA/. 196:8; . 1515,1525.

    /. "nsys< "oupled !ield Analysis /uide. 2AA9< "nsys anonsburg< *" 15%1/.. 1+A,15/.

    8. egroote< .< et al.< Stability o A "oupling *ec$ni+ue or (artitionedSol'ers in !SI Applications. omuters V Structures< 2AA8. 86:2%,2+; .222+,22%+.

    9. Sc)olK< .< et al.< *$in Solids or !luid-Structure Interaction. 2AA-. . 29+,%%5.

    1A. 7ang< W.< Simulations o Separated *urbulent !lo#s Around Single andMulti-Element Airoils 0sing 0AS1 DES and I&ES Approac$es < in Sc$ool o Engineering. 2AA9< ran3el! Dniversity ran3el!. . 18+.