13
21. Current and Direct Current Circuits 21. Current and Direct Current Circuits 21-1. Electric Current Electric current I : Charge flow rate , t Q I av = dt dQ I (Ampere) 1 A = 1 C/sec. A I J r Current Density ; Charge flow rate per unit area Current per area A electric wire Number of charge carriers A t v n V n N d = = q A nv t t q A nv t q N t Q I d d av = = = = v d ; Drift velocity d nqv A I J = = d v nq J r r Current density 0 v t a v + = r r E m q m E q v t a v c d r r r r τ τ δ = >= < + = 0 0 E m nq J r r τ 2 = E // J r r

21. Current and Direct Current Circuitsphome.postech.ac.kr/user/genphys/download/phy102-21.pdf · 2014-02-05 · 21. Current and Direct Current Circuits 21-1. Electric Current. Electric

  • Upload
    others

  • View
    76

  • Download
    0

Embed Size (px)

Citation preview

21. Current and Direct Current Circuits21. Current and Direct Current Circuits21-1. Electric Current

Electric current I : Charge flow rate

,tQIav ∆

∆=

dtdQI ≡ (Ampere)

1 A = 1 C/sec.

AIJ ≡

rCurrent Density ; Charge flow rate per unit areaCurrent per area

A electric wireNumber of charge carriers

AtvnVnN d ⋅∆⋅=∆⋅=∆

qAnvtt

qAnvt

qNtQI d

dav ⋅=∆

∆⋅

=∆

⋅∆=

∆∆

=

vd ; Drift velocity

dnqvAIJ ==

dvnqJ rr≡Current density

0vtav +=rr

Emq

mEqvtav cd

rr

rr ττδ =⋅>=<+⋅= 0

0

Em

nqJrr τ2

= E//Jrr

21-2. Resistance and Ohm’s Law

A

l

Vb VaI

Resistance

IVR ∆

≡ (Ω) Ohm’s Law

1 Ω = 1 V/A

A metal

Ohm’s law : a empirical relation I IRV =∆Not always true

Materials follow Ohm’s law ; Ohmic Materials

∆V

Em

nqJrr τ2

=

lEVVV ab ⋅=−=∆

AJI ⋅= lV

mnq

AI ∆

=τ2

VlA

mnqI ∆=

τ2

1/RσConductivity

Al

AlR ρ

σ==

σρ 1= : Resistivity

τρ 2nq

m=

τρ 2nq

m= T

1∝τ In Metal

)](1[ 00 TT −+= αρρ

T∆∆

ρα

0

1

: Temperature coefficient of resistivity

)](1[ 00 TTRR −+= α

At low temperature, ρ → ρ0

Materials

Resistivityρ (Ω·m)

Temperature Coefficientα [(°C)-1]

Silver Copper Gold Aluminum Tungsten Iron Platinum Lead Nichrome Carbon Silicon Glass Quartz

1.59 × 10-8

1.7 × 10-8

2.44 × 10-8

2.82 × 10-8

5.6 × 10-8

10 × 10-8

11 × 10-8

22 × 10-8

1.50 × 10-6

3.5 × 10-8

640 1010 1014

75 × 1016

3.8 × 10-3

3.9 × 10-3

3.4 × 10-3

3.9 × 10-3

4.5 × 10-3

5.0 × 10-3

3.92 × 10-3

3.9 × 10-3

0.4 × 10-3

-0.5 × 10-3

-75 × 10-3

--------

Resistivity and Temperature Coefficient of Resistivity

In Semiconductor

I gE

kT

e2

0

= σσ

gEkT

e2

0ρρ =

∆V

In Superconductor

Materials

TemperatureCoefficient α [(°C)-1]

YBa2Cu3O7

Bi-Sr-Ca-Cu-O Tl-Ba-Ca-Cu-O HgBa2Ca2Cu3O8 Nb3Ge Nb3Sn Nb Pb Hg Sn Al Zn

9210512513423.2

21.059.467.184.153.721.190.88

Critical Temperature for Various Superconductors

ρ = 0

• Resistors in Series and in Parallel

AlR ρ= 1−∝⇒ A,lR

In Series

21 RRR +=

∑=i

iRR

In Parallel

21

111RRR +=

∑=i iRR

11

21-5. Electrical Energy and Power

VQU ∆⋅∆=∆

VIVtQ

tU

∆⋅=∆⋅∆∆

=∆

RVRIIRIVIP

22 )(∆

==⋅=∆⋅= (W)

Electrical Power.secJW 11 =

( ) J.secWkWh 63 10633600101 ×=⋅=

Example Lightbulb

100 W Bulb, 24 hrs

Energy = ( ) ( ) kWh.hkW. 422410 =×

21-6. Source of emf

Battery ⇒ Electromotive force (emf ) εIrVab −= ε Actual voltage depends on the current.

Internal resistanceIRVdc =

dcab VV =

rRI

+=⇒

εIRIr =−εPower :

rIRII 22 +=ε Dissipated energy due to the internal resistance

Let’s neglect the internal resistance!

21-8. Kirchhoff’s Rules and Simple DC Circuitsr

What is the equivalent resistance?

• Kirchhoff’s Rules

1. ∑ 0=a ai

Charge conservationi1

i2

i3

at a junction

0321 =++−=∑ iiii

321 iii +=

0=∆∑closed

V

00

22

11

=∆−=∆−

VRiVRi

i1R1

i2 R2i

∆V

02211 =− RiRi1

2

2

1

RR

ii

=⇒

eqRV

RV

RV

iii∆

=∆

+∆

=

+=

21

21

21

111RRReq

+=⇒

22

11

RViRVi

∆=∆=

2.

Energy conservation

a bI

RI

IRVVV ab −=−=∆

a b

Ra b

ε

IRVVV ab =−=∆

ε=−=∆ ab VVV

a b ε−=−=∆ ab VVVε

iReq 6

ε=r6i

2i

2i

2i ii

i ii

i 2i2i

2i 6i

ε=++ iRiRiR 22

eqiRiR 65 == ε

RReq 65

=

ε

Example 21.9 Applying Kirchhoff’s Rules

a

b

14 V

e

c

d

f

10 V 6Ω

+ −

− +

I1

I2

I3

321 III =+⇒0=∑ i

( ) ( ) 02610 31 =Ω−Ω− IIV0=∆∑

abcdaV

( ) ( ) 0106144 12 =−Ω+−Ω− VIVI

0=∆∑befcb

V

AI,AI,AI 132 321 −=−==

Example 21.10 A Multiloop Circuit

I1

I3

I2

I3

I1

a

b

e

c

d

f

3 V

+ −

− +

− +

4 V

8 V

6µF

g

h+ −

I=0

321 III =+⇒0=∑ i

( ) ( ) 0534 32 =Ω−Ω− IIV0=∆∑

defcdV

( ) ( ) 0853 12 =+Ω−Ω VII0=∆∑

cfgbcV

A.I,A.I,A.I 0213640381 321 =−==

038 =−∆+− VVV c

0=∆∑abgha

V∆Vc

VVc 11=∆ CVCQ c µ=∆⋅=⇒ 66

21-9. RC Circuits

• Charging a Capacitor

Switch on at t = 0

0=−−ε IRcq

RI ε

=∴ 00==∆⇒ CqVcat t = 0, q = 0

dtdqI =Differential equation at t > 0

)qC(RCRC

qRdt

dq−=−=⇒ εε 1

0=⋅−−ε Rdtdq

cq

RCx

dtdq

dtdx

−=−=⇒qCx −= ε

∫∫ −=t

dtRCx

dx0

1 RCt

exxRCt

xx −

=⇒−= 00

ln

−=

−ε RCt

eCq 1RCt

eCqC −εε =− ⇒

,eCq RCt

−=

−ε 1

τ−−− εεε ==⋅==t

RCt

RCt

eR

eR

eRC

CdtdqI 1 RC=τ

3701 .e =−

Ttq

qIq

Vq

IVRC =

=

=

∆⋅

∆==τ

FC,R µ=Ω= 110 secRC 510−==τ⇒

• Discharging a Capacitor

RdtdqIR

Cq

⋅−==

S

+

+

R

C

RCq

dtdq

−=

dtRCq

dq 1−=

tRCq

qln 1

0

−= RCt

eqq −= 0⇒

RCt

RCt

RCt

eI

eRCqe

RCq

dtdqtI

−−

=

=

−⋅−=−=

0

00

1)(

QCε

II0

t

t

-I0