25
20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN L. Nathawad 1 , M. Zargari 1 , H. Samavati 2 , S. Mehta 2 , A. Kheirkhahi 1 , P. Chen 1 , K. Gong 1 , B. Vakili-Amini 1 , J. Hwang 2 , M. Chen 2 , M. Terrovitis 2 , B. Kaczynski 2 , S. Limotyrakis 2 , M. Mack 2 , H. Gan 2 , M. Lee 2 , S. Abdollahi-Alibeik 2 , B. Baytekin 2 , K. Onodera 2 , S. Mendis 2 , A. Chang 2 , S. Jen 2 , D. Su 2 , B. Wooley 3 1 Atheros Communications, Irvine, CA 2 Atheros Communications, Santa Clara, CA 3 Stanford University, Stanford, CA

20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

20.2: A Dual-band CMOS MIMO RadioSoC for IEEE 802.11n Wireless LAN

L. Nathawad1, M. Zargari1, H. Samavati2, S. Mehta2, A. Kheirkhahi1, P.Chen1, K. Gong1, B. Vakili-Amini1, J. Hwang2, M. Chen2, M.

Terrovitis2, B. Kaczynski2, S. Limotyrakis2, M. Mack2, H. Gan2, M.Lee2, S. Abdollahi-Alibeik2, B. Baytekin2, K. Onodera2, S. Mendis2, A.

Chang2, S. Jen2, D. Su2, B. Wooley3

1Atheros Communications, Irvine, CA2Atheros Communications, Santa Clara, CA

3Stanford University, Stanford, CA

Page 2: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

Outline

❑ Introduction

❑ SoC architecture

❑ Circuit implementation

❑ Measurement results

❑ Conclusions

Page 3: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

802.11n MIMO Wireless LAN

Legacy 802.11(g/a) 802.11n (Draft)

Spectrum Available

Channel Bandwidth

Modulation

Max. Data Rate (Mbps)

Non-overlapping channels

83.5/555MHz 83.5/555MHz

20MHz 20/40MHz

DSSS, CCK, DSSS, CCK,

54 150×Nstreams

3/24 3/24

OFDM OFDM

❑ Improved Throughput and range by employing:• Spatial diversity: transmitting multiple streams on multiple radios• Higher bandwidth per channel: 40MHz (HT-40)• More OFDM subcarriers: 56 vs. 52• Shorter guard intervals: 400ns vs. 800ns• Higher coding rate: 5/6 vs. 3/4

❑ Backwards compatible with legacy 802.11a/g networks

Page 4: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

MIMO Radio Requirements

Compared to legacy 802.11, MIMO 802.11 radiosdemand:

• Better error-vector magnitude (EVM)• Tighter spectral mask requirements

Which translates to:• Lower phase-noise• Better I/Q matching• Better Linearity• Less noise

In Addition, they require• Faster ADCs and DACs• Less in-band ripple in the baseband filter• Careful SoC floorplanning to avoid chain-to-chain cross-talk• Lower power, smaller and more modular design

Page 5: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

2.4GHz Tx2.4GHz Rx

5GHz Tx

5GHz Rx

2.4GHz Tx2.4GHz Rx

5GHz Tx

5GHz Rx

DAC

ADC

DAC

ADC

Digital

PHY

&

MAC I/O In

terf

ace

Frequency Synthesizer

PLL

XtalOsc.

ADC/DACClock

An

ten

na

Sw

itch

PCI/PCIe

SoC Block Diagram

Antenna1

Antenna2

Page 6: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

Frequency Plan

❑ Direct Conversion for 2.4GHz• Lower power signal path• Smaller area• Avoid pulling by running

VCO at 4/3fRF

❑ Dual Conversion for 5GHz• Lower frequency LO circuits• Simplified LO generation• Better I/Q matching

Integer/Fractional-NSynthesizer

2

fvco

3.6GHz 4.8GHz(2.4GHz radio)(5GHz radio)

Page 7: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

LNA

Vgm

Vgm

PADriver

PA

Cal. 24.8G

to BB filters

From BB filters

2.4GHz Radio Block Diagram5GHz receiver mixer outputs

5GHz Transmitter mixer inputs

Page 8: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

LNA VGA

Vgm

Vgm

PADriver

PA

Cal. 23.6G

5GHz Radio Block Diagram2.4GHz receiver mixer outputs

to BB filters

From BB filters

2.4GHz Transmitter mixer inputs

Page 9: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

3.6G+-

1.8G+-

g1 gn

RFinVgm

RF mixer IF mixer

I V

n1

n2

5GHz Receiver Down Conversion

Measured Receiver NF = 6dB

Page 10: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

5GHz Dual Upconversion

in ip qn qp

IF Mixer

RF Mixer

I Q

fRF13

fRF23

I+

I-

I+ Q+

Q-

Q+

+ +

-

To the PA Driver

Page 11: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

×1 ×1 ×2 ×4

Bias

Vref

wire-bond

wire-bond

3.3V

PAout

Replica Circuit

en

PAin

Ileak Ileak Ileak Ileak

S1d

M2

M3

2.4 GHz Power Amplifier

X

S1cS1bS1a

Page 12: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

Baseband I-Path

I V

I V

BQ1S1

S2

S3

S4

ADC

DAC

To Digital(PHY, MAC,Interface)

BQ22.4GHz Rx

5GHz Rx

Baseband Filters

❑ Active R-C Implementation❑ Compared to gm-C can achieve

• Better dynamic range• Lower power

2.4GHz Tx

5GHz Tx

-1

DACDACoffset Control

DAC

Page 13: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

Baseband I-Path

I V

I V

BQ1S1

S2

S3ADC

DAC

To Digital(PHY, MAC,Interface)

BQ22.4GHz Rx

5GHz Rx

2.4GHz Tx

5GHz Tx

Baseband Filters: Receive mode

❑ 5th order Butterworth• Single-pole I→V followed by 2 biquads• Bandwidth adjusted using programmable capacitor arrays

S4

Page 14: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

Baseband Filters: Transmit mode

Baseband I-Path

I V

I V

BQ1S1

S2

S3ADC

DAC

To Digital(PHY, MAC,Interface)

BQ22.4GHz Rx

5GHz Rx

2.4GHz Tx

5GHz Tx

❑ 2nd order Butterworth with f−3dB = 10/20MHz

• More than 52dB attenuation at the DAC samplingFrequency of 160MHz

S4

fnotch = 160MHz

Page 15: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

Baseband Filters: Loop-Back

Baseband I-Path

I V

I V

BQ1S1

S2

S3ADC

DAC

To Digital(PHY, MAC,Interface)

BQ22.4GHz Rx

5GHz Rx

2.4GHz Tx

5GHz Tx

❑ Calibrate the cutoff frequency by adjusting the biquad poles❑ Test tone generated by digital baseband

S4

Page 16: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

4 160/176 MHz

T & H

T & H

9-bitSARADC

9-bitSARADC

Analog In Digital Out

Time-Interleaved SAR ADC

❑ Each 9-bit ADC core including T&H:

• Dissipates 7mA from 1.2V

• Occupies less than 0.1mm2

Page 17: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

fVCO

Vc

Linear range

Vc Vc

Const-IR

StateMachine

control bits

Vc high

Vc low

Voltage-Controlled Oscillator

Page 18: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

SoC Calibration

❑ Calibration reduces the impact of analogimpairments on the radio performance

❑ Correction algorithms are generally implementedin the digital domain• Lower power• Smaller area• Better reliability

❑ Example:• Receiver DC offset• Transmit carrier leak• Baseband filters bandwidth• Receiver I/Q mismatch• Receiver noise floor• ADC gain & DC offset

Page 19: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

@5540MHz: Integ. PN = –39.3dBc

@2462MHz: Integ. PN = –42.4dBc

Phase Noise

2462MHz: -100dBc/Hz5540MHz: -102dBc/Hz

100k

Hz

Page 20: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

5GHz Sensitivity

40MHz Channels20MHz Channels

0 5 10 15-95

-85

-75

-65S

ensi

tivi

ty (

dB

m)

MCS Index

2-streams

Single stream

64QAM

BPSK

64QAM

BPSK

❑ RF Channel Centered at 5180MHz❑ No external LNA

Page 21: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

Transmitter Performance

Channel: 2442 MHz2-Stream HT−40Pout = −8dBmEVM = −31dB

Channel: 5220 MHz2-Stream HT−40Pout = −4dBmEVM = −31.5dB

Page 22: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

Die Micrograph

RF

Fro

nte

nd

1RF Frontend 2

Synth

Bas

eban

dBB PLL

AD

C /

DA

C 2

ADC / DAC 1

Bia

s

PCIe-PHY

Filt

ers

2Baseband

Filters 1 Digital PHY, MAC& Baseband

• Process:0.13µm CMOS

• Die Size:

6 × 6 mm2

• Analog Area:

11 mm2

• Package:88-pin QFN

Page 23: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

Parameter 2.4GHz 5GHz

TX EVM (HT-40, MCS 15) −31dB @ -8dBm −31.5dB @ −4dBm

Receiver Noise Figure 4dB 6dB

Receiver Sensitivity (HT-40, MCS15) −70dBm −68dBm

Integrated Phase Noise −42dBc −39dBc

SoC Power Dissipation (HT-40, MCS 15)

Receive Transmit

800mW630mW

830mW1230mW

Transceiver Power (HT-40, MCS 15)

Receive (Incl. ADCs) Transmit (Incl. DACs)

360mW285mW

400mW860mW

Over-the-air TCP throughput 205 Mbps

Performance Summary

Page 24: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

Conclusions

❑ Demonstrated a 2×2 MIMO SoC radio thatimplements the IEEE 802.11n draft

❑ Receiver sensitivity of −70dBm and −68dBmat MCS15 for 2.4GHz and 5GHz, respectivelywithout any external LNA

❑ Shared Baseband filters between receiver andtransmitter

❑ Overall analog/RF area of 11mm2

Page 25: 20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN · 2008-05-20 · 802.11n MIMO Wireless LAN Legacy 802.11(g/a) 802.11n (Draft) Spectrum Available Channel Bandwidth

Acknowledgements

❑ Support of the Digital Design, Algorithms,

Systems engineering, CAD and IT groups at

Atheros Communications