233
) .. ) ,_DEVELOPMENT OF INTERACTIVE COMPTJI'ER PROGRAl'iS FOR MECHANICAL ENGINEERING DESIGNyFATIGUE ANALYSIS, SECTION PROPERi'IES, AND BEAM ANALYSIS by Yiu. Wah,,Lukt'l Thesis submitted to the Graduate Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING APPROVED: L. D. Mitchell, Chairman H. H. Mabie ________________ [;" ______ _ N. s. Eiss May 1978 Blacksburg, Virginia

vtechworks.lib.vt.edu€¦ ·  · 2017-07-27DEDICATION To my beloved parents, and , and my brothers and sister who have constantly encouraged me to pursue a higher education. 11

Embed Size (px)

Citation preview

) .. )

,_DEVELOPMENT OF INTERACTIVE COMPTJI'ER PROGRAl'iS FOR

MECHANICAL ENGINEERING DESIGNyFATIGUE ANALYSIS,

SECTION PROPERi'IES, AND BEAM ANALYSIS

by

Yiu. Wah,,Lukt'l

Thesis submitted to the Graduate Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

IN

MECHANICAL ENGINEERING

APPROVED:

--~------------i;::::.::-------

L. D. Mitchell, Chairman

H. H. Mabie

________________ [;" ______ _ N. s. Eiss

May 1978

Blacksburg, Virginia

DEDICATION

To my beloved parents, and , and my brothers

and sister who have constantly encouraged me to pursue a higher

education.

11

ACKNOWLEtGEMENT

The author wishes to thank his major ad.visor

for introducing him to the field of computer-aided design for all his

advice and for his help in carrying out this research. This work could

not been completed without the assistance and careful guidance of his

major advisor,

The author also wishes to thank the other members of his committee,

for their valuable

suggestions.

111

TABLE OF CONTENTS

lJedica tion • •.•••••••••.•••• , .•••••• , ••••••••••• , ••••••••.•••••••• , •• ii

A ckn.owledgement • , •••••• , , •••• , ••••••••••• ', •••••••••••• , ••••••••• , •• iii

Table of Contents,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, iv

List of Tables ••••••••••••••••••••••••••••••••••••••••••••••••••••• vii

List of Figures •••••••••••••••••••••••••••••••••••••••••••••••••••• viii

Nomenclature ••••••••••••••••••••••••••••••••••••••••• ,,,,,,,,,,,,,, ix

Chapter One

1.0 Introduction................................................. 1

Chapter Two

2.0 Literature Review•••••••••••••••••••••••••••••••••••••••••••• 5

Chapter Three

3.1 Theory --- Fatigue Analysis.................................. 13 J .1 .1 Fatigue Failure Line. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1.J

3.1.2 Parametric Method•••••••••••••••••••••••••••••••••••••••• 14

3.1.3 Significant Endurance Limit•••••••••••••••••••••••••••••• 17

3.1.3.1 Surface Factor••••••••••••••••••••••••••••••••••••••• 17

3.1.3.2 Size and Shape Factor•••••••••••••••••••••••••••••••• 18

3.1.3.3 Reliability Factor••••••••••••••••••••••••••••••••••• 20

3.1.3.4 Temperatu.-""'9 Factor••••••••••••••••••••••••••••••••••• 21

3.1.3.5 Fatigue Strength Reduction Factor •••••••••••••••••••• 21

3.1.3.6 Miscellaneous Factor•••••••••••••••••••••••••••••••••

iv

v

3.1.3.7 En.qurance Limit for a R. R. Moore Rotating beam

specimen.~ ......... ~.................................. 23

3.1.4 Significant Endurance Limit for finite life.............. 24

3.2 Theory --- Section Properties•••••••••••••••••••••••••••••••• 25 3.2.1 Polygonal Cross Section•••••••••••••••••••••••••••••••••• 25

3.2.z Circular Cross Section••••••••••••••••••••••••••••••••••• 35

3.2.3 Radius of Gyration••••••••••••••••••••••••••••••••••••••• 36

3.3 Theory --- Beam Analysis••••••••••••••••••••••••••••••••••••• 38 3.3.1 Derivation of Transfer Matrix•••••••••••••••••••••••••••• 40

Chapter Four

4.1 Discussion of Results

4.2 Discussion of Results

Fatigue Analysis •••••••••••••••••••

Section Properties •••••••••••••••••

51 51

4.J Discussion of Results --- Beam Analysis•••••••••••••••••••••• 53

Chapter Five

5.0 Conclusion................................................... 55

C~..apter Six

6.1 Recommendation

6,2 Recommendation

6.J Recommendation

Fatigue Analysis ••••••••••••••••••••••••••

Section Properties••••••••••••••••••••••••

Beam Analysis •••••••••••••••••••••••••••••

References......................................................... 60

Appendix A

A.1 User's Guide

A.2 User's Guide

A.) User's Guide

Appendix B

B.1 Program Listing

B.2 Program Listing

B.3.1 Program Listing

B.3.2 Program Listing

vi

Fatigue Analysis••••••••••••••••••••••••••• 65

Section Properties••••••••••••••••••••••••• 96

Beam Analysis•••••••••••••••••••••••••••••• 111

Fatigue Analysis••••••••••••••••••••••• 146

Section Properties••••••••••••••••••••• 164

Beam Analysis (Part!) ••••••••••••••• 184

Beam Analysis (Pa.rt II) •••••••••••••• 212

Vita. •••••••••••••••••••••••••• I ••••••••••••••••••••••••••••••• I •• 218

Abstract

LIST OF TABLES

A-1. Parameters for the selection of the desired fatigue failure

line. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 67

A-2. Kececioglu factor••••••••••••••••••••••••••••••••••••••••••••• 68 A-J. Results of Example A-1 obtained by six fatigue failure lines.. 87

vii

1.

2.

4.

5. 6.

LIST OF FIGURES

Area of Triangle ABC ••••• • .•••••••••••••••••••••••••••••••••••

Coordinate Definitions --- Section Properties Program ••••••••

Trapezoid ABCD•••••••••••••••••••••••••••••••••••••••••••••••

Massless straight beam•••••••••••••••••••••••••••••••••••••••

Diagrams for Field and Point Transfer Matrices •••••••••••••••

A C&ntilever beam W1 th end. · lQ&d ••••••••••••••••••••• • ••••••••

26

28

29

41

44

48

A-1 to A-12. Output for Example A-1••••••••••••••••••••••••••••••••75-86

A-13. Flat steel spring under fatigue loading•••••••••••••••••••••• 90 A-14 to A-15. Output for Example A-2 ••• ••• •••••• •••••• ••• · •• ••••• ••• 94-95

B-1. A hollow hexagonal cross section•••••••••••••••••••••••••••••• 99

B-2 to B-6. Output for Example B-1·••••••••••••••••••••••••••••••101-105

B-7. L-shaped cross section with a circular hole ••••••••••••••••••• 107

B-8 to B-10. Output for Example B-2·•••••••••••••••••••••••••••••108-110

C-1. Cantilever beam with end load••••••••••••••••••••••••••••••••• 117

C-2 to C-9. Output for Example C-1·••••••••••••••••••••••••••••••118-125

.C-10. Statically loaded, statically 1ndeterm1nant beam. • • • • • • • • • • • • 12?

C-11 to C-13. Output for Example C-2•••••••••••••••••••••••••••••128-130

C-14. Complex beam loading and supports•••••••••••••••••••••••••••• 135

C-15 to C-19. Output for Example C-3·••••••••••••••••••••••••••••1)6-140

c-20. Dynamically loaded shaft ••••••••••••••••••••••••••••••••••••• 142

C-21 to C-23. Output for Example C-4•••••••••••••••••••••••••••••14-3-145

viii

NOMENCLATURE --- FATIGUE ANALYSIS

b = Kececioglu factor.

D = Dimension, in or m.

Ka = Surface finish factor.

Kb = Size and shape factor.

Kc = Reliability factor.

Kd = Temperature factor.

Ke = Fatigue Strength Reduction factor.

Kf = Miscellaneous factor.

Kt = Theoretical stress concentration factor.

L = Load line.

M = Moment, lb-in or N-J11.·

N =Number of cycles. I

n = Safety factor, dimensionless.

p = Pro 'ta bili ty' %.

p = Exponent on dimensionless alternating stress term, see F.q. 1 and

Table A-1.

Q = Notch sensitivity factor.

q =Exponent on dimensionless mean stress term, see Eq. 1 and Table A-1.

R1 =A variable, see Eq. 1 and Table A-1.

~ = A variable, see Eq. 1 and Table A-1.

r = Notch radius, in or m~

S = Strength of a material, psi or Pa.

se•=-Endurance limit for a R. R. Moore rotating beam specimen.

ix

x

Se'' =Significant endurance limit for infinite life, psi or Pa.

Se'''= Significant endurance limit for finite life, psi or Pa.

T =Torque, lb-in or N-m. 0 ~

t = Temperature, F or C.

Z =Section modulus, 1n3 or mJ.

ZR = Standard deviation of the endurance limit.

't = Shear stress, psi or Pa.

Subscripts 1 a = al terna. ting.

e = equivalent except 1n Se', Se'', or Se''' where it

indicates endurance.

m = mean.

u =ultimate.

y =yield.

Superscriptsa ' = indicates a load including a measure of overloading,

or a proportionality factor, usually n, safety factor,

NOMENCLATURE --- SECTION PROPERTIES

A = Area, in2 or mm2 •

b = Base, in or mm.

h = Height, in or mm. 4 4 I = Area moment of inertia, in or DUil •

i = Index number of a point. 4 4 J = Polar area moment of inertia, in or mm •

M = Sta tic moment of an area, in3 or mm 4 •

n = Number of points.

R = Radius of gyration, in or mm.

r = Radius of a circle , in or mm.

x = Coordinate of x-axis.

y = Coordinate of y-axis.

9 = Angle between the original axis and arbitrary axis.

cp = Angle between the original axis and principal axis.

xi

NOMENCI~TURE --- BEAM ANALYSIS

E = Modulus of Elasticity, psi or Pa.

G = Structural damping constant, dimensionless.

H = A constant for rotating shaft or rotor in vibration, dimensionless. 4 4 I = Area moment of inertia, in. or m •

i = Number of sections.

j =Mass moment of inertia, lb-sec or Kg-m2 •

L = Length, in or m.

M = Moment, lb-in or N-m.

m = Mass, lb-sec/in2 or Kg.

P = Concent:rated load, lb or N.

q = Magnitude of uniformly distributed load, lb/in or N/m • •

q1 = Magnitude of linearly varied distributed load, at the left end,

lb/in or N/m.

q2 = Magnitude of linearly varied distributed load, at the right end,

lb/in or N/m.

S = Slope , :radian.

V =Shear, lb or N.

W = Deflection, in or m.

w =Forced circular frequency, :rad/sec.

x = Variable length, in or m.

[P]= Point matrix.

[FJ= Field matrix.

[u]= Product of matrices.

[z]= State vector.

xii

xiii

Superscripts: L = Ieft.

R = Right.

CHAPTER I

1,0 INTRODUCTION

The computer is an essential tool that engineers have used to

increase the effectiveness and efficiency of their work. New

technologies have become feasible because of it. In order to get a

quick, accurate, and optimized solution to a complicated design

problem, there is little alternative but to use the computer.

Therefore, the computer and the designer should work as a. teami the

computer does the analysis and the engineer supplies the creativi~y

and decision-making components. This interactive process is called

computer-aided design. But the engineer is not using the computer as

f-requently nor as fully as he should. Currently, major coq_>uter-a.ided

design applications --- in order of use and market aize --- are:

electronics, drafting, cartography, architecture, and last and least,

engineering.1* If the computer were more readily available to the

engineer, and if the 19canned" programs were tailored to the more

general uses in engineering, the engineers would be more willingly

to use the computer.

*All numbers subscripted refer to references listed at the 'tack of

this thesis.

1

2

A large number of "canned" computar programs have been developed

for engineering as listed L'"l the Co~uter Program Abstracts2 in batch

form; i.e., using computer cards for input. In order to use these

programs, one has to have some knowledge of programming and also has

to know exactly what data have to be input card by card. Therefore,

one has to read pages upon pages of instruction manual before one: even

attempts to use such programs. One small error in the input, such as

wrong sequence of cards, data being put in the wrong location, or data

in the wrong format will invalidate the entire run. The interactive

computer system will eliminate this problem. Since all the instructions

are given to the users step by step via the screen or printout of the

terminal in a conversational form, all the user need to do is to

follow the simple instructions. The user enters the data by answering

the questions that are asked by the computer. Even one who has no

previous programming knowledge will be in a position to produce

quality work if the interactive program is written properly.

This thesis deals with three programs in mechamcal engineering

desigm Fatigue Analysis, Section Properties, and Beam Analysis. The

Fatigue Analysis program will size a mechanical component, circular,

rectangular or any shape, to prevent fatigue failure. User can select

one of the six most generally accepted fatigue failure linesa modified

Goodman fracture line, modified Goodman yield line, Soderberg line,

Gerber line, Quadratic line, and Kececiogl.u line. There is also a

routine built in to find the significant endurance limit provided that

the user can supply the value of the theoretical stress concentration

.'.3

factor along with other physical a.."ld envll'cnmental parameters. If the

theoretical stress concentration factor ia not known, the program will

supply a list of references where the user can find the.theoretical

stress concentmtion factor. The user also has to supply a subroutine

for the stress equations applicable to his problem where ariy equivalent

stress theory can be used.

The cross sectional properties program is designed to find twenty

different section properties, such as area, area moment of inertia,

and radius of gyration about different axis of any shape plane cross

section. Several computer and calculator programs exist for finding

these properties, but they are complex. Data entry erxori.s highly

probable and cross seetion :verliicat1on is· not generally: available for a

specified shape. But the program developed here can fini section

properties of any shape that can possibly be thought of as well as

graphically verifying its shape on an interactive basis.

The Beam Analysis program uses the transfer matrix method to find

and also plot the graphs. of defiection, slope, moment, and shear of

ariy continuous beam with ariy kind of loadings, such as uniformly

distributed load, concentrated load, concentrated moment, and so on.

This can be done provided that the beam is deflected within the linear,

elastic range. It will do static as well a.s forced, undamped, dynamic

response analysis.

All th.-ee programs provide the option of using English or SI uni ts.

The micro-processor used was a Teketrcnix, model 4051, with 32 K

memor/, a CRT output and a hard copy facility. The prog:ra.mming

4

language used was BASIC, an acronym for ~eginners All-purpose §ymbolic

Instruction Qod.e, and was developed at Dartmouth College, New Hampshire

by Professors J. G. Kemeny and T. E. Kurt.z under the terms of a grant

from the National Science Foundation in 1965'3. It is a high level

computer language that is easy to use and is applicable to scientific

and mathematical work.

The symbols used for the variables are different for each program.

They are defined in the nomenclature of the individual program.

CHAPTER II

2.0 LITERATURE REVIEW

A large number of .. canned .. computer programs have been developed.

Thei-r number is increasing enormously. They are mainly designed for

large computers, wr.1 tten in batch mode FORTRAN. Recently, some

progmms have been developed for the pocket size programmable

calculators. These applications are getting increasing attention

because of their advantages such as small size, low cost, and

accessibility to almost anybody. Owing to their size limitation, they

are used only for small program with small data storage. Sanderson3

in 1973 recommended the .. use of BASIC in engineering design, but very

seldom are engineering programs written in BASIC la.ngua.ge.

Mischke4' 5 used IOWA CAm:I' (Qomputer Augmented 12esign !ngineering 6 .

Iechnique) program as an illustration of computer application in

mechanical design. This program had a number of fatigue analysis

routines such as Marin's deterministic fatigue modification factors,

sigrMicant strength with generalized Gerber failu..'""'e diagram, and

fatigue damage. All the routines were written in FORTRAN.

For fatigue analysis, Hewlett-Packard Company? in 1976 had developed

one program that calculated aey one of the seven variables (yield

strength, significant endurance limit, cross sectional area, stress

concentration factor, maximum load, minimum load, and safety factor)

in the Soderberg's equation, provided that the nUlllerloa1 values of the

5

6

other six variables were known. This program used only Soderberg's

equation to size a mechanical component under fatigue, loading. This

program was designed for HP-67 or HP-97 series programmable calculators,

Shigley8 in 1976 provided the equations and £low-charts for six

short programs for programmable calculators. Only those that are

related to this thesis are described here, The program included

modified Goodman fracture line for prediction of a fatigue failure,

the log S - log N diagram to determine the significant endurance

limit for finite life when the life in number of loading cycles was

given or vice versa, and the theoretical stress concentration factor

for a rounded, shouldered shaft in bending. The program that computed

the theoretical stress concentration factor used the curve-fitting

. technique which converted the immense amount of experimental data to

a regression line form for the programmable calculator.

Pilkey and Ja;/] in 1974 had compiled a list of the existent

section properties programs. Programs included SASA, developed by

Structui'a.l Dynamics Research Corporation, Cincinnati, Ohio, which

calculated both cross sectional properties and stresses using the

finite element method proposed by Herrmann.10•11 Such properties as

moment of inertia, torsional constant, and warping constant could be

found for a cross section of any shape,

TRW Systems Group, STRU-PAK, Redondo Beach, Calli'ornia.9, had

developed three section properties programs: GENSECT1 , GENSEC'l'2, and

STANSECT. GENSECT1 used an integration technique to compute the section

properties of arbitrary plane cross section. The user had to input the

x and y coordinates for points which defined the outline of the section.

7

Voids in a section were handled similarily. GENSECT2 only computed the

section properties of a cross section ihat could readily be subd.ivded

into recta.ngl.es, right triangles, and circles. Voids were handled in

the same way and had to be composed of these same geometric figures.

The user had to divide the cross section into rectangles, right

triangles, and circles, specifying their dimensions and eentroids.

STANSECT calculated the section properties of eighteen types of

standard cross section.

AREA$$, developed by General Electric, Bethesda, Ma.ryland,9 computed

the section properties for any- aµ:ea bounded by straight lines and

circular arc segments. This program used a problem-oriented language

designed especially for geometric property calculations.

SECTION1, developed by United Computing Systems, Kansas City,

Missouri,9 calculated the area, centroid, moment of inertia, section

modulus, extreme fiber distance, and radius of gyration of any section

provided that it could be resolved into rectangles.

SECTION PROPERTIES, developed by North American Aviation, Canoga

Park, california,9 determined the section properties of any area

defined by peripheral coordinates. Areas were restricted to those

bounded by convex curves.

In 19'75, Pilkey12 developed BEAMSTRESS, a program which computed the

section properties and stresses for an arbitrar,r cross section of a 'tar

using the finite element method proposed by Hermann.10•11 The cross

section had to be modelled as an assemblage of quadrilateral finite

elements of any size. The accuracy of the results would depend upon

8

the fineness of these elements used. Properties computed included

area, centroid, moment of inertia, radius of gyration, shear center,

shear deformation coefficients, torsional constant, and warping

constant. If the internal shear forces, bending moments, axial force,

and axial torque were given, this program would compute the normal

and shear stress distribution.

Wojc1echowski13in 1976 developed a technique that replaced

integration by summation of finite elements to find the section

properties of a plane cross section. This technique applied only to

areas bounded by straight lines, but because curves could be

approximated by straight line segments, the method could be used on

any shape cross section. The equations for computing area, static

moment, and moment of inertia were derived.· This method could be

used by a programmable calculator. 14 Hewlett-Packard Company in 1976 developed a section properties

program using the same method developed by Wojciechowski13 but had

expanded it to include more properties, such as centroid, product of

inertia, and.moment of inertia about the centroid, the principal

axis and also an arbitrary axis. The x and y coordinates of the

vertices of the section were input sequentially for a complete,

clockwise path. Holes in the section were input in the same manner but

in a counter-clockwise path.

Using the transfer matrix method, P1lkey15 in 1969 developed a

generalized structural analysis program which could an&lyze static,

stability, free dynamic, and forced dynamic motion. The user had to

9

supply four subroutines: transfer matrix, initial parameter, time

dependent loading, and time dependent displacements subroutines for

the beam to be analyzed. Therefore, one had to be very familiar with

the transfer matrix method in order to be able to write these

subroutines. The output gave the deflection, slope, moment, and shear

along the beam.

Paz and Cassaro16 in 1974 presented the theory and described a

computer program in Fortran IV for the analysis of continuous beallltl

on discrete elastic supports using the five moment equations. This

analysis permitted direct determination of the redundant moments at

the supports of a continuous beam. This program accepted uniformly

distributed loads and any number of concentrated loads in the

cantilever or at any span of the beam. Output gave both bending moment

and reactions of the supports only. Two sample problems were

provided for demonstrating the capabilities of the program.

Pilkey a~ Jay17 in 1974 compiled a list of beam analysis programs.

SPIN, a program developed by Structural Dynamics Research Corporation,

Cincinnati, Ohio,17 calculated the critical SPeeds of rotating shafts

and the natural frequencies in bending of multispan beams of arbit:rary

cross section. It also calculated the response due to sinusoidally

applied forces. The deflections, bending moments, shear forces, and

stresses created by static forces could also be found. by forcing the

shaft to zero speed. SPIN used a distributed mass method for dynamic

analysis.

TRW Systems Group, STRU-PAK, Redondo Beach, California17, developed

10

two programs: MULTISPAN and STANBEAM. MULTISPAN used a static,

Euler-Bernoulli analysis of mult:tple span beams with no dynamic

motion. It allowed up to ten spans having uniform or piecewise

variable cross sections. In~span.supports were pinned; end supports

could be fixed, pinned, or free. STANBEAM allowed only static bending

analysis of single span beams with either unif'orm or piecewise

variable cross sections. Internal forces and displacements were

found using an integration procedure, Maximum shear and bending

stresses were calculated by the usual VQ/IE and MC/I formulas.

COM/CODE Corporation, Alexandria, Virginia17, developed LINKI, a.

beam analysis program which used a special purpose language called

LINKI. It allowed static, stability, and free dynamic analysis of

Euler-Bernoulli, Rayleigh, or Timoshenko beams and accepted inspan

supports, varlabl.e cross sections, and foundations.

Dow Engineering Company, Houston, Texas17 had a general two-

dimensional beam analysis program called GENERAL ANALYSIS which

could deal with static beams, beams on elastic foundations, and

simple frames. The method used was finite differences and outputs

were deflection, shear, and moment.

Southwest Research Iiistitute17 had two programs& DANAXXO and

DANAXX4. DANAXXO computed the frequencies and eigenvectors of a

beam with lumped mass using a stiffness matrix method of analysis.

Response due to static loads could also be analyzed. DANAXX4 computed

the time history of the response of a beam to applied force pulses

and.applied torque pulse which was represented by a lumped parameter

11

system. The program allowed any combination of hinged, clamped, free,

or guided flexural boundary conditions, but no damping was included.

The response was determined by a step-by-step integration of the

equations of motion using the linear acceleration method.

Pilkey12 in 197 5 developed another program called BF.AMRESPONSE

using transfer matrix method. Static, stability, and dynamic analysis

could be performed for beams of uniform or variable cross section

with any kind of loadings. Any number of in~span supports we.re

acceptable, including extension springs, rotary springs, rigid

supports, guides, shear releases, and moment releases. The program

calculated the deflection, slope moment, and shear for static and

steady ;state conditions, the critical load and mode shape for

stability, and the natural f.requencies and mode shapes for transverse

vibrations.

Hewlett-Packard Comparry18 in 1976 also developed your programs

for the beam. analysis used in their programmable calculators. All

four programs were designed only for static response with the mass

of the beam neglected. Each program dealt with only one type of beam.

The four types of beam that could be applied were cantilever beam,

simply supported beam, beam fixed at both ends and propped cantilever

beam. Each program calculated the deflection, slope, moment, and

shear at any specified point along the beam of uniform cross section.

Distributed loads, point loads, applied moments, or combinations of

all three might be applied. The equations used were based on elementary

beam theory and applied only to simple beams.

12

A report19 in 197.5 described an interactive computer program,

KINSYN III, for designing complex linkage. This program had both

synthesis and analysis capabilities. It relied on continuous

communication between the designer and the computer to arrive at a

final solution. This program was developed by the kinematicians at

Massachusetts Institute of Technology under the direction of Roger

Kaufman, who is now at George Washington University. TlE designer

created and altered a linkage on a "data. tablet", a graphic device

continually sensed by the computer. In turn the computer responded

via a display screen. In this way, the designer experimented with the

linkage design, while the computer guided and instructed him by

performing the required calculations and by flashing pertinent

design information on the display screen. Therefore, the designer

would know immediately if the design was possible.

Shore, Wilson and Semsarzadeh20 in 197.5 developed ST.ACRB, an

interactive computer program with graphical output which analyzed

horizontally curved and straight aligned bridge structures. This

program used the finite element modelling method and allowed the user

to: define the parameters that characterized the structures mj!)dify

an already discretized structure; and obtain graphical or tabular

results on various structural components such as structure geometry,

cross section geometry, and various results of analysis such as

deflections, reactions, and stress resultants.

CHAPTER III

J.1 THEORY --- FATIGUE ANALYSIS

This program computes the dimension of a mechanical component

whose cross section is either circular, rectangular, or expressable

as a function of one variable by proportions. The dimension computed

is the diameter, 1:f the cross section is circular; otherwise, it is

the dimension of the cross section which has all its other dimer.sions

described in terms of this basis dimension.

J.1.1 FATIGUE FAILURE LINE

When one analyzes a fatigue failure, there are a number of fatigue

failure lines available. This program provides the six most generally

accepted fatigue· failure linesa modified Goodman fracture line,

modified Goodman yield line, Soderberg line, Gerber line, Quadra~ic

line, and the Kececioglu line. Marin21 has developed the genera,l form

of the fatigue failure lines. It is given in modified form a~ follows:

= 1

Speci:fically, the exponents p and q control the fatigue line being

used. Table A-122 gives tm controlling parameters that select the

13

(1)

14

fatigue failure line desired in the design.

For the Kececioglu factor, b, it depends on the type of material

being used. From experimental data obtained by the application of 23 24 the prol:abilistic ''Design for Reliability" method, Kececioglu '

found the values of b for different materials. These are given in

Table A-2.

J.1.2 PARAMETRIC METHOD

When using this Fatigue Analysis program, the user has to supply

a subroutine program where any equivalent stress theory may be used.

The stress equations in this subroutine have to be derived using the

Pa:rametric method developed by Mitchell and Zinskie2S. In developing a fatigue design equation, it is necessary to solve

the simultaneous equations of two lines: the general load line and

the material fatigue safety failure line. This parametric method can

apply to both straight and curved load lines. The parametric pair of

equations which describes the general load line are of the forma

S' = f (L , n, D) a a a (2)

S' = f (L , n, D) m m m

as a function of the parameter, n. Alternately, n is the safety factor

as defined by Juvina.1126• It is redefined here ass

n = Maximum allowed externa.1 load Design external load

This safety factor, n, can also be considered as a proportionality

constant that signifies overload. It will scale the externally

applied loads if they are changed from the design load during the

loading process. Therefore, any load that is changed directly

proportional to the overload is a function of n and should be

multiplied by the proportional factor, n. These are the para.metric

equations of Eq. 2. Substituting F.q. 2 into Eq. 1, one gets Eq. 4

(J)

which is the generalized fatigue equation for a mechanical component.

a a m m _ ( f (L , n, D))P (R1 f (L , n, D))q \ ~ Se''' + Su - 1 (4)

To illustrate the concept of the parametric method, an example of

a rotating shaft subjected to a transmitted torque, T, and an applied

moment, M, is used. The shaft is assumed to be loaded such that, if

more torque is demanded, the bending moments applied to the shaft will

increase proportionally by the same factor, n. The design equation for

this case has been found.22 • 27, as

16

D 3£..n(M = T( Se'" + 0,8~ T) i/J (5)

Using the maximum distortion energy theory, the equivalent stresses

are:

.!.

= ( a2 + JC2i >2 ) i s =(s! +Jt;)2 = o.866 ~ em

s = (s! +Jt! Ji =(<~>2 + a2 )i :11 ea z

But upon overload, both the torque, T, and the moment, M, go up

proportionally by the same factor, n, that is&

T--_..,n T

thus S' 0,866 n T. em= Z '

and

and

M---4~,..n M

s' -· .n.11 . ea - Z

Equation 8 is the stress equation using the para.metric method, a.s

required for the subroutine.

(6)

(7)

(8)

Substituting Eq. 8 into F.q. 1 w-lth the para.meters R1, R2 , p, and q

set at 1, 1, 1, and 1 (see Table A-1), respectively for the modified

Goodman fracture line, one gets&

n M Se"' z + 0,866 n T = 1 Su Z

Substituting the section modulus for a circular cross section,

(9)

17 z = rrDJ

32 and solving for shaft diameter, one gets:

D = 3Trn{ M Se" I

which is identical to F.q. 5.

3.1.3 SIGNIFICANT ENDURANCE LIMIT

This routine for computing the sign1£icant endurance limit uses a

combination of data presented in: Section 6-13 to Section 6-22 of

Shigley28, Section 3-24 to Section J-29 · of Deutschman29, and C.hapter

three of SorsJ0•

The significant endurance limit is found by the eqiation,

Se" = Se' x Ka x Kb x Kc x Kd x Ke x Kf

J.1.J.1 SURFACE FACTOR, Ka

The data for the surface factor which is a function of the

ultimate tensile strength were taken from Fig. 6-2? of Shigely28 •

Five types of surface fir.ish are provided. For each type, an

equation in terms of the ultimate tensile strength is obtained by

polynomial regression. The equations used for each type of surface

finish are given below.

(10)

; ~.,

For polished finish, Ka = 1.0

For ground finish, Ka = 0.89

For machined or cold drawn,

18

Ka = -2.91 X 10-l7 SJ + 2 X. 10-1! ~ - 4.95 X 10-6 S + 1.064 u u . u

For hot rolled,

Ka = -5.77 x: 10-11 sJ + J.41 x. 10-11 if- - ax: 10-6 s + 1.066 u u u For as forged,

Ka = -6.45 x. 10-11 sJ + J.6J x. 10-11 if- - 7.8? x. 10-6 s + o.a9 u u u

{11)

where the ultimate tensile strength, Su' must be in psi. If SI units

are used, the program automatically converts the tensile strength to

English unit.

J.1.J.2 SIZE AND SHAPE FACTOR, Kb

The data for the size and shape factor, Kb, were taken from Fig. 42,

Part II of SorsJO.

The factor, Kb, is determined by size, shape, and material. Since

the size of the mechanical component is not known until the end of the . computation, this factor, Kb, has to be treat~ separately while all

the other factorsa Ka, Kc, Kd, Ke, and Kf are calculated first. The

dimension of the component is found by solving the simultaneous

equations of the general load line and the selected fatigue failure

line. An iteration process called the half interval search is used.

For each iteration, a new site factor and significant

19

endurance limit are computed. Using this value of the signi£icant

endurance limit, the simultaneous equations of the general load line

and the fatigue failure line can be solved by iteration. If the root

of these equations is found, then this set of size factor and

significant endurance limit are C.QrreCt for this design•

The cross section of the mechanical component must be either

circular or rectangular. Moreover, it must be made of steel or light

alloy, because only the experimental .data of these two are available.

Using a curve fitting technique, ~he data were converted to equations

by regression.31 • These equations are given below where the dimension,

D, must be in mm. If English units are used, the program automatically

corrects the dimension to SI units.

For steel,

Circular cross section,

If D<23, Kb = 1

- D If D>2J but<1JO, Kb - _18•75 +!,802 D

If D>t.30, ~ ~ 0.59 ·

Rectangular cross section,

If D<19,

If D>19 but< 150,

u n>150,

For light alloy,

Circular cross section,

Kb = o.aa Kb = 0.5061 + 7 .214

D

Kb = 0.55

(12)

(13)

20

If D<7, Kb = 1.0

If D>7 but <41, Kb = 0.515 + 3jj24

If D>41, ·-- Kb = 0.59

Rectangular cross section,

If D<7,

If D>7 but <47, .

If D> .47,:

Kb = o.aa Kb = 0.5061 + 2-n25

Kb = 0.55

3.1.3.3 RELIABILITY FACTOR, Kc

(14)

(15)

The reliability factor was computed using the method descr1,bed'in

Shigley28• This uses the equation

Kc = 1 - o.08 ZR (16)

where ZR is the standard deviation of the endurance limit. The data

of Table 6-2 in Shigley were fitted to a curve by regression. The

relation between the reliability and the proba.bility is given by

P = 100 - reliability

A regression on data in terms of l:ase ten logar.ltnm:. was used to

obtain the standard deviation, zR31 ,

(17)

21

ZR = 2.37 - o.885(log P) - o.193(1og P)2 - o.0502(1og P)J

- 0.00489(log P)4 (18)

The reliability factor, Kc, is then computed using Eq. 16.

J.1.J.4 TEMPERATURE FACTOR, Kd

The method used for.the temperature factor, Kd, is described by

Shigley28• From Shigley,

620 Kd = 460 + t

0

where t = operating temperature in F. 0 0

The above equation is used only when t> 160 F (71 C). '!be user

(19)

0 0 should be wamed that at operating temperatures above S?O F (JOO C),

creep and reduced yield strength may cause problems which are not

accounted for by Eq. 19.JO

3.1.3,5 FATIGUE STRENGTH REDUCTION FACTOR, Ke

The user must supply the theoretical stress concentration factor,

Kt. If the user doesnot know the theoretical stress concentration

factor, the references32' )J, 34 , 35 where tables or charts of Kt

are given, will be helpful.

The user may supply the notch sensitivity factor, Q, or he can

instruct the micro-processor to calculate it. The data for the notch

22

sensitivity factor were taken from Fig. B-2 on page 892 in Deutschma.n29.

Again, using regression, F.q. 20 is obtained. The notch radius, r,

must be in inches. The program automatically corrects the radius data

to English units if SI units are used.

Under bending or axial loadings

If S <50,000 psi (345 MPa) u Q =-8828 r 4 + 3345.3 .r'J - 440.94 r 2 + 24.62 r + 0.18

If s·<::6o,ooo psi (414 MPa) but~50,ooo psi (345 MPa) u

Q = -7031.25 r 4 + 2671.9 .r'J - 353.13 r 2 + 20.2 r + 0.28

Ii' s <80,000 psi (5.52 MPa) but:::=: 60,000 psi (414 MPa) u

Q = -10,156.25 r 4 + 3,825 r3 - 497.5 r 2 + 27.05 r + 0.23

Ii' S <::100,000 psi (696 MPa) but3 80,000 psi (5.52 MPa) u

Q = -15,057.38 r 4 + 5,165.4. r3 - 606 r 2 + 29.23 .r + 0.3

If S <140,000 psi (965 MPa) but~l00,000 psi (690 MPa) u Q = 5,431,250 r5 - 1,236,125 r 4 + 104,242.5 r3 - 4,010.7 r 2

+ 71.06 r + 0.33

If S~200,000 psi (1379 MPa)

Q = -271,319 r 4 + 37,276.5 r3 - 1,771 r 2 + 35.03 r + 0.67

For torsional loading,

If S <:60,000 psi (414 MPa) u

Q = -10,156.25 r 4 + 3,825 r3 - 497.5 r 2 + 27.05 r + 0.23

If s <80,000 psi (5.52 MPa) but~6o,ooo psi (414 MPa) u

Q = -15,057.38 r 4 + 5,165.4 r3 - 606 r 2 + 29.23 r + 0.3

If su<12o,ooo psi (827 MPa) but~8o,ooo :psi (5.52 MPa)

1 (20)

I I

2J

Q = 5,4)1,250 r:5 - 1,2J6,125 r4 + 104,242,5 r3 - 4,010.7 r2

+ 71 • 06 r + O. 33

If S <180,000 psi (1241 MPa) but ~120,000 psi (827 MPa) u Q = -271,319 r 4 + 37,276.5 r3 - 1,771 r 2 + 35.03 r + 0.67

For aluminum alloy (based on 2024-T6 data) 4 1 2

Q = -8,815.2 r + 3,411.J r - 462.64 r + 27.85 r + 0.013

After the theoretical stress concentration factor and the notch

sensitivity factor are known, the fatigue strength reduction faet.dr. :is

dbtained by

Ke = 1 1 + Q(Kt - 1) (21)

If the stress concentration factor is accounted for on the stress side

of the equation, Q should be set to zero to make Ke = 1.

3.1.3.6 MISCELLANEOUS FACTOR, Kf ·

This factor accounts for any miscellaneous effect that is not

considered above. If there is no miscellaneous effect, Kf will be·set

equa.1 to unity by the program.

3.1.J. 7 ENDURANCE LIMIT FX>R A R~. R'"~· MOORE ROTATING BEAM SPECIMEN, Se'

24

The calculation of' the· endurance limit for a R. R~. Moore

rotating beam specimen, Se', is described in Shigley28•

If S <:200,000 psi (1379 MPa), Se' = 0.5 Su u If s ~200,000 psi (1379 MPa) t se I = 100,000 psi u

J.1.4 SIGNIFICANT ENDURANCE LIMIT FOR FINITE LIFE, Se'"

(22)

For finite life, there are two methods to compute the significant

endurance limit, Se'''• One is the log S - log N approach and the

other is log S - linear N approach.

The equation for log S - log N approach is

Se"' =!OB (23) where B = (10~ N - 1) [1og Se" - log(0.9 Kd Se•)]+ log{0.9 Kd Se')

And the equation for log S - linear N approach is

Se''' = 0.9 Kd Se' + (10~ N - !)(Se'' - 0.9 Kd Se') (24)

When a life of greater than one million cycles is desired, the

in:f'inite life significant endurance lil'.:it is used.

J.2 THEX:lRY --- SECTION PROPERl'IE3

This method uses a technique that replaces integration by summation

of finite elements to find the section properties of a plane cross

section. Basically, the method divides a cross section into a series of

trapezoids or rectangles, then adds or substracts the properties of

the elemental areas to find the composite properties of the total

area. It applies only to area bounded by straight lines, but because

curves can be approximated by straight line segments, it can be used

on any shape plane cross section.

To speed up the computation process, the program uses different

methods· for ·.the ·circUJ.ar· cross section· and· holes. · It· xeqliires · the

radius and the x and y coordinates of the center o:f' the ci.-rclll.ar

se~tion or hole. It will give an exact result. The previous method

requires a large number of da.ta points in order to get a good

approximation of the curve, which in turn requires many computations.

J.2.1 POLYGONAL CROSS SECTION

The method for computing the section properties o:f' polygonal

cross section uses difference equations which replace integration by

summation of finite elements. To illustrate how this summation

method works, an example of an arbitrary triangular cross section ABC

shown in Fig. 1 is used. First the area of the trapezoid DFBC is

found. Then the trapezoid FBAE and EACD are substracted. And the net

25

-26

F _____ _.._._.._ - -

E

D -·-·----------.---------·----...-...---- C

Figure 1. Area of Triangle ABC.

27

result will be the area of triangle ABC.

Since there are a few axes involved, they are clarified with the

help of an irregular shape as shown in Fig. 2, where all the axes

are labelled.

All plane cross sections are made up of connected straight lines

(curved bol,llldaries may be approximated by straight line segments).

For each straight line, a trapezoid, a rectangle, or a triangle can

always be formed with the axis, like the shaped area ABCD, as shown

in Fig. J. The area of such a trapezoid can be calculated from the

bi.sic rules of plain geometry as

/lA = -(yi~ - yi)(xi:f1. + xi)/2

which is essentially the area of a trapezoid.

(2.5)

The general formula of the static moment of an area is defined as

My = J x dA (26)

where x is the distance between the centroid of the area and y-axis.

The static moment of /lMY of the trapezoid ABCD about the y-axis

can be considered to consist of contributions from the rectangle AEGD

and triangle EBF minus the contribution from triangle CFG. Using F.q.

26, the static moment /}.My can be found to be

x:i + xi:f1. 2 ~ - xi 11. /lMY = ( 4 )(yi:f1. - yi)(xi + xi:f1.)/2 + t(xi - 3( 2 ))

(Yi+J.2

- Yi)(xi; xiii)_ j(yi11.2

- Yi)(Xi ~ xi-+1)

(27)

I

where l I J I

x-y Crigina.1 axis.

28

y' I

I

Centroid (x·', y I) I -------- --- - - - - --- x·

XI I I

~x"

x'-y' Translated axis (axis translated to the centroid)

x ' '-y' ' Rotated, principal axis.

x:' ' '-y' ' ' Rotated, arbi tra.:ry axis (can be located at any point with any

angle of rotation) •

cp Angle between the translated axis and the principal axis.

9 Angle between the arbi tra:ry axis and the original axis.

Figure 2. Coordinate Definitions --- Section Properties Program.

29

id ABCD -:i Trapeze Figure ..1•

JO

which, after simplification and rearrangement, becomes

The centroid of an area with respect to x-axis is defined as

Dirlding F.q. 28 by the area gives

The formula for calculating the area moment of inertia with

respect to the y-axis is

Similiar to the static moment, the area moment of inertia, Iy' of

the trapezoid ABCD about y-axis consists of contributions from

(28)

(29)

(JO)

(31)

rectangle AEGD and triangle EBF minus contribution of triangle CFG.

To transfer all the area moment of inertia to the y-axis, the parallel

axis theorem is used.

I = I , + Ax2 y y (.32)

31

And the area moment of inertia of a rectangUlar and a triangular

sections with respect to the a."tis at their bases are given by

I of. rectangle = (b h3)/3

I of triangle = (b h3)/36

Using F.qs. 31, 32 and .33, the area moment of inertia, /i I , can be y

found as

x +x y -y x -x flry = - !(yi+! - yi)( i+12 i)3 + ~6( 1+12 1)( i+12 1)3

+.!.(Yi+! - Y1)(xi+! - xi)( _ g_(Xi+! - x-l))2 2 2 2 xi+! 3 2

_ 1-(yi+! - Y1)(i+1 - xi)3 _ .!.(Yi+! - Y1)(i+! - xi) .'.36 2 2 2 2 2

which, after simplification and xearrangemen~, becomes

(33)

(.'.34)

(J.5)

To find the total area, A, centroid, x', and area moment of inertia,

I , of a plane cross section, the F.qs. 25,30, and 3.5 are first solv~d y

for each line segment and then the individual results are summed, that

is

or n

A = -i~(yi-fi - yi)(xi-fi + xi)/2 (36)

x' = Lllx' or

x' = - tit((yiii - Y1)/8)({xii1 + x1)2 +(xiii - x1)2/J) (J?)

Iy =l:~ry or

Iy = -k({yiii - yi)(xiii + xi)/24)((xii1 + x1)2 + (xl."'1 - x1)2)

(JS)

Also, the area moment of inertia about the axis through the centroid

(x'-y') can be found by

I =I - Ax'2 y' y

(39)

which is essentially the parallel axis theorem that transfers the

area moment of inertia from the original axis (x-y) to the axis through

centroid (x'-y').

The equations for static moment, Mx' centroid y', area moment of

inertia with respect to x-axis, I , and area moment of inertia of the x axis through centroid, I , are found in the same manner. Their x formulas are given as Eqs. 40 through 42.

Static moment,.liM is given by x

Mx = J y clA

LlMX = -((xi-fi - x1)/8){{yi-f1 + Y1)2 + (yi+!- yi)2/J) (40)

33

y' = L: fly' n

y' = ! ~((xi-11 - xi)/B)((yi-11 + yi)2 + (yi-11 - yi)2/3) (41)

Area moment of inertia with respect to x-axis, I , is given by x

I =" flr x L x

The area moment of inertia with respect to the axis through centroid,

Ix'' is given by the pa:rallel axis theorem.

I , =I - Ay 12 x x (4J)

The product area moment of inertia with respect to the axis x-y

is given by

!icy =it (1/(xi-11 - xi))((yi-11 - y1)2(xi-11 + xi)(x~-11 + xi)/8

+ (y i -11 - Yi )(xi -11 Yi - xi Yi -11 )(x~ -11 + xi -11 xi + xi) /3 . 2

+ (xi-11.yi - xiy i-t1) (xi+1 + xi)/4) (44)

The product area moment of inertia about the axis translated to the

centroid (x'-y') is given by

I = I - Ax'y' x'y' xy (45)

The ailgle,4>, between the tra~ted axis

axis (x''-y'') is given by

(x'-y') and the principal

<P . 1 2I,, = t tan- (- x y )

I I - I ' x y (46)

The area moments of inertia about the translated, rotated, principal

axis (x' '-y' ') are given by

(47)

(48)

The arbi trar,y axis (x' ' '-y' ' ') is the axis that can be fixed

anywhere by specifying the x and y coordinates of the origin of the

arbitrary axis. The angle between the original axis (x-y) and the

arbitrary axis (x' ''-y' '') is e. The area moments of inertia about the

arbitrary axis (x'''-y''') are given by

Ix"'a =Ix' + A{y' - y"')2 (49)

I = I , + A (x' - x' • ')2 y' •'a Y (50)

I , , , , , , = I , , + A (x • -x'' • )(y • - y' '') x y a x y (51)

where x' ' ' a:r.d y' ' ' are distances from the arbitrary axis to the

original axis (x-y) •

35

Now, rotating to the angle e, the area momients of inertia and the

product area moment of inertia of the arbitrary axis become

I = I , , , cos29 2 - I , , , , , , sin 29 x'.' +I"' sin 9 x a Y a x y a (.52)

I - 2 2 + I , , , , , , sin 29 y' •• - I , , , cos 9 + I , , , sin 9 Y a x a x y a (53)

Ix'y' = t(I ,,, - I ,,, )sin 29 +I ,,, ,,, cos 29 x a ya x ya (.54)

The polar moment, J, a bout the arbitrary axis (x ' ' '-y ' ' ·• ) is

J=I ,., +I,., x y (55)

3.2.2 CIRCULAR CROSS SECTION

For circular cross section, the formulas are commonly known. They

are list~d below.

Area of circle is

A = 7trf- (.56)

The centroid is always at the center.

The area moment of inertia and product area moment of inertia with

respect to the axis translated to the centroid (x'-y') are

(57)

(.58)

I = 0 x'y' (59}

36

Then the area moment of inertia and product area moment of inertia

about any other axis are given by the parallel axis theorem. For the

original axis (x-y), they are given by F.qs. 60, 61, and 62.

I = I , + Ay'2 x x

I =I , + Ax'2 y y

I = I + Ax'y' xy x'y'

(60)

(61)

(62)

Now, all the other properties, such as angle <f:>, the area moment of

inertia about the translated, rotated principal axis (x"-y"), the

area moment of inertia about the arbitrary axis (x" '-y" '), and the

polar moment of inertia about the arbitrary axis can be calculated by •

the same equations as for the polygonal section, F.qs. 46-55.

J.2.J RADIUS OF GYRATION

Tm radius of gyration· of an area is the square root of the area

moment of inertia of that area divided by the area itself. TIE ref ore,

radius of gyration with respect to the original axis is given as

(63)

And the radius of gyration about the axis through the centroid are

given as

J.. r , = {I /A )2 x x'

.1. r , = {I /A)2 y y'

{64)

3.3 THEORY --- BF.AM ANALYSIS

The.b!t.sic philosophy 0£ the transfer_matrix method is l::ased on the

idea that a continuous and complicated system can be broken up into

component parts with simple elastic and dynamic properties that can be

expressed in matrix form. These component matrices are considered

building blocks that, when fitted together and evaluated with the

proper boundary conditions, will give the static and dynamic responses

of the entire system. A continuous beam can be considered to have a

number of elements linked together end to end in the fo:rm of a chaln.

F.a.ch element, represented by a transfer matrix, can be fitted together

as a system by successive matrix multiplications. This method is so

generalized that it can deal with any kind of continuous beam with al"'..y

combinations of loadings. This method has few restrictions• Howeve:;-,

the .system must be loaded. Within the elastic range. ·This

method is well documented in Chapter 3 of Pestel and Leckie36•

This program, using transfer matrix method, computes and also plots

th.e curves of deflection, slope, moment, and shear along the beam.

Static and forced, undamped dynamic analysis can be performed for beams

of uniform or variable cross section. Uniformly or linearly varied

distribu+.ed loads, concentrated loads, concentrated applied moments, or

combinations of all three may be applied. This program allows any

combination of pinned, fixed, free, or guided flexural boundary

conditions. A normally kinematically unstable condition can be

handled if sufficient internal elastic supports are provided. rn~~pe.n

39

support can be elastic springs and/or elastic moment springs •. Modelling

for dynamic responses uses lumped mass. Rigid in-span indeterminants are

not treated by this program.

For a given continuous beam with several sections, say i, each

element or section is represented by the appropriate field and point

transfer ma.trices. The state vectors from one em,(z] 0, to the other

end, [ Z Ji, .are related by the equati~n,

[z]i = [P]i [F]i [P]i-1 [Fli-1 ....... (P]j [F]j ....... [P]1 [F]1 [z]o

= (u] [z]0 (65)

where (F]j =a field transfer matrix that describes the jth section of

distributed stiffness with or without distributed loads.

[P] j =a point transfer matrix that describes. thejth element at

a point with no finite length.

The state vector, (z] , has five components defined ass

w [z] s = M

v 1

The boundary conditions are as follows:

For pinned end, W=O, M=O

For fixed end, W=O, S=O

For free end, M=O, V=O

For guided end, S=O, V=O

(66)

(67)

The field and point transfer matrices in Eq. 65 are known and the

40

boundar/ conditions of both· ends should be applied to &!,. 68.

(68)

Solution of F.q. 68 yields all the variables in the state vectors [z]0•

Once. (z]0 is known, the matrix multiplication process is repeated to

yield the states at each desired point along the beam. In fact, matrix

multiplications for many more stations can be determined the second

time through in order to get a better :resolution of the states within

the beam.

3.3.1 DERI.VATION OF TRANSFER MATRIX

Since the transfer matrices are the essential building blocks for the

systems, some of them will be derived.

Field Matrix for a Massless Bea.ma

Figure 4 shows a massless straight beam with two displacements; the

deflection W and the slope S, and the two corresponding forces, the

shear force V and the bending moment M. Using the equilibrium condition

requires that the sum of forces in vertical direction be zero ar..d also

the sum of the moments about point i-1 be zero, that is

or

LF = O, gives y

LM1_1 =O, gives

~ -v:-1 = 0

~ - r{_1 - ~ Li = 0

~ = ~-1 (69)

(70)

y

41

c~~::Js~-1 ~-1

Figure 4. Massless straight beam.

From elementary beam theory, for a cantilever beam with concentrated

moment at.its-·free.end, the eni deflection.and slope are. given as

ML2 w =--2EI

ML s = --EI

(71)

(72)

And for a cantilever beam with a .concentrated load at its free end,

the end.deflection and slope are

(73)

(74)

Using superposition and noting that the point 1-1 has an initial

deflection w1_1 and an initial slope Si_1 , the following equations can

be obtained.

(75)

(76)

Substituting Eq. 70 into Eq. 75, gives 2 3

~ _ R R Li R Li R i - w;._1-tisi-1 - 2(EI) Mi-1 - 6(EI) vi-1

i i (77)

Substituting F.q. 69 into F.q. 76, gives

_L R l -_R L; R S! = 5i-1 + (EI)i M""i-1 + 2(EI)1 v i-1 (78)

Equations 69,70,77 and 78 can be put in a ma.tri.i: form. Adding an

extension column, yields

4.3

w 1 -L -L - L.3 0 WR 2EI 6EI

s 0 1 ....L. _:£__ 0 s EI 2EI

M. = 0 0 1 L 0 M (79)

v 0 0 0 1 0 v

1 i 0 0 0 0 1 1 i-1

F.quation 79 is the field matrix for massless beam, see Fig • .sa.

The other field matrices are derived in a similiar way making use of

elementary beam theory, other elastic a.nd dynamic properties. Other

ma.trices are listed below.

Field matrix for a massless beam with uniformly distributed load, q,

see Fig. ,5b.

2 =2_ 4 1 -x ---3,_ gx

2EI 6EI 24 EI 2 -~ 0 1 .....L x

EI 2EI 6 EI 2

0 0 1 x - 92' (80) 2

0 0 0 1 - qx

0 0 0 0 1

Field matrix for a massless beam with linearly varied distributed

load, q1 , ~·see Fig. 5c, .5d.

44

q

I ••

1--L (a) {b)

(d) (e)

f:::...-,.. .. J S sin wt

T

r (g) (h)

I I

-{c)

M

" --0--.

(f)

==O== i V sin wt

' (1)

Figure 5, Diagram for Field and Point transfer ma.tries.

45

2 -2- 4 q XS q XS 1 -_L_ ~- 1 + 2 -x 2EI 6EI 24EI 120LEI 120LEI

x2 3 4 4

0 1 ..A.. ~ q1x q2x EI 2EI 6EI + 24LEI 24LEI

2 q1x3 q XJ -q x 0 0 1 1 2 (81) x 2 + 6L - 6L

2 2 0 0 0 1

qlx q2x -q1x + 2L 21.

0 0 0 0 1

The field ma. trix of Eq. 81 , when qt = q2 , will become the same as

the field matrix for a massless beam with uniformly distributed load.

Point matrix for a concentrated load, P, see Fig. Se.

1 0 0 0 0

() 1 0 .o 0

0 0 1 0 0

0 0 0 1 -P

0 0 0 0 1

Point matrix for a concentrated moment, M, see Fig. Sf. 1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

-M

0

1

(82)

(83)

46

Point matrix for an elastic spring support with stiffness K, see Fig • .5g.

1

0

0

K

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

·o

0

0

0

0

1

(84)

Point matrix for an elastic moment spring support with moment stiffness

T, see Fig. 511.

1

0

0

0

0

0

1

T

0

0

0 0 0

0 0 0

1 0 0 (85)

0 1 0

0 0 1

Lumped mass is used for modelling of dynamic response. Point matrix for

a lumped mass, m, with frequency w, see Fig • .51.

1

0

0

2 -mw

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

(86)

An overall point transfer matrix can be obtained by combinµtg .all. the

point matrices listed above and also adding in the moment term, (HJw2).

47

This term.'.36 describes the gyroscopic or rotatory L~ert.ia effects of a

beam or rotor in the dynamic case. ·The combined_ point_ transfer

matrix becomes

1

0

0

2 K - mw

0

0

0

0

0

0

1

0

0

where H= -1 for bending vibration.

0

0

0

1

0

0

0

-M

-P

1

(87)

H= i1. for rotating shaft (equal angular direction of" whirl and

rotation).

H= -3 for rotating shaft (opposite angular direction of whirl and

rotation).

If any element of the combined point transfer matrix is not needed, that

particular element should be set to zero to give the required point

transfer matrix.

An example of a simple cantilever beam with a concentrated load at

its free end, shown in Fig. 6, is used to illustrate the transfer

matrix method. 'This same example is done numerically by this program.

It is shown together with more complex examples in the user's guide in

Appendix A • J.

There is one field and one point transfer matrices L'"l this proble111.

The field matrix is for the massless beam and the point matrix is for

the concentrated load. The eql,l&tion that describes this beam is

48

p

,,. , r

- u 1 , , L ,

"-"

[ ~ 1 [P 11

Figure 6. Cantilever beam with end load.

49

(88)

where [P] 1 is the point matrix shown in F.q. 82, and [FJ1 is the one

shown in F.q. 79. Substitution yields

w 1 0 0 0 0 1

s 0 1 0 0 0 0

M=O 0 1 0 0 0

v 0 0 0 1 -P 0

1 1 0 0 0 0 1 0

or

w -L2 -L''.3 2EI 6EI 1 -L

_k_ L2 EI 2EI 0 1 s

M = 0 0 1 L

v 0 0 0 1

1 1 0 0 0 0

-L2 -L 2EI

1

0

0

0

0

0

0

-P

1

l EI

1

0

0

w

s

M

v

1 0

The boundary conditions at the ends are

0 w

0 s

L 0 M

1 0 v

0 1 1 0

(89)

(90)

Applying the boundary conditions to Eq. 89 gives the 1110ment and shear

at point 0 as

MO =-PL

v = p 0

(91)

Substituting the values of state vectors, w0, s0, M0, and v0 at point O

into F.q. 89 gives the state vectors at point 1.

w1 PL3 PL3

= 2EI - 6EI PL3

= 3EI

s1 -PL2 PL2 PL2

=~+2EI :.--EI (92)

M1 =O

v1 = 0

The intermediate results of deflection, slope, moment, and shear along

the beam can now be computed using F.q. 89, where L is replaced by the

variable length, x, Along._ with. F.qs. ·90. and 91, the results are

p 2 W = 6Ex (3L - x) x I

Sx = & (x - 2L)

M = P(x - L) x

V· = p x where 0 <x <L.

(93)

Using F.q. 93, the curves of deflection, slope, moment, and shear can

be plotted as a filnction of the length of the beam.

For the forced, undamped, dynamic case, a forcing circular frequency,

w, has to be given. The same analysis procedure can be followed. It is

similiar to the static case because static case is just a. special

dynamic case with the forcing circular frequency equal to zero.

CHAPI'ER IV

4.1 DISCUSSION or RESULTS --- FATIGUE ANALYSIS

The application of this program is unlimited. It can be applied to

shaft, bolt assembly, spring, and other problems that need a

fatigue analysis. The component can be either circular, rectangular,

or any shape, provided that the dimensions are all given 1n terms of

the height of the cross section. Any equivalent stress theory can be

used in the analysis. Any one of the six fatigue failure lines,

which are the most generally accepted 1n the present, can be chosen.

One can even use all six fatigue failure lines one by one and compare

the results obtained from different theories.

Tre significant endurance limit is computed by using the known

experimental data presented 1n the form of graphs. Since all the

experimental data have been converted into equations by regression

analysis, the computation of the significant endurance limit is

easily accomplished.

4.2 DISCUSSION OF RESULTS --- SECTION PROPERI'IES

Finding the sectional properties of an irregularly shaped cross

section is a tedious task. This program provides a means of

calculating twenty sectional properties of any shape cross section

describable by straight lines. It is especially useful for

extruded shapes which are usually not simple, but a:re frequently

51

.52

encountered in; the design. where· volume and low· cost.is desired. An

example of a hexagonal extruded bar is shown in the user's guide of

this program in the Appendix A in Section A .2.

This program treats the polygonal section and circular section

separately. For a polygonal section, the method of replacing

integration by summation of finite elements is used to find the

sectional properties. Although this method can apply to circular

section by approximating the curves with straight line segments, it

is time consuming and difficult to get an accurate result. Therefore,

to speed up the computation, to make the input easier, and to obtain

a more accurate result, the properties of circular cross section and

circular holes are computed using the ordinary formulas of area and

area moment of inertia about the centroid of a circle. Tm area

moment of inertia with respect to other axis is computed using the

parallel axis theorem. In this way, a circular section or a circular

hole inside a cross section ma.y be input by giving only the radius

of the circle, and x and y coordinate of the center. This is done

instead of approximating the curves by straight line segments and

inputting the x and y coordinates of each line.

Another special featUX"e of this program is that it provides a

graphical verification of the input cross section in addition to the

data list. This is especially useful in checking to see whether the

holes are in the correct position and completely within the perimeters

of the section. One good example of this error can be found in the

Hewlett-Packard14 page 02-10, example 4 in the Section Properties

program. The original drawing of the L-shaped cross section with a

5'.3

circular hole is shown in Fig. B-7. If one examines the location of

the hole carefully, one will find that the hole, with the given

dimensions, is actually located partly outside the perimeter of the

cross section instead of inside as shown in the figure. The error can

be elim.1nated if the cross section is drawn to scale first. This

obvious mistake can be observed and rectified. The corrected drawing

together with the results are given in the user's guide in the

Appendix A .2 I

This program also computes the area moment of inertia about an

arbitrary axis, that is, this axis can be located at any specified

point with any angle of rotation. This is very useful in design.

4.J DISCUSSION OF RESULTS --- BEAM ANALYSIS

This is a generalized beam analysis program which can analyze

any kind of beam with any loadings. Even static indeterminate beam

or beams that are normally kimatically unstable but hAve sufficient

internal supports can be analyzed. The different types of beam that

can be analyzed are unlimited. A few exa.aples are given in the user's

guide in Appendix A in Section A.). This program has a list of sixteen

different boundary conditions that cover all of the boundary cases.

The output includes a drawing of the beam and its loadings together

with a list of input data as a check. If any input error is present,

corrections can be ma.de before going into computation. The deflection,

slope, moment, and shear along the beam are given in numerical valur,s.

These are also given in the form of graphs. A general feeling of how

the beam behaves can easily be obtained for this output. Completion

of such problem by hand can be very time consuming and difficult

because of so many. loadings...involved.

This program can also analyze a beam with different cross section

and flexural stiffness in each section by inputting the different

area moment of inertia and modulii of elasticity for each section.

CHAPI'ER V

5.0 CONCLUSION

The interactive system when properly programmed provides the

engineer with in£ormat1on regarding a proposed design. This is done

by providing results of an analysis in a graphic, comprehensible form

and at a much faster rate than previously achieved through l:atch

operation. Interactive computing is also easier to use especially by

those who have no previous programming knowledge. Also, the use of

graphical verification of the input data provides a easy check before

the computation takes place, in this way, a correct result can be

assured •.

Another advantage is that the designer is able to exercise greater

control of his computer-bl.sed system, and to execute a design or an

analysis much faster. Apart from obvious savings in time, he is also

able to consider alternative designs in greater depth and to achieve

a greater degree of optimization. Thus, economies in all respects of

the design should result.

55

CHAPTER VI

6.1 RECOMMENDATION --- FATIGUE ANALYSIS

The following points are recommended to be added to improve this

program in the futures

1. The program now will only find the dimension of a mechanical

component which will prevent fatigue failure, but, in some

occasions, a safety factor of the component may be desired. Thus

the future program should provide the option to find either the

dimension or the safety factor of the component to prevent

fatigue failure.

2. A tutorial section designed to help the user to write the

subroutine of stress equations in Parametric for.a should be

included. Step-by-step simple instructions and examples for

illustration would be helpful. This way, the user Who. is not

familiar with the Parametric method needs not to refer to the

user's ~;uide and its appendix. Thus, this program could stand alone.

Thereby, the full assets of the interactive system could be

utilized.

3. In the present program, the finite life region of the S-N curves

is fixed between 0.9 Su@ 1 x 1oJ cycles to Se'' @ 1 x 106 cycles.

The future program should be able to have this region be varied, to

suit some purposes.

4. Moreover, it is sometimes desired to determine the life of a given

component at a specified safety factor. This analysis could be

completed by fixing the safety factor and dimension, and sclving

for the significant endurance strength 0£ fhe .component •. This.

significant endurance strength can be used in the S-N equation to

predict life.

5. A separate program should be considered to deal with the design

under cumulative damage situations.

6. This program should be modified or a new program should be

generated to replace the safety factor with a proeability of failure.

Statistical interference theory should be utilized.

7. A modification to the method should be considered so that different

stress concentration factors may be used on different type stresses.

8. The theoretical stress concentration factor has to be supplied by

the user in the present program, but with the help of graphics and

more computing efforts, this factor can be computed with the user

providing the necessary geometric information. This will increase

the usefulness of the program.

6.2 RECOMMENDATION --- SECTION PROPERTIES

The twenty sectional properties obtained by this program are quite

sufficient for general design, but another useful property --- tne

location of shear center should be added to the future program. In the

case of some non-symmetrical cross sections, like a channel section

which has only one axis of symmetr;y, the plane of the bending moment

must pass through the shear center if twisting of the section is to be

avoided. This problem usually arises when a thin open section is used

and under these conditions, local failure or buckling may happen.

Another program should be considered which will compute the mass

moments of inertia of three dimensional configu.""'8.tions. A generalized

three dimensional version of this should be considered for such

computations.

6.J RECOMMENDATION --- BEAM ANALYSIS

For this program, the following points are recommended for

improvement:

1. For the dynamic case, plots of amplitude and the phase angle of

deflection, slope, moment, and shear as a function of exciting

frequency should be included. In this way, the critical frequency

can be recognized and avoided in the design.

2. In-span .. indeterminates in the form of fixed support shoW.d be

allowed. These are not provided in the present prognilll. This

feature, although such in-spa.n.indeterminarits exiSt only··theoreti-

cally, will enlarge the application of this program. It can be

approximated by assigning a large value for the stiffness of the

elastic spring support; e.g., 1 x 1020 lb/in (1.13 x. 1019 N/m).

This will give a result that approaches the fixed support case.

J. The present progzam provides for the analysis of forced, undamped

59

dynamic response, but a damped dynamic case is desirable aome.~

times. The addition of this feature will require new complex

transfer matrices for t.he beam and its loadings, which can be

derived by replacing EI by EI( 1 + jG), where j is the imaginary

number and G is the structural damping constant. A new scheme of

multiplying the complex matrices and also new boundary conditions

are needed,

REFERENCES

1. "CAD/CAMi The Computer in Action"• Mechanical Engineering, Vol. 100,

No. 2, Feb., 1978, PP• 105-106.

2. Computer Program Abstract, Washington, U. s. National Aeronautics

and Space Adminstration, Office of Technology Utilization, prepared

by the Technical Information Services Co., July 15, 1969 - present.

J. Sanderson, P. c., Interactive Computing with BASIC: An Introduction

to Interactive Comouting and a Practical Course in the BASIC Lar..guage •

1st Ed., Petrocelli Book, New York, 1973.

4. Mischke, c. R., An Introduction to Comouter-aided Design, Prentice-

Hall Inc. , Englewood Cliffs, N. J. , 1968.

5. Mischke, C, R., "Organizing the Computer for Mechanical Design",

Design Technology· Transfer, ASME., 1974, pp. 51-64.

6. Mischke, c. R., IOWA CADET Documentation Volume, Engineering Research

Institute Project 628 1 Computer-aided Design, Iowa State University,

Ames., 1973.

7. User's Manual of Mechanical Engineering, Pac I, for HP-6?/HP-97

Programmable C3.lcu1ator, Hewlett-Packard Company, Corvallis, Oregon,

197 6 ,' pp~ 04-01 to . 04-04.

8. Shigley, J. E., "Mechanical Design and the Programmable Calculator",

ASME Paper 76-DET-91 for meeting Sept., 26-29 1 1976

9, Pilkey, W. D. and Jay, A • , "Structa.""8.1 Members and Mechanical

Elements", Structural Mechanics Computer Prom.ms. University Press

of Virginia, Charlottesville, Vmµiia, 19741 pp. 556-562.

60

/

61

10. Herrmann, L. R., "Elastic Shear Analysis of C~neral Prismatic Beams",

Journal of the Engineering Mechanics Division: ASCE, Vol. 94, No.

EM4, Aug., 1968, PP• 965-983.

11. Herrmann, L. R., "Elastic Torsional Analysis of Irregular Shapes",

Journal of the Engineering Mechanics Divisions ASCE, Vol. 91, No.

EM6, Dec., 1965, PP• 11-19.

12. Pilkey, w. D., Formulas and Comouter Routines for Stresses. Stability

and Vibrations --- Bars· Beams. Plates. and Shells, The Structural

Members User Group, C!harlottesville, Virginia, 1975.

13. Wojciechowski, F., "Properties of Plane Cross Sections", Machine

Design, Vol. _48,. No• ·1, Jan.,. 22·,. 1976, PP• 105-107.

14, Reference 7, pp. 02-01 to 02-10.

15. Pilkey, W. D., Manual for the Resoonse of Structura1 Members, Vol.

.L ITT Research Institute, Chicago, Illinois, Aug. 1969.

16. Paz, M. and Cassaro, M,, "Analysis of Continuous Beams on Discrete

Elastic Supports by the Five Moment Equation", Computer and

Structure, Vol. 4, Oct,, 1974, pp. 1005-1023,

17. Reference 9, pp. .541-.547.

18. Reference 7, PP• 05-01 to 08-05.

19. "Mechanical Design: Let the Computer do it", Ma.chine Design,

Vol. 4?, No. 24, Oct;., 20, 1975, PP• 174-176.

20. Shore, s., Wilson, J. L. and Semsarza.deh, G. A., "Interactive

Techniques with graphical output for Bridge Analysis", Computer

Methods in Applied Mechanics and Engineering, Vol. 5, No. 2, North-

Holland. Publishing Ca., Amsterdam, 1975.

62

21. Marin, J., "Design for Fatigue Loading, Part 3", Machine Design,

Vol. 29, No. 4, Feb., 21, 1957, PP• 128-1)1, and series of same

title Parts 1-5,.Ma.chine Design, Vol. 29, No. 2-6, Jan., - April,

1957.

22. Mitchell, L. D., and Vaughan, D. T., "A General Method for the

Fatigue-Resistant Design of Mechanical Components, Pa.rt 2,

Analytical," Journa.l of Engineering for Industry, .Vol. 97.', .. _Series B,

No. J, Aug., 1975, PP• 970-975.

23. Kececioglu, D. B., and Chester, L. B., ''Fatigue Reliability Under

Combined Mean a.nd. Alternating Axial Stresses for AISI 1018 and

10)8 Steels", ASME Paper No. 75-DET-128.

24. Kececioglu, D. B. and Chester, L. B., "Combined Axial Stress Fatigue

Reliability for AISI 4130 and 4340 Steels", ~ Paper No. 75-WA/DE

-'!?. 25. Mitchell, L. D. and Zinskie, J. H., "A Man-Machine Interactive

Method for the Development of Fatigue Design Equations", Unpublished

paper, available from Prof. L. D. Mitchell, Department of Mechanical

Engineering, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia.

26. Juvinall, R. c., Engineering Consideration of Stress. Strain, and

Strength, McGraw-IU.11,_ New .York,: N; Y., 196;, Se_c. 14.13,

pP ·- 29~297.

27. Lehnhoff, T. F., "Sha.ft Design Using the Distortion Energy Theory",

Mechanical Engineering News (MEN), Vol. 10, No. 1, Feb., 1973,

PP• 41-4J.

63

28. Shigley, J. E., Mechanical Er.gineering Design, 2nd Ed., McGraw-Hill,

New York, N. Y., 1972.

29. Deutschman, A. D., Michels, W. J., Wilson, c. E., Machine Des!gn,

Macm1J Jan Publishing Co., Inc., New York, N. Y., 1975.

30. Sors, L., Fatigue Design of Machine Components, Pergamon Press,

Oxf o:rd, England, 1971.

31. •Jones,. D. H., "Significant Endurance Limit --- Se'•', Computer

Program", Term Paper of ME 4080, available from Prof. L. D.

Mitchell, Department of Mechanical Engineering, Virginia Polytechnic

Institute and State University, Blacksburg, Virginia.

,32. Peterson, R. E., Stress Concentration Factor, John Wiley & Sons,

New York, N. Y., 1974.

33. Shigley, J. E. , Mechanical Engineering Design, 3:rd -Ed.., McGraw-Hill,

New York, N. Y., ~ pp. 663-670.

J4. Reference 29, pp. 894-901.

JS. Reference 30, pp. 42-84 of Part II.

36. Pestel, Edua:rd c., and Leckie, F. A., Matrix Method.s 1n

Elastomechanics, McGraw-Hill, New York, N. Y., 1963. •

APPENDIX A

USER'S GUIDES

64

A .1 USER'S GUIDE --- FATIGUE ANALYSIS

INTRODUcrION

Machine members a.re often found to have failed under the action

of repeated or nuc.tuating stresses, and yet an analysis reveals that

the actual maximum stresses were below the ultimate strength of the

material and quite frequently even below the yield strength. These

failures usually are under stresses repeated for large number of

times. This failure is called a fatigue failure.

There are many theories that predict the fatigue failure. The six

most generally accepted ares modified Goodman fracture line, mod.ifiod

Goodman yield line, Soderberg line, Gerber line, Quadratic line, and

Kececioglu line. These six fatigue failure lines are available in the

program to size a mechanical component, circular, rectangular, or

any shape, to prevent fatigue failure. Any equivalent stress theories

are allowed. It can al.so compute the significant endurance limit with

the theoretical stress concentration factor and other physical and

environmental parameters supplied by the user.

The program is written in BASIC and runs on a Teketronix micro-

processor model 4051 with J2K memory.

THEORY

When one analyzes a fatigue failure, there are a number of fatigue

6.5

66

failure lines. The general form of the fatigue failure line is

where Sa = al term. ting stress·, psi or Pa.

S = mean stress, psi or Pa. m S = ultimate tensile strength, psi or Pa. u

Se' ' ' = significant endurance limit, psi or Pa.

R1 ·~ =variables depend on the fatigue failure line being

selected, see Table A-1.

p, q = exponents control the fatigue failure line being

selected, see Table A-1.

(A-1)

Specifically, the exponents p and q control the fatigue failure line •

being used. Table A-1 lists the controlling para.meters that select

the desired fatigue failure line.

For the Kececioglu line, a Kececioglu factor, b, has to be supplied.

This factor depends on the type of material being used. From

experimental data obtained by the application of the prol:a.bilistic

"Design for Reliability" method, Kececioglu found the values of b

between o.8914 and 1.0176, see Table A-2.

A subroutine program of stress equations where any equivalent

stress theory may be used has to be supplied by the user. The stress

equations must be written using the Para.metric method described in the

paper, ·~ Man-Ma.chine Interactive Method for the Development of

67

Table A-1. Paxa.meters for selection of the desired fatigue failure line.

Type Fatigue Failure Line p q R1 R2

Modified Goodman fracture line 1 1 1 1

s s Modified Goodman yield line 1 1 __lL -1L s Se I It

y s

Soderberg line 1 1 u 1 s y

Gerber line 1 2 1 1

Q.uadi'a.tic line 2 2 1 1

Kececioglu line b* 2 1 1

*See Table A-2

68

Table A-2. Kececioglu factor.

Type of Diameter Brinell Tensile Signif'icant Kececioglu Steel of Hardness Strength Endurance factor

Specimen Number Limit

AISI inches BHN psi psi b

1018 0.375 130 60,400 26,200 0.8914

1038 0.375 164 68,600 31,000 0.9266

4130 0.375 207 106,100 39,700 1.0176

4340 0.375 233 116,400 48,700 0.9685

AISI mm BHN MP a MP a b

1018 9.53 130 416.44 180.64 o.8914

1038 9.53 164 472.98 213.74 0.9266

4130 9.53 207 731.53 273.72 1.0176

4340 9.53 233 802.55 335.77 0.9685

li'a:tigue Design Equa.tions",.'by L. D. Mitchell and J. H. Zinskie.25

The ta.sic concept of the Parametric method is to introduce a

proportionality factor, n, to any loads that will change during the

process of overloading. This factor n can be considered as a

proportionality constant that signifies overload, so any load that is

affected directly and in the same proportion to the overload is a

function of n and should be J11ultiplied by n.

The fatigue failure equation and the stress equations are solved by

Half Interval Search. This method converges slower but it avoids

difficulties which other methods, like Newton's method or false

position method, may encounter. It searches for sign changes of the

equation. The interval between sign changes will be continuously

halved until the desired accuracy or the tolerance of the root is

reached.

The significant endurance limit is found by the equation,

Se'' =Se' x Ka x Kb x Kc x Kd x Ke X. Kf (A-2)

where Se•' = significant endurance limit for infinite life, psi or Pa. -Se' = eridu:ta.nce·limft· of a, R ... R~ Moore specimen,

psi or Pa.

Ka = surface factor.

Kb = size and shape factor.

Kc = reliability factor.

70

Kd = temperature factor.

Ke = fatigue strength reduction factor.

Kf = miscellaneous effects factor.

The correction factors, Ka, Kb, Kc, Kd, and Ke are obtained from

material presented in Section 6-13 to Section 6-22 of Mechanical

Engineering Design, 2nd Ed., McGraw-Hill, N. Y., 19?2, by J. E. Shigley,

Chapter three of Fatigue Design of Ma.chine Components, Pergamon Press,

19?1, by L. Sors, and Section J-23 to S;ection J-29 of Machine Design,

Ma.caillan Publishing Co. Inc., N. Y., 19?5, by A. D. Deutschman, w. J.

Michels, and c. E. Wilson. The experimental data of the correction

factors are converted into regression lines, from which t~se factors

are computed. After the correction factors are obtained, the

significant endurance limit for infinite life, Se'', is computed

using F.q. A-2. 'Then it is corrected for finite life to obtain the

significant endurance limit for finite life, Se''', if required.

INPUT DATA ~UIRED

Units can be either in English or SI system. This depends on the

option chosen by the user. The following data are needed.

1. Ultimate tensile strength of the material, psi or Pa.

2. Yield strength of the material, psi or Pa.

J. Significant endurance limit, psi or Pa.

4. Moment causing alternating stress, lb-in or N-m.

71

5. Moment causing a steady stress, lb-in or N-m.

6. Alternating ax±al force, lb or N.

7. Steady axial force, lb or N.

8. Alternating torque, lb-in or N-m.

9. Steady torque, lb-in or N-m.

10.Safety factor, dimensionless.

11.Lower limit of the dimension, in or m.

12.Upper limit of the dimension, in or m.

If the significant endurance limit is not known, the following

physical and environmental para.meters are required for computing the

significant endurance limit.

1J.Type of surface finish.

14.Reliability, %. 15.0perating temperature, • 0 F or c. 16.Theoretical stress concentration factor.

17.Notch sensitivity factor (optional).

18.Notch radius (optional), in or m.

19.Type of material.

20.Type of loading.

21.Miscellaneous effect factor (optional).

22.Shape of cross section.

2J.Endw:ance limit for R. R. Moore· rotating beam

specimen (optional), psi or Pa.

24.Number of cycles.

72

EXAMPLE A-1

A rotating shaft is subjected to a transmitted, steady torque of'

1,200 lb-in (135.58 N-m) and an applied stationary moment of' 2,400

lb-in (271.16 N-m). Overload is caused by an increase of' torque and

moment. The saf'ety factor is 1.8. The shaft is circular, ma.chined, and

made of steel with tensile strength of 200,000 psi (1.397 X 109 Pa)

and yield strength of' 150,000 psi (1.048 X 109 Pa). The shaft has a

notch radius of 0.02 in (5.08 X 10-4 m) and a theoretical stress

concentration factor of 2.5, and is operating at a temperature of

190 °F ( 87. ~ °C). The reliability used is 99%. Determine the

diameter of the shaft.

First, the stress equations using the Parametric lll:ethod are derived.

Using the ma.ximUJ'll distortion energy theory, the equivalent mean and

alternating stresses ares

+ -l(-T )2 )t T ..1 2z = 0.866 z

but upon overload, both the torque, T, and moment, M, go up proportion-

ally by the same factor n. That is

T _ __.,._ nT, and M --- nM

thus, S' _ 0.866 n T

em - Z and S' = n M ea Z

73

_rrr)J where the section moaulus, Z - J2 • Substituting in the section

modulus, the stress equations become

s• em _ o.866 n T - TT-DJ and s• ea

nM = --------ID!.

32 J2

These two equations are the :required stress equations for the

subroutine program.

The procedure of inputting the data is as followsa

English units are used.

Tensile strength

Yield strength

= 200000 psi

= 150000 psi

Instruct the micro-processor to find the significant endurance limit.

Type of surface finish, enter 3 for machined or cold dJ:a.wn.

Reliability = 99%

Opera.ting temperature = 190 •F

Theoretical stress concentration factor = 2.5

Notch radius = 0.02 in

Material is steel.

The shaft is under bending.

No miscellaneous effect factor is needed.

Method to be used for. computing the .fini t.e. life .significant.

endurance limit, Se' ' ', is log - log method. The code is 1.

The cross section of the shaft is circular.

Ne:> el'.ldurance limit :t"or a R. R. Moore rQtat.ing. :beam specimen

74

is known.

Finite life, number of cycle = 500000

The following is the subroutine program for stress equations, using

the Para.metric method, and written in BASIC. Using the variables

defined by the program, the numerical values of these variables are

entered before the stress equations. The variables should be numbered

starting with line 6000 incrementing by 10'a. The stress equations

should start with line 6100 incrementing by 10's. After the stress

equations are entered, a numbered return statement is typed. Then type

RUN 600.

6000 T2 = 1200

6010 M1 = 2400

6020 N = 1.8

6100 A1 = N*M1/(PI*D1'J/J2)

6110 A2 = 0.866*N*T2/(PI*Dt3/J2)

6120 RE:l'URN

RUN 600

Modified Goodman fracture line is selected for the design. Enter MGF,

the code for this fatigue failure line.

Establish the limits on the half interval search for the solution.

Enter lower limit = 0.01 in

E.."1.ter upper limit = 10.00 in

The above procedure of entering the data is also shown in Figs.

A-1 to A-6. The result together with the input data, the correction

factors for computing the significant endurance limit, and the

************************************************************** * * * FATIGUE ANALYSIS PROGRAM, ANALYTICAL * * * t By Yiu Wah Luk, UPI & SU, Spring 1978 * * * ************************************************************** You have entered a FATIGUE RESISTANT, INTERACTIVE DESIGN routine. CoRponents will be sized to prevent fatigue failure. Do you want to use English Units? <V or H>V We will use English Units throughout this routine. Please enter the strength of the Material to be used. Tensile Strength, in psi, Su Yield Strength, in psi, Sy

= 200009 • 150000

Do you know the Significant Endurance Li"it of the Material? <Y or H>H

Figure A-1. Output for Example A-1.

....., IJ\

Thi

s se

ctio

n of

the

pro

gra"

wil

l ca

lcul

ate

the

Sig

nifi

cant

En

dura

nce

Li"

it.

Ent

er t

he I

fo

r th

e ty

pes

of s

urfa

ce f

inis

h us

ed.

11

for

poli

shed

fin

ish.

12

for

gro

und

fini

sh.

13 f

or M

achi

ned

or c

old

draw

n.

14 f

or h

ot r

olle

d.

15 f

or a

s fo

rged

. 3 W

hat

is t

he r

elia

bil

ity

in

%?9

9 W

hat

is t

he o

pera

ting

te"

pera

ture

in

Deg

ree

F 11

90

Do y

ou k

now

the

The

oret

ical

Str

ess

Con

cent

rati

on F

acto

r (K

t>?Y

T

heor

etic

al S

tres

s C

once

ntra

tion

Fac

tor

• 2.

5 Do

you

kno

w N

otch

Sen

siti

vity

(Q

)?

<V o

r N>

N W

hat

is t

he n

otch

rad

ius

in i

nche

s?0.

02

Is

the

"ate

rial

ste

el?

CY o

r N>

Y Is

it

und

er b

endi

ng o

r ax

ial

load

ing?

<V

or N

>Y

Is

ther

e an

y M

isce

llan

eous

-eff

ect

fact

or?

<Y o

r H>

N Th

e S-

N c

urve

is

used

for

th

is d

eter

"ina

tion

. A

Log

-Log

or

a L

og-L

inea

r S-

N c

urve

wil

l be

use

d.

The

fin

ite

life

reg

ion

is 0

.9*S

u t1

E3 c

ycle

s to

Se'

' @

1E6

cycl

es.

Wha

t "e

thod

do

you

wan

t to

use

for

coM

putin

g th

e S

igni

fica

nt E

ndur

ance

LiH

it <

Se'

'')?

Ent

er 1

1 fo

r Lo

g-Lo

g M

etho

d.

Ent

er 1

2 fo

r L

og-L

inea

r M

etho

d.

1 Fi

gure

A-2

. O

utpu

t fo

r Ex

ampl

e A

-1.

--.J °'

Is t

he c

ross

sec

tion

cir

cula

r? <

V or

H>V

Do

you

kno

w th

e E

ndur

ance

Li"

it <

Se')

for

rota

ting

-bea

M

spec

iMen

? <V

or

N>H

Is t

he d

esig

n li

fe i

nfi

nit

e? <

V or

H>H

H

uRbe

r of

cyc

les

• 59

9000

Fig

ure

A-)

. O

utpu

t fo

r Ex

ampl

e A

-1.

:j

You

wil

l no

w be

req

uest

ed t

o su

pply

the

PAR

AMET

RIC

DESI

GH S

TRES

S EQ

UATI

ONS

for

your

des

ign

prob

le".

Yo

u "u

st w

rite

the

se e

quat

ions

in

BASI

C.

Use

th

e fo

llow

ing

inst

ruct

ion

s.

If

you

«re

unfQ

Mili

Qr

wit

h th

e de

velo

pMen

t of

suc

h eq

uati

ons,

se

e u

ser'

s gu

ide

and

its

appe

ndix

fo

r gu

idQ

nce.

E

nter

coM

pone

nt

load

s st

arti

ng

wit

h li

ne 6

000

incr

eMen

ting

by

10

's.

Use

Ml=

MoM

ent t~using

Qlt

ernQ

ting

str

ess

<lb

-in)

. U

se M

2=M

oMen

t '~using

a st

eady

str

ess

(lb-

in>

. U

se F

1=A

n Q

lter

nati

ng a

xial

fo

rce

<lb

f).

Use

F2=

A st

eady

axi

al

forc

e <

lbf)

. U

se T

1=An

alt

ern

atin

g t

orqu

e <

lb-i

n).

Use

T2=

A st

eady

tor

que

(lb

-in

).

Use

H

=Sof

ety

fact

or.

Ent

er t

he n

uMer

ic

valu

e fo

r ea

ch o

f th

e va

riab

les

used

in

your

str

ess

equa

tion

s.

Do

this

bef

ore

you

ente

r yo

ur s

tres

s eq

uati

ons.

E

nter

you

r st

ress

equ

atio

ns s

tart

ing

wit

h li

ne

6100

in

cre"

enti

ng b

y 1

0's

. U

se A

t=A

lter

nati

ng s

tres

s.

Use

A2=

Hea

n st

ress

. U

se P

I=Pi

. U

se D

=Bas

ic d

iMen

sion

. N

.B.,

All

di

Men

sion

s sh

ould

be

give

n in

ter

Ms

of

D.

In c

ase

of r

ecta

ngul

ar c

o"D

onen

t, us

e pr

opor

tion

s.

Aft

er y

our

stre

ss e

quat

ions

are

ent

ered

, ty

pe a

nuM

bere

d re

turn

st

ate"

ent.

Th

en

type

run

600

. ~>

:ftt

1f'l

-E •••

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

• Th

e fo

llow

ing

equa

tion

s ar

e in

Eng

lish

Uni

t.

6000

T2=

1200

. 60

10 H

1=24

00.

6020

H=l

.8

6100

A1=

N*M

1/(P

I*D

tJ/J

2)

6110

A2•

0.86

6*H

*T2/

(PI*

DtJ

/J2)

61

20 R

ETUR

N RU

H 60

0 F1

.gur

e A

-4.

01.i:

tput

fo

r Ex

ampl

e A

-1.

'-.J

())

6000

T2=

1200

60

10 M

1=24

00

6020

H=t

.8

6100

At=

H*M

1/(P

l*D

t3/3

2)

6110

A2=

0.86

6*H

*T2/

(PI*

Df3

/32>

61

20 R

ETUR

H RU

N 60

0

Figu

re A

-5.

Out

put

for

Exam

ple

A-1

.

....., '°

Sel

ect

the

fGti

9ue

fnil

ure

line

to

be u

sed

in t

he d

esig

n.

If M

odif

ied

Goo

d"an

Fra

ctur

e L

inc,

en

ter

MGF

If M

odif

ied

Goo

d"an

Yie

ld L

ine,

en

ter

HGV

If S

oder

berg

Lin

e,

ente

r S

If G

erbe

r L

ine,

ent

er G

If

Qu«

drG

tic L

ine,

en

ter

Q

If K

ecec

iogl

u L

ine,

en

ter

K

MGF

The

Fai

lure

Lin

e se

lect

ed i

s M

odif

ied

Good

Man

Fra

ctur

e L

ine.

Th

e fQ

ilur

e eq

uati

on i

s <

Sa/(

R2*

Se'''

)tM

+ <

Rl*

SM/S

u)tp

= 1.

w

here

M=1

w

here

P=1

w

here

R1=

1 an

d w

here

R2=

1 Do

you

wis

h to

cha

nge

any

para

Met

ers?

<V

or H

>H

The

foll

owin

g en

trie

s w

ill

esta

blis

h th

e li

ffit

s on

a H

alf

Inte

rval

Sea

rch

for

the

solu

tion

to

your

pro

bleM

. W

hat

is t

he s

"all

est

basi

c di

Men

sion

tha

t yo

u w

ish

to t

ry?

Giv

e yo

ur a

nsw

er i

n in

ches

. Do

not

ans

wer

0.0

. 0.

01

Wha

t is

the

lar

gest

diM

ensi

on,

in i

nche

s? 1

0

Figu

re A

-6.

Out

put

for

Exam

ple

A-1

.

~

~

******

******

******

******

******

******

******

******

******

******

******

******

T

ensi

le S

tren

gth,

Su

•••

••••

••••

••••

••••

••••

••• •

20

0,00

0 ps

i Y

ield

Str

engt

h, S

y •••

••••

••••

••••

••••

••••

••••

• •

159,

000

psi

Sig

nifi

cant

End

uran

ce L

iMit

, S

e'''i

5000

09 e

ye.=

21,

395

psi

SMal

lest

diM

ensi

on t

ried

••••

••••

••••

••••

••••

•• =

0.0

1 in

ches

L

drge

st d

iMen

sion

tri

ed ••

••••

••••

••••

••••

••••

• = 10

.00

inch

es

Safe

ty F

acto

r,

H ••

••••

••••

••••

••••

••••

••••

••••

= 1.

80

HoM

ent

caus

ing

alte

rnat

ing

stre

ss,

Ml •

••••

••••

= 2,

400

lb-i

n St

eady

tor

que,

T2

•••

••••

••••

••••

••••

••••

••••

•• =

1,20

0 lb

-in

The

foll

owin

g fa

ctor

s ar

e us

ed f

or·c

oMpu

ting

Se'''

: Su

rfac

e fa

ctor

<Ka

> = 0

.64

Size

and

sha

pe f

acto

r <K

b>

= 0.

81

Rel

iabi

lity

fac

tor

<Kc)

= 0

.81

TeH

pera

ture

fac

tor

<Kd>

=

0.95

Fa

tigu

e St

reng

th R

educ

tion

fac

tor

<Ke>

= 0.

42

Mis

cell

aneo

us f

acto

r <K

f>

= 1.

90

Endu

ranc

e L

i"it

for

Rot

atin

g-be

aM S

peci

"en

<Se'

) =

109,

000

psi

Sig

nifi

cant

End

uran

ce L

iMit

for

infi

nit

e li

fe <

Se'

')a

16,9

60 p

si

The

Fai

lure

Lin

e se

lect

ed i

s M

odif

ied

Good

Man

Fra

ctur

e L

ine.

Th

e fa

ilur

e eq

uati

on i

s (S

a/(R

2tS

e''')

tM +

<R

ltSM

/Su>

tp=

1.

whe

re M

=1

whe

re P

=1

whe

re R

1=1

and

whe

re R

2•1

The

desi

gn d

iMen

sion

is

1.29

11

inch

es

******

******

******

******

******

******

******

******

******

******

******

******

Do

you

wis

h to

con

vert

the

des

ign

diM

ensi

on t

o SI

uni

t? (

V or

H>Y

Th

e de

sign

di"

ensi

on i

s 0.

9328

"

Figu

re A

-?.

Out

put

for

Exam

ple

A-1

.

f!l

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

T

ensi

le S

tren

gth,

Su •

••••

••••

••••

••••

••••

••••

• •

200,

000

psi

Yie

ld S

tren

gth,

Sy •

••••

••••

••••

••••

••••

••••

••• =

150

,000

psi

S

igni

fica

nt E

ndur

ance

Li"

it,

Se'''

@50

0000

eye

.• 2

5,77

9 ps

i SM

alle

st d

iMen

sion

tri

ed ••

••••

••••

••••

••••

••••

= 0.

01

inch

es

Lar

gest

di"

ensi

on t

ried

••••

••••

••••

••••

••••

••• =

10.0

0 in

ches

Sa

fety

Fac

tor,

H ••

••••

••••

••••

••••

••••

••••

••••

= 1.

80

HoM

ent

caus

ing

alte

rnat

ing

stre

ss,

Hl •

••••

••••

= 2,

400

lb-i

n St

eady

tor

Que

, 12

••••

••••

••••

••••

••••

••••

••••

• =

1,20

0 lb

-in

The

foll

owin

g fa

ctor

s ar

e us

ed f

or c

oMpu

ting

Se'''

: Su

rfac

e fa

ctor

<Ka

) =

0.64

Si

ze a

nd s

hape

fac

tor

<Kb)

=

1.00

R

elia

bili

ty f

acto

r <K

c>

= 0.

81

TeM

pera

ture

fac

tor

<Kd>

=

0.95

Fa

tigu

e St

reng

th R

educ

tion

fac

tor

<Ke>

= 9.

42

Mis

cell

aneo

us f

acto

r <K

f) =

1.09

En

dura

nce

Lif

tit

for

Rot

atin

g-be

aM S

peci

"en

<Se'

) =

100,

000

psi

Sig

nifi

cant

End

uran

ce L

i"it

for

in

fin

ite

life

<S

e'')

= 2

9,86

5 ps

i Th

e F

ailu

re L

ine

sele

cted

is

Mod

ifie

d Go

odM

an Y

ield

Lin

e.

The

fail

ure

equa

tion

is

<S

a/(R

2tS

e''')

t" +

<R

1*SH

/Su)

tp=

1.

Yhe

re H

=l

whe

re P

=l

whe

re R

l=l.3

3333

3333

33

and

whe

re R

2=5.

8187

2093

284

The

desi

gn d

iMen

sion

is

9.74

91

inch

es

• **

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

**

Do y

ou w

ish

to c

onve

rt t

he d

esig

n di

Men

sion

to

SI

unit

? <V

or

H>Y

The

desi

gn d

iMen

sion

is

0.91

90 "

Fi

gure

A-8

. O

utpu

t fo

r Ex

ampl

e A

-1.

~

******

******

******

******

******

******

******

******

******

******

******

******

T

ensi

le S

tren

gth,

Su •

••••

••••

••••

••••

••••

••••

• •

200,

000

psi

Yie

ld S

tren

gth,

Sy

•••

••••

••••

••••

••••

••••

••••

• •

150,

000

psi

Sig

nifi

cant

End

ur4n

ce L

i"it

, Se

'''@

5000

00 e

ye.=

21,

345

psi

SM41

1est

di"

ensi

on t

ried

••••

••••

••••

••••

••••

•• =

0.01

in

ches

L

arge

st d

iMen

sion

tri

ed ••

••••

••••

••••

••••

••••

• = 1

0.00

inc

hes

Saf

ety

Fac

tor,

N ••

••••

••••

••••

••••

••••

••••

••••

= 1.

80

Mo"

ent

caus

ing

41te

rnat

ing

stre

ss,

H1 •

••••

••••

= 2

,400

lb-

in

Stea

dy t

orqu

e, 1

2 •••

••••

••••

••••

••••

••••

••••

•• =

1,20

0 lb

-in

The

foll

owin

g f4

ctor

s ar

e us

ed f

or c

o"pu

ting

Se''':

Su

rfac

e fa

ctor

<Ka

> =

0.64

Si

ze a

nd s

hape

fac

tor

(Kb>

=

0,81

R

elia

bili

ty f

acto

r <K

c>

= 0.

81

TeM

pera

ture

fac

tor

(Kd>

=

0.95

Fa

tigu

e S

tren

gth

Red

ucti

on f

acto

r <K

e>=

0.42

M

isce

llan

eous

fac

tor

CKf)

= 1.

00

Endu

ranc

e Li

Mit

for

Rot

4tin

g-be

a" S

peci

"en

<Se'

) =

100,

000

psi

Sig

nifi

cant

End

uran

ce L

iMit

for

in

fin

ite

life

<Se'~)=

16,9

16 p

si

The

Fai

lure

Lin

e se

lect

ed i

s So

derb

erg

Lin

e.

The

fail

ure

equa

tion

is

<Sa/

CR

2*Se

''')t

M +

<R

l*SM

/Su)

tp•

1.

whe

re H

=1

whe

re P

=1

whe

re R

1=1.

33JJ

J333

J33

and

whe

re R

2=1

The

desi

gn d

i"en

sion

is

1.29

83 i

nche

s

******

******

******

******

******

******

******

******

******

******

******

******

Do

you

wis

h to

con

vert

the

des

ign

di"c

nsio

n to

SI

unit

? CV

or

H>V

The

desi

gn d

i"en

sion

is

9.93

39 "

Fi

gure

A-9

. O

utpu

t fo

r Ex

ampl

e A

-1.

-· ~

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

T

ensi

le S

tren

gth,

Su •

••••

••••

••••

••••

••••

••••

• •

200,

000

psi

Yie

ld S

tren

gth,

Sy •

••••

••••

••••

••••

••••

••••

••• •

15

9,00

0 ps

i S

igni

fica

nt E

ndur

ance

LiH

it,

Se'''

@59

0000

eye

.• 2

1,54

7 ps

i S

Hal

lest

di"

ensi

on t

ried

••••

••••

••••

••••

••••

•• =

0.0

1 in

ches

L

arge

st d

iHen

sion

tri

ed ••

••••

••••

••••

••••

••••

• =

10.0

0 in

ches

Sa

fety

Fac

tor,

H ••

••••

••••

••••

••••

••••

••••

••••

= 1.

80

MoH

ent

caus

ing

alte

rnat

ing

stre

ss,

Ht •

••••

••••

= 2,

400

lb-i

n St

eady

tor

que,

T2

•••

••••

••••

••••

••••

••••

••••

•• =

1,2

00 l

b-in

Th

e fo

llow

ing

fact

ors

are

used

for

co"

puti

ng S

e'''

: Su

rfac

e fa

ctor

<Ka

) = 0

.64

Siz

e an

d sh

upe

f4ct

or

<Kb)

= 0

.82

Rel

iabi

lity

fac

tor

<Kc)

=

0.81

Te

Mpe

ratu

re f

acto

r <K

d)

= 0.

95

F4ti

gue

Stre

ngth

Red

ucti

on f

acto

r <K

e>=

0.42

M

isce

llan

eous

fac

tor

<Kf>

=

1.00

En

dura

nce

Lif

tit

for

Rot

atin

g-be

aH S

peci

Men

<S

e')

= 10

0,00

0 ps

i S

igni

ficu

nt E

ndur

4nce

LiH

it f

or i

nfi

nit

e li

fe <

Se''>

= 17

,094

psi

Th

e F

ailu

re L

ine

sele

cted

is

Ger

ber

Lin

e.

The

fail

ure

equu

tion

is

<Sa

/(R

2*Se

''')f

H +

<R

1*SH

/Su)

tp=

1.

whe

re H

=1

whe

re P

=2

whe

re R

1=1

and

whe

re R

2=1

The

desi

gn d

iHen

sion

is

1.26

96 i

nche

s

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

Do

you

wis

h to

con

vert

the

des

ign

diH

ensi

on t

o SI

uni

t? <

V or

H>V

Th

e de

sign

diM

ensi

on i

s 0.

0322

M

Figu

re A

-to.

Out

put

for

Exam

ple

A-1

.

~

******

******

******

******

******

******

******

******

******

******

******

******

T

ensi

le S

tren

gth,

Su

•••

••••

••••

••••

••••

••••

••• = 2

00,0

00 p

si

Yie

ld S

tren

gth,

Sy •

••••

••••

••••

••••

••••

••••

••• =

150,

000

psi

Sig

nifi

cont

End

uron

ce L

iMit

, Se'''~500000

eye.

= 2

1,55

1 ps

i SM

alle

st d

i"en

sion

tri

ed ••

••••

••••

••••

••••

••••

= 0

.01

inch

es

Lar

gest

di"

ensi

on t

ried

••••

••••

••••

••••

••••

•••

• 10

.00

inch

es

Saf

ety

Fac

tor,

H

••••

••••

••••

••••

••••

••••

••••

•• =

1.90

M

oHen

t C

Qus

ing

41te

rn4t

ing

stre

ss,

Ht •

••••

••••

= 2,

400

lb-i

n

Stea

dy t

orqu

e,

T2 •

••••

••••

••••

••••

••••

••••

••••

= 1,

200

lb-i

n

The

foll

owin

g fQ

ctor

s Q

re u

sed

for

co"p

utin

g S

e''':

Su

rfQ

ce f

4cto

r (K

Q)

~

0.64

S

ize

ond

shap

e fQ

ctor

<K

b)

= 0.

82

Rel

iab

ilit

y f

Qct

or

<Kc>

=

0.81

T

e"pe

ratu

re f

acto

r <K

d)

= 0.

95

Fat

igue

Str

engt

h R

educ

tion

fG

ctor

<Ke

>= 0

.42

His

cell

aneo

us f

acto

r <K

f) =

1.00

E

ndur

ance

LiM

it fo

r R

otat

ing-

beaM

Spe

ciM

en <

Se')

=

100,

000

psi

Sig

nifi

cant

End

urQ

nce

LiA

it f

or

infi

nit

e li

fe <

Se'

')•

17,0

98 p

si

The

Fai

lure

Lin

e se

lect

ed i

s Q

uadr

atic

Lin

e.

The

fail

ure

equ

atio

n is

<S

a/(R

2*S

e''')

tM +

<R

l*SM

/Su)

tp=

1.

whe

re H

=2

whe

re P

=2

whe

re R

1=1

and

whe

re R

2=1

The

desi

gn d

iHen

sion

is

1.26

91

inch

es

******

******

******

******

******

******

******

******

******

******

******

******

Do

you

wis

h to

con

vert

the

des

ign

diM

ensi

on t

o SI

uni

t? <

V or

H>V

Th

e de

sign

diH

ensi

on i

s 9.

0322

M

Figu

re A

-11.

Out

put

for

Exam

ple

A-1

.

CX>

\11

******

******

******

******

******

******

******

******

******

******

******

******

T

ensi

le S

tren

gth,

Su

•••

••••

••••

••••

••••

••••

••• = 2

00,0

00 p

si

Yie

ld S

tren

gth,

Sy •

••••

••••

••••

••••

••••

••••

•••

• 15

0,00

0 ps

i S

igni

fica

nt E

ndur

ance

Li"

it,

Se'''

@50

0000

eye

.= 2

1,54

9 ps

i SH

G11

est

di"e

nsio

n tr

ied

••••

••••

••••

••••

••••

•• =

0.01

in

ches

L

arge

st d

iMen

sion

tri

ed ••

••••

••••

••••

••••

••••

• •

10.0

0 in

ches

S

afet

y F

acto

r,

H ••

••••

••••

••••

••••

••••

••••

••••

= 1.

80

MoM

ent

caus

ing

alte

rnat

ing

str

ess,

Mt

•••

••••

•• =

2,40

0 lb

-in

Stea

dy t

orqu

e,

T2 •

••••

••••

••••

••••

••••

••••

••••

= 1,

200

lb-i

n Th

e fo

llow

ing

fact

ors

are

used

for

coM

putin

g S

e''':

Su

rfac

e fa

ctor

<K

a)

= 0.

64

Siz

e an

d sh

ape

fact

or <

Kb)

= 0.

82

Rel

iab

ilit

y f

acto

r <K

c>

= 0.

81

TeM

pera

ture

fac

tor

<Kd)

=

0.95

F

atig

ue S

tren

gth

Reducti~n

fact

or

<Ke>

= 0.

42

Mis

cell

aneo

us f

acto

r <K

f) =

1.09

En

dura

nce

Li"

it f

or R

otat

ing-

beaM

Spe

ciM

en

<Se'

) =

190,

009

psi

Sig

nifi

cant

End

uran

ce L

iMit

for

in

fin

ite

life

<Se

''>=

17,0

96 p

si

The

Fai

lure

Lin

e se

lect

ed i

s K~cecioglu

Lin

e.

The

fail

ure

equa

tion

is

(Sa/

(R2

*S

e''')

t" +

<R

1*SM

/Su)

tp=

1.

whe

re H

=l.5

w

here

P=2

w

here

R1=

1 un

d w

here

R2=

1 Th

e de

sign

diM

ensi

on i

s 1.

2693

inc

hes

******

******

******

******

******

******

******

******

******

******

******

******

Do

you

wis

h to

con

vert

the

des

ign

diM

ensi

on

to S

I un

it?

<Y o

r H>

Y Th

e de

sign

diM

ensi

on i

s 0.

0322

"

Figu

re A

-12.

Out

put

for

Exam

ple

A-1

.

~

87

Table A-3. Results of Example A-1 obtained by six fatigue failure lines.

Design Dia.meter Type of Failure Line used

in m

Modified Goodman fracture line * 1.2911 0.0328

Modified Goodman yield line * 0.7491 0.0190

Soderberg line 1.2983 0.0330

Gerber line 1.2696 0.0332

Quadratic line 1.2691 0.0322

Kececioglu line (with b=1.5) + 1.269.3 0.0322

* If the user subscribes to the Modified Goodman theory, the largest

dimension of the two Goodman solutions must be selected..

+This is an arbitrary choice of exponent used for this example only.

88

parameters of the fatigue failure line selected for this design a.re

output and shown in Fig. A-7. The design diameter of the shaft is

found to be 1.2911 in. (0.0'.328 m).

Using the same input data., the component is redesigned by the other

five fatigue failure lines. The results using the other five fatigue

failure lines a.re shown in Figs. A-8 to A-12. All six results are

listed in Table A-3 .. for comparsion.

Normally-, all these analyses are not carried out. Only the analysis

that corresponds to the user's selected theory is computed. But the

program provides the capability to redesign the component using other

fatigue failure theories in order that the user can choose among

alternatives.

From the results listed in Table A-3, the smallest dimension is

obtained by modified Goodman yield line. This result is not correct

for a fatigue design because the modified Good.man theory demands that

one considers the yield line and the fmcture line. Thus, the largest

dimension of the two Goodlllan solutions must be selected. The most

conservative solution is obtained using Soderberg line. This is not

always true. It depends upon the location of the load line. In this

example, the solutions from modified Goodman line, Soderberg line,

Gerber line, Quadratic line, and Kececioglu line a.re quite close.

This is true only for this particular example because of the load

line. Other examples may give more significant differences between

these theories.

89

EXAMPIE A-2. (Taken from problem 5-38a, Mechanical Engineering Design

3:rd Fd., McGraw-Hill, New York, N. Y., 1977, by J. E. Shigley.)

Figure A-13 shows two views of a flat steel spring loaded 1n bending

by the force F. The spring is assembled so as to produce a preload

Fmin = 900 N. The :force then varies from this minimum value to a

maximum of 3000 N. The spring is forged of AISI 1095 steel having

the following properties:

s = 1,400 MPa u

Sy = 950 Mfa

1i3 = 398

12 percent elongation 1n 50 mm.

Find the thickness t 1f Kt = 2.50 and a margin of safety of 90 percent

is to be used.

let D be the thickness of the :flat spring.

Since no reliability factor is mentioned, 50% is assumed.

Room temperature is assumed when operating,. 24

Notch sensitivity factor is asswned to be 0.97.

Let the spring be designed for 100,000 cycles.

SI units are used.

0 c.

The stress equations using the Parametric method are desired.

90

(0.30.5 m) I. --12"~ .. ,

F

0.3" DIA (0.0076 m DIA)

-Si

'° : S' (""'\ .

0 -

'

_________ _,_.......,. ________ ....._J_ ' I I I I I

T

Figure A-1J. Flat Steel Spring under Fatigue Loading.

Alternating force, F a

91

- 3000 - 900 - 2

Mean force, F _ 3000 + 900 m - 2

Using the maximum distortion energy theory, the equivalent mean and

alternating stresses are obtained.

= cs2 + 3t2)t M o.1s (JOOO - 200) s = _J!L = em m m z 2Z

= cs2 + Jt2)t M o.1s (JOOO + 200} s = A = ea a a z 2Z

Bu:t upon overload, maximum load will increase by factor n, so

Fmax.. n F max.

Substituting in the section modulus, Z = 0 ·~S if , yields

s• em _ 6(JOOO n - 200} - rl-

S' ea - 6(JOOO n + 200} - rl-

These two equations are the required stress equations for the

subroutine program.

The procedure of inputting the data is as follows1

SI units are used,

Tensile strength = 1400000000 Pa

Yield strength = 950000000 Pa

Instruct the micro-processor to find the significant endurance limit.

Type of surface finish, enter 5 for as forged.

Reliability = 50% Operating temperature = 24 °C

Theoretical stress concentration factor = 2,5·

Notch sensitivity factor = 0.97

Material is steel.

The spring is under bending.

No miscellaneous effect factor is needed.

Method used for computing the finite life significant endurance limit,

Se''', is log - log method, the code is 1.

The cross section of the spring is rectangular.

No endurance limit for a R. R. Moore rotating beam.

specimen is known.

Finite life, number of cycles = 100000

The following is the subroutine program for stress equations, using

the Parametric method and written in BASIC. Following ~he instructions

provided by the program, the subroutine is

6000 N = 1.9

6100 Al = 6*(JOOO*N - 900)/Dt2

6110 A2 = 6*(JOOO*N + 900)/Df2

6120 RETURN

RUN 600

Soderberg line is selected for this design. Enter S, the code for

Soderberg line.

93

Establish the limits on the half interval search for the solution.

Enter lower limit = O. 001 m

Enter upper limit = 0.10 m

The input data and result are shown in Figs. A-14 to A-15. The

thickness of the fiat spring is found to be 0.0146 m (0.5747 in).

******

******

******

******

******

******

******

******

******

******

******

******

T

ensi

le S

tren

gth,

Su

•••

••••

••••

••••

••••

••••

•••

• 1,

400,

000,

000

Pa

Yie

ld S

tren

gth,

Sy •

••••

••••

••••

••••

••••

••••

••• =

950,

000,

000

Pa

Sig

nifi

cant

End

uran

ce L

iMit

, Se

'''@

1000

00 e

ye.•

167

,994

,384

Pa

SMal

lest

di"

ensi

on t

ried

••••

••••

••••

••••

••••

•• =

0.00

M

Lar

gest

diM

ensi

on t

ried

••••

••••

••••

••••

••••

•••

• 0.

10 M

S

afet

y Fa

ctor

, H

••••

••••

••••

••••

••••

••••

••••

•• =

1.90

Th

e fo

llow

ing

fact

ors

are

used

for

coM

putin

g S

e'''

: Su

rfac

e fa

ctor

<Ka

) =

0.25

S

ize

and

shap

e fa

ctor

<Kb

) = 0

.88

Rel

iabi

lity

fac

tor

<Kc>

=

1.00

T

eHpe

ratu

re f

acto

r <K

d)

= 1.

00

Fati

gue

Stre

ngth

Red

ucti

on f

acto

r <K

e)=

0.41

M

isce

llan

eous

fac

tor

<Kf>

=

1.00

En

dura

nce

LiM

it fo

r R

otat

ing-

beaM

Spe

ciM

en <

Se')

= 68

9,47

5,70

0 Pa

S

igni

fica

nt E

ndur

ance

LiM

it fo

r in

fin

ite

life

<S

e'')

= 6

1,34

1,85

1 Pa

'8-

The

Fai

lure

Lin

e se

lect

ed i

s So

derb

erg

Lin

e.

The

fail

ure

equa

tion

is

<Sa/

(R2*

Se'''

)tM

+

<R1*

SM/S

u)tp

= 1.

w

here

M=l

whe

re P

=1

whe

re R

l=t.4

7368

4210

53

and

whe

re R

2=1

The

desi

gn d

iMen

sion

is

8.81

46 "

******

******

******

******

******

******

******

******

******

******

******

******

Do

you

wis

h to

con

vert

the

des

ign

di"e

nsio

n to

Eng

lish

uni

t? <

Y or

N>V

Th

e de

sign

di"

ensi

on i

s 8.

5747

inc

hes

Do y

ou w

ish

to r

edes

ign

the

coM

pone

nt u

sing

ano

ther

Fi

gure

A-1

4. O

utpu

t fo

r Ex

ampl

e A

-2.

fail

ure

lin

e? W

arni

ng!

A M

odif

ied

Goo

d"an

app

roac

h re

quir

es

both

a

frac

ture

and

a y

ield

ana

lysi

s.

<V o

r H>

H Do

you

wan

t to

des

ign

a ne

w co

Mpo

nent

? <V

or

H>H

EHD

Figu

re A

-1.5

. O

utpu

t fo

r Ex

ampl

e A

-2.

~

A.2 USER'S GUIDE --- SECTION PROPERTIES

INTRODUCTION

The cross sectional properties of a machine member are usually needed

in the design. To find these properties for an irregular shape cross

section is time consuming and difficult. This program provides a means

of computing twenty sectional properties of any shape cross section.

The sectional properties computed are: area, location of centroid,

area moment of inertia about different axis, and radius of gyration.

This program also provides a graphical verification of the input

cross section together with the list of data. In this way, the cross

section can be checked easily before the computation takes place.

The program is written in BASIC and used on a Teketronix micro-

processor model 4051 with 32 K memory.

THEORY

Part of the theory is documented in the paper ''Properties of plane

cross sections", Machine Design, Jan., 22, 1976, pp. 105-107, written

by F. Wojciechowski. The technique used is to replace integration by

summation of finite elements to find the section properties of a plane

cross section. This technique applies only to areas bounded by straight

lines, but because curves could be approximated by straight line

segments, the method can be used on any shape.

96

-

9?

·Basically, the method divides a crosa section into series of

trapezoids or rectangles, then the properties of each elemental area

are added or substracted to give the composite properties of the desired

cross section.

In order to speed up the input and computation, and also to obtain

a more accurate result, the properties of circular cross section and

circular holes are not computed using the above mentioned method. It

uses the ordinary formulas of area and area moment of inertia about the

centroid of a circle. Then the area moment of inertia with respect to

other axis is computed using the parallel axis theorem. In this way, to

input circular section or a circular hole inside a cross section, only

the radius of the circle, and x and y coordinates of the center are

needed, instead of approximating the curves by straight line segments

and inputting the x and y coordinates of each line.

INPUT Il4 T.A NEEDED

Units can be either in English or SI system. This depends on the

option chosen by the user. The following data are needed.

For circular section or circular holes

Radius of circle, in or mm.

X and y coordinates of the center, in or mm.

For polygonal section or polygonal hole:

'

98

X and y coordinates of each vertices, in. or mm.

The following points should be noted when inputting a polygonal section

or polygonal hole.

1. The polygonal section must be located entirely within the first

quadrant, that is, both x and y coordinates must be positive.

2. The x and y coordinates of the vertices of the polygonal section or

hole must be entered sequentially for a complete, clockwise path

around the section or hole.

3. Be sure to end the path with the first vertice.

EXAMPLE B-1. (Taken from example 1, pp. 106, of the paper "Properties

of ·plane cross sections", Machine Design, Jan., 22, 19?6, written by

F. Wojciechowski.)

A hollow hexagonal cross section is shown in Fig. B-1. Determine the

area, centroid, area moment of inertia about the x-y axis and principal

axis, and radius of gyration.

English units are used.

The outside perimeter is not a circular section.

Enter the x and y coordinates of the vertices of the hexagonal cross

section sequentially for a complete, clockwise pa th around the :section..

#1 x, y = 1 t 0

#2 x, y = o, 1.732

#J x, y = 1 t J.464

#4 x, y = ), J.464

#5 x, y = 4, 1.732

99

y

.3.

0.866

0

1.0 1.5 2.5 J.O 4.0 (inches)

Figure B-1. A hollow hexagonal cross section.

#6 x, y = 3, 0

#7 x, y = 1, 0

100

For the hexagonal hole, enter x and y coordinates of the vertices

sequentially for a complete clockwise path around the hole.

#1 x, y = 1.5, o.866

#2 x' y = 1, 1. 732

#J x, y = 1.5, 2.598

#4 x, y = 2.5, 2.598

#5 x, y = J, 1.732

#6 x, y = 2.5, o.866

#7 x, y = 1.5, o.866

Since the properties with respect to an arbitrary axis are not required,

answer "N" when ask if the area moment of inertia about an arbitrary

axis is desired.

The input data, the drawing of the cross action, and the results are

shown in Figs. B-2 to B-6.

EXAMPLE B-2. (Taken from pp. 02-10, example 4, in the Section Properties

program in User's Guide of Mechanical Engineering Programs, Pac I. for

HP-67 or HP-97 programmable calculator, Hewlett-Packard Company, Oregon,

1976.)

For the part shown in Fig. B-7, compute the polar moment of inertia

about point A. Point A denotes the center of a hole a.bout which the

part rotates. The area of the hole must be deleted from the cross

section. (No unit was given, so English unit is assumed.)

******

******

******

******

******

******

******

******

******

******

** *

* *

SECT

ION

PROP

ERTI

ES O

F PO

LVOH

AL S

ECTI

ON

* *

* *

By Y

iu W

ah L

uk,

UPI

~

SU,

Spri

ng 1

978

* *

* ***

******

******

******

******

******

******

******

******

******

*****

Do y

ou w

ant

to u

se S

I un

its?

<V

or H

>H

We

wil

l us

e E

ngli

sh U

nits

thr

ough

out

this

pro

gra"

. Is

the

out

er p

eri"

eter

a c

ircu

lar

sect

ion?

CV

or H

>H

Ple

ase

ente

r th

e X

and

V c

oord

inat

es o

f th

e ve

rtic

es o

f th

e po

lygo

n <w

hich

Hus

t be

lo

cate

d en

tire

ly w

ithi

n th

e fi

rst

quad

rant

) se

Que

ntia

lly

for

a co

Mpl

ete,

cl

ockw

ise

path

aro

und

the

poly

gon.

U

nits

sho

uld

be i

nche

s.

Be s

ure

to e

nd w

ith

the

firs

t po

int.

X

<t>,

V<

l> =

1,0

X

<2>,

V

(2)

= 0,1

.732

X

(3),

V

(J)

= 1,

J.46

4 X

(4),

V<

4> = 3

,J.4

64

X<S>

, VC

S> =

4,1

.732

X<

6>,

V(6

) =

J,0

X<7>

, V<

7> =

1,0

A

re

ther

e an

y ho

les

in t

he s

ecti

on?

<V o

r H>

V A

re

ther

e an

y ci

rcul

ar h

oles

? <V

or

H>H

How

Man

y po

lygo

n ho

les

are

ther

e in

the

sec

tion

?!

For

poly

gon

hole

s:

Figu

re B

-2.

Out

put

for

Exam

ple

B-1

.

.... a

Ent

er t

he X

and

V c

oord

inat

es o

f ea

ch v

erti

ces

in a

coM

plet

e,

cloc

kwis

e pa

th.

Uni

ts s

houl

d be

inc

hes.

Be

sur

e to

end

wit

h th

e fi

rst

poin

t of

eac

h ho

le.

For

poly

gona

l ho

le 1

1:

X<1

), V

<l>

= 1.

5,9.

866

X<2

>,

V<2>

=

1,1.

732

X<3

>,

V(3

) =

1.5,

2.59

8 X

<4>,

V

(4)

= 2.

5,2.

598

X<5>

, V

(5)

= J,

1.73

2 X

(6),

V

(6)

= 2.

5,0.

866

X(7

),

V<7>

=

1.5,

0.86

6

Figu

xe B

-3.

Out

put

for

Exam

ple

B-1

.

.... 2

All

data

are

in

inch

es.

v GR

APH

OF I

NPUT

SEC

TION

Po

ly.

D4t

4 <X

,V>:

11

= 1,

8

12=

9,

1. 7

32

4.ee

13

= 1,

3.

464

14=

J, 3

.464

15

= 4,

1.

732

3.50

16

= 3,

0

Poly

.Hol

e'A

'Dat

4 CX

,V>:

3.

00

11=

1.5,

0.8

66

12=

1,

1. 73

2 #3

= 1.

5,

2.59

8 2.

58

#4=

2.5,

2.

598

15=

J,

1.73

2 16

= 2

.s,

0.86

6 2.

ee

Tl

, 1.

59

1. 0

0

0.50

0.00

e.ee

1.00

2.

00

Do y

ou w

ant

to c

hang

e an

y da

t4?

<V o

r H>

H Fi

gure

B-4

. O

utpu

t fo

r Ex

ampl

e B

-1.

\. I 3.09

\.

s ...

I 0 \,.)

x 4.

99

*** SE

CTIO

N PR

OPER

TIES

OF

THE

REQU

IRED

SEC

TIOH

***

AreG

•••

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

a X

coo

rdin

Gte

of

the

cent

roid

••••

••••

••••

••••

••••

••• •

,, co

ordi

no.te

of

the

cent

roid

••••

••••

••••

••••

••••

••• =

Ar

eG "

or1e

nt o

f in

erti

G a

bout

X-a

xis •

••••

••••

••••

••• =

Ar

ea.

Hor1

ent

of i

nert

ia a

bout

Y-a

xis •

••••

••••

••••

••• =

A

rea

prod

uct

of i

ner

tia •

••••

••••

••••

••••

••••

••••

••• =

A

rea

'10M

ent

of i

nert

ia a

bout

X'-o

.xis

tra

nsla

ted

to

the

cent

roid

••••

••••

••••

••••

••••

••••

••••

••••

••••

••• =

Are

a. Ho

r1en

t of

ine

rtia

abo

ut V

'-o.x

is t

rans

late

d to

th

e ce

ntro

id ••

••••

••••

••••

••••

••••

••••

••••

••••

••••

• ~

Are

a pr

oduc

t of

ine

rtia

abo

ut t

rans

la.t

ed a

xis •

••••

• =

Ang

le b

etw

een

tran

slat

ed a

xis

a.nd

prin

cipa

l ax

is

(in

degr

ee>,

pos

itiv

e is

cou

nter

-clo

ckw

ise •

••••

••••

= 7.

79 i

nt2

2.ee

inc

hes

1. 7

3 in

ches

31

.59

int4

39

.29

int4

27

.00

int4

e.12

int

4

e.12

int

4 0.

00 i

nt4

0.00

A

rea

HOHe

nt of

ine

rtia

abo

ut t

he t

rans

late

d,

rota

ted,

pr

inci

pal

X''-

axis

••••

••••

••••

••••

••••

••••

••••

••••

• •

8.12

int

4 A

rea.

Mo"

ent

of i

nert

ia a

bout

the

tra

nsla

ted,

ro

tate

d,

prin

cipa

l V

''-o.

xis •

••••

••••

••••

••••

••••

••• =

8.12

int

4

Do y

ou w

ant

to g

et a

rea.

'10

Hen

t of

ine

rtia

. ab

out

o.n

arbi

trar

y a.

xis?

<V

or N

>H Fi

gure

B-5

. O

utpu

t fo

r Ex

ampl

e B

-1.

... i

Rud

ius

of g

yrat

ion

abou

t X

-axi

s •••

••••

••••

••••

••••

••••

• R

udiu

s of

gyr

atio

n ab

out

Y-a

xis •

••••

••••

••••

••••

••••

•• •

Rci

dius

of

gyrc

itio

n ab

out

X'-

axis

tra

nsla

ted

to

the

cent

roid

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

•• =

Rad

ius

of g

yrat

ion

abou

t '/

'-ax

is t

rans

late

d to

th

e ce

ntro

id ••

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

=

Do y

ou w

ant

to f

ind

the

prop

erti

es o

f an

othe

r se

ctio

n?

<V o

r N)

N

END

------~---~--------~

Figu

re B

-6.

Out

put

for

Exaa

ple

B-1

.

2.01

2.25

1. 0

2

1. 0

2

inch

es

inch

es

inch

es

inch

es

... 0 \n

106

English units are used.

The outside perimeter is not a circular scetion.

For the L-shaped cross section, the x and y coordinates of the vertices

are entered in a complete clockwise path.

#1 x, y = o, 0

#2 x, y = o, 2

#3 x, y = 5, 2

#4 x, y = 5. 1.4

#5 x, y = 0.8, 1.4

#6 x, y = o.a, 0

#? x, y = o, 0

For the circular hole at A:

Radius = 0.25

x, y = 0.2, o.6

To find the properties about the arbitrary axis at A with zero degree

of rotation, enter:

x, y coordinates of the origin of the arbitrary axis = 0.2, 0.6

Angle of rotation of the arbitrary axis = 0 degree

The drawing of the cross section and the results are shown in Figs. B-8

to B-10. There is a difference between the original drawing, Fig. B-7,

and the one from the output, Fig. B-8, because the hole was actually

located partly outside the L-shaped cross section. The error can be

eliminated if the cross section is first drawn to scale. This obvious

mistake can be observed and rectified. However, it is not rectified for

this example so that the solution obtained may be compared to the

Hewlett Packard results.

107

(0, 2) (5, 2)

0 • .5D 0 .8' 1. (5.0, 1.4)

Figure B-7. L-shaped cross section with a circular hole.

A11

data

are

in

inch

es.

Poly

. OQ

tQ

<X,Y

>:

11=

e, e

12=

e, 2

v

13=

s, 2

14=

s, 1.

4 5.

09

15=

0.8,

1.

4 16

= 0.

8,

0

Cir

. H

ole

'A'

DQ

ta:

4.00

R

adiu

s =

0.25

x,

v =

0.2,

0.

6

3.0

0

2.00

1. ee

GRAP

H OF

INP

UT S

ECTI

ON

..... _

__

__

__

__

__

__

__

__

__

__

__

3

__

__

__

__

__

__

4

0. ee

. I

• •

" I

I I

I I

e.ee

1.ee

2.

ee

J.00

4.00

s.00

Do y

ou w

ant

to c

han1

e an

y da

ta?

<V o

r H>

N Fi

gure

B-8

. O

utpu

t fo

r Ex

ampl

e B

-2.

x

..... ~

*** SE

CTIO

N PR

OPER

TIES

OF

THE

REQU

IRED

SEC

TION

***

Are

a. ••

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

• •

x co

ordi

na.te

of

the

cent

roid

••••

••••

••••

••••

••••

•••

• y

coor

dina

te o

f th

e ce

ntro

id ••

••••

••••

••••

••••

••••

• =

. Ar

· ea

"o"e

nt o

f in

erti

a <l

bout

X-a

xis •

••••

••••

••••

••• =

Are

a. HO

Men

t of

ine

rtia

. 4b

out

V-4

xis •

• ~ •

••••

••••

••••

=

Are

a. pr

oduc

t of

ine

rtia

. •••

••••

••••

••••

••••

••••

••••

• =

Are

a. M

OP1e

nt of

ine

rtia

. 4b

out

X'-

4xis

tra

.nsl

4ted

to

the

cent

roid

••••

••••

••••

••••

••••

••••

••••

••••

••••

••• =

A

rea.

MoN

ent

of i

nert

ia.

abou

t V

'-a.x

is t

r4ns

late

d to

th

e ce

ntro

id ••

••••

••••

••••

••••

••••

••••

••••

••••

••••

• =

Are

a. pr

oduc

t of

ine

rtia

. a.

bout

tr

ansl

ated

a.x

is ••

••••

=

Ang

le b

etw

een

tran

slat

ed a

xis

and

prin

cipa

l ax

is

<in

degr

ee>,

po

siti

ve i

s co

unte

r-cl

ockw

ise •

••••

••••

• A

rea

HOHe

nt of

in

erti

a a.

bout

th

e tr

ansl

ated

, ro

t4te

d, J.

92 i

nt2

2.02

inc

hes

1. 47

in

ches

9.

42 i

nt4

25.2

3 in

t4

13.0

4 in

t4

0.94

int

4

9.29

int

4 1.

42 i

nt4

9.38

prin

cipa

l X

''-a.

xis •

••••

••••

••••

••••

••••

••••

••••

••••

• 0.

72 i

nt4

Are

a. HO

Hent

of

iner

ti4

a.bo

ut t

he t

rans

late

d,

rota

ted,

pr

inci

pal

V''-

a.xi

s •••

••••

••••

••••

••••

••••

• •

9.52

int

4

Do y

ou w

ant

to g

et a

rea.

"o"

ent

of i

nert

ia.

a.bo

ut a

.n a.

rbit

ra.r

y ax

is?

<V o

r H>

V Fi

gure

B-9

. O

utpu

t fo

r Ex

ampl

e B

-2.

.... 0 '°

Ple

ase

ente

r th

e an

gle

betw

een

the

orig

inal

ax

is <

X-V>

an

d ar

bit

rary

axi

s <

X'''

-V'''

),

in d

egre

e,

posi

tive

is

coun

ter-

cloc

kwis

e •••

••••

••••

••••

••••

••••

••••

••••

••••

•• •

0 E

nter

X-a

xis

coor

dina

te o

f th

e ar

bit

rary

axi

s <i

nche

s>=

.2

Ent

er Y

-axi

s co

ordi

nate

of

the

arb

itra

ry a

xis

<in

ches

)• .

6

Are

a ffO

Men

t of

in

erti

a ab

out

the

arb

itra

ry a

xis

,X'''

•• =

J.9

1 in

t4

Are

a HO

Men

t of

in

erti

a ab

out

the

arb

itra

ry a

xis

,V'''

•• ~

22.2

2 in

t4

Pol

ar a

rea

"oM

ent

of i

ner

tia

abou

t th

e ar

bit

rary

Q

xl·-

(V'''-

'i''')

-

:::. r.

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• • -

Are

a pr

oduc

t of

in

erti

a ab

out

the

arb

itra

ry

Qx

l.S (V

'''-

V''')

-

" '

......

......

......

......

......

......

.. -R

adiu

s of

gyr

atio

n ab

out

X-a

xis •

••••

••••

••••

••••

••••

•• =

R

adiu

s of

gyr

atio

n ab

out

V-a

xis •

••••

••••

••••

••••

••••

•• =

Rad

ius

of g

yrat

ion

abou

t X

'-ax

is t

rans

late

d to

th

e ce

ntro

id ••

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

= R

adiu

s of

gyr

atio

n ab

out

V'-

axis

tra

nsla

ted

to

the

cent

roid

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

•• =

Do y

ou w

ant

to f

ind

the

prop

erti

es o

f an

othe

r se

ctio

n?

<Y o

r H)

H

END

-~~~-----~--~~--~---

Figu

re B

-10.

Out

put

for

Elca

mpl

e B

-2.

26.1

3 in

t4

7. 61

i n

t4

1. 55

in

ches

2.

54 i

nche

s

0.49

inc

hes

1.54

inc

hes

.... .... 0

A .3 USER'S GUIDE ---BEAM ANALYSIS

INTRODUCTION

One of the most frequently encountered engineering designs is beam

because it can be used for modelling many structures. This program,

using transfer matrix method, computes and also plots the curves of

deflection, slope, moment, and shear along the beam. Static and forced,

undamped dynamic analysis can be performed for beams of uniform.. or

variable cross section. Unifomly or linearly varied distributed loads,

concentrated point loads, applied moments, or combinations of all three .

may be applied. This program allows arry combination of pinneQ., fixed,

free, or guided flexural boundary conditions., even normally ·

kinematically unstable conditions can be handled i:f sufficient internal

supports are provided. In-span--suppcrt :can be ela-Stic ·springs-anti/or

elastic moment spring. Mi:idelling for dynamic response uses lumped mass.

The programming language used is BASIC and the micro-processor used is

a Teketronix model 4051 with 32 K memory.

THBDRY

The theory, ilsing transfer. matrix method, . is well documented .in

chapter J of the Matrix Methods in Elastromechanics, by Eduard c. Pestel and Frederick A. Leckie, McGraw-Hill, 196J. The method is based

on the idea that a continuous beam can be broken up into component

111

112

parts with simple elastic and dynamic properties that can be expressed

in matrix fo:rm. These component matrices, when fitted together by

successive matrix multiplication and evaluated with the proper boundary

conditions will give the response of the entire beam.

For a given continuous beam with several sections, say i, each

element or section is represented by the appropriate field and point

transfer matrices. The state vectors from one end, [z]0 , to the other

end, [z]1 , are related by the equation:

where [FJj =a field transfer matrix that describes the lh section

of distributed stiffness with or without distributed loads

(P]j =a point transfer matrix that describes the jth element at

a point with no finite length.

i = nwnber of sections.

[zJ 0 =state vector at beginning, usually the left end.

[ zJi = state vector at the temination end, usually the right end.

[uJ =product of all field and point transfer ma.trices.

The state vector, [z], has five components, defined as:

w s

[zJ = M (C-2)

v

1

11.'.3

where W = deflection

S =slope

M =moment

V =shear

The boundary conditions are as follows:

For pinned end, W=O, M=O

For fixed end, W=O, S=O

For free end, M=O, V=O

For guided end, S=O, V=O

where the symbols are defined same as Eq.C-2.

(c-3)

The field and point transfer matrices in Eq. C-1 are known and the

boundary conditions of both ends should be applied to Eq. C-4.

(zJ~ = [uJ[zJ0 (C-4)

All the variables in the state vectoxs[z] 0 and (z]i can now be found.

Once [z] 0 is known, this matrix multiplication process is repeated to

yield the states at each desired point along the beam.

INPtn' DATA ~UIRED

The beam should first be divided into several sections, such that

each section has the same distributed stiffness and a point element at

the end if a.ny.

Units can be either in English or the s. I. system •. This depends on

114

the option chosen by the user. For each section, the following data

are needed:

1. Length of the section, inches or metres.

2. Modulus of elasticity, psi or Pa, 4 4 J, Area moment of inertia, in or m ,

4. Magnitude of unifomly distributed load, lb/in or N/m. (N.B.;

Load is positive downward.)

5. M!ignitude of linearly varied distributed load, on the left and on the

right, lb/in or N/m. (N.B.; Load is positive downward.)

6. &gnitude of concent:rated load, lb or N, (N.B.; Load is positive

downward.)

7. ~agnitude of moment, lb-in or N-m.(N.B.; Moment is positive in

counter-clockwise direction.)

8. Stiffness.of the suppo~, lb/in or N/m.

9. Support moment stiffness, lb-in/:rad or N-m/:rad.

10. &gnitude of concent:rated weight, lb or N. 2 2 11. Weight moment of inertia, lb-in or N-m •

12. Forced circular fx-equency, :rad/sec.

13, Enter the type of vibration of the beam or rotor,

H, a factor for determining gyroscopic inertial effects in the

dynamic case, given as:

-1 for bending vibration

-+t for rotating shaft (equal angular direction of whirl and

H = rotation)

-3 for rotating shaft (opposite angular d~ction of whirl

and rotation)

115

Enter 1 for H = -1

2 H=-+1

J H = -J

EXAMPLE C-1.

A cantilever beam, 8 inches (0.2032 m) long, has a concentrated

load of 100 lb (444.82 N) at its free end, see Fig. C-1. The moment of 4 ( -6 4) inertia, 4.7 in 1.956 X 10 m is constant. The material used is

6 . 11 steel and the modulus of elasticity is JO X 10 psi (2.068 X 10 Pa).

Neglect the weight of the beam. Determine the def1.ection, slope, moment,

and shear along the beam.

English units are used.

This is a static response.

Section #1

For field matrix, enter 1 for massless beam.

length of this section = 8 inches. 6 Modulus of elasticity = JO X 10 psi.

Area moment of inertia = 4.7 in4•

For point matrix,

Concentrated load = 100 lb.

Moment = 0 lb-in.

Stiffness of support = 0 lb/in.

Support moment stiffness = 0 lb-in/rad.

Section #2

For field matrix, enter 0 for the last section.

116

Choose the boundary condition of fixed-free, enter 7. Enter 10 increments for the section.

The micro-processor outputs the input data, the numerical values, and

curves of deflection , slope, moment, and shear, see Figs. C-2 to C-9.

EXAMPLE 2 (Taken from page 87, Example 3-9, of Matrix Methods in

Electromechanics, by Eduard c. Pestel and Frederick A. lecke, McGra.w-

Hill, 1963, numerical values have been assumed for this example.)

A beam of uniform flexural stiffness EI is simply supported at one

end, built-in at the other, and supported by a spring one third of the

distance along its length, see Fig. C-10. It is subjected to a uniform

distributed static load of 100 lb/in (1.7.5 X 104 N/m) between points O

and 1 and a concentrated moment of -10000 lb-in (-1130 N-m) at point 1.

Determine the deflection, slope, moment, and shear diagrams. Steel is

the material used,

English units are used.

This is a static :response.

Section #1

For field matrix, enter 2 for uniformly distributed load on massless beam.

Length of this section

. Modulus of elasticity

Uniformly distributed load

For point matrix,

Concentrated load

Moment

Stiffness of support

= 10 inches 6 = 30 X 10 psi

= 100 lb/in

= 0 lb

= -10000 lb-in

= 282000 lb/in

117

P=100 lb

, , ,

~a· I . (0.2032 :;---1

. (444.82 N)

Figure c-1. Cantilever beam with end load.

******

******

******

******

******

******

******

******

******

******

** *

* *

THIS

IS

A B

EAM

ANAL

YSIS

PRO

GRAM

WHI

CH S

OLVE

S ST

ATIC

OR

* *

DVHA

MIC

<FOR

CED,

UN

DAMP

ED U

IBRA

TIOH

> RE

SPON

SE.

* *

* *

by V

iu W

ah L

uk,

advi

sed

by P

rofe

ssor

Lar

ry D

. M

itch

ell

* *

Vir

gini

a Po

lyte

chni

c In

stit

ute

and

Sta

te U

nive

rsit

y *

* D

epar

tMen

t of

Mec

hani

cal

Eng

inee

ring

*

* Sp

ring

197

8 *

* *

******

******

******

******

******

******

******

******

******

******

** Do

you

wan

t to

use

Eng

lish

uni

ts?

<V o

r H>

V

Eng

lish

uni

ts w

ill

be u

sed

thro

ugho

ut t

his

pro

graH

. Is

thi

s a

stat

ic a

naly

sis?

<V

or H

>V

Plea

se d

ivid

e yo

ur b

eaM

in

to s

ever

al

fiel

d se

ctio

ns,

and

ente

r th

e in

forH

atio

n re

quir

ed f

or e

ach

sect

ion.

H

.B.

Alw

ays

star

t fro

A

the

left

end

.

Pre

ss R

ETUR

N to

pro

ceed

. Fi

gure

C-2

. O

utpu

t fo

r Ex

ampl

e C

-1.

... ... O>

For

sect

ion

11:

The

foll

owin

g F

ield

Mat

rice

s ar

e av

aila

ble.

0

the

last

sec

tion

. 1

Mas

sles

s be

aM.

2 un

ifor

Mly

dis

trib

ute

d l

oad

on M

assl

ess

beaM

. 3

line

arly

var

ied

dis

trib

ute

d l

oad

on M

assl

ess

beaM

. E

nter

I

for

the

requ

ired

Fie

ld M

atri

x= 1

E

nter

len

gth

of t

his

sec

tion

<in

) <H

.B.

Do n

ot e

nter

zer

o.)

=8

Ent

er H

odul

us o

f E

last

icit

y (

psi>

=J9E

6 E

nter

Are

a M

oMen

t of

In

erti

a C

int4

>=4.

7

9t~u~u1Ai£d

Tra

nsfe

r M

atri

x in

clud

ing

sect

ion

11

is a

s fo

llow

s:

w

1.00

E+00

0 -8

.00E

+900

-2

.27E

-007

-6

.05E

-007

0.

00E+

000

~

.;J

0.00

E+00

0 1.

09E+

000

5.67

E-0

08

2.27

E-0

07

0.00

E+00

0 t1

0.00

E+00

0 0.

00E+

000

1.00

E+00

0 e.

00E

+eee

0.

00E+

000

u 0.

00E+

000

0.00

E+00

0 0.

00E+

000

1.00

E+00

0 0.

00E+

000

1 0.

00E+

000

0.00

E+00

0 0.

00E+

000

0.00

E+00

0 1.

00E+

000

Pre

ss R

ETUR

H to

pro

ceed

. Figu

re C

-.).

Out

put

for

Exam

ple

C-1

.

... ... '°

For

sect

ion

11:

ls t

here

any

con

cent

rate

d lo

ad,

MOM

ent,

luM

ped

Has

s <f

or d

ynaM

ic

anal

ysis

onl

y),

or e

last

ic s

uppo

rt i

n th

is s

ecti

on?

<V o

r H)

V E

nter

Mag

nitu

de o

f th

e co

ncen

trat

ed l

oad,

<l

b>

<H.B

. Lo

ad

is p

osit

ive

dow

nwar

d)

•100

E

nter

Mag

nitu

de o

f th

e M

oMen

t (l

b-i

n)

<H.B

. M

oMen

t is

pos

itiv

e in

cou

nter

-clo

ckw

ise

dire

ctio

n.

Ple

ase

put

in t

he r

igh

t si

gn.>

=0

Ent

er s

tiff

nes

s of

the

sup

port

<lb

/in)

=0

Ent

er s

uppo

rt M

OMen

t st

iffn

ess

<1b-

in/r

Qd)

=0

0''U

8UlA

i£d

Tra

nsfe

r H

dtri

x in

clud

ing

sect

ion

11

is Q

S fo

llow

s:

w

1.00

E+00

0 -8

.00E

+000

-2

.27E

-007

-6

.05E

-007

0.

00E+

000

s 0.

00E+

000

1.00

E+00

0 5.

67E

-008

2.

27£-

007

0.00

E+00

0 H

0.

00E+

000

0.00

E+00

0 1.

00E+

000

8.00

E+00

0 0.

00E+

000

u 0.

00E+

090

0.00

E+00

0 0.

00E+

000

1.00

E+00

0 -1

.00E

+002

1

0.00

E+00

0 0.

00E+

000

0.00

E+00

0 0.

00E+

000

1.00

E+00

0

Pre

ss R

ETUR

N to

pro

ceed

.

Figu

re C

-4.

Out

put

for

Exam

ple

C-1

.

... N

0

For

sect

ion

12:

The

foll

owin

g F

ield

Mat

rice

s ar

e av

aila

ble.

0

the

last

sec

tion

. 1

Mas

sles

s be

a".

2 un

ifor

MlY

dis

trib

ute

d l

oad

on M

assl

ess

beaM

. 3

line

arly

var

ied

dis

trib

ute

d l

oad

on M

assl

ess

bea"

. E

nter

I

for

the

requ

ired

Fie

ld H

atri

xa 0

Figu

re C

-S. O

utpu

t fo

r Ex

ampl

e C-

1 •

.. N ..

*** BO

UNDA

RY C

ONDI

TION

S ***

R

I G

H T

E

N D

PINN

ED

FIXE

D FR

EE

GUID

ED

PINN

ED

1 2

3 <K

.U.)

4 L E

FIXE

D 5

6 7

8 F T

FREE

9

<K.U

.) 10

11

<K

.U.>

12

<K

.U.)

E N

D

GUID

ED

13

14

15 C

K.U

.) 16

<K

.U.)

whe

re K

. U.

=

Kin

e"at

ical

ly U

nsta

ble,

unl

ess

inte

rnal

su

ppor

ts e

xis

t.

Use

th

ese

boun

dary

con

diti

ons

at y

our

own

risk

. Do

no

t an

swer

K.

U.

to t

he q

uest

ion

belo

w.

Ent

er I

fo

r th

e re

quir

ed B

ound

ary

Con

diti

on •

7

Figu

re C

-6.

Out

put

for

Exam

ple

C-1

.

.... ~

Dra

win

g of

the

Bea

M

~ ,. , ,. DATA

: Fo

r se

ctio

n 11

: Le

ngth

of

this

sec

tion

••••

••••

••••

••••

••••

• =

Mod

ulus

of

Ela

stic

ity

••••

••••

••••

••••

••••

•• •

Are

a M

oHen

t of

In

erti

a ••

••••

••••

••••

••••

••• =

Mag

nitu

de o

f C

once

ntra

ted

Load

•••

••••

••••

•• =

Do

you

wan

t to

cha

nge

the

data

? <Y

or

H>N

8.00

E+00

0 in

3.

00E+

007

psi

4.70

E+00

0 in

t4

1.00

E+00

2 lb

How

Man

y in

cre"

ents

wou

ld y

ou

like

to

have

for

eac

h fi

eld

sect

ion?

10

Figu

re c

-7.

Out

put

for

Exam

ple

c-1.

p

'

... N

\,)

LENG

TH

DEFL

ECT

I OH

SLOP

E MO

MEHT

SH

EAR

<in>

<i

n>

<Rad

ian>

(l

b-in

) (l

b)

0.00

E+00

0 0.

00E+

000

0.00

E+0

00

-8.0

0E+0

02

t.00E

+002

~

8.00

E-0

01

t.76

E-0

06

-4.3

1E-0

06

-7.2

0E+0

02

1.00

E+00

2 1.

60E+

000

6.78

E-0

06

-8.1

7E-0

06

-6.4

0E+0

02

1.00

E+00

2 2.

40E+

000

1.47

E-0

05

-1.1

6E-0

05

-5.6

0E+0

02

1.00

E+00

2 3.

20E+

000

2.52

E-0

05

-1.4

5E-0

05

-4.8

0E+0

02

1.00

E+00

2 4.

00E+

000

3.78

E-0

05

-1.7

0E-0

05

-4.0

0E+0

02

1.00

E+00

2 4.

80E+

000

5.23

E-0

05

-1.9

1E-0

05

-3.2

0E+0

02

1.00

E+00

2 5.

60E+

000

6.82

E-0

05

-2.0

7E-0

05

-2.4

0E+0

02

1.00

E+00

2 6.

40E+

000

8.52

E-0

05

-2.1

8E-0

05

-1.6

0E+0

02

1.00

E+00

2 7.

20E+

000

1.03

E-0

04

-2.2

5E-0

05

-8.0

0E+0

01

1.00

E+00

2 8.

00E+

000

1.21

E-0

04

-2.2

7E-0

05

-t.0

9E-0

11

1.00

E+00

2 8.

00E+

000

1.21

E-0

04

-2.2

7E-0

05

-1.0

9E-0

11

0.00

E+00

0 .... N

.i:-

Do y

ou w

ish

to s

ee t

he g

raph

s fo

r de

flec

tion

, sl

ope,

M

OHen

t an

d sh

ear?

<Y

or H

>V

Figu

re C

-8.

Out

put

for

Exam

ple

C-1

.

Support moment stiffness

Section #2

126

= 0 lb-in/rad

For field matrix, enter 1 for massless beam.

Length of this section

Modulus of elasticity

Area moment of inertia

= 20 inches

= 30 X 106 psi

= 4.7 1n4

No pcint matrix for this section.

Section #3

For field matrix, enter 0 for the last section.

Choose the boundary condition of pinned-fixed, enter 2.

Enter 10 increments for each section.

The micro-processor outputs the data and deflection, slope, moment, and

shear diagrams, see Figs. C-11 to c-13.

EXAMPLE C-3.

The beam with 6 elastic supports of stiffness 1200 lb/in (2.10 X 105

N/m) each is shown in Fig. C-14. The moment of inertia of the beam is

constant, 144 1n4 (6 X 10-5 m4), and the modulus of elasticity is

20 X 106 psi (1.38 X 1011 Pa). Determine the deflection, slope, moment,

and shear diagrams. Neglect the weight of the beam.

English units are used.

This is a static response.

Section #1

For field matrix, enter 1 for massless beam.

q=100 lb/in (1.75 X 104 N/m)

0 1

127

M=-10,000 lb-in (-1,130 N-m)

K~82,000 lb/in~

(4.94 X 107 N/m)

10" __ ..,..,.... _____ 20'' (0.2.54 m) (0.508 m)

2

~----""------~'-,,.-''--------...------------~

Figure C-10. Statically loaded, statically indeterminant beam.

Dra

win

g of

the

Bea

"

DATA

: Fo

r se

ctio

n 11

: L

engt

h o

f th

is s

ecti

on ••

••••

••••

••••

••••

••• =

1.00

E+00

1 in

M

odul

us o

f E

last

icit

y ••

••••

••••

••••

••••

••••

= 3

.00E

+007

psi

A

rea

HoH

ent

of I

ner

tia

••••

••••

••••

••••

••••

• =

4.70

E+00

0 in

t4

Mag

nitu

de o

f un

ifor

"ly

dis

trib

ute

d l

oad •

••• =

1.00

E+00

2 lb

/in

M

agni

tude

of

HoH

ent •

••••

••••

••••

••••

••••

•••

=-1.

00E+

004

lb-i

n S

tiff

ness

of

Supp

ort •

••••

••••

••••

••••

••••

•• =

2.82

E+00

5 lb

/in

Fo

r se

ctio

n 12

: L

engt

h of

thi

s se

ctio

n ••

••••

••••

••••

••••

••• = 2

.00E

+001

in

M

odul

us o

f E

last

icit

y ••

••••

••••

••••

••••

••••

= 3.

00E+

007

psi

Are

a H

oHen

t of

In

erti

a ••

••••

••••

••••

••••

••• = 4

.70E

+000

int

4

Do y

ou w

ant

to c

hang

e th

e da

ta?

<Y o

r H>

H

How

"any

inc

reM

ents

wou

ld y

ou

like

to

have

for

eac

h fi

eld

sect

ion7

10

Figl

ll':9

C-1

1. O

utpu

t fo

r Ex

ampl

e C

-2.

.... N

CX>

LE HG

TH

DEFL

ECTI

ON

SLOP

E HO

r1EHT

(i

n)

<in>

<R

adia

n)

<lb

-in)

0.

00E+

000

0.00

E+00

0 -9

.32E

-005

0.

00E

+000

1.

00E+

000

9.30

E-0

05

-9.2

7E-0

05

1.08

E+00

2 2.

00E+

000

1.85

E-0

04

-9.1

9E-:

005

1.16

E+00

2 3.

00E+

000

2.77

E-0

04

-9.1

3E-0

05

2.42

E+00

1 4.

00E+

000

3.68

E-0

04

-9.1

8E-0

05

-1.6

8E+0

02

S.00

E+00

0 4.

61E

-004

-9

.39E

-005

-4

.60E

+002

6.

00E+

000

S.57

E-0

04

-9.S

SE-0

05

-8.5

2E+0

02

7.00

E+00

0 6.

59E

-004

-1

.06E

-004

-1

.34E

+003

8.

00E+

000

7.71

E-0

04

-1.1

8E-0

04

-1.9

4E+0

03

9.00

E+00

0 8.

96E

-004

-1

.34E

-004

-2

.63E

+003

1.

00E+

001

1.04

E-0

03

-1.5

5E-0

04

-3.4

2E+0

03

1.00

E+00

1 1.

04E

-003

-1

.SSE

-004

6.

58E

+003

1.

20E+

001

1.26

E-0

03

-6.9

8E-0

05

5.48

E+00

3 1.

40E+

001

1.JJ

E-0

03

2.34

E-0

07

4.39

E+00

3 1.

60E+

001

1.27

E-0

03

5.47

E-0

05

3.29

E+00

3 1.

80E+

001

1.12

E-0

03

9. 3

5E-0

05 -

2.19

E+0

03

2.00

E+00

1 9.

09E

-004

1.

17E

-004

1.

10E+

003

2.20

E+00

1 6.

64E

-004

1.

25E

-004

-2

.07E

+000

2.

40E+

001

4.20

E-0

04

1.17

E-0

04

-1.1

0E+0

03

2.60

E+00

1 2.

08E

-004

9.

34E

-005

-2

.20E

+003

2.

80E+

001

5.71

E-0

05

5.45

E-0

05

-3.2

9E+0

03

3.00

E+00

1 0.

00E+

000

-3.4

7£-0

18

-4.3

9E+0

03

Do y

ou w

ish

to s

ee t

he g

raph

s fo

r de

flec

tion

, sl

ope,

H

offe

nt a

nd s

hear

? <V

or

N>V

Fig

ure

C-1

2 • O

utpu

t fo

r E

xaap

le C

-2.

SHEA

R (l

b)

1.58

E+00

2 5.

81E+

001

-4.1

9E+0

01

-1.4

2E+0

02

-2.4

2E+0

02

-3.4

2E+0

02

-4.4

2E+0

02

-5.4

2E+0

02

-6.4

2E+0

02

-7.4

2E+0

02

-8.4

2E+0

02

-5.4

9E+0

02

-5.4

9E+0

02

-5.4

9E+0

02

-5. 4

9E +

002

· .... N

-5

.49E

+002

-5.4

9E+0

02

-5.4

9E+0

02

-5.4

9E+0

02

-5.4

9E+0

02

-S.4

9E+0

02

-S.4

9E+0

02

E-3

DEF

L.,

W 1

.00

<in

)

e.ee

E-4

SLOP

E,

S 0.

00

(rQ

d)

-2.0

0 ....

E+4

'5

1'10r1

EHT,

M 0

.09

(lb

-in

)

-1.0

9

E+2

9.89

SH

EAR,

V

( 1

b)

-5.0

0

-10.

00

e.ee

9.58

1.

00

1.50

2.

ee

2.59

3.

00

E+l

LENG

TH <

in>

Figu

re C

-1).

Out

put

for

Exam

ple

C-2

.

131

Length of this section = 1 X 10-20 inches (Do not enter 0)

Modulus of elasticity = 20 X 106 psi

Area· moment of inertia = 144 in 4

For point matrix,

Concentrated load = 0 lb

Moment = O lb-in

Stiffness of support = 1200 lb/in

Support moment stiffness = 0 lb-in/rad

The use of an almost zero length beam allows the immediate installation

of a spring support.

Section #2

For field matrix, enter 3 for linearly varied distributed load on

massless beam.

Length of this section

Modulus of elasticity

Area moment of inertia

I,inearly varied distributed load, on the left

= 480 inches

= 20 X 106 psi

= 144 in4

= 75 lb/in

Linearly varied distributed load, on the right = 100 lb/in

For the point matrix,

Concentrated load = 0 lb

Moment = 0 lb-in

Stiffness of' support = 1200 1 b/in

Support moment stiffness= 0 lb-in/rad

132

Section #3

For field matrix, enter 1 for massless beam.

Length of this section

Modulus of elasticity

Area moment of inertia

For point matrix,

Concentrated load

Moment

Stiffness of support

Support moment stiffness

Section #4

= 480 inches

= 20 X 106 psi

= 144 in4

= 0 lb

= 0 lb-in

= 1200 lb/in

= O lb-in/rad

For field matrix, enter 2 for uniformly distributed load on massless

beam.

Length of this section

Modulus of elasticity

Area moment of inertia

Uniformly distributed load

For point matrix,

Concentrated load

Moment

Stiffness of support

Support moment stiffness

Section #5

• = 480 inches

= 20 X 106 psi

= 144 1n4

= 100 lb/in

= 0 lb

= O lb-in

= 1200 lb/in

= O lb-in/rad

For field matrix, enter 1 for massless beam.

Length of this section = 480 inches

Modulus of elasticity

Area moment of inertia

For point matrix,

Concentrated load

Moment

Stiffness of support

Support moment stiffness

Section #6

133

6 = 20 X 10 psi /to = 144 in

= 0 lb

= O lb-in

= 1200 lb/in

= O lb-in/rad

For field matrix, enter 3 for linearly varied distributed load on

massless beam.

length of this section = 480 inches

Modulus of elasticity = 20 X 106 psi 4

Area moment of inertia = 144 in

Linearly varied distributed load, on the left. = 100 lb/in

Linearly varied distributed load, on the right = 75 lb/in

For point matrix,

Concentrated load

Moment

Stiffness of support

Support moment stiffness

Section #7 For field matrix, enter 0 for the last section.

= 0 lb

= 0 lb-in

= 1200 lb/in

= O lb-in/rad

Choose the boundary condition of free-free, enter 11.

Enter 10 increments for each section.

1J4

The micro-processor output of the data and deflection, slope, moment,

and shear diagrams are shown in Figs. C-15 to c-19.

EXAMPLE C-4.

A shaft with two lumped mass, 800 lb (.'.3559 N) and 1200 lb (5.'.3.'.38 N)

in weight, vibrates at a frequency of 10 rad/sec, see Fig. C-20. The

area moment of inertia is constant, I=l.2 in 4 ( 5 X 1 o-6 m 4 ). It has a

fixed end and the other end is an elastic support with stiffness,

K=! X 105 lb/in (1.75 X 107 N/m), and support moment stiffness,

T=1. X 104 lb-in/rad (11.'.30 N-m/rad). Find the def1.ection, slope, moment,

and shear diagrams at this frequency. Steel is the material used. Weight

moment of inertia is 100 lb-in2 (0.287 N-m2).

SI units·a:re used.

This is a dynamic response problem forced by the concentrated load

P sin wt where w=1.0 n.d/sec. P is shown on Fig. C-20.

Section #1

For field matrix, enter 1 for massless beam.

length of this section

Modulus of elasticity

Area moment of inertia

For point matrix,

Concentrated load

Moment

Stiffness of support

s~'Pport moment stiffness

= 0.254 m

= 2.068 X 1011 Pa

= 5 X 10-6 m4

=ON

= 0 N-m

= 0 N/m

= 0 N-m/rad

135

q=100 lb/in (17,513 N/m) q

q

K K

480 .. _..._480'' __........_ 480"----.--480" ___. ...... _ 480" (12.19 m) (12.19 m) (12.19 m) (12.19 m) (12.19 m)

~-~'---v---'-Y~~' ...- ,,,,,.I' '"' ''"""'" .., 'i...,J

~11 L~ [FJ2 ~ 1 [Fh [PJJ r~ ~ L [~5 [P Js J~6 [P 16 4 where q1 = 75 lb/in (1.313 X 10 N/m)

q2 =100 lb/in (17,513 N/m)

Figure C-14. Complex beam loading and supports.

=1200 lb/in

(2.10 x 105N/m)

Dra

win

g of

the

Bea

"

A:

For

sect

ion

11:

Leng

th o

f th

is s

ecti

on ••

••••

••••

••••

••••

••• =

1.00

E-0

20 i

n M

odul

us o

f E

last

icit

y ••

••••

••••

••••

••••

••••

= 2.

00E+

007

psi

Are

a M

oMen

t of

Ine

rtia

••••

••••

••••

••••

••••

• = 1.4

4E+0

02 i

nt4

Sti

ffne

ss o

f Su

ppor

t •••

• ~ •

••••

••••

••••

••••

• = 1.2

0E+0

03 l

b/i

n

For

sect

ion

12:

Leng

th o

f th

is s

ecti

on ••

••••

••••

••••

••••

••• •

4.

80E+

002

in

Mod

ulus

of

Ela

stic

ity

••••

••••

••••

••••

••••

•• •

2.00

E+00

7 ps

i A

rea

MoM

ent

of I

nert

ia ••

••••

••••

••••

••••

••• =

1.44E

+002

int

4 L

eft

end

of l

inea

rly-

vari

ed d

ist.

lo

ad ••

••• •

7.

50E+

001

lb/i

n

Rig

ht e

nd o

f li

near

ly-v

arie

d d

ist.

lo

ad ••

•• •

1.00

E+00

2 lb

/in

S

tiff

ness

of

Supp

ort •

••••

••••

••••

••••

••••

•• =

1.20

E+00

3 lb

/in

Fo

r se

ctio

n 13

: Le

ngth

of

this

sec

tion

••••

••••

••••

••••

••••

• •

4.80

E+00

2 in

M

odul

us o

f E

last

icit

y ••

••••

••••

••••

••••

••••

• 2.

00E+

007

psi

Are

a H

onen

t of

Ine

rtia

••••

••••

••••

••••

••••

• •

1.44

E+00

2 in

t4

Sti

ffne

ss o

f Su

ppor

t •••

••••

••••

••••

••••

••••

• 1.

20E+

003

lb/i

n

For

sec ti

on 1

4:

Leng

th o

f th

is s

ecti

on ••

••••

••••

••••

••••

••• •

4.

80E+

002

in

Mod

ulus

of Elasticit~··•••••••••••••••••••••

2.00

E+00

7 ps

i A

rea

Ho"

ent

of I

nert

ia ••

••••

••••

••••

••••

••• •

1.

44E+

002

int4

M

agni

tude

of

unif

or"l

y di

stri

bute

d lo

ad ••

•• •

1.00

E+00

2 lb

/in

Fi

.gur

e C

-15.

Out

put

for

Exa

aple

C-)

.

.... \..> °'

Sti

ffn

ess

of S

uppo

rt ••

••••

••••

••••

••••

••••

• •

For

sect

ion

15:

Len

gth

of

this

sec

tion

••••

••••

••••

••••

••••

• •

Mod

ulus

of

Ela

stic

ity

••••

••••

••••

••••

••••

•• •

Are

a M

oMen

t of

In

erti

a ••

••••

••••

••••

••••

•••

• S

tiff

nes

s of

Sup

port

••••

••••

••••

••••

••••

•••

• Fo

r se

ctio

n 16

: L

engt

h of

th

is s

ecti

on ••

••••

••••

••••

••••

•••

= M

odul

us o

f E

last

icit

y ••

••••

••••

••••

••••

••••

=

Are

a M

oMen

t of

In

erti

a ••

••••

••••

••••

••••

••• =

Lef

t en

d of

lin

earl

y-va

ried

dis

t.

load

••••

• =

Rig

ht e

nd o

f li

nea

rly

-var

ied

dis

t.

load

••••

=

Sti

ffn

ess

of S

uppo

rt ••

••••

••••

••••

••••

••••

• =

Do y

ou w

ant

to c

hang

e th

e da

ta?

<Y o

r N>

H

t.20E

+003

lb

/in

4.80

E+0

02 i

n 2.

00E

+007

psi

1.

44E

+002

i r

1t4

1.20

E+0

0J l

b/i

n

4.80

E+0

02 i

n 2.

00E

+007

psi

1.

44E+

002

int4

1.

00E+

002

lb/i

n

7.50

E+00

1 lb

/in

1.

20E+

003

lb/i

n

How

Han

y in

creH

ents

wou

ld y

ou

lik

e to

hav

e fo

r ea

ch f

ield

sec

tion

?10

Figu

re C

-16.

Out

put

for

Exam

ple

C-)

,

.... ~

LEHG

TH

DEFL

ECT

I OH

SLOP

E MO

MEHT

SH

EAR

(in

) (i

n)

<Ra.

dian

> <

lb-i

n)

( 1 b

)

0.00

E+00

0 t.5

0E+0

01

-1.2

3E-0

01

0.00

E+0

00

0.00

E+0

00

1.00

E-0

21

1.50

E+00

1 -1

.23E

-001

0.

00E

+000

0.

00E

+000

2.

00E

-021

1.

50E+

001

-1.2

3E-0

01

0.00

E+0

00

0.00

E+0

00

3.00

E-0

21

1.50

E+00

1 -1

.2JE

-001

0.

00E

+000

0.

00E

+000

4.

00E

-021

1.

50E+

001

-1.2

3E-0

01

0.00

E+0

00

0.00

E+0

00

5.00

E-0

21

1.50

E+00

1 -1

.23E

-001

0.

00E+

000

0.00

E+0

00

6.00

E-0

21

1.50

E+00

1 -1

.23E

-001

0.

00E

+000

0.

00E

+000

7.

00E

-021

1.

50E+

001

-1.2

3E-0

01

0.00

E+00

0 0.

00£+

000

8.00

E-0

21

1.50

E+00

1 -1

.23E

-001

0.

00E

+000

0.

00£+

000

9.00

E-0

21

1.50

E+00

1 -1

.23£

-001

0.

00E+

000

0.00

E+0

00

t.00

E-0

20

1.50

E+00

1 -1

.23£

-001

0.

00E+

000

0.00

E+00

0 1.

00E

-020

1.

50E+

001

-1.2

3£-0

01

0.00

E+00

0 1.

80E+

004

4.80

E+00

1 2.

08E+

001

-1.1

6£-0

01

7.78

E+0

05

1.44

E+00

4 ....

9.60

E+00

1 2.

60E+

001

-9.7

8£-0

02

1.38

E+00

6 1.

06E+

004

\,,/,)

1.44

E+00

2 3.

01£+

001

-7.1

1£-0

02

1.79

E+00

6 6.

70E

+003

O>

1.92

E+00

2 3.

27E+

001

-3.9

0E-0

02

2.02

E+00

6 2.

68E

+003

2.

40E+

092

J.38

E+00

1 -4

.84E

-003

2.

05£+

006

-1.4

6E+0

03

2.88

£+00

2 3.

32E+

001

2.92

E-0

02.

1.88

E+00

6 -5

.72E

+003

3.

36£+

002

3.11

E+00

1 5.

66E

-002

1.

50E+

006

-1.0

1E+0

04

3.84

E+00

2 2.

79E+

001

7.69

E-0

02

9.06

E+00

5 -1

.46E

+004

4.

32E+

002

2.39

E+00

1 8.

56E

-002

9.

44E+

004

-1.9

2£+0

04

4.80

E+00

2 1.

99E+

001

7.98

E-0

02

-9.4

2E+0

05

-2.4

0E+0

04

4.80

E+00

2 1.

99E+

001

7.88

E-0

02

-9.4

2E+0

05

-4.2

9E+0

01

5.28

E+00

2 1.

65E+

001

6.JI

E-0

02

-9.4

4E+0

05

-4.2

9E+0

01

5.76

E+0

02

1.39

E+00

1 4.

74E

-002

-9

.46E

+005

-4

.29E

+001

6.

24E

+002

1.

20E+

001

3.16

£-00

2 -9

.48E

+005

-4

.29E

+001

6 .

. 72E

+002

1.

98E+

001

1.SS

E-0

02

-9.5

9E+0

05

-4.2

9E+0

01

7.20

E+00

2 1.

05E+

091

-7.2

8£-9

05

-9.5

2E+0

05

-4.2

9E+0

01

7.68

E+00

2 1.

09E+

001

-1. 6

0£-.0

02

-9.5

4E+0

05

--4.

29E

+001

8.

16E+

002

1.20

E+00

1 -3

.19E

-002

-9

.56E

+005

-4

.29E

+001

8.

64E+

002

1.39

£+00

1 -4

.78E

-002

-9

.58E

+005

-4

.29E

+001

9 .

. 12E

+092

1.

66E+

091

-6.J

SE-0

02

-9.6

0E+0

95

-4.2

9£+0

91

Figu

re C

-1?.

Out

put

for

Exam

ple

C-J

.

9.60

E+0

02

2.00

E+00

1 -7

.98E

-002

-9

.62E

+005

-4

.29E

+001

9.

60E+

002

2.00

E+00

1 -7

.98E

-002

-9

.62E

+005

2.

40E

+004

1.

01E+

003

2.41

E+00

1 -8

.69E

-002

7.

47E

+004

1.

92E+

004

1.06

E+00

3 2.

81E+

001

-7.8

6E-0

02

8.81

E+0

05

1.44

E+00

4 1.

10E+

003

3.15

E+00

1 -5

.SB

E-0

02

1.46

E+0

06

9.60

E+0

03

1.15

E+00

3 3.

J7E

+001

-3

.13E

-002

1.

80E

+006

4.

80E

+003

1.

20E+

003

3.44

E+00

1 -1

.07E

-014

1.

92E

+006

2.

JJE

-008

1.

25E+

003

3.37

E+00

1 3.

13E

-002

1.

80E

+006

·-

4.80

E+0

03

1.30

E+00

3 3.

15E+

001

5.88

£-00

2 1.

46E

+006

-9

.60E

+003

1.

34E+

003

2.81

E+00

1 7.

86E

-002

8.

81E

+005

-1

.44E

+004

1.

39E+

003

2.41

E+00

1 8.

69E

-002

7.

47E

+004

-1

.92E

+004

1.

44E+

003

2.00

E+00

1 7.

98E

-002

-9

.62E

+005

-2

.40E

+004

1.

44E+

003

2.00

E+00

1 7.

98E

-002

-9

.62E

+005

4.

29E+

001

1.49

E+00

3 1.

66E+

001

6.38

E-0

02

-9.6

0E+0

05

4.29

E+00

1 1.

54E+

003

1.39

E+00

1 4.

78E

-002

-9

.58E

+005

4.

29E+

001

1.58

E+00

3 1.

20E+

001

3.19

E-0

02

-9.5

6E+0

05

4.29

E+00

1 1.

63E+

003

1.09

E+00

1 1.

60E

-002

-9

.54E

+005

4.

29E+

001

.... 1.

68E+

003

1.05

E+00

1 7.

28E

-005

-9

.52E

+005

4.

29E+

001

~

1.73

E+00

3 1.

0SE+

001

-1.S

SE-0

02

-9.5

0E+0

05

4.29

E+00

1 t.7

SE+0

03

1.20

E+00

1 -3

.16E

-002

-9

.48E

+005

4.

29E+

001

1.82

E+00

3 1.

39E+

001

-4.7

4E-0

02

-9.4

6E+0

05

4.29

E+00

1 1.

87E+

003

1.65

E+00

1 -6

.31E

-002

-9

.44E

+005

4.

29E+

001

1.92

E+00

3 1.

99E+

001

-7.8

8E-0

02

-9.4

2E+0

05

4.29

E+00

1 1.

92E+

003

1.99

E+00

1 -7

.88E

-002

-9

.42E

+005

2.

40E+

004

1.97

E+00

3 2.

J9E+

001

-8.5

6E-0

02

9.44

E+0

04

1.92

E+00

4 2.

02E

+003

2.

79E+

001

-7.6

9E-0

02

9.06

E+0

05

1.46

E+00

4 2.

06E

+003

J.

11E+

001

-5.6

6E-0

02

1.50

E+0

06

1.01

E+00

4 2.

11E

+003

J.

32E

+001

-2

.82E

-002

1.

88E+

006

5.72

E+0

03

2.16

E+0

03

J.38

E+0

01

4.84

E-0

03

2.05

E+0

06

1.46

E+00

3 2.

21E

+003

J.

27E

+001

3.

90E

-002

2.

02E

+006

-2

.68E

+003

2.

26E

+003

3.

01E+

001

7.11

E-0

02

1.79

E+00

6 -6

.70E

+003

2.

J0E

+003

2.

60E+

001

9.78

E-0

02

1.38

E+00

6 -1

.06E

+004

2.

J5E

+003

2.

08E+

001

1.16

£-00

1 7.

78E+

005

-1.4

4E+0

04

2.40

E+0

03

t.50E

+001

1.

23£-

001

-4.0

6£-0

04

-1.8

0E+0

04

2.40

E+0

03

1.50

E+00

1 1.

23E

-001

-4

.06E

-004

2.

80E

-006

Fi

gure

C-1

8, O

utpu

t fo

r Ex

ampl

e c~J.

... g

1.se

2.

00

E+J

j

141

Weight of concentrated load = 3.5.59 N

Section #2

For field matrix, enter 1 for massless beam.

Length of this section

Modulus of elasticity

.Area moment of inertia

For point matrix,

Concentrated load

Moment

Stiffness of support

Support moment stiffness

Weight of concentrated load

Weight moment of inertia

= 0 • .508 m

= 2.068 X 1011 Pa

= 5 X 10-6 m4

= 7500 N

= 0 N-m

= 1.75 X 107 N/m

= 1130 N-m/rad

= 5338 N 2 = 0.287 N-m

For type of vibration, enter 1 for bending vibration.

Section #3

For field matrix, enter 0 for the last section.

Choose the boundary condition of fixed-free, enter 7.

Enter 10 increments for each section.

The micro-processor outputs the data and the deflection, slope, moment,

and shear diagrams, see Fig. C-21 to c-23.

142

Wt.=800 lb (J,559 N)

K=1 X 105 lb/in

(1.75 X 107 N/m)

P=1,686 lb (7,500 N)

Wt.=1200 lb (5JJ8 N)

T=1 X 104 lb-in/rad (1,1JO N-m/rad)

10'-' _.,....f--___ 20" -------~ (0.254 m) (0.508 m)

~---.... ~--""' "'"¥-' ...._...., ____ ~-----" '\.yJ

Figure C-20. Dynamically loaded shaft,

Dra

win

g of

the

Bea

M

DATA

: Fr

eque

ncy •

••••

••••

••••

••••

••••

••••

••••

••••

• =

1.00

E+00

1 ra

d/se

c Fo

r se

ctio

n 11

: L

engt

h of

th

is s

ecti

on ••

••••

••••

••••

••••

••• =

2.54

E-0

01 "

M

odul

us o

f E

last

icit

y ••

••••

••••

••••

••••

••••

= 2.

07E+

011

Pa

Are

a M

oHen

t of

In

erti

a ••

••••

••••

••••

••••

•••

= 5.

00E

-006

Mt4

M

agni

tude

of

Con

cent

rate

d W

eigh

t •••

••••

••••

= 3.

56E

+00J

H

For

sect

ion

12:

Len

gth

of t

his

sec

tion

••••

••••

••••

••••

••••

• =

5.08

E-0

01 "

M

odul

us o

f E

last

icit

y ••

••••

••••

••••

••••

••••

= 2.

97E+

011

Pa

Are

a M

oMen

t of

In

erti

a ••

••••

••••

••••

••••

••• =

5.99

E-0

06 M

t4

Mag

nitu

de o

f C

once

ntra

ted

Load

••••

••••

••••

• = 7

.50E

+003

H

Sti

ffne

ss o

f Su

ppor

t •••

••••

••••

••••

••••

••••

= 1.

7SE+

007

H/M

Su

ppor

t M

oMen

t S

tiff

ness

••••

••••

••••

••••

••• =

1.13

E+00

3 H

-M/ra

d M

agni

tude

of

Con

cent

rate

d W

eigh

t •••

••••

••••

m 5.

34E+

003

H

Wei

ght

MoR

ent

of I

ner

tia

<WRt

2)

abou

t a

diaH

eter

of

disc

or

eleM

ent •

••••

••••

••••

••• =

2.87

E-0

01 H

-Mt2

Do y

ou w

ant

to c

hang

e th

e da

ta?

<V o

r H>

N

How

Man

y in

cre"

ents

wou

ld y

ou

like

to

have

for

eac

h fi

eld

sec

tion

?10

Figu

re C

-21,

Out

put

for

Exam

ple

C-4

.

p

.... ~

LE HG

TH

DEFL

ECT

I OH

SLOP

E M

Ot1E

t .. T

SHEA

R (M

) (M

) (R

Gdi

Gn)

(H

-M)

(H)

0.00

E+00

0 0.

00E+

000

0.00

E+0

00

-1.6

4E+0

03

2.54

E-0

02

5.05

E-0

07

-3.9

6E-0

05

-1.5

9E+0

03

5.0B

E-0

02

2.00

E-0

06

-7.7

8E-0

05

-1.5

3E+0

03

7.62

E-0

02

4.45

E-0

06

-1.1

5E-0

04

-1.4

8E+0

03

1.02

E-0

01

7.81

E-0

06

-1.5

0E-0

04

-1.4

2E+0

03

1.27

E-0

01

1.21

E-0

05

-1.8

4E-0

04

-1.3

7E+0

03

1.52

E-0

01

1.72

E-0

05

-2.1

7E-0

04

-1.3

1E+0

03

1.78

E-0

01

2.31

E-0

05

-2.4

9E-0

04

-1.2

6E+0

03

2.03

E-0

01

2.98

E-0

05

-2.7

9E-0

04

-1.2

0E+0

03

2.29

E-0

01

3.73

E-0

05

-3.0

8E-0

04

-1.1

5E+0

03

2.54

E-0

01

4.54

E-0

05

-3.3

5E-0

04

-1.0

9E+e

03

2.54

E-0

01

4.54

E-0

05

-3.J

SE

-004

-1

.09E

+e03

3.

05E

-001

6.

JSE

-005

-3

.86E

-004

-9

.83E

+002

3.

56E

-001

8.

46E

-005

-4

.32E

-004

-8

.74E

+e02

4.

06E

-001

1.

08E

-004

-4

.72E

-004

-7

.6SE

+e02

4.

57E

-001

1.

32E

-004

-5

.07E

-004

-6

.55E

+e02

5.

08E

-001

1.

59E

-004

-5

.36E

-004

-5

.46E

+f02

5.

59E

-001

1.

87E

-004

-5

.60E

-004

-4

.37E

+002

6.

10E

-091

2.

16E

-004

-5

.79E

-004

-J

.27E

+002

6.

60E

-001

2.

46E

-004

-S

.93E

-004

-2

.18E

+002

7.

11E

-001

2.

76E

-004

-6

.01E

-004

-1

.09E

+002

7.

62E

-001

3.

07E

-004

-6

.03E

-004

6.

64E

-001

7.

62E

-001

3.

07E

-004

-6

.03E

-004

-1

.92E

-011

Do ~ou

wis

h to

see

the

gra

phs

for

def

lect

ion

, sl

ope,

M

OMen

t an

d sh

ear?

<Y

or H

>Y

Figu

re C

-22.

Out

put

for

Exam

ple

C-4

.

2.15

E+00

3 2.

15E+

003

2.15

E+00

3 2.

15E+

003

2.15

E+00

3 2.

15E+

003

2.15

E+00

3 2.

15E+

003

2.15

E+00

3 2.

15E+

003

2.15

E+0

0J

2.15

E+00

3 2.

15E+

003

2.15

E+00

3 2.

15E+

003

2.15

E+00

3 2.

15E+

003

2.1S

E+00

3 2.

15E+

003

2.1S

E+00

3 2.

1SE+

003

2.15

E+00

3 -1

.46E

-010

.... ~

Freq

uenc

y=10

rQ

d/se

c E-

4 2.

00

DEF

L.,

W

( ,., )

0.00

-2.0

0

E-4

SLOP

E,

S -5

.00

<rad

>

-10.

00

E+J

0.00

HO

HEHT

, M

<H

-M)

-1.0

0

-2.0

0

E+J

2.00

SH

EAR,

lJ

<H>

9.00

-2.ee

- -0.

00

2.00

LE

NGTH

(")

Fi

gure

C-2

3. O

utpu

t fo

r Ex

ampl

e C

-4. '·

·

.... ~

4.88

6.

00

E-1

APPENDIX B

APPENDIX.. B .1

PROGRAM LISTING --- FATIGUE ANALYSIS

146

150

IHIT

16

0 PA

GE

161

PRI

•*****

******

******

******

******

******

******

******

******

******

***"

162

PRI

•* *"

163

PRI

"* FA

TIGU

E AN

ALYS

IS P

ROGR

AM,

ANAL

YTIC

AL

*" 16

4 PR

I "*

tu

165

PRI

•* By

Yiu

Wah

Luk

, UP

I &

SU,

Spri

ng 1

978

*" 16

6 PR

I "*

*" 16

7 PR

I "**

******

******

******

******

******

******

******

******

******

******

" 17

0 1=

0 18

0 t1

1=0

190

M2=

0 20

0 F1

=0

210

F2=0

22

0 T1

=0

230

T2=0

....

240

J=0

-:S 25

0 V=

0 26

0 J5

=0

265

N1=0

27

0 DI

M A

$(1)

,8$(

6),C

$(J)

,0$(

5),E

$(J)

,F$(

31),

G$(

8)

280

PRIN

T "J

JVou

hav

e en

tere

d a

FATI

GUE

RESI

STAN

T,

INTE

RACT

IUE

DESI

GH

";

290

PRI

•rou

tine.

_CoM

pone

nts

wil

l be

siz

ed t

o pr

even

t fa

tigu

e fa

ilur

e."

300

PRIH

T "J

Do

you

wan

t to

use

Eng

lish

Uni

ts?

CY

or N

>";

310

INPU

T A$

32

0 IF

Af=

"V"

THEN

420

33

0 IF

Af<

>"H

• TH

EN 3

00

340

PRIH

T "J

Me

wil

l us

e S

I un

its

thro

ugho

ut t

his

rout

ine.

• 35

0 J=

J 36

0 8$

=•1"

111

370

C$=

11Pa

11

380

0$="

H-r1

" 39

0 E$

="H

11

400

G$=

"0eg

ree

C"

"'to:

:.t:.1

o

+-

incn

e::

:>--

430

C$=

11p

si11

440

D$=

11lb

-in

11

450

E$=

11lb

f11

460

G$=

11D

e9re

e F"

47

0 PR

INT

"JW

e w

ill

use

Eng

lish

Uni

ts

thro

ugho

ut

this

ro

uti

ne.

" 48

0 PR

INT

''JP

leas

e en

ter

the

stre

ngth

of

the

Mat

eria

l to

be

used

.J"

4 9

0 PR

It~ T

11 T

e n s

i 1 e

S

tr e n

g th

, i r

1 11

; C

$ ;

" ,

Su

= " ;

50

0 IN

PUT

S1

510

PRIN

T "Y

ield

Str

engt

h,

520

INPU

T S2

in

11

; C

$; "

, Sy

-

II

• -

' 53

0 PR

INT

"JD

o yo

u kn

ow

the

Sig

nif

ican

t E

ndur

ance

LiM

it o

f th

e ";

54

0 PR

INT

"Mnt

eria

l? C

Y or

H)"

; 55

0 IN

PUT

A$

560

IF A

$="Y

" TH

EN

590

570

GOSU

B 27

30

580

GO

TO

596

590

PRIN

T "S

igni

fica

nt E

ndur

ance

LiM

it,

in

";C

f;",

S

e'''

592

INPU

T SJ

59

4 J4

=1

596

GOSU

B 24

60

600

PAGE

64

0 PR

IHT

650

PRIN

T 66

0 PR

INT

670

PRIN

T 68

0 PR

INT

690

PRIN

T 70

0 PR

INT

?10

INPU

T 72

0 M

=1

· 730

=t

740

R1=1

75

0 R2

=1

"Sel

ect

the

fati

gue

fail

ure

li

ne

to b

e us

ed

in

ulf

Mod

ifie

d G

oodM

an

Fra

ctur

e L

ine,

en

ter

MGF

" "I

f M

odif

ied

Goo

dMan

Y

ield

Lin

e,

ente

r M

GY"

"If

Sod

erbe

rg L

ine,

en

ter

S"

"If

Ger

ber

Lin

e,

ente

r G"

•J

f Q

uadr

atic

Lin

e,

ente

r Q"

"I

f K

ecec

iogl

u L

ine,

en

ter

K"

Rf

-".

-

'

the

desi

9n.J

11

...... &

769

IF R

t••H

GF•

TH

EN 9

40

770

IF R

S••M

GV"

THEN

870

78

0 IF

R$=

"S"

THEH

940

79

0 IF

R$=

"G"

THEH

980

80

0 IF

Rt=

"Q"

THEH

10

20

810

IF R

$="K

" TH

EH

1070

82

0 PR

INT

"JV

our

resp

onse

May

hav

e be

en i

n er

ror;

TR

Y A

GA

IN.•

830

GO T

O 64

0 84

0 F$

="M

odif

ied

Good

Man

Fra

ctur

e L

ine.

" 85

0 Y=

0 86

0 GO

TO

1140

87

0 F$

="M

odif

ied

Good

Man

Yie

ld L

ine.

" 88

0 IF

J4=

1 TH

EH 9

10

890

V=1

900

GO

TO 9

30

910

R1=

S1/S

2 92

0 R

2=S2

/SJ

930

GO T

O 11

40

940

F$="

Sode

rber

g L

ine.

" 95

0 R1

=S1.J

S2

960

V=0

970

GO T

O 11

40

980

F$="

Ger

ber

Lin

e.•

990

P=2

10

00 '

(=0

1010

GO

TO

1140

10

20 F

t="Q

uadr

atic

Lin

e.•

1030

H=2

10

40 P

=2

1050

Y=0

10

60 G

O TO

11

40

1070

Ft=

"Kec

ecio

glu

Lin

e.•

1080

PRI

NT

•for

Kec

ecio

glu

Lin

e,

you

have

to

supp

ly K

ecec

iogl

u's

• 10

90 P

RIHT

"C

onst

ant

whi

ch i

s de

pend

ed o

n th

e M

ater

ial

prop

erty

.•

1100

PRI

NT

"Kec

ecio

glu'

s C

onst

ant,

H

• "J

... $

1110

INP

UT H

11

20 Y

=0

1130

P=2

11

40 P

RINT

•J

The

FQi1

ure

Lin

e se

lect

ed i

s •1

Ft

1150

IF

Y=1

TH

EN 1

189

1160

PRI

"T

he f

ailu

re e

quQ

tion

is (

SQ/(

R2*

Se'''

)tM

+

<Rl*

SM/S

u>tp

1.•

11

70 P

RI

"whe

re H

=•JH

;u_w

here

P="

1P;"

_whe

re R

1="1

R11

•_an

d w

here

R2=

";R2

1180

PRI

NT

•oo

you

wis

h to

chQ

nge

any

para

Met

ers?

CV

or H

>";

1190

INP

UT A

$ 12

00 I

F A

$="V

• TH

EN 6

40

1201

PR

IHT

•JTh

e fo

llow

ing

entr

ies

wil

l es

tabl

ish

the

liM

its

on a

Hal

f "

1202

PRI

NT "

Inte

rval

Sea

rch

for

the

solu

tion

to

your

pro

bleH

."

1210

PRI

HT

"Wha

t is

the

sM

alle

st b

asic

diM

ensi

on t

hat

you

wis

h to

try

?n

1220

PRI

NT •

Giv

e yo

ur a

nsw

er i

n ";

8$;•

. Do

not

ans

wer

0.0

. •;

12

30 J

5=0

1240

IH

PUT

01

1250

PRI

NT

•wha

t is

the

1Q

rges

t di

Hen

sion

, in

"18

$;"?

•;

1260

IHP

UT 0

2 12

70 D

4=Dl

12

80 D

3=D2

12

90 D

=DI

1300

GOS

UB 2

440

1310

IF

J4=

1 TH

EN 1

360

1320

GOS

UB 4

890

1330

IF

V=0

THE

N 13

60

1340

Rl=

S1/S

2 13

50 R

2=S2

/S3

1360

X1=

<A1/

(R2*

SJ))

tH+<

A2*

R1/

Sl)t

P-1

1370

FOR

T=l

TO

10

0 13

80 D

=<D

4+D

J)/2

13

90 G

OSUB

244

0 14

00

IF J

4=1

THEH

145

9 14

10 G

OSUB

489

0 14

20

IF V

=9 T

HEH

1450

14

30 R

1=S1

/S2

... 'cS

1440

R2•

S2.tS

3 14

50 X

2•<A

1.t<

R2*S

3>>t

H+<

A2*

R1.tS

l>tP

-1

1460

IF

ABS

<X2>

<•1.

0E-5

THE

N 15

40

1470

IF

X1*X

2<=0

THE

N 15

10

1480

04=

D 14

90 X

1=X2

15

00 G

O TO

15

20

1510

D3=

D 15

20 H

EXT

T 15

30 J

5=1

1540

PAG

E 15

50 P

RINT

USI

NG

•72•

"*••

":

1560

IMA

GE C

FD,1

x,s

1570

IMA

GE C

FD.2

0,1x

,s 15

80 P

RIHT

•J

Ten

sile

Str

engt

h,

Su •

••••

••••

••••

••••

••••

••••

• =

";

1590

PRI

NT U

SIHG

15

60:S

1 16

00 P

RINT

C$

1610

PRI

HT

"Yie

ld S

tren

gth,

SY

••••

••••

••••

••••

••••

••••

••••

=";

~

1620

PRI

NT U

SING

15

60:S

2 ~

1630

PRI

NT C

$ 16

31

IF N

1<=0

THE

N 16

40

1632

IF

H1=

>109

0000

THE

N 16

40

1633

PRI

NT

"Sig

nifi

cant

End

uran

ce L

iMit

, S

e'''@

";N

t;"

eye.

= ";

16

34 G

O TO

16

50

1640

PRI

HT

"Sig

nifi

cant

End

uran

ce L

iMit

, S

e''

for

infi

nit

e li

fe=

";

1650

PRI

NT U

SIHG

15

60:S

3 16

60 P

RIHT

Cf

1670

PRI

NT

"SM

alle

st d

iMen

sion

tri

ed ••

••••

••••

••••

••••

••••

=";

16

80 P

RIHT

USI

NG

1570

:01

1690

PRI

NT 8

$ 17

00 P

RINT

"L

arge

st d

iMen

sion

tri

ed ••

••••

••••

••••

••••

••••

• =•;

17

10 P

RINT

USI

NG

1570

:02

1720

PRI

NT 8

$ 17

30 P

RINT

"S

afet

y F

acto

r,

H••

••••

••••

••••

••••

••••

••••

••••

= "

I 17

40 P

RINT

USI

NG 1

570:

N

1759

PRI

NT

1760

IF

H1•

9 TH

EN 1

809

1770

PRI

NT

•Ho"

ent

caus

ing

alte

rnat

ing

stre

ss,

Mt •

••••

••••

=

"I

1780

PRI

NT U

SING

156

0:M

1 17

90 P

RIHT

D$

1800

IF

H2=

0 TH

EH

1840

18

10 P

RIHT

"M

o"en

t ca

usin

g a

stea

dy s

tres

s, H

2 •••

••••

••••

• = "

; 18

20 P

RIHT

USI

NG

1560

:H2

1830

PRI

HT D

S 18

40 I

F F1

=0 T

HEN

1880

18

50 P

RIHT

"A

lter

nati

ng a

xial

fo

rce,

·Ft

•••

••••

••••

••••

••••

= ";

1860

PRI

HT U

SIHG

156

0:F1

18

70 P

RINT

E$

1880

IF

F2=

0 TH

EH 1

920

1890

PRI

HT

•ste

ady

axia

l fo

rce,

F2

•••

••••

••••

••••

••••

••••

• =

•; 19

00 P

RIHT

USI

HG 1

560:

F2

1910

PRI

HT E

$ 19

20 I

F T1

=0 T

HEN

1960

19

30 P

RIHT

"A

lter

nati

ng t

orqu

e,

Tl •

••••

••••

••••

••••

••••

••• =

"; 19

40 P

RIHT

USI

HG

1560

:T1

1950

PRI

NT D

$ 19

60 I

F T2

=0

THEH

200

0 19

70 P

RINT

•s

tead

y to

rque

, 12

••••

••••

••••

••••

••••

••••

••••

• = •1

1980

PRI

NT U

SING

15

60:T

2 19

90 P

RINT

0$

2000

IF

J4=

1 TH

EH 2

210

2010

PRI

HT

"JTh

e fo

llow

ing

fact

ors

are

used

for

co"

puti

ng S

e'''

:"

2020

IM

AGE

CFD

.2D

20

30 P

RINT

"S

urfa

ce f

acto

r <K

a>

= "J

20

40 P

RINT

USI

NG 2

020:

K1

2050

PR

INT

usiz

e an

d sh

ape

fact

or <

Kb)

• "J

20

60 P

RINT

USI

HG 2

020:

K2

2070

PRI~T

"Rel

iabi

lity

fac

tor

<Kc>

"J

2080

PR

INT

USIN

G 20

20:K

3 20

90 P

RINT

•t

eMpe

ratu

re f

acto

r <K

d>

= "I

.... ~

2190

PRI

NT U

SIHG

202

9:K

4 21

10 P

RINT

"F

atig

ue S

tren

gth

Red

uctio

n f4

ctor

<Ke

>•

•;

2120

PRI

NT U

SING

292

9:K

5 21

30 P

RINT

•M

isce

114n

eous

f4c

tor

<Kf>

=

•; 21

40 P

RINT

USI

NG 2

020:

K6

2150

PRI

NT

•End

ur4n

ce L

i"it

for

Rot

4tin

g-be

4M S

peci

Men

<Se

'>

= ";

2160

PRI

NT U

SIHG

15

60:S

5 21

70 P

RINT

C$

2180

PRI

NT

"Sig

nifi

c4nt

End

ur4n

ce L

iHit

for

in

fin

ite

life

<Se

''>=

•;

2190

PRI

NT U

SIHG

15

60:S

6 22

00 P

RINT

C$

2210

PRI

HT

"JTh

e F

4ilu

re L

ine

sele

cted

is

•1Ft

22

20 P

RINT

"T

he f

4ilu

re e

quat

ion

is <

Sa/(

R2*

Se'''

)tM

+

CR1*

SM/S

u)tp

= 1

."

2230

PRI

•w

here

M=•

;M;"

_whe

re P

=";P

;•_w

here

R1=

";R

t;•_

and

whe

re R

2=";R

2 22

40

IF J

5=1

THEH

226

0 22

50 G

O TO

229

0 22

60 P

RINT

•JA

sol

utio

n do

es n

ot e

xist

in

your

spe

cifi

ed r

ange

of

" ~

2270

PRI

NT

•diH

ensi

ons.

Sor

ry a

bout

tha

t,

CHIE

F! •

•••

Plea

se t

ry a

gain

."

~

2280

GO

TO

1210

22

90 P

RINT

"JT

he d

esig

n di

Men

sion

is

•;

2300

PRI

HT U

SIHG

"c

fd.4

d,1x

,s•:

o 23

10 P

RINT

8$

2320

PRI

HT

2330

PRI

NT U

SING

•7

2u•*

••n:

23

31

IF J

=3 T

HEN

2340

23

32 P

RINT

"J

Do

you

wis

h to

con

vert

the

des

ign

di"e

nsio

n to

SI

";

2333

PRI

NT

•uni

t? C

V or

H>•

• 23

34 D

=D*B

.025

4 23

35 H

f="M

" 23

36 G

O TO

234

5 23

40 P

RINT

•JD

o yo

u w

ish

to c

onve

rt t

he d

esig

n di

Mcn

sion

to

Eng

lish

•;

2341

PR

INT

•uni

t? <

V or

H>•

• 23

42 D

=D*3

9.37

0978

74

2343

Htm

•inc

hes•

23

45

INPU

T Af

2346

IF

At•

•N"

THEH

236

4 23

47 I

F AS

<>"V

• TH

EN 2

331

2350

PRI

NT

•JTh

e de

sign

di"

ensi

on i

s "I

23

51

PRIH

T US

ING

"cfd

.4d,

lx,s

•:o

2352

PRI

NT H

$ 23

64 P

RINT

"J

Do

you

wis

h to

red

esig

n th

e co

"pon

ent

usin

g an

othe

r "

2366

PRI

HT

0fa

ilur

e li

ne?

War

ning

! A

Mod

ifie

d G

ood"

an a

ppro

ach

reQ

uire

s"

2368

PRI

NT

"bot

h a

frac

ture

and

a y

ield

ana

lysi

s.

<V o

r N

)•;

2370

INP

UT A

$ 23

80

IF A

$="Y

" TH

EN 6

40

2390

PRI

NT

"JD

o yo

u w

ant

to d

esig

n a

new

coff

pone

nt?

<Y o

r N>

"; 24

00 I

NPUT

A$

2410

IF

Af=

"Y"

THEN

150

24

20 P

RIHT

"J

JJ

---

END

---"

24

30 G

O TO

272

0 24

40 I

F I=

0 TH

EN 2

460

2450

GO

TO 6

000

2460

PAG

E 24

61

PRIH

T "Y

ou w

ill

now

be r

eque

sted

to

supp

ly t

he P

ARAM

ETRI

C DE

SIGN

•;

24

62 P

RIHT

"S

TRES

S_EQ

UATI

OHS

for

your

des

ign

prob

leM

."

2463

PRI

"Y

ou M

ust

wri

te t

hese

equ

atio

ns i

n BA

SIC.

U

se

the

foll

owin

g ";

24

64 P

RINT

"i

nstr

ucti

ons.

_If

you

are

unfa

Mil

iar

wit

h th

e de

velo

pMen

t •;

24

65 P

RIHT

"o

f su

ch e

quat

ions

,_se

e u

ser'

s gu

ide

and

its

appe

ndix

•;

2466

PRI

HT

"for

gui

danc

e."

2470

PRI

"E

nter

coM

pone

nt

load

s st

arti

ng

wit

h li

ne 6

000

incr

eMen

ting

";

2480

PRI

HT

"by

10

's."

24

90 P

RIN

T" U

se M

l=M

oMen

t ca

usin

gHHH

HHHH

____

___

alte

rnat

ing

stre

ss•;

24

95 P

RIHT

•c

";D

t;•>

."

2500

PRI

HT

" Us

e M

2=M

oMen

t ca

usin

gHHH

HHHH

____

___

a st

eady

str

ess

";

2505

PRI

HT

"C";

Dt;

•>."

25

19 P

RINT

Use

Ft=A

n al

tern

atin

g ax

ial

forc

e <

";E

t;•>

."

2520

PRI

NT

• Us

e F2

•A s

tead

y ax

ial

forc

e <

";E

t;">

."

2530

PR

INT•

Use

Tl=

An

alte

rnat

ing

torq

ue <

"JD

t1•>

."

2540

PR

INT"

Use

T2=

A st

eady

tor

Que

<

"ID

tJ•)

."

2550

PRI

HT

•Use

N

=Saf

ety

fact

or."

~

'$.

2560

PRI

NT

•Ent

er t

he n

uRar

ic v

alue

for

eac

h of

the

var

iabl

es u

sed

in •

25

70 P

RINT

•y

our

stre

ss e

quat

ions

._D

o th

is b

efor

e yo

u en

ter

your

"I

2580

PRI

HT

"str

ess

equa

tion

s."

2590

PRI

HT

"JE

nter

you

r st

ress

equ

9tio

ns s

tart

ing

wit

h li

ne 6

100

" 26

00 P

RINT

"i

ncre

Men

ting

by

10

's.•

26

10 P

RI

" U

se A

1=A

lter

nati

ng s

tres

s.

_Use

A2•

Mea

n st

ress

. _U

se P

I=";

26

20 P

RINT

"P

i.

_Use

D=B

asic

diM

ensi

on.

H.B

., A

ll di

"ens

ions

sho

uld

";

2630

PRI

NT

"be

give

n in

te

r"s

of D

. In

cas

e of

rec

tang

ular

coM

pone

nt,

";

2640

PRI

"u

se p

ropo

rtio

ns.

_Aft

er y

our

stre

ss e

quat

ions

are

ent

ered

, ";

26

50 P

RINT

•ty

pe a

nuR

bere

d re

turn

_sta

te"e

nt.

Then

ty

pe r

un 6

00."

26

60 P

R I H

T "E

XAM

PLE •

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

•••

II

2670

PRI

HT

•The

fo

llow

ing

equa

tion

s ar

e in

Eng

lish

Uni

t.•

2680

PRI

HT

"600

0 T2

=120

0.

_601

0 M

1=24

00.

_602

0 N

=1.8

_61

00 A

l=H

tMl/

11;

2690

PRI

HT

"<PI

*DfJ

/32>

_61

10 A

2=0.

866*

NtT

2/(P

l*D

tJ/J

2) _

6120

RET

URN

" 27

00 P

RINT

"R

UH 6

00J"

27

10

I=I+

l 27

20 E

HD

2730

REM

***

SUBR

OUTI

NE F

OR F

INDI

NG S

E'~'.

2740

REM

***

THI

S SE

CTIO

N CA

LCUL

ATES

Ka

<Kt>

. 27

50 J

4=2

2760

PRI

11LT

his

sect

ion

of t

he p

rogr~H

wil

l ca

lcul

ate

the

Sig

nifi

cant

"

2770

PRI

HT

"End

uran

ce L

iMit

.•

2780

PRI

HT

"JE

nter

the

I

for

the

type

s of

sur

face

fin

ish

used

."

2790

PRI

HT

"11

for

poli

shed

fin

ish.

u 28

00 P

RINT

"1

2 fo

r gr

ound

fin

ish.

" 28

10

PRIH

T "1

3 fo

r M

achi

ned

or c

old

draw

n."

2820

PRI

HT

"14

for

hot

roll

ed."

28

30 P

RINT

"I

S f

or a

s fo

rged

."

2840

IH

PUT

11

2850

IF

J=3

THE

N 28

80

2860

S8=

S1

2870

GO

TO 2

890

2880

S8=

S1*1

.450

3773

97E

-4

2890

GO

TO

11

OF 2

930,

2950

,297

0,29

98130

10

2909

PRI

NT

"JE

rror

' Y

our

inpu

t sh

ould

be

fro"

1 t

o 5,

bu

t yo

u ha

ve "

..... ~

2910

PRI

NT

"ent

ered

•11

11•.

Pl

ease

try

aga

in."

29

20 G

O TO

278

0 29

30 K

1=1

2940

GO

TO 3

020

2950

K1=

0.89

29

60

GO T

O 30

20

2970

K1=

-2.9

1E-1

7*S8

*SS*

S8+2

.9E-

11*S

8*S8

-4.9

5E-6

*S8+

1.06

4 29

80 G

O TO

302

0 29

90 K

1=-5

.77E

-17*

S8*S

8*S8

+3.4

1E-1

1*S8

*S8-

8.0E

-6*S

8+1.

066

3000

GO

TO 3

028

3010

K1=

-6.4

5E-1

7*SB

*S8*

S8+3

.6JE

-11*

S8tS

8-7.

87E-

6*S8

+0.8

9 30

20

IF K

1<=1

TH

EN 3

030

3022

K1=

1 30

26 R

EM **

* THI

S SE

CTIO

N CO

MPU

TES

Kc

CKJ>

. 30

30 P

RIHT

"J

Wha

t is

the

rel

iab

ilit

y i

n %

?"1

3040

IN

PUT

12

3050

P1=

100-

12

3060

IF

P1>

0 TH

EN 3

100

3070

PRI

NT

"Err

orl

The

reli

abil

ity

sho

uld

be

in%

, an

d ca

nnot

be

" 30

80 P

RINT

"g

reat

er t

han

100.

Pl

ease

try

aga

in.•

30

90 G

O TO

303

0 31

00 P

2=LG

T<P1

> 31

10 2

1=2.

37-0

.885

tP2-

0.19

3*P2

*P2-

0.05

02*P

2t3-

0.00

489*

P2t4

31

20 K

3=1-

0.08

*21

3130

REM

*** T

HIS

SECT

ION

COM

PUTE

S Kd

<K

4>.

3140

PRI

NT

0JW

hat

is

the

oper

atin

g te

Mpe

ratu

re i

n ";

Gt;

" ?"

; 31

50

IHPU

T IJ

31

60

IF J

<>J

THEN

318

0 31

70 1

3=9*

13/5

+32

3180

IF

IJ<

=160

THE

N 32

10

3190

K

4=62

0/(4

60+1

3)

3200

GO

TO 3

220

3210

K4=

1 32

20 R

EH **

* THI

S SE

CTIO

N CO

MPU

TES

Ke

<KS>

. 32

30 P

RINT

"J

Do

you

know

th

e T

heor

etic

al

Str

ess

Con

cent

rati

on "

J

.... ~

3249

PRI

NT

"Fttc

tor

<Kt>

?"I

3250

INP

UT A

$ 32

60 I

F A$

="Y"

TH

EN 3

398

3270

IF

At<

>"N

" TH

EN 3

230

3280

PRI

NT

"JTh

e fo

llow

ing

refe

renc

es w

ill

help

you

to

fin

d th

e "

3290

PRI

NT "

The

oret

ical

Str

ess

Con

cent

rati

on F

acto

r:"

3300

PRI

NT

"JR

.E.

Pete

rson

, S

tres

s C

once

ntra

tion

Fac

torHH

HHHH

HHHH

HHHH

H";

3310

PRI

HT

"HH

HH

HH

HH

HH

HH

----

----

----

----

----

----

---'

John

Wiley~

Sons

,"

3315

PRI

HT

"N.

Y.,

1974

."

3320

PRI

NT

"JJ.

E.

Shig

ley,

Hec

httn

ical

E

ngin

eeri

ng D

esign

HHHH

HHHH

HHH"

; 33

25 P

RIHT

"H

HH

HH

HH

HH

HH

HH

HH

HH

H--

----

----

----

----

----

----

---'

3rd

Ed.

,"

3330

PRI

HT

"McG

raw

-Hill

, 19

77,

p.

663-

670.

" 33

40 P

RI

"JA

.D.

Deu

tschM

an,

W.J.

M

iche

ls,

C.E

. W

ilson

, M

achi

ne D

esig

n";

3345

PRI

NT

"HHH

HHHH

HHHH

HHH _

____

____

____

_ ,•

3350

PRI

NT

"Mac

Mill

an P

ubli

shin

g C

o.,

Inc.

N

.Y.,

1975

, p

. 89

4-90

1."

3360

PRI

NT

"JL.

So

rs,

Fati

gue

Des

ign

of M

achi

ne C

oHpo

nents

HHHH

HHHH

"; 33

65 P

RINT

"H

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

H---

------

------

------

-----"

; 33

66 P

RIHT

"--

----

----

•"

· 33

70 P

RIHT

"Pe

rga"

on P

ress

, 19

71,

p. 4

2-84

of

part

II.

3372

PRI

HT

"JJD

o yo

u w

ish

to l

eave

.the

pro

gra"

to

look

up

the

Str

ess

" 33

73 P

RIHT

"C

once

ntra

tion

Fac

tors

? <V

or

H>";

3374

IN

PUT

A$

3375

IF

A$="

Y" T

HEN

2420

33

76

IF A

f<>"

H"

THEN

337

2 33

90 P

RINT

"J

The

oret

ical

Str

ess

Con

cent

rati

on F

acto

r =

"; 34

00

INPU

T 14

34

10 P

RIHT

"J

Do

you

know

Not

ch S

ensi

tivi

ty (

q)?

<Y o

r H

>";

3420

IHP

UT A

$ 34

30

IF A

$="H

" TH

EN 3

490

3440

IF

A$<>

"Y"

THEN

341

0 34

50 P

RIHT

"N

otch

Sen

siti

vity

(q)

"J

3460

J2=

1 34

70 I

NPUT

Q

3480

GO

TO 4

230

3490

PRI

NT

•wha

t is

the

not

ch r

adiu

s in

";B

fJ-?

"J

.... ~

3508

INP

UT R

35

10 P

RINT

•J

is t

he "

ater

ial

stee

l? <

V or

H>"

J 35

20 I

NPUT

A$

35

30 I

F At~"H"

THEH

409

0 35

40 I

F A

f<>"

V"

THEH

349

0 35

50 J

2=1

3560

IF

J<>J

THE

N 35

80

3570

R=R

*39.

3700

7874

35

80 P

RIHT

"I

s it

und

er b

endi

ng o

r ax

ial

load

ing?

<V

or H

>"J

3590

IHP

UT A

$ 36

00 I

F A$

="N"

TH

EN 4

020

3610

IF

A$(

)uyu

TH

EH 3

580

3620

IF

J=3

THEH

365

0 36

30 S

4=S1

36

40 G

O TO

366

0 36

50 S

4=S1

*1.4

5037

7397

E-4

3660

IF

S4>5

0000

THE

H 37

20

3670

IF

R<=

0.16

THE

N 37

00

3680

Q=0

.8

3690

GO

TO 4

230

3700

Q=-

882B

*Rt4

+334

5.3*

RtJ

-440

.94*

R*R

+24.

62*R

+0.1

8 37

10 G

O TO

423

0 37

20 I

F S4

>600

00 T

HEN

3780

37

30 I

F R

<=0.

16 T

HEN

3760

37

40 Q

=0.8

37

50 G

O TO

423

0 37

60 Q

=-70

31.2

S*R

t4+2

671.

9*R

tJ-3

53.1

3*R

t2+2

0.2*

R+0

.28

3770

GO

TO 4

230

3780

IF

S4>8

0000

THE

N 38

40

3790

IF

R>0

.16

THEN

382

0 38

00 Q

=-10

156.

25*R

t4+3

825*

RtJ

-497

.5*R

*R+2

7.05

*R+0

.23

3810

GO

TO 4

230

3820

Q=0

.9

3839

GO

TO

4230

38

40 I

F S4

>100

000

THEN

390

0

.... '<£

3859

IF

R>0

.15

THEN

389

9 38

60 Q

a-15

957.

39*R

t4+5

16S.

4iR

t3-6

96*R

*R+2

9.23

*R+0

.3

3870

GO

TO 4

230

3880

Q=0

.92

3890

GO

TO 4

230

3900

IF

S4>1

4000

0 TH

EN 3

970

3910

IF

R>0

.08

THEH

394

0 39

20 Q

=S43

1250

*Rt5

-123

6125

*Rt4

+194

242.

5*R

t3-4

010.

7*R

*R+7

1.06

*R+0

.33

3940

GO

TO 4

230

3950

Q=0

.92

3960

GO

TO 4

230

3970

IF

R>0

.06

THEN

409

0 39

80 Q

=-27

1319

*Rt4

+372

76.5

*Rt3

-177

1*R

*R+3

5.03

*R+0

.67

3990

GO

TO 4

230

4000

Q=0

.965

40

10 G

O TO

423

0 40

20 I

F S4

>600

00 T

HEN

4040

40

30 G

O TO

379

0 40

40 I

F S4

>800

00 T

HEN

4060

40

50 G

O TO

385

0 40

60 I

F S4

>120

000

THEN

408

0 40

70 G

O TO

392

0 40

80 G

O TO

397

0 40

90 P

RINT

u

Jis

the

"ate

rial

A

lu"i

nuM

all

oy?

CV o

r H

>";

4100

IN

PUT

At

4110

IF

At=

"N"

THEN

419

0 41

20 I

F A

t<>"

V"

THEN

409

0 41

30 J

2=2

4149

IF

R>0

.16

THEN

417

0 41

50 Q

=-88

15.2

*Rt4

+341

1.3*

Rt3

-462

.64*

R*R

+27.

85*R

+0.0

13

4160

GO

TO

4230

41

70 Q

•0.8

5 41

80 G

O TO

423

0 41

90 P

RIN

T ~Jsorry!

You

have

to

supp

y th

e N

otch

Sen

siti

vity

Fac

tor.

" 42

00 P

RIN

T "N

otch

Sen

siti

vity

(q)

"I

.... ~

4210

J2=

0 42

20 I

HPUT

Q

4230

K5=

1/(1

+Q*(

14-1

>>

4240

PRI

HT

•Jis

the

re a

ny "

isce

llan

eous

-eff

ect

fact

or?

<Y o

r H

>"I

4250

IH

PUT

A$

4260

IF

A

$•"Y

• TH

EH 4

300

4270

IF

A$<

>"H

" TH

EN 4

240

4280

K6=

1 42

90 G

O TO

432

0 43

00 P

RIHT

"M

isce

llan

eous

-eff

ect

Fac

tor=

•1

4310

IN

PUT

K6

4320

PRI

HT

"JTh

e S-

N c

urve

is

used

for

th

is d

eter

"ina

tion

. •

4321

PR

IHT

•A L

og-L

og o

r a

Log

-Lin

ear

S-N

cur

ve w

ill

be u

sed.

"

4322

PRI

NT

•The

fin

ite

life

reg

ion

is-0

.9*S

u @

1EJ

cycl

es t

o S

e''

";

4323

PRI

NT

"@1E

6 cy

cles

."

4329

PRI

NT

"Wha

t "e

thod

do

you

wan

t to

use

for

co"

puti

ng t

he "

43

30 P

RINT

"S

igni

fica

nt E

ndur

ance

LiM

it <

Se'

'')?"

43

40 P

RINT

"E

nter

11

for

Log-

Log

Met

hod.

" 43

50 P

RIHT

"E

nter

12

for

Log

-Lin

ear

Met

hod.

" 43

60 I

NPUT

J1

4370

GO

TO J

I OF

442

0,44

20

4380

PRI

NT

"JE

rror

' Y

our

inpu

t sh

ould

be

1 or

2,

but

you

hove

ent

ered

";

4390

PRI

NT J

1 44

00 P

RINT

"P

leas

e tr

y ag

ain.

"

4410

GO

TO 4

320

4420

REH

*** I

HFOR

MAT

IOH

FOR

COM

PUTI

NG K

b <S

IZE

FACT

OR>.

4430

IF

J2=

1 TH

EN 4

560

4440

PRI

HT

"Jis

the

Mat

eria

l li

ght

allo

y? <

V or

H>"

; 44

59

IHPU

T A

t 44

60

IF A

$="Y

" TH

EN 4

550

4470

IF

Af<

>"H

" TH

EH 4

440

4490

PRI

NT

"JSo

rry,

I

can

only

coM

pute

th

ose

for

stee

l an

d li

ght

allo

y."

4550

J2•

2 45

60 J

3=1

4570

PRI

NT

"Jls

the

cro

ss s

ecti

on·c

ircu

lar7

<V

or N

>"I

... g-

4580

INP

UT A

$ 45

90 I

F A

t=•v

• TH

EN 4

629

4600

IF

Af<

>•H

• TH

EN 4

579

4610

J3=

2 46

20 P

RINT

•J

oo y

ou k

now

th

e E

ndur

ance

LiM

it <

Se')

for

rota

ting

-bea

M "

46

30 P

RINT

"s

peci

Men

? CV

or

N)M

; 46

40 I

HPUT

A$

4650

IF

At=

"H"

THEN

470

0 46

60 I

F A

f<>"

V"

THEH

462

0 46

70 P

RIHT

"S

e'

in "

;C$;

" =

•; 46

80 I

NPUT

SS

4690

GO

TO 4

780

4700

IF

J=J

THEN

473

0 47

10 S

5=0.

StS1

47

20 G

O TO

474

9 47

30 S

5=0.

5*1.

4503

8E-4

*S1

4740

IF

55<

1000

00 T

HEN

4760

47

50 S

5=10

9000

~

4760

IF

J<>J

THE

H 47

80

~

4770

55=

S5i6

994.

757

4780

PRI

NT

•Jis

the

des

ign

life

inf

init

e? <

V or

N>•

; 47

90

INPU

T A

$ 49

00

IF A

$=•H

• TH

EN 4

940

4910

IF

A$<

>"V

" TH

EH 4

780

4820

H1=

0 48

30 G

O TO

499

0 49

40 P

RINT

•H

u"be

r of

cyc

les

= "J

48

50

INPU

T H

l 48

60

IF H

1<10

0009

0 TH

EN 4

880

4870

H1=

9 49

90 R

ETUR

N 48

90 R

EH **

* SUB

ROUT

INE

TO C

OMPU

TE S

e'''

WHI

CH D

EPEN

DS O

N D.

49

90 R

EH **

* THI

S PA

RT C

OMPU

TES

Kb

<K2>

. 49

10

IF J

•J T

HEN

4949

49

29 H

2•D

i25.

4

4930

GO

TO 4

950

4940

N2=

D*1

000

4950

GO

TO J

2 OF

496

0,49

79

4960

GO

TO J

J OF

498

0,59

40

4970

GO

TO J

J OF

510

0,50

60

4980

K2=

H2/

(-18

.75+

1.80

2*H

2)

4990

IF

H2>

2J T

HEN

5010

50

00 K

2=1

5010

IF

H2<

130

THEH

522

0 50

20 K

2=0.

59

5030

GO

TO 5

220

5040

K2=

0.50

61+7

.214

/H2

5050

IF

H2>

19 T

HEH

5070

50

60 K

2=0.

88

5070

IF

H2<

150

THEH

522

0 50

80

K2=

0.55

50

90 G

O TO

522

0 51

00 K

2=0.

515+

3.24

/H2

5110

IF

N2>7

THE

N 51

30

5120

K2=

1 51

30 I

F N2

<41

THEN

522

0 51

40 K

2=0.

59

5150

GO

TO 5

220

5160

K2=

9.59

61+2

.25/

H2

5170

IF

H2>

7 TH

EN 5

229

5180

K2=

9.88

51

90 I

F H

2<47

THE

N 52

20

5200

1<2

=0.5

5 52

10 R

EM**

* TH

IS S

ECTI

ON C

OMPU

TES

Se'''

• 52

20 S

6=A

BS<K

1*K

2*K

l*K

4*K

S*K

6*S5

) 52

30

S7=0

.9*S

1*K

4 52

40 I

F H

1=0

THEN

530

9 52

50 G

O TO

Jl

OF 5

260,

5289

52

60 S

3=10

t<<L

GT<

Hl)/

J-1>

*<LG

T<S6

>-LG

T<S7

>>+L

GT<

S7>>

52

70 G

O TO

531

0

... Rl'

\

5280

SJ•

S7+C

LGTC

H1>

/J-1>

*<S6

-S7>

52

90 G

O TO

531

9 53

00 S

J=S6

53

10 R

ETUR

N 60

00 T

2=12

00

6010

H1=

2400

60

20 H

=l.8

61

00 A

t=H

*M1/

CPl

*D*D

*D/3

2)

6110

A2=

0.86

6*H

*T2/

CPI

*D*D

*D/J

2)

6120

RET

URH

6500

EHD

'

~ °' \,

,.)

~

APPENDIX :B. 2

PROGRAM LISTING --- SECTION PROPERTIES

164

109

IHIT

11

0 PA

GE

120

PRI

"*****

******

******

******

******

******

******

******

******

******

***"

130

PRI

•* t"

14

0 PR

I •*

SECT

ION

PROP

ERTI

ES O

F PO

LVOH

AL S

ECTI

ON

*" 15

0 PR

I "*

*" 16

0 PR

I "*

By

Viu

Wmh

Luk

, VP

I &

SU,

Spri

ng 1

978

*" 17

0 PR

I "*

t"

180

PRI

"*****

******

******

******

******

******

******

******

******

******

***"

190

SET

DEGR

EES

200

DIH

XC

30>,

V<3

0>,X

1C11

,30)

,V1C

1J,3

0),D

1C21

,3>,

T<5>

,I<9>

,A$(

1),B

$<1>

21

0 DH

1 J1

<11)

22

0 T=

1 23

0 T5

=0

240

I=0

250

PRIH

T "J

JDo

you

won

t to

use

SI

unit

s? C

V or

H>•

s 26

0 IH

PUT

A$

270

IF A

$=•v

• TH

EH 3

50

280

IF A

S<>"

H• T

HEH

.250

29

0 PR

INT

"JW

e w

ill

use

Eng

lish

Uni

ts t

hrou

ghou

t th

is p

rogr

oM."

30

0 T5

=1

310

C$=

"inc

hes•

32

0 D

S="i

nt2"

33

0 F$

=•in

t411

340

GO T

O 39

0 35

0 C$

="M

r1"

360

DS=11

rtf1t

2•

370

F$:::

1111

Mt4•

38

0 PR

INT

"JW

e w

ill

use

SI u

nits

thr

ough

out

this

pro

grof

1.•

390

REH

*** EN

TER

DATA

FOR

BOU

NDAR

Y 40

0 PR

IHT

"Jis

the

out

er p

erif

1ete

r 4

circ

u14r

sec

tion

? <V

or

H>"

; 41

0 IN

PUT

A$

420

IF A

$=11H11

TH

EH 4

88

430

IF A

f<>•

v• T

HEN

390

.... ~

440

T<l>

-=2

450

PRIN

T •J

Rad

ius

of t

he c

ircl

e <"

ICSI

")

• •1

46

0 IH

PUT

Dt<

l,1)

47

0 GO

TO

590

480

PRI

"JJP

leas

e en

ter

the

X a

nd V

coo

rdin

ates

of

the

vert

ices

of

the

• 49

0 PR

IHT

"pol

ygon

<w

hich

Mus

t be

lo

cate

d en

tire

ly w

ithi

n th

e fi

rst

" 50

0 PR

INT

"qua

dran

t> s

eque

ntia

lly

for

a co

Mpl

ete,

cl

ockw

ise

path

aro

und"

51

0 PR

IHT

"the

pol

ygon

. U

nits

sho

uld

be "

JC$

;"."

52

0 PR

IHT

"Be

sure

to

end

wit

h th

e fi

rst

poin

t."

530

GOSU

B 43

80

540

J1(1

)=J

550

FOR

H=l

TO

J1(1

) 56

0 Xl

< 1,

tD=X

01)

570

V1<1

,t1>=

V<t1>

58

0 HE

XT H

59

0 PR

INT

"JA

re t

here

any

hol

es i

n th

e se

ctio

n? <

V or

H>"

; 60

0 IN

PUT

A$

610

IF A

$=•H

• TH

EH 1

040

620

IF A

$<>"

Yu T

HEH

590

630

REH

*** EH

TER

DATA

FOR

CIR

CULA

R HO

LES

640

PRIH

T •A

re t

here

any

cir

cula

r ho

les?

<V

or H

>";

650

INPU

T A$

66

0 IF

Af=

"H"

THEN

840

67

0 IF

AS<

>•V"

TH

EN 6

40

680

PRIH

T "H

ow "

any

circ

ular

hol

es a

re t

here

ins

ide

the

sect

ion?

•;

690

INPU

T 02

70

0 T<

2>=2

71

0 PR

INT

•Jfo

r ci

rcul

ar h

oles

giv

e:•

720

FOR

T1=1

TO

D2

730

PRIN

T •J

Rad

ius

of t

he c

ircu

lar

hole

1•1

111•

("

JC$

J")

• "I

74

0 IN

PUT

D1<

T1+1

,1)

750

PRIN

T •x

and

V c

oord

inat

es o

f th

e ce

nter

of

the

hole

1•1

Tll

" <"

JC$;

76

0 PR

INT

•> •

•1

770

INPU

T D

1<T

1+1,

2),0

1<T

1+1,

J)

780

NEXT

Tl

... ~

790

PRIN

T "J

Are

the

re a

ny p

olyg

on h

oles

? CV

or

N)"

J 80

0 IN

PUT

AS

810

IF A

S="N

• TH

EN 1

949

820

IF A

S<>"

V"

THEN

790

83

0 RE

M ***

ENTE

R DA

TA F

OR P

OLYG

ONAL

HOL

ES

840

PRIN

T •JH

ow M

any

poly

gon

hole

s ar

e th

ere

in t

he s

ecti

on?"

J 85

0 IN

PUT

DJ

869

IF T

<2>=

2 TH

EN 8

99

970

T<2>

=3

889

GO T

O 90

0 89

0 T

(2)=

4 ,

900

PRIH

T "J

For

poly

gon

hole

s:•

910

PRIN

T "E

nter

the

X a

nd V

coo

rdin

ates

of

each

ver

tice

s in

a

";

920

PRIN

T "c

oMpl

ete,

cl

ockw

ise

path

. U

nits

sho

uld

be •

;cs;

"."

930

PRIN

T "B

e su

re t

o en

d w

ith

the

firs

t po

int

of e

ach

hole

.J"

940

FOR

M=2

TO D

J+l

950

PRIN

T "F

or p

olyg

onal

ho

le l

";M

-1;"

:"

~

960

GOSU

B 43

80

~

970

J1(t

1)=J

98

0 FO

R t11

=1

TO J

1<H

> 99

0 X1

<M,H

l>=X

<H1>

10

00 V

1CM

,M1>

=V<M

1) 10

10 N

EXT

Ml

1020

PRI

NT

1030

NEX

T M

10

40 T

C4)=

1 10

50 T

<5>=

1 10

60 R

EH **

* SET

UP

FOR

CIR.

OR

POL

V.

BOUN

DARY

AND

DRA

W OU

TER

BOUN

DARY

10

70 G

O TO

T(1

) OF

110

0,10

90

1080

GOS

UB 4

580

1090

GO

TO 1

110

1100

GOS

UB 5

590

1110

GO

TO T

<2>

OF 1

630,

1130

,137

0,11

30

1120

REM

*** D

RAW

CIRC

ULAR

HOL

ES

1130

WIN

DOW

R<l

),R(2

),RC

5),R

C6)

1140

UIE

WPO

RT v

1,v2

,uJ,

V4

1150

FOR

Tl•

2 TO

D2+

1 11

60 C

=Dl<

Tl,l

>iPI

/18

1170

C1=

D1<

T1,2

>-D

l<T1

,1>

1180

C2z

Dl<

Tl,3

> 11

90 H

OVE

c1

,c2

1200

FOR

T2=

360

TO 0

STE

P -1

9 12

10 R

OTAT

E T2

12

20 R

DRAW

0,C

12

30 H

EXT

T2

1240

MOU

E D

1<T1

,2>+

<R<2

>-R

C1)

)/50,

D1C

T1,J

>+<R

<2>-

R<1

>>/S

0 12

50 T

<4>=

T<4>

+1

1260

8$=

CHR<

63+T

(4))

• 12

70 P

RINT

8$

1280

MOV

E D

1<T1

,2>,

D1<

T113)

12

90 S

CALE

1,

1 13

00 R

t10UE

-2

, 0

1310

RDR

AW 4

,9

1320

Rt10

UE -

2,2

1330

RDR

AW 0

,-4

1340

WIH

DOW

R<1

>,R

<2>,

RC

5),R

(6)

1350

HEX

T Tl

13

60 G

O TO

T<2

> OF

16

30,1

630,

1370

,137

0 13

70 W

INDO

M R

<1>,

R<2

>,R

C5>

,RC

6)

1380

UIE

WPO

RT u

1,v2

,uJ,

V4

1390

REH

*** D

RAW

POLY

GONA

L HO

LES

1400

FOR

T2=

2 TO

D3+

1 14

10 T

<4>=

T<4>

+1

1420

HOV

E X

1CT2

,1>+

<R<2

>-R

C1)

)/50,

V1<

T2,1

>+<R

<6>-

R<5

))/5

0 14

30 B

t=C

HR

<63+

T(4)

) 14

40 P

RINT

8$

1450

HOV

E X

l<T

2,1>

,v1c

r2,1

> 14

60 F

OR T

3•2

TO J

1<T2

> 14

70 D

RAW

XIC

T2,T

3>,V

1<T2

,T3>

14

80 H

EXT

T3

.... ~

1499

REM

*** D

RAM

DIAM

OND

OH E

ACH

POIN

T OF

POL

VCOH

AL H

OLE

1500

MOU

E X

t<T2

,1>,

Vl<

T2,1

> 15

10 F

OR T

J=t

TO J

l<T2

>-1

1520

MOV

E X

l<T2

,TJ>

,V1<

T2,T

3)

1530

SCA

LE 1

,1

1540

RHO

VE 1

90

1550

RDR

AW -

1,-1

15

60 R

DRAW

-1,

1 15

70 R

DRAW

1,1

15

80 R

DRAW

1,-

1 15

90 W

INDO

W R<

1>,R

<2>,

R<5>

,R<6

> 16

00 N

EXT

TJ

1610

HEX

T T2

16

20 R

EM **

* PRI

NT D

ATA

OH T

HE G

RAPH

16

30 W

INDO

W 0,

130,

0,10

0 16

40 V

IEW

PORT

0,4

0,0,

100

1650

MOU

E 0,

109

1660

PRI

HT "

All

data

are

in

•;ct

;".J

" 16

70 G

O TO

T<1

> OF

171

0,16

89

1680

PRI

NT

"Cir

. Se

ctio

n D

ata:

• 16

90 P

RIHT

uR

adiu

s =

•;D

1<1,

1>

1700

GO

TO 1

759

1710

PRI

NT

"Pol

y.

Dat

a (X

,Y>:

" 17

20 F

OR T

2=1

TO J

1<1>

-1

1730

PRI

HT "

l";T

2;•=

•1x

1<1,

T2>

;•,

•;vt

<1,T

2>

1740

NEX

T T2

17

50 G

O TO

T<2

> OF

195

0,17

60,1

850,

1760

17

60 P

RINT

17

70 F

OR T

4=2

TO 0

2+1

1780

T<S

>=T<

5>+1

17

90 8

$=CH

R<63

+T<S

>>

1800

PRI

HT "

Cir

. H

ole

1•1

et1"

' D

ata:

" 18

10 P

RIHT

"R

adiu

s• •

1D1<

T4,1

> 18

20 P

RIHT

"X

, Y

•1D

l<T4

,2>1

•,

•;D

l<T4

,3>

1830

NEX

T T4

... $

1849

GO

TO T

C2>

OF

1958

,195

0,18

59,1

850

1850

PRI

NT

1860

FOR

T2

•2 T

O D3

+1

1870

T<S

>=T<

S>+l

18

80 8

$=CH

R<6J

+T<S

>>

1890

PRI

NT •

Pol

y.H

ole'

•;B

tl"'

Dat

a <X

,Y>:

• 19

00 F

OR T

3=1

TO J

l<T2

>-1

1910

PRI

NT •

1";T

J;•=

"IX

1<T2

,T3>

1•,

"JY

1<T2

,TJ>

19

20 H

EXT

TJ

1930

HEX

T T2

19

40 R

EM **

* CHA

NGE

DATA

19

50 W

INDO

W 0

,130

,0,1

00

1960

UIE

WPO

RT 0

,130

,0,1

08

1970

MOV

E 12

7,13

19

80 P

RINT

ux

• 19

90 M

OUE

0,4

2000

PRI

NT

"Do

you

wan

t to

cha

nge

any

data

? <V

or

N>"I

2010

IH

PUT

A$

2020

IF

At=

•H•

THEH

252

0 20

30 I

F A$

<>"Y

• TH

EN 2

000

2040

T<3

>=1

2050

PRI

NT

"LPl

ease

ent

er 0

whe

n yo

u ha

ve f

inis

hed

chan

ging

dat

a."

2060

PRI

HT

"JD

o yo

u w

ant

to c

hang

e th

e da

ta f

or

the

oute

r bo

unda

ry?

" 20

70 P

RIHT

"<

V or

H>0

;

2080

IN

PUT

A$

2090

IF

At=

"H"

THEN

220

0 21

00

IF A

t<>"

Y•

THEH

206

0 21

10 G

O TO

T<l

> OF

217

0,21

20

2120

PRI

HT

"JFo

r C

ircu

lar

Bou

ndar

y:•

2130

PRI

NT

"Pre

sent

Rad

ius

<";C

$J0

) •

"JD

1<1,

1>

2140

PRI

NT

•Ent

er n

ew R

adiu

s <"

JCt;•

> •

"I

2150

IH

PUT

D1<

1,1>

21

60 G

O TO

220

0 21

70 P

RINT

•J

For

Poly

gona

l B

ound

ary:

• 21

80 T

1=1

.... .....,

0

2190

GOS

UB 6

000

2200

IF

TC

2)•1

THE

H 25

10

2210

PRI

HT

"JO

o yo

u w

ant

to c

hang

e th

e da

ta f

or

the

hole

s?

<V o

r N

>";

2220

IHP

UT A

S 22

30 I

F A

t="H

" TH

EH 2

510

2240

IF

AS<

>"V"

TH

EN 2

210

2250

GO

TO T

<2>

OF 2

510,

2260

,244

0,22

60

2260

FOR

T2

=2 T

O 02

+1

2270

T<3

>=TC

3)+1

22

80 B

$=CH

RC63

+TC3

)) 22

90 P

RINT

"JF

or C

ircu

lar

Hol

e '"

;Bf;

n' :

• 23

00 P

RINT

"P

rese

nt R

adiu

s ( 11

; C

f; 11.)

=

"; 01

CT2

,1)

2310

PRI

HT

"Ent

er n

ew R

adiu

s <•

;C$;

•>

= ";

23

20 I

HPUT

Hl

2330

IF

H1=0

THE

N 23

50

2340

D1C

T2,1

>=H

1 23

50 P

RIHT

"P

rese

nt c

oord

inat

e of

cen

tre

<X,Y

>,

in "

;Cf;

" =

";

2360

PRI

HT D

1<T2

,2>;

",

•;D

1CT2

,3)

2370

PRI

NT "

Ent

er n

ew c

oord

inat

e of

cen

tre

<X,Y

>,

in "

;Ct;•

= ";

2380

INP

UT H

2,H

3 23

90 I

F H2

=0 O

R H3

=0 T

HEH

2420

24

00 D

1CT2

,2>=

H2

2410

D1<

T2,J>

=H3

2420

NEX

T T2

24

30 G

O TO

T(2

) OF

2s1

0,2s

1e,2

449,

2449

24

40 F

OR T

2=2

TO 0

3+1

2450

T<3

>=TC

3)+1

24

60 8

$=CH

R<63

+T<3

>>

2470

PRI

NT

•JFo

r Po

lygo

nal

Hol

e 1•1

et1"

' :•

24

80 T

1=T2

24

90 G

OSUB

60

09

2500

NEX

T T2

25

10 G

O TO

19

49

2520

REH

*** C

ALCU

LATE

SEC

TION

PRO

PERT

IES

2530

GO

TO T

<t>

OF 2

540,

2960

..... ~

2540

K1•

J1<1

> 25

59 T

1•1

2560

GOS

UB 6

180

2570

A1=

A2

2580

X4=

X5

2590

V4=

V5

2600

1(

1)=1

1 26

10 1

(2)=

12

26

20 1

(3)=

13

2630

GO

TO T

<2>

OF 2

750,

2750

,264

0,26

40

2640

FOR

T2=

2 TO

03+

1 26

50 K

1=J1

<T2>

26

60 T

1=T2

26

70 G

OSUB

618

0 26

80 A

1=A1

-A2

2690

X4=

X4-X

5 27

00 V

4=V

4-V

5 27

10 I

<t>=

I<1>

-11

2720

1(2

)=1(

2)-1

2 27

30 I

<J>=

I<J>

-IJ

2740

HEX

T T2

27

50 X

4=X4

/A1

2760

Y4=

V4/A

1 27

70 G

O TO

TC2

) OF

327

8,27

80,3

279,

2789

27

80 J

4=X

4*A

1 27

90 J

5=V

4*A

1 28

00 F

OR T

2=2

TO 0

2+1

2810

A3=

PI*D

l<T2

,1>t

2 28

20 J

3=PI

*D1<

T2,

l>t4

/4

2830

J6=

J3+A

3*D

1CT2

,J>t

2 28

40 J

7•J3

+A3*

Dl<

T2,2

>t2

2850

J8=

A3*

D1<

T2,2

>*D

l<T2

,3)

2869

J4=

J4-D

1<T2

,2>*

A3

2879

J5c

J5-D

1CT2

,3>*

A3

2889

A1•

A1-

AJ

.... i\l

2899

I<1

>=I<

1>-J

6 29

00

1(2)

•1(2

)-J7

29

10

1(3)

•1(3

)-J8

29

20 H

EXT

T2

2930

X4=

J4/A

1 29

40 '

f4=J

5/A

1 29

50 G

O TO

327

0 29

60 A

l=Pl

*D1<

1,1>

t2

2970

X4=

D1<

1,1)

29

80 V

4=D

1<1,

1)

2990

I<

1>=5

*PI*

D1<

1,1)

t4/4

30

00

1(2)

=1(1

) 30

10 1

(3)=

Al*

X4*

V4

3020

GO

TO T

<2>

OF 3

270 1

2780

,393

0,30

30

3030

A3=

0 30

40 J

3=0

3050

J4=

0 30

60 J

5=0

3070

J6=

0 30

80 J

7=0

3090

FOR

T2=

2 TO

03+

1 31

00 K

1=Jl<

T2>

3110

T1=

T2

3120

GOS

UB 6

180

3130

J6=

J6+X

5 31

40 J

7=J7

+V5

3150

A3=

A3+A

2 31

60 J

3=J3

+11

3170

J4=

J4+1

2 31

80 J

5=J5

+13

3190

NE

XT

T2

3200

I<

1>=I

<1>-

J3

3210

1(

2)al

(2)-

J4

3220

I<

J>=I

<3>-

J5

3230

X

4=<X

4*A

1-J6

)/(A

1-A

3>

... "'-l

\...>

3249

V4=

<V4*

A1-

J7)/C

A1-

A3)

32

59 A

l=A

1-A

J 32

69 G

O TO

T<2

> OF

327

9,27

90,3

270,

2790

32

79 I

<4>=

I<1>

-Al*

V4*

V4

3280

I<S

>=I<

2>-A

l*X

4*X

4 32

90 I

<6>=

I<J>

-Al*

X4*

V4

3300

R6=

SQR

(l(l

)/A

1)

3310

R7=

SQR

(l(2

)/A

l)

3320

R8=

SQR<

I<4)

/A1>

33

30 R

9=SQ

R(l(

5)/A

1)

3340

IF

I<4>

-I<5

>=0

THEH

337

0 33

50 G

1=0.

S*A

TH<-

2*IC

6)/(

I<4>

-I<5

)))

3360

GO

TO 3

390

3370

G1=

0 33

80 I

MAGE

CFD

.20,

1x,s

33

90 P

RIHT

"L

***

SEC

TION

PRO

PERT

IES

OF l

HE

REQU

IRED

SEC

TION

***

" 34

00 P

RINT

•JA

reo

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

•••=

";

3410

PRI

HT U

SING

339

0:A

1 34

20 P

RINT

D$

3430

PRI

HT

•Jx

coor

dina

te o

f th

e ce

ntro

id ••

••••

••••

••••

••••

••••

• = "

; 34

40 P

RIHT

USI

NG 3

380:

X4

3450

PRI

NT C

$ 34

60 P

RIHT

•J

v co

ordi

nate

of

the

cent

roid

••••

••••

••••

••••

••••

•••

= ";

34

70 P

RINT

USI

NG 3

380:

V4

3480

PRI

NT C

t 34

90 P

RIHT

"J

Are

a M

o"en

t of

in

erti

a ab

out

X-a

xis •

••••

••••

••••

••• =

";

3500

PRI

NT U

SING

33

80:1

(1)

3510

PRI

NT

Ft

3520

PRI

NT

"JA

reo

"o"e

nt o

f in

erti

a ab

out

Y-a

xis •

••••

••••

••••

••• =

•; 35

30 P

RIN

T US

ING

3380

:1<2

> 35

40 P

RIN

T F

t 35

50 P

RIN

T "J

Are

o pr

oduc

t of

in

erti

a ••

••••

••••

••••

••••

••••

••••

•• =

";

3560

PRI

NT

USIN

G 33

80:1

<3>

3570

PRI

NT F

t 35

80 P

RIN

T •J

Are

o M

OMen

t of

in

erti

a ab

out

X'-

axis

tra

nsla

ted

to •

.... ~

3590

PRI

HT

"the

cen

troi

d ••

•••

~ ••

••••

••••

••••

••••

••••

••••

••••

••• ~

"I

3600

PRI

HT U

SIHG

338

0:1<

4>

3610

PRI

HT F

f 36

20 P

RINT

"J

Are

a M

OMen

t of

in

erti

a ab

out

V'-

axis

tra

nsla

ted

to "

36

30 P

RINT

"t

he c

entr

oid

••••

••••

••••

••••

••••

••••

••••

••••

••••

•••

= ";

36

40 P

RINT

USI

NG 3

380:

1<5>

36

50 P

RINT

Ft

3660

PRI

HT

"JA

rea

prod

uct

of i

ner

tia

abou

t tr

ansl

ated

axi

s •••

••• =

";

3670

PRI

NT U

SIHG

338

0:I<

6>

3680

PRI

NT F

$

3690

PRI

HT

"JA

ngle

bet

wee

n tr

4nsl

ated

axi

s an

d pr

inci

pal

axis

"

3700

PRI

NT "

<in

degr

ee),

po

siti

ve· i

s co

unte

r-cl

ockw

ise •

••••

••••

= "

; 37

10 P

RINT

USI

NG

"FD

.2D

":G1

3720

K2=

I<4>

*CO

S<G

1)+1

(5)*

SIH

<G1>

t2-IC

6>*S

IH<2

*G1>

37

30 K

J=I<

5>*C

OS<

Gl>

t2+1

<4>*

SIH

CG1>

t2+I

<6>*

SIH

<2*G

1)

3740

PRI

NT

"JA

rea

"oH

ent

of i

ner

tia

abou

t th

e tr

ansl

ated

, ro

tate

d,

" 3'~0

PRIN

T •

. .

1 V

II

• H

• (J

pr1n

c1pa

n

-axi

s •••

••••

••••

••••

••••

••••

••••

••••

•• =

'

3760

PRI

NT U

SIHG

338

0:K

2 37

70 P

RIHT

F$

3780

PRI

NT

"JA

rea

"o"e

nt o

f in

erti

4 ab

out

the

tran

slat

ed,

• 37

90 P

RINT

"r

otat

ed,

prin

cipa

l Y

''-ax

is ••

••••

••••

••••

••••

••••

•• =

";

38

00 P

RIHT

USI

NG 3

380:

K3

3810

PRI

NT F

$ 38

20 P

RINT

"J

JDo

you

wan

t to

get

are

a M

o"en

t of

in

erti

a ab

out

an

" 38

30 P

RIHT

"a

rbit

rary

axi

s? C

V or

N>"

I 38

40

INPU

T A$

38

50 I

F A

f=•N

" TH

EN 4

160

3860

IF

A$<>~Y"

THEN

382

8 38

70 P

RIHT

•J

Plea

se e

nter

the

ang

le b

etw

een

the

orig

inal

axi

s <X

-Y>

and"

38

80 P

RIHT

•a

rbit

rary

axi

s C

X'''

-Y'''

),

in d

egre

e,

posi

tive

is

" 38

90 P

RINT

"c

ount

er-c

lock

wis

e •••

••••

••••

••••

••••

••••

••••

••••

••••

•• =

"; 39

00

INPU

T G2

39

10 P

RINT

"E

nter

X-a

xis

coor

dina

te o

f th

e arbitrar~

axis

<";

Ct;•

>= "

; 39

20

INPU

T X6

39

30 P

RIHT

.,E

nter

Y-a

xis

coor

dina

te o

f th

e ar

bitr

ary

axis

<"J

C$;">

= ";

... ...., \.n

I ..4

3940

IHP

UT V

6 39

50 K

7=I<

4>+A

1*<Y

4-V

6>t2

39

60 K

9=I<

5>+A

1*<X

4-X

6>t2

39

70 K

9=1<

6>+A

1*<X

4-X

6>*<

V4-

V6)

39

80 I

<7>=

K7*

COS<

G2>

t2+K

9*SI

HCG

2>t2

-K9*

SIH

<2*G

2)

3990

I<9

>=K

8*CO

S<G

2>t2

+K7*

SIH

<G2>

t2+K

9*SI

H<2

*G2>

40

00 K

1=1<

7>+1

(8)

4010

IC9

)=0.

5*<K

7-K

9>*S

IH<2

*G2>

+K9*

COS<

2*G

2>

4020

PRI

HT

•JA

rea

Mo"

ent

of i

ner

tia

abou

t th

e ar

bit

rary

ax

is,X

''' ••

= ";

4030

PRI

HT U

SING

338

0:I<

7>

4040

PRI

NT F

S 40

50 P

RINT

"J

Are

a "o

Hen

t of

in

erti

a ab

out

the

arb

itra

ry a

xis

,V'''

•• =

";

4060

PRI

NT U

SING

338

0:IC

8)

4070

PRI

NT F

$ 40

80 P

RINT

"J

Pol

ar a

rea

MOM

ent

of i

ner

tia

abou

t th

e ar

bit

rary

"

4090

PRI

NT

"axi

s <

X'''

-V'''

)•••

••••

••••

••••

••••

••••

••••

••••

••••

•··=

41

00 P

RINT

USI

NG 3

380:

K1

4110

PRI

NT F

$ 41

20 P

RINT

"JA

rea

prod

uct

of i

ner

tia

abou

t th

e ar

bit

rary

4130

PRI

NT "

axis

<X

'''-V

''')•

••••

••••

••••

••••

••••

••••

••••

••••

••••

•=

4140

PRI

NT U

SING

338

0:1<

9>

4150

PRI

NT F

$ .

4160

PRI

NT

"JR

adiu

s of

gyr

atio

n ab

out

X-a

xis •

••••

••••

••••

••••

••••

•• =

41

70 P

RINT

USI

HG 3

380:

R6

4180

PRI

NT C

$ 41

90 P

RINT

"J

Rad

ius

of g

yrat

ion

abou

t Y

-axi

s •••

••••

••••

••••

••••

•••

,= 42

00 P

RINT

USI

HG 3

380:

R7

4210

PRI

NT C

f 42

20 P

RINT

"J

Rad

ius

of g

yrat

ion

abou

t X

'-ax

is t

rans

late

d to

II ;

a• ' II

• '

II •

' 42

30 P

RINT

"t

he c

entr

oid

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

•• =

";

4240

PRI

NT U

SING

JJ8

8:R

8 42

50 P

RINT

Cf

4260

PRI

NT

"JR

adiu

s of

gyr

atio

n ab

out

V'-

axis

tra

nsla

ted

to •

42

70 P

RINT

"t

he c

entr

oid

••••

••••

••••

••••

••••

••••

••••

••••

••••

••••

•• =

•; 42

80 P

RINT

USI

NG J

380:

R9

.... ~ °'

4290

PRI

HT C

t 43

00 P

RINT

"J

JJD

o yo

u w

ant

to f

ind

the

prop

erti

es o

f Q

noth

er s

ecti

on?

• 43

10 P

RIHT

"<V

or

H>"S

43

20 I

HPUT

A$

4330

IF

A$=

"Y"

THEH

100

43

40 I

F A

$<>"

H"

THEN

430

0 43

50 P

R I H

T "J

J---

----

----

----

----

--EH

D --

----

----

----

----

--"

4360

EHD

43

70 R

EH **

* EHT

ER D

ATA

FOR

POLY

GONA

L SE

CTIO

N 43

80 P

RINT

"X

<l>,

VC

1)

= "I

43

90 I

NPUT

X<1

>,Y<

1>

4400

IF

X<1

>=>0

AHD

Y<1

>=>0

THE

H 44

50

4410

PRI

NT

"JE

rror

! Y

our

poly

gon

shou

ld b

e lo

c4te

d en

tire

ly w

ithi

n th

e "

4420

PRI

NT "

firs

t qu

4dr4

nt,

thQ

t is

, X

4nd

V b

oth

have

to

be p

osit

ive.

" 44

30 P

RIHT

"P

leas

e tr

y ag

Qin

."

4440

GO

TO 4

380

4450

J=2

44

60 P

RIHT

"X

<";J;

">,

vc•;

J;">

• "

; 44

70 I

NPUT

X<J

>,Y

<J>

4480

IF

X<J

>=>0

AH

D Y

<J>=

>0 T

HEN

4530

44

90 P

RIHT

•JE

rror

! Y

our

poly

gon

shou

ld b

e lo

cate

d en

tire

ly w

ithi

n th

e "

4500

PRI

HT "

firs

t qu

adr4

nt,

th4t

is,

X 4

nd Y

bot

h ha

ve t

o be

pos

itiv

e."

4510

PRI

NT

"Ple

ase

try

agQ

in."

45

20 G

O TO

43

80

4530

IF

X<J

>=X

<l>

AND

Y<J

>=Y

<l>

THEN

456

0 45

40 J

=J+1

45

50 G

O TO

446

0 45

60 R

ETUR

N 45

70 R

EM *

** S

ET U

P W

IHDO

W,

VIEW

PORT

AND

AXI

S FO

R CI

RCUL

AR S

ECTI

OH.

4580

W1=

0 45

90 M

2=2*

D1<

1,1)

46

00 M

3=0

4610

M4=

2*D

1<1,

1)

4620

V1=

40

4630

V2=

130

.... ~

4640

V3=

5 46

50 U

4•95

46

60 G

OSUB

476

0 46

70 W

5=<R

<2>-

R<l

))/2

46

80 W

6=(R

<6>-

R(5

))/2

46

90 R

EM **

* DRA

W CI

RCUL

AR B

OUND

ARY

4700

WIN

DOW

-W

5,W

5,-W

5,W

5 47

10 V

IEW

PORT

u1,

u2,u

3,u4

47

20 E

=D1<

1,1)

47

30 G

OSUB

554

0 47

40 R

ETUR

H 47

50 R

EM **

* LAB

EL

"HEA

T"

TIC

4760

PRI

NT

"L

Y

GRAP

H OF

IN

PUT

SECT

ION"

47

70 l

J1=l

J1+1

0.8

4780

UJ=

U3+

8.4

4790

UIE

WPO

RT u

1,v2

,u3,

u4

4800

DIM

R<

8)

4810

R<1

>=W

1 48

20 R

<2>=

W2

4830

R<J

>=IH

T<<l

J2-U

1)/(8

*1.S

>> M

AX

1 48

40 R

<S>=

W3

4850

R<6

>=W

4 48

60 R

<7>=

IHT<

<V4-

U3)

/(3*2

.8))

MAX

1 48

70 R

EM *

** CA

LCUL

ATE

HEW

LIM

ITS

AND

INTE

RVAL

S 48

80 R

S=J

4890

GOS

UB 5

040

4900

RS=

? 49

10 G

OSUB

504

0 49

20 W

INDO

W R

<1>,

R<2>

,R<S

>,RC

6>

4930

REM

AXI

S R<

J>,R

<7>,

R<l>

+R<J

>,RC

5)+R

(7)

4940

AX

IS

R<J>

,R<7

> 49

50 R

EM **

* LAB

EL T

HEM

4960

R5

=4

4970

E$=

"1:U

:lt:tJJ

" 49

80 G

OSUB

533

0

... ......

CJ)

4990

R5=

8 50

00 £

$a•tn

U:H:

U::I"

50

10 G

OSUB

533

0 50

20 H

OME

5030

RET

URN

5040

REH

*** R

<R5>

HIHI

HUM

HO.

OF

TIC

S 50

50 R

1=<R

<R5-

1>-R

<R5-

2))/R

(R5)

50

60 R

2=10

tlNT<

LGT<

R1>>

50

70 R

1=R1

/R2

5080

IF

R1>2

THE

N 51

20

5090

IF

R1=1

TH

EN 5

160

5100

R2=

2*R2

51

10 G

O TO

516

0 51

20 I

F R1

>5 T

HEN

5150

51

30 R

2=5*

R2

5140

GO

TO 5

160

5150

R2=

10*R

2 51

60 R

EM *

** A

DJUS

T DA

TA M

IN

5170

R1=

IHT<

R<R5

-2)/R

2>

5180

R3=

R2*<

R1+2

> 51

90 I

F RJ

<R<R

S-2)

TH

EN 5

220

5200

R3=

R3-R

2 52

10 G

O TO

519

0 52

20 R

<R5-

2>=R

3 52

30 R

EH *

** A

DJUS

T DA

TA H

AX

5240

R1=

IHT<

R<R5

-1)/R

2>

5250

R3=

R2t<

R1-2

) 52

60

IF R

<R5-

1><R

3 TH

EN 5

290

5270

R3=

R3+R

2 52

80 G

O TO

526

0 52

90 R

.( R5

-1 )

=R3

5300

REM

*** R

CR5>

ADJU

ST T

IC

INTE

RVAL

53

10 R

<R5>

-=R2

53

20 R

ETUR

N 53

30 R

EM L

ABEL

AXI

S

.... ~

5340

R4•

R<R5

-1)

5350

R(4

)•R

<l)

5360

R<8

)•R

C5)

53

70 R

3=AB

S<R<

R5-3

>+R4

) HA

X A

BS<R

<R5-

2>-R

4)

5380

R3=

IHT<

LGT<

R3)+

1.9E

-8)

5390

R2=

10t-

R3

5400

R1=

R<R

S-2>

-R4/

2 54

10 R

<RS>

=R<R

5)+R

4 54

20

IF R

<RS>

>Rt

THEN

547

0 54

30 M

OUE

R<4>

,R<B

> 54

40 P

RINT

E$;

54

50 P

RIHT

USI

HG

·-o.

20,s

•:R

<R5>

*R2

5460

GO

TO 5

410

5470

IF

R3=

0 TH

EH 5

520

5480

R<R

5>=R

1 54

90 M

OVE

R<4>

,R<B

> 55

00 P

RIHT

E$;

55

10 P

RIHT

USIH

G •J

A,+

Fo,s

•:•

E•;R

J 55

20 R

ETUR

N 55

30 R

EM **

* TO

DRAW

A C

IRCL

E 55

40 M

OVE

E,0

5550

FOR

T1=

10 T

O 36

0 ST

EP 1

0 55

60 D

RAW

E*CO

S<T1

>,E*

SIH<

T1>

5570

NEX

T T1

55

80 R

ETUR

N 55

90 R

EM **

* SET

UP

FOR

POLY

GONA

L SE

CTIO

N 56

00 G

OSUB

582

0 56

10 H

l=XB

HIN

VB

5620

M2=

X9 M

AX V

9 56

30 W

1=t11

56

40 W

2=H2

5l

i50

W3=

H1

5660

W

4=f12

56

70 V

1=40

56

80 l

)2=1

30

... ~

5690

t)3

•5

5700

lJ4

sa95

57

10 G

OSUB

476

9 57

20 M

OUE

X1<

1,1)

,V1<

1,1)

57

30 F

OR T

2=2

TO

J1(1

) 57

40 D

RAW

X1<

1,T2

>,V

1<1,

T2>

5750

HEX

T T2

57

60 F

OR T

2=1

TO J

t<l>

-1

5770

MOU

E X

1<1,

T2>,

V1<

1,T2

) 57

80 P

RINT

T2

5790

HEX

T T2

58

00 R

ETUR

N .

5810

REM

*** F

IND

THE

HIN

AND

MAX

OF

X1CJ

1>

AND

V1<

J1)

5820

REM

*** X

8,V8

ARE

MIN

I X

9,V9

ARE

MAX

5830

XB=

X1C1

,1>

5840

V8=

V1<1

,1>

5850

FOR

M=1

TO

J1<

1>-1

58

60

IF X

1(1,

H>=

>X9

THEN

588

0 58

70 X

8=X

1<1,

'1)

5880

IF

Vl<

l,H>=

>VS

THEN

590

0 58

90 V

8=V1

<1,M

> 59

00 N

EXT

M

5910

X9=

X1<1

,1>

5920

V9=

V1<1

,1>

5930

FOR

H=1

TO

J1<

1>-1

59

40

IF X

1<1,H

><=X

9 TH

EN 5

960

5950

X9=

X1<1

,H>

5960

IF

V1<

1,H

><•V

9 TH

EN 5

989

5970

Y9

:sV1<

1,r1>

59

80 N

EXT

M

5990

RET

URN

6000

REM

*** S

UBRO

UTIN

E FO

R CH

ANGI

NG D

ATA

OF P

OLVG

OHAL

SEC

TION

60

10 P

RINT

•E

nter

poi

nt I

•1

6020

IH

PUT

Ht

6030

IF

H1•

8 TH

EN 6

160

.... f!i

6040

IF

Ht<•Jt<T1)~1

THEN

609

0 60

59 P

RINT

•J

Err

or!

You

h4ve

onl

y •1

Jt<T

1>-1

1" d

4t4,

yo

ur i

nput

"JH

1;

6060

PRI

HT

•is

out

of

your

d4t

d r4

nge.

" 60

70 P

RIHT

•p

1e4s

e tr

y «9

4in.

" 60

80 G

O TO

691

0 60

90 P

RIHT

"P

rese

nt v

«lue

s <X

,V>,

in

"1C

s1•

•"JX

1<T1

,H1>

;•,

"JV

1<T1

,H1>

61

00 P

RINT

"E

nter

new

Vdl

ues

CX,V

>,

in "

IC$1

"•"1

61

10 I

HPUT

X1C

T1,H

l),V

1CT1

,H1>

61

20

IF H

1<>1

TH

EN 6

150

6130

X1<

Tt,J1

<T1)

)=X

1<T1

,1>

6140

V1C

T1,J1

<T1>

>=V

1CT1

,1)

6150

GO

TO 6

010

6160

RET

URH

6170

REM

***

SUBR

OUTI

NE T

O CA

LC.

A,x

,v,1

x,Iy

,lxy

FOR

POL

YGON

AL S

ECTI

OH

6180

A2=

0 61

90 X

5=0

6200

V5=

0 ~

6210

11=

0 N

62

20 1

2=0

6230

13

=0

6240

FOR

K=I

TO

Kl-1

62

50 A

2=A

2-<V

1<T1

,K+1

>-V

l<Tt

,K>>

*<X

1<T1

,K+1

)+X

1<Tt

,K>>

/2

6260

B1=

<V1<

T1,K

+1)-V

1<T1

,K>>

/8

6270

C1=

<X1<

Tt,K

+1)+

X1C

T1,K

>>t2

+<X

1<Tt

,K+1

)-X1<

T1,K

>>t2

/J 62

80 X

S=XS

-B1*

C1

6290

B2=

<X1C

T1,K

+1)-X

1<T1

,K))/

8 63

00 C

2=<V

l<T1

,K+1

)+V

1CT1

,K>>

t2+<

V1C

T1,K

+1)-V

1CT1

,K>>

t2/J

6310

V5=

V5+B

2*C2

63

20 B

J=<X

1<T1

,K+1

>-X

1<T1

,K>>

*<V

t<T1

,K+1

>+V

1<T1

,K>>

/24

6330

CJ

=CV

1CT1

,K+1

)+V

1<Tt

,K>>

t2+<

V1<

T1,K

+1)-V

l<T1

,K>>

t2

6340

11=

11+B

3*C3

63

50 B

4=<V

1CT1

,K+1

>-Y

1<Tl

,K>>

*<X

1CT1

,K+1

>+X

1CT1

,K)>

/24

6360

C4=

<X1<

Tl,K

+1>+

Xl<

T1,K

>>t2

+<X

1<T1

,K+1

)-X1C

T1,K

>>t2

63

70

I2=I

2-B

4*C

4 63

80

IF X

1<T1

,K+1

>-X

1CT1

,K>•

0 TH

EN 6

460

6390

B5•

<Vl<

T1,K

+1>-

Vl<

T1,K

>>t2

*<X

1(T1

,K+1

>+X

l<T1

,K>>

64

00 B

5=B

5*<X

l<T1

,K+l

)t2+X

1<T1

,K>t

2)/8

64

10 C

5=<V

l<Tl

,K+1

>-V

1<T1

,K>>

*<X

t<Tt

,K+l

>*V

l<T1

,K>-

X1<

T1,K

>*Y

1CT1

,K+l

)) 64

20 C

5=C5

*<X

1<T1

,K+l

>t2+

Xl<

T1,K

+1)*

Xl<

T1,K

>+X

1<Tt

,K>t

2>/3

64

30 C

6=<X

l<T1

,K+1

>*V

l<T1

,K>-

Xl<

T1,K

>*V

1<T1

,K+l

))t2

6440

C6=

C6*<

X1<

T1,K

+1>+

X1<

T1,K

>>/4

64

50 1

3=13

+CB5

+C5+

C6)/(

X1<

T1,K

+1>-

X1<

T1,K

)) 64

60 H

EXT

K

6470

RET

URH

... ~

• J

APPENDIX B.J.1

PROGRAM LISI'ING --- BF.AM ANALYSIS (PAR!' I)

184

100

HU

T 11

0 PA

GE

115

SET

DEGR

EES

120

DIM

T<S

,5>,

Tt<S

,5>,

T2<5

15>

,T3<

5>,S

<S>,

Af(

1),F

(30)

,L(3

0>,E

C30

> 12

2 DI

M

11<3

0>,P

<30>

,Q1<

30),

Q2(

30>,

K1C

30),

K2<

30),

p1(3

0),M

5<30

>,M

<30)

12

4 DI

M A

<2,3

>,I2

C30

) 13

0 GO

SUB

6000

13

1 T=

T1

132

P1=0

13

3 M

5=0

134

K1=0

13

5 K2

=0

136

Q1=0

13

7 Q2

=0

139

M=0

14

2 L=

0 15

0 S=

0 15

1 S<

5>=1

15

2 J$

=11ra

d.l's

ec•

200

PRI

"*****

******

******

******

******

******

******

******

******

******

***•

201

PRI

"* *"

210

PRI

"* TH

IS I

S A

BEA

M AN

ALYS

IS P

ROGR

AM W

HICH

SOL

VES

STAT

IC O

R *"

220

PRI

•* DY

NAMI

C <F

ORCE

D,

UNDA

MPED

VIB

RATI

ON>

RESP

ONSE

. *"

221

PRI

"* tu

22

2 PR

I "*

by Y

iu W

ah L

uk,

advi

sed

by P

rofe

ssor

Lar

ry D

. M

itch

ell

*" 22

3 PR

I •*

Vir

gini

a P

olyt

echn

ic

Inst

itu

te a

nd S

tate

Uni

vers

ity

*" 22

4 PR

I 11*

Dep

artR

ent

of M

echa

nica

l E

ngin

eeri

ng

*" 22

5 PR

I •*

Spri

ng 1

978

*" 22

6 PR

I "*

*" 22

7 PR

I •**

******

******

******

******

******

******

******

******

******

******

" 23

0 PR

INT

"JJD

o yo

u w

ant

to u

se E

ngli

sh u

nits

? <Y

or

N>"I

240

INPU

T A$

25

0 IF

Af=

"Y"

THEN

339

26

0 IF

Af<

>•N

• TH

EN 2

19

... &

270

PRIH

T "J

JSI

unit

s w

ill

be u

sed

thro

ugho

ut t

his

prog

raM

."

280

U=t

28

5 G

=9.8

06

290

8$=

11N,

,,.1•

300

C$="

H"

310

D$=u

t'111

311

E$="

Pa."

31

2 FS

="r1

t411

316

G$=

11H

-N11

318

K$=

11H

-11t

2•

319

L$=

11H-

f"1/rC

ld11

______

__ 32

0 GO

TO

380

330

U=2

335

G=3

86.0

88

340

8$=

11lb

/in•

35

0 C

$="1

b"

360

D$=

11in

11

362

E$=11

psi11

364

F$=

11in

t411

366

G$=

11lb

-in•

36

8 K$

=11lb

-int

2•

369

L$=

"1b-

in/r

ad"

------

.470

PRIN

T "J

JEng

lish

uni

ts w

ill

be u

sed

thro

ugho

ut t

his

prog

raH

."

380

PRIN

T •J

is t

his

a s

tati

c an

alys

is?

<Y o

r H

>";

390

INPU

T A$

39

5 U

1=1

396

W=0

40

0 IF

A$=

"V"

THEN

460

41

0 IF

At<

>"H

" TH

EN 3

90

420

U1=

2 43

0 PR

IHT

11JS

0 th

is i

s a

dyna

"ic

a.na

lysi

s.•

440

PRIN

T "E

nter

fre

Que

ncy

<"I

J$;"

>

a•J

------

-442

IN

PUT

W

460

PRIN

T "J

Plea

se d

ivid

e yo

ur b

eaM

in

to s

ever

al

fiel

d se

ctio

ns,"

47

0 PR

IHT

"a.n

d en

ter

the

info

rHa.

tion

reQ

uire

d fo

r ea

.ch

sect

ion.

"

... ~

475

PRIH

T •H

.B.

Alw

ays

std

rt f

ro"

the

left

end

."

476

PRIN

T "J

JPre

ss R

ETUR

N to

pro

ceed

."

477

INPU

T A$

47

8 IF

A$(

)"

" TH

EN 4

80

480

H=

l 49

0 PR

IHT

"LFo

r se

ctio

n l"

;H;"

:"

500

PRIH

T "T

he

foll

owin

g F

ield

Mat

rice

s ar

e Q

Vdi

labl

e.•

510

PRIH

T u9

th

e la

st s

ecti

on."

52

0 PR

IHT

"1

Mas

sles

s be

aM."

530

PRIH

T "2

un

ifor

MlY

dis

trib

uted

loa

d on

Mas

sles

s be

QM

." 54

0 PR

IHT

•3

line

arly

var

ied

dist

ribu

ted

load

on

Mas

sles

s be

aM."

55

0 PR

IHT

"JE

nter

I

for

the

requ

ired

Fie

ld M

atri

x= "

; 56

0 IH

PUT

F<N>

57

0 IF

F<N

>=0

THEN

201

0 58

0 GO

TO

F<H>

OF

620

,620

,620

59

0 PR

INT

"Err

or!

The

re a

re o

nly

J F

ield

Mat

rice

s,

but

you

have

ent

ered

" 60

0 PR

IHT

F<H

>;•.

Plea

se t

ry a

gain

.•

610

GO T

O 55

0 ~

620

PRIN

T •J

Ent

er l

engt

h of

thi

s se

ctio

n <"

tDt;

•>"

!3 62

5 PR

INT

"<H

.B.

Do n

ot e

nter

zer

o.>

="t

630

INPU

T L<

N)

640

PRIN

T "E

nter

Mod

ulus

of

Eld

stic

ity

<";E

t;">

=";

650

INPU

T E<

N>

660

PRIN

T "E

nter

Are

d M

o"en

t of

Ine

rtia

<";

Ft;"

>=";

67

0 IN

PUT

Il<N

> 67

5 X=

L<H>

67

7 E1

=E<H

>*I1

<N>

680

GO T

O F<

H>

OF 6

90,7

28,7

90

690

GOSU

B 61

10

710

GO T

O 86

0 72

0 PR

IHT

•Ent

er M

agni

tude

of

the

unif

orM

ly d

istr

ibut

ed l

odd,

<"

;Bt;

">"

722

PRIN

T •c

N.B.

Lod

d is

pos

itiv

e do

wnw

ard.

)•••

73

0 IN

PUT

Ql<H

> 75

0 Q2(t~j•Q1 <N

> 77

0 GO

SUB

6200

780

GO T

O 86

8 79

0 PR

I "W

hat

is

the

Mag

nitu

de o

f th

e li

nea

rly

var

ied

dis

trib

ute

d l

oad,

" 80

0 PR

INT

"<H

.B.

Load

is

pos

itiv

e do

wnw

ard.

) on

th

e le

ft <

";B

SJ">

="

; 81

0 IH

PUT

Qt<H

> 82

0 PR

INT

•on

the

rig

ht

<"IB

$J")

="I

83

0 IN

PUT

Q2<H

> 84

0_ G

_Q_$

_UB_

62_0

_0 ___

___ --

__ _

B6B

GOSU

B 66

00

-87

0 GO

SUB

6710

88

0 PR

IHT

•Lfo

r se

ctio

n l"

JH;"

:"

890

PRIN

T "I

s th

ere

any

conc

entr

ated

loa

d,

MOM

ent,

luM

ped

Mas

s <f

or •

; 90

0 PR

I "d

ynaM

ic_a

naly

sis

only

), o~

elas

tic

supp

ort

in

this

sec

tion

? ";

90

5 PR

IHT

"CY

or H

>";

910

INPU

T A$

91

5 P<

H>=0

91

7 H=

0 91

8 12

<H>=

0 92

0 IF

A$=

"N•

THEN

19

60

930

IF A

S<>•

v• T

HEN

890

935

P<H>

=1

1020

PRI

NT "

JEnt

er M

agni

tude

of

the

conc

entr

ated

loa

d,

<";C

t;">

" 10

22

PRIN

T "<

H.B

. Lo

ad

is p

osi

tiv

e do

wnw

ard)

=•

s 10

30

INPU

T Pl

<H>

1090

PRI

NT

•JE

nter

Mag

nitu

de o

f th

e H

oHen

t <"

;Gt;"

> "

1095

PRI

HT

"<H

.B.

MoM

ent

is p

osit

ive

in c

ount

er-c

lock

";

1096

PRI

NT

"wis

e di

rect

ion.

_Ple

ase

put

in t

he r

igh

t si

gn.>

=";

11

00

IHPU

T M

S<H>

11

50 P

RINT

"JE

nter

sti

ffn

ess

of t

he s

uppo

rt (

"JB

t;•>

=";

1160

IN

PUT

K1 <H

> 12

70

PRIN

T "J

Ent

er s

uppo

rt M

OHen

t st

iffn

ess

<"JL

$J">

=";

1280

IH

PUT

K2<H

> 12

90

IF U

1=1

THEN

148

0 12

92 P

RIHT

"E

nter

fta

gnit

ude

of c

once

ntra

ted

wei

ght

("JC

$J">

•"J

1293

IH

PUT

H<N>

12

95

IF A

BS<K

2<H

>><1

.0E-

20 T

HEN

1480

.... m

1298

PRI

NT

•Ent

er W

eigh

t M

o"en

t of

In

erti

a,

WRt

2 C

"IK

t;">=

" 12

99 I

NPUT

12

(N)

1300

PRI

"T

he

foll

owin

g ty

pes

of v

ibra

tion

of

the

supp

ort

are

avai

labl

e"

1310

PRI

NT

•1

for

bend

ing

vibr

atio

n.•

1320

PRI

"2

ro

tati

ng s

haft

(eq

ual

angu

lar

dire

ctio

n of

whi

rl

and

0;

1330

PRI

NT

"rot

atio

n."

1340

PRI

"3

ro

tati

ng s

haf

t (o

ppos

ite

angu

lar

dire

ctio

n of

whi

rl

&";

1350

PRI

NT

" ro

tati

on

.•

1360

PRI

NT

"Ent

er t

he I

fo

r th

e re

quir

ed v

ibra

tion

="J

13

70 I

HPUT

D2

1380

GO

TO D

2 OF

14

00,1

420,

1440

13

90 P

RI

"Err

or!

You

r in

put

shou

ld b

e 1,

2

or 3

. B

ut y

ou h

ave

ente

red

" 13

95 P

RINT

02

;•

• P

leas

e tr

y ag

ain.

" 13

98 G

O TO

13

00

1400

H=-

1 14

10 G

O TO

149

0 14

20 H

=l

1430

GO

TO

1480

--.

!AA

9 H

=-3

148E

f-GO

SUB

6340

19

00 G

OSUB

660

0 19

10 G

OSUB

671

0 19

60 H

=N+1

20

0f;

GO T

O...~--­

~-_/

"-~f

0-·lf

f=t4

-1

, 201

3 DI

M

I1<N

1>,I2

CH

1>,P

<H1)

,Q1(

H1>

,Q2(

Hl>

,K1<

N1>

,K2<

Hl),

p1(H

1>,H

5<N

1>

2014

DIM

H<N

1>,F

<H1>

,L<H

1>,E

<Hl)

/201

5 DE

LETE

1,

2014

20

20 F

IND

7 20

25 A

PPEN

D 38

15

~035 P

RINT

•L

***

BOUN

DARY

CON

DITI

ONS

***"

2036

VIE

WPO

RT 0

,13e

,e,1

ee

2037

WIN

DOW

e,1

Je,e

,1ee

20

38 H

OVE

35,9

0 20

39 D

RAW

115,

99

... $

2040

HOV

E 35

,85

2050

DRA

W 11

5,85

20

60 M

OVE

10,7

5 20

70 D

RAW

115,

75

2080

MOU

E 15

,65

2090

DRA

W 11

5,65

21

00 M

OVE

15,5

5 21

10 D

RAW

115,

55

2120

MOU

E 15

,45

2130

DRA

W 11

5,45

21

40 H

OVE

10,3

5 21

50 D

RAW

115,

35

2160

MOU

E 11

5,90

21

65 D

RAW

115,

35

2170

MOU

E 95

,85

2180

DRA

W 95

,35

2190

MOU

E 75

,85

2200

DRA

W 75

,35

2210

MO~JE

SS, 8

5 22

20 D

RAW

55,3

5 22

30 M

OVE

35,9

0 22

40 D

RAW

35,3

5 22

50 t

10VE

15

, 75

2260

DRA

W 15

,35

2270

MOV

E 10

,75

2280

DRA

W 10

,35

2285

DRA

W 11

5,35

22

90 r

10lJE

58

, 86

2300

PRI

NT

"R

I G

H T

E

N o•

23

10 M

OlJE

40,

78

2320

PRI

NT

"PIN

NED

FIXE

D 23

30

HOVE

12

,63

2340

PRI

NT "LJ~EJHFJHTJJJHEJHNJHD•

2350

MOV

E 17

,68

2360

PRI

NT •

PI

NNED

1

.... '8

FREE

GU

IDED

2 3

<K.U

.>

4"

2365

MOV

E 17

,59

2370

PRI

NT

" FI

XED

5 6

7 8"

23

75 M

OUE

17,5

0 23

80 P

RIHT

"

FREE

9

<K.U

.>

10

11

<K.U

.>

12

CK.L

I.>"

2385

MOV

E 17

,40

2390

PRI

NT

" GU

IDED

13

14

15

CK

.LI.)

16

<K

.U.)"

24

00 P

RI

"JJJ

JJw

here

K.

U.

= K

ineM

otic

ally

Uns

t4bl

e,

unle

ss i

nter

nQl

";

2401

PR

INT

•sup

port

s ex

ist.

_U

se

thes

e bo

und4

ry c

ondi

tion

s Q

t yo

ur "

; 24

02 P

RIHT

•o

wn

risk

.•

2405

PRI

HT

"Do

not

4nsw

er K

. U.

to

the

que

stio

n be

low

.•

2410

PRI

NT

•JE

nter

I

for

the

requ

ired

Bou

ndar

y C

ondi

tion

= ";

2420

IH

PUT

D2

2430

IF

D2=

>9

THEN

243

8 24

35 G

O TO

D2

OF 2

460,

2490

,251

0,25

30,2

550,

2570

,259

0,26

10

2438

GO

TO D

2-8

OF 2

630,

2650

,267

0,26

90,2

710,

2730

,275

0,27

70

2440

PRI

NT

"Err

or!

The

I fo

r B

ound

ary

Con

diti

on i

s on

ly f

roM

1

to 1

6,"

2450

PRI

HT

"but

you

hav

e en

tere

d ";

D2;

".

Ple

ase

try

agai

n."

_ 24

55 G

Q___

I_Q __ 2

41_e

_

~4b8-r11=1

2462

112

=3

2464

M3=

2 24

66 H

4=4

· 24

70 G

OSUB

649

0 ...

2472

S<2

>=A

2 '

2474

S<4

>=A

3 24

76__

GD I

O 38

19 -

----

-'2

49

0 H

1=1

2492

r12

=2

2494

f-13

=2

2-24

96 1

14=4

24

98

GOSU

B 64

90

2500

S<2

>aA

2 25

02 S

<4>=

A3

2504

GO

TO 3

810

--25

10 '

11•3

... ~

2512

112

=4

2514

M3=

2 !

2516

M4=

4

4

~ (,, I

2518

GOS

UB 6

490

2520

S<2

>=A

2 25

22 S

(4)=

A3

2524

GO

_T0-

3810

2--

S30

M1=

2 25

32 1

'12=4

25

34 M

3=2

2536

M4=

4 25

38 G

OSUB

649

0 25

40 S

<2>=

A2

2542

S<4

>=A

3 25

44 G

O TO

381

0 25

50 '

11=1

25

52 t

12=3

25

54 "

13=3

25

56 M

4=4

2558

GOS

UB 6

490

2560

S<3

>=A

2 25

62 S

<4>=

A3

2564

GO

TO 3

810

2570

H1=

1 25

72 f

12=2

25

74 '

13=3

25

76 M

4=4

2578

GOS

UB 6

490

2580

S<3

>=A

2 25

82 S

<4>=

A3

2584

GO

TO 3

819

2590

M

1=3

2592

t12

=4

2594

113

=3

2596

t14

=4

... 'i6

2598

GOS

UB 6

490

2600

S<J

>=A

2 26

02 S

<4>=

A3

2604

GO

TO ~

$10

--ze;

-i 0

Mt=

2 .

2612

112

=4

2614

M3=

3 J

2616

t14

=4

2618

GOS

UB 6

490

2620

S<3

>=A

2 26

22 S

(4)=

A3

. 26-

24 G

O JO

381

0.

2630

M1=

1 26

32 M

2=3

2634

M3=

1 26

36 M

4=2

3 26

38 G

OSUB

649

0 26

40 S

<l>=

A2

.... 26

42 S

<2>=

A3

\()

\N

2644

GO

TO 3

810

2650

M1=

1 26

52 M

2=2

2654

M3=

1 I i>

26

56 '

14=2

26

58 G

OSUB

649

0 26

60 S

<1>=

A2

2662

SC2

>=A3

26

64 G

O TO

381

0 26

70.

M1=

3 26

72 f

12=4

26

74 t

13=1

II

2676

M4=

2 26

78 G

OSUB

649

0 26

89 S

<1>•

A2

2682

S(2

)=A

J

2684

GO

TO 3

819

2690

Mt=

2 -

2692

M2=

4 26

94 t

13=1

26

96 M

4=2

f L

2698

GOS

UB 6

490

2700

S<1

>=A

2 27

02 S

<2>=

A3

~~~~-~-:to. 3

81-E

L_

-·-27

12 t

12=3

27

14 "

13=1

-

2716

M

4=3

13

2718

G

OSU

B 64

90

2720

S<1

>=A

2 27

22 S

<J>=

AJ

-212

4 .. G

CL IO

_ 38

.10

2730

H1=

1 27

32 H

2=2

2734

t13

=1

. 27

36 t

14=3

1 '-1

2738

GO

SUB

6490

27

40 S

<1>=

A2

2742

S<J

>=A

J 27

44 G

O TO

38

10 .

. -

275-

0 H

1 =3

2752

H2=

4 27

54 M

3=1

1-27

56 M

4=3

) 27

58 G

OSUB

64

90

2760

S<1

>•A

2 27

62 S

CJ>=

AJ

~~~~

~? =

~p _

JiU9.

2772

H2•

4

.... 'g

2774

H3•

1 tG

2116

tt4

•3

2778

GOS

UB 6

499

2780

S

<t>

=A

2 27

82

S< J

)=A

J---

-38

10 G

OSUB

793

0 38

15 P

RIH

T 38

21

X=0

3822

X

4=0

3823

PRI

•J

JHow

Man

y in

creR

ents

wou

ld y

ou

lik

e to

hav

e fo

r ea

ch f

ield

";

38

24 P

RIHT

"s

ecti

on?•

; 38

30

INPU

T HJ

38

50

J2=0

38

52

IMAG

E 5<

2E,3X

> 38

53 P

RI

"L L

ENGT

H DE

FLEC

TION

SL

OPE

MOME

NT

SHEA

R"

3855

PRI

NT "

<"

;D$J

")

<";O

f;">

<R

adia

n)

<";G

$;">

";

3856

PRI

HT

" <"

;C$;

">"

~

3857

PRI

NT

~

3860

IF

P<N1

>=0

THEH

387

0 38

62 H

2=H3

tH1+

H1+1

38

64 G

O TO

387

5 38

70 H

2=H3

*N1+

H1

3875

DEL

ETE

2035

,382

2 38

77 D

ELET

E 79

30,1

0680

38

80 D

ELET

E s1

,s2,

s3,5

4,55

,x3

3882

DIM

S1<

H2>

,S2<

H2>

,S3<

H2)

,S4<

H2>

,S5(

H2)

,X3<

H2>

,R<8

> ----

3885

FO

R J1

=1

TO H

1 38

90

IF J

1=1

THEN

394

0 39

00 H

=Jl-

1 39

05

IF P

<H>=

0 TH

EN 3

940

3930

GOS

UB 6

340

3935

GOS

UB 6

800

3937

S=T

3 39

40 X

1=LC

J1)/H

3 39

42 H

=Jl

3944

E1•

E<J1

)*11

<J1)

~

3950

FOR

J4=

9 TO

L(J

l> S

TEP

Xl

3955

GO

TO

F<Jl

> OF

39

60,3

975,

3975

39

60 G

OSUB

611

0 39

65 G

OSUB

689

0 39

70 G

O TO

399

5 39

75 G

OSUB

620

0 39

80

GOSU

B 68

00

3985

J2=

J2+1

39

90 X

3<J2

>=X4

39

95 S

t<J2

>=T3

<1>

4000

S2<

J2)=

T3<2

> 40

05 S

J<J2

)=T

J(J)

40

10 S

4(J2

>=T

3(4)

40

12 P

RINT

USI

NG 3

852:

X3<

J2),

S1C

J2>,

S2C

J2),

SJ(J

2),S

4<J2

) 40

13 X

4=X4

+X1

4014

X=X

+Xl

~-4015

NEXT

J4

4016

X4=

X4-X

1 40

17 X

=0

4018

S=T

3 40

19 N

EXT

J1

4.02

0 G

OSU

B 78

00

4021

PR

INT

•JJJ

Do

you

wis

h to

see

the

gra

phs

for

defl

ecti

on,

slop

e,

" 40

22 P

RINT

"M

oHen

t an

d sh

ear?

<V

or H

>";

4023

IN

PUT

AS

4024

IF

A$=

"Y0

THEN

402

8 40

25

IF A

f<>"

H"

THEN

402

1 40

26 G

O TO

599

9 40

28 P

AGE

4030

MOV

E 60

,0

4032

PRI

HT "

LENG

TH <

"JD

tJ">

t"

4033

S5=

S4

4034

H6=

9 40

35 '

17=2

9

.... '8..

4036

H$=

"SH

EAR,

U"

40

37

l$=C

$ 40

45 G

OSUB

688

0 40

55 t

16=3

2 40

60 M

7=52

40

65 S

5=S3

40

66 H

$="M

OMEH

T,

M"

4067

l$

=G$

4070

GOS

UB

6880

40

80 H

$="S

LOPE

, S"

40

82 !

$="r

ad"

4085

'16

=55

4090

M7=

75

4095

S5=

S2

4100

GOS

UB 6

880

4110

H$=

"DEF

L.,

W"

4112

!$=

[)$

4115

M6=

78

4120

M7=

98

4125

SS=

Sl

4130

GOS

UB 6

880

4132

IF

U1=

1 TH

EH 4

140

4134

PRI

HT

"Fre

quen

cy="

;W;"

41

40 U

IEW

PORT

0,1

30,0

,100

41

50 W

IHDO

W 0

,130

,0,1

00

4160

MOV

E 0,

0 41

70 P

RIHT

"J

Do

you

wan

t to

41

80 I

t~PUT

A$

4190

IF

A$="

H"

THEN

424

0 42

00

IF A

$<>"

V"

THEH

417

0 42

10 F

IHD

6 42

20 O

LD

4230

RUH

42

40 P

RIHT

•J

JJJ

5990

END

..... ~

";J$

anal

yze

anot

her

beaM

? CV

or

H>"

;

******

******

EH

D ***

******

*** II

6900

REM

***

SUB

ROUT

INE

TO P

UT T

1 AS

AH

IDEN

TITY

MAT

RIX.

60

19 F

OR

1=1

TO 5

60

20 F

OR J

=l T

O 5

6039

IF

I<>J

THE

H 60

70

6040

Tt<

I,J>

=l

6050

GO

TO 6

080

6070

T1<

I,J>=

0 60

80 N

EXT

J 60

90 H

EXT

I 61

00 R

ETUR

N 61

10 R

EM *

** S

UBRO

UTIN

E FO

R M

ASSL

ESS

BEAM

TRA

NSFE

R MA

TRIX

61

20 G

OSUB

600

0 61

30 T

1<1,

2>=-

X

6140

T1<

1,J>

=-X

*X/<

2*E1

> 61

50 T

1<1,

4)=-

Xt3

/C6*

E1>

6160

T1<

2,J>

=X/E

1 61

70 T

1<2,

4>=X

*X/(2

*E1>

61

80 T

1<3,

4)=X

61

90 R

ETUR

H 62

00 R

EM *

** S

UBRO

UTIN

E FO

R UN

IFORM

LY O

R LI

HEAR

LV U

ARIE

D D

IST.

LO

AD.

6210

REM

*** T

RANS

FER

MAT

RIX.

62

20 G

OSUB

600

0 62

30 T

1<1,

2)=-

X

6240

T1<

1,3)

=-X

*X/(2

*El)

6250

T1(

1,4)

=-X

t3/(6

*E1>

62

60 T

1<1,

5)=Q

1<N

>*X

t4/(2

4*El

)-(Q

1(H

)-Q2<

H>>

*Xt5

/(120

*L<N

>*E1

> 62

70 T

1<2,

J>=X

/E1

6280

T1(

2,4)

=X*X

/(2*E

1>

6290

T1<

2,5)

•-Q

1<N

>*X

tJ/(6

*El)+

(Ql(N

)-Q

2CN

>>*X

f4/(2

4*L<

N>*

El>

6300

T1<

J,4>=

X

6310

T1C

J,5)=

-Q1C

N>*

X*X

/2+(

Ql<

H>-

Q2<

N>>

*Xt3

/C6*

L<N

>>

6320

T1<

4,5)a

-Q1C

N>*X

+CQ1

<N>-

Q2<N

>>*X

*X/(2

*L<H

>>

6330

RET

URH

6340

REM

***

SUB

ROUT

INE

FOR

CONC

. LO

AD,

MOME

NT,

TORQ

UE A

ND E

LAST

IC

6350

REM

***

SUP

PORT

, EL

ASTI

C SU

PPOR

T OR

LUM

PED

HASS

TRA

NSFE

R M

ATRI

X.

.... '£

6360

GOS

UB 6

909

6390

T1<

3,2)

•H*I

2<H

>*W

t2+K

2<H

> 64

00 T

l<J,

5>=-

"5<H

> 64

10 T

1(4,

1>=-

H<H

>*W

t2/G

+K1<

H>

6420

T1(

4,5>

=-P1

CH

> 64

30 R

ETUR

H 64

90 R

EM *

** S

UBRO

UTIN

E TO

CAL

C.

INIT

IAL

PARA

MET

ERS

USIN

G B.

C.

65

00 A

<1,1

>=T<

Mt,H

3>

6510

A<t

,2>=

T<M

t,H4)

65

20 A

<1,3

)=-T

<H1,

5)

6530

A(2

,1)=

T<M

2,H

3>

6540

A<2

,2>=T

<M2,H

4>

6550

A<2

,J)=

-T<H

2,5)

65

60 A

1=A

C1,

1>*A

<2,2

>-A

<2,1

)*A

<1,2

> 65

70 A

2=<A

<2,2

>*A

<1,3

>-A

<1,2

>*A

<2,3

))/A

l 65

00 A

3=<A

<1,1

>*A

<2,J

>-A

<2,1

)*A

<1,3

))/A

1 65

90 R

ETUR

N 66

00 R

EM**

* SU

BROU

TINE

TO

MUL

TIPL

Y 2

MAT

RICE

S, T

' T1

.<BO

TH 5

X5>

6610

FOR

I=

1 TO

5

6620

FOR

J=1

TO

5

6630

T2<

I,J>

=0

6640

FOR

K=1

TO

5

6650

T2<

I,J>=

T2<I

,J>+

T1<I

,K>*

T<K

,J>

6660

NEX

T K

66

70 N

EXT

J 66

80 H

EXT

I 66

90 T

=T2

6700

RET

URN

6710

REM

***

SUB

ROUT

INE

TO L

IST

OUT

ACCU

MULA

TED

TRAN

SFER

MAT

RIX.

67

20 P

RINT

"J

JAcc

u"ul

ated

HH

HH

HH

HH

HH

H--

----

----

-T

rans

fer

Mdt

rix

•;

6730

PRI

NT

"inc

ludi

ng s

ecti

on l

"IH

I" i

s ds

fol

low

s:J"

67

40 I

MAGE

5<2

X,2

E)

6750

FOR

Ja

l TO

5

6760

PRI

NT U

SING

674

0:T<

I,t>,

T<I,2

>,T<

I,J>,

TCI,4

>1T<

I,5>

6770

HEX

T I

.... ~

6780

PRI

NT

"KlK

HVKH

MKH

SKHW

JJJJJJ

" 67

82 P

RINT

uP

ress

RET

URN

to p

roce

ed."

• 67

84

IHPU

T A$

67

86

IF A

$<>"

"

THEH

679

0 67

9B

RETU

RN

6800

REH

*** S

UBRO

UTIN

E TO

MUL

TIPV

A 5

X5 A

ND A

1X5

MAT

RICE

S. 68

10 F

OR

1=1

TO 5

68

20 T

3<I)

=0

6830

FOR

K~1

TO 5

68

40 T

J<I>

=TJ<

I>+T

t<I,K

>*S<

K>

6850

NEX

T K

~l

--l1

2,;;

68

60 N

EXT

I QC

<l>:_

--68

70 R

ETUR

N 68

80 R

EM **

* DRA

W TH

E CU

RVES

OF

w,s,

H,V

68

90 R

EM **

* LAB

EL u

NEAT

• TI

C 69

00 B

1=1.

0E+3

00

6910

B2=

-1.0

E+30

0 69

20 F

OR 1

=1 T

O H2

69

30 B

t=SS

<I>

MIN

Bl

6940

B2=

S5<I

> MA

X 82

69

50 N

EXT

I 69

60 V

IEW

PORT

25,

130,

M6,

M7

6970

R<1

>=0

6980

R<2

)=XJ

<H2)

69

90 R

<J)=

IHT<

105/

(8*1

.8>>

MAX

1

7000

R<S

>=B1

70

10 R

(6)=

82

7020

R<7

>=IH

T<<M

7-M

6)/(3

*2.8

)) HA

X 1

7030

REM

*** C

ALCU

LATE

HEW

LIH

ITS

AND

INTE

RVAL

S 70

40 R

5=J

7050

GOS

UB 7

310

. ._;;

;T.t'~

+ 70

60 R

5=7

y ~o

"'

~

/ .....

7070

GOS

UB 7

310 ~-0 u

--~~

~"'-

v-'V";;.

\ 70

80 W

IHDO

W R<

1>,R

<2>,

R<5>

,R<6

> 70

90 R

EH A

XIS

R<J>

,R<7

>,R<

1>+R

<J>,

R<5>

+R<7

>

,.., 0 0

7190

AXI

S R

<J>,

R<7

> 71

10 R

EM **

* DRA

W TH

E CU

RVE

7120

HOV

E X

3<1>

,S5(

1)

7130

FOR

J=i

TO

H2

7140

DRA

W X

3<J>

,S5<

J>

7150

HEX

T J

7160

PRI

HT

7170

REM

*** L

ABEL

THE

M 71

80

IF M

7>29

THE

N 72

20

7190

R5=

4 72

00 E

$="i:U:U~JJ"

7210

GOS

UB

7600

72

20 R

5=8

7230

E$=

II iU

ll:tl:tl

:t ..

7240

GOS

UB

7600

72

50 V

IEW

PORT

0,1

30,M

6,M

7 72

60 W

IHDO

W 0,

10,0

,10

7270

MOl

JE 0

,5

7280

PRI

NT

Hf•

" ("

•!$

•")"

' -

' '

7290

HOM

E ~

7300

RET

URN

~-Rar-t** R

<RS>

= M

INIM

UM H

O.

OF T

ICS

7312

IF

ABS

<R<R

5-1>

-R<R

S-2>

>=>1

.0E-

12 T

HEN

7320

73

14 R

l=R<

RS-1

> 73

16 G

O TO

733

0 73

20 R

1=<R

<R5-

1>-R

<R5-

2))/R

(R5)

73

30 R

2=10

tIHT<

LGT<

R1)

) 73

40 R

l=R

1/R

2 73

50

IF R

1>2

THEN

739

0 73

60

IF R

l=l

THEN

743

0 73

70 R

2=2*

R2

7380

GO

TO

7430

73

90

IF R

1>5

THEN

742

0 74

00 R

2=S*

R2

7410

GO

TO 7

430

N ~

-'----

--..._

_

7420

R2•

19*R

2 74

30 R

EM **

* ADJ

UST

DATA

MIH

74

40 R

1=IHT<R<R5-2>~R2>

7450

R3=

R2*<

R1+2

) 74

60

IF R

J<R<

RS-2

> TH

EH 7

490

7470

R3=

R3-R

2 74

80 G

O TO

746

0 74

90 R

<RS-

2>=R

3 75

00 R

EH **

* ADJ

UST

DATA

MAX

75

10 R

1=1H

T<R<

R5-1

)/R2)

75

20 R

3=R2

*<R1

-2)

7530

IF

R<RS

-l><R

J TH

EN 7

560

7540

R3=

R3+R

2 75

50 G

O TO

75

30

7560

R<R

5-1>

=R3

7570

REH

*** R

<R5>

= A

DJUS

T TI

C IN

TERV

AL

7580

R<R

5)=R

2 75

90 R

E TU

RH

. --

. . --

..

7600

REM

LAB

EL A

XIS

7610

R4=

R<R5

-1>

7620

R(4

)=R<

1>

7630

R(8

)=R

(5)

7640

R3=

ABS

<R<R

5-3>

+R4)

HA

X A

BS<R

<R5-

2>-R

4>

7642

IF

R3>1

.0E-

7 TH

EN 7

650

7644

RJ=

ABS<

R<RS

-3>>

MA

X AB

S<R<

RS-2

>>

7650

R3=

IHT<

LGT<

R3)+

1.0E

-8>

7660

R2=

10t-R

3 76

70 R

1=R<

R5-2

>-R4

/2

7672

IF

RS=

4 TH

EN 7

680

7674

MO

UE R

<1>,

R<5>

76

75 P

RIHT

"H

HHHH

H"I

7676

PRI

NT U

SING

"-2D

.2D

,s•:

R<R

5>*R

2 76

80 R

<RS>

=R<R

S>+R

4 76

90 I

F R<

R5>>

R1

THEN

774

0 77

00 M

OUE

R<4>

,R<S

>

N 2

_,...,,--

7710

PRlt~T

ESS

7720

PRI

HT U

SIHG

•-

D.2

D,S

":R

CR

5>*R

2 77

30 G

O TO

768

0 77

40

IF R

3=0

THEH

779

0 77

50 R

<R5>

=R1

7760

MO

UE R

<4>,

R<8>

77

70 P

RIHT

E$J

77

80 P

RIHT

USI

NG

"3A

,+Fo

,s•:

n E"

;R3

7790

RET

URN

7800

IF

P<H

1>=0

TH

EH.79

20

7850

GOS

UB 6

340

7860

GOS

UB 6

800

7870

S1<

H2>=

T3<1

> 78

80 S

2<H

2)=T

3<2>

78

90 S

3CH2

>=T3

<3>

7900

S4<

H2>=

T3<4

> 79

10 X

JCH2

>=X3

<H2-

1)

7915

PRI

NT U

SING

38S

2:X

J<H

2),S

1<H

2>,S

2<N

2),S

J(H

2>,S

4<N

2)

7920

RET

URN

.. .

. 79

30 R

EH **

* SUB

ROUT

INE

TO D

RAW

THE

BEAM

. 79

40 P

AGE

7950

L2=

0 79

60 L

3=0

7970

FOR

J4=

1 TO

N1

7980

L2=

L2+L

(J4)

79

90 H

EXT

J4

8000

VIE

WPO

RT 3

,127

,75,

95

8010

WIN

DOW

0,L

2,e,

2e

8020

C1=

3 80

30 C

2=80

,

8040

GO

SUB

9460

: K

.c:n

1:>/

l;\v-

1 1~.c. ~

8050

UIE

WPO

RT J

,127

,75,

95

8060

WIH

DOW

e,L

2,e,

2e

8070

L1=

0 ~8080

FOR

K=1

TO H

t

"lo

")J.t

.OO

N

0 \,,.

)

8090

LJ•L

J+L<

K>

8100

L4=

<LJ-

Ll)/

50

8110

REM

***

TO

DRAW

MAS

SLES

S BE

AM.

8120

MOV

E L1

,9

8130

DR

AW L

3,9

8140

110

VE L

3 1S

8150

DR

AW L

1,5

8160

HO

VE

L3,5

_

8170

GO

TO F

<K>

OF 8

710 9

8190

,834

0 --

-818

0 RE

H **

* TO

DRA

W UH

IFOR

HLV

DIST

RIBU

TED

LOAD

. 81

90 M

OUE

Lt,

9 82

00 R

DRAW

L4,

2 82

10 R

MOUE

-L

4,-2

82

20 D

RAW

L1,1

8 82

30 D

RAW

LJ,

18

82

40 D

RAW

LJ,

9 82

50 R

DRAW

-L

4,2

8260

A2=

9 82

70 M

OUE

Ll+L

CK

)/4,

9 82

80 G

OSUB

10

630

8290

HOU

E Ll

+LC

K)/

2,9

8300

GOS

UB

1063

0 83

10 M

OUE

L1+3

*L<K

)/4,9

83

20 G

OSUB

10

630

8330

GO

TO 8

710

~---8340

IF Q

1<K>

>Q2C

K>

THEH

854

0 83

50 R

EM **

* TO

DRAW

LIH

.-UA

RIED

DIS

TRIB

UTED

LOA

D W

ITH

Q1(

Q2.

83

60

HOlJE

L

1 , 9

83

70 R

DRAW

L4,

2 83

80 R

HOVE

-L

4,-2

83

90 D

RAW

Lt,

14

8400

DRA

W L

J,18

84

10 D

RAW

LJ,

9 84

20 R

DRAW

-L

4,2

8430

MOU

E L

t+L

(K)/

4,9

I\) ~

8440

A2•

6 84

50 G

OSUB

10

630

8460

HOV

E L

l+L

(K)/

2,9

8470

A2=

7 94

80 G

OSUB

10

630

8490

MOV

E L

1+3*

L(K

)/4,

9 85

00 A

2=9

8510

GOS

UB

1063

0 85

20 G

O TO

871

0 85

30 R

EH **

* TO

DRAW

LIN

.-VA

RIED

DIS

TRIB

UTED

LOA

D W

ITH

Q1)

Q2.

85

40 M

OVE

L1,

9 85

50 R

DRAW

L4,

2 85

60 R

MOUE

-L

4,-2

85

70 D

RAW

Lt,

18

8580

DRA

M L

3,14

85

90 D

RAW

LJ,

9 86

00 R

DRAW

-L

4,2

8610

HOV

E Ll

+L<K

)/41

9 86

20 A

2=8

8630

GOS

UB

1063

0 86

40 M

OUE

Lt+

L(K

)/2,

9 86

50 A

2=7

8660

GOS

UB

1063

0 86

70 M

OUE

L1+L

<K>*

3/4,

9 86

80 A

2=6

a690

GOS

UB

1063

0 87

10 I

F P1

<K>=

0 TH

EH 8

820

8720

REM

*** T

O DR

AW A

POI

NT L

OAD.

87

30 M

OUE

LJ,

9 87

40 A

2=11

87

50 V

IEW

PORT

3,1

30,7

5,95

87

60 W

INDO

W 0

,L2+

L4,

0,20

87

70 G

OSUB

10

630

8780

UIE

WPO

RT 3

,127

,75,

95

8790

WIN

DOW

0,L

2,0,

20

N

0 \,n

.880

0 MO

VE L

J,18

98

10 P

RIHT

P"

8820

IF

M5<

K>=0

THE

N 90

19

8830

REH

***

TO

DRAW

A M

OMEH

T. 88

40 t

10VE

LJ,

9 88

50

VIEW

PORT

12

4*L

3/l2

,124

*L3/

l2+6

,85,

88

8860

WIH

DOW

-1,1

,0,1

88

70

A1=1

88

80 G

OSUB

10

580

8890

MOV

E -1

,0

8900

RDR

AW 0

.5,0

.5

8910

RMO

VE -

0.5

,-0

.5

8920

MOV

E 0,

1.3

8930

PRI

HT

11H11

8940

HOV

E -1

,0

8950

VIE

WPO

RT

124*

L3/

l2-0

.8,1

24*L

3/l2

+3,

86.5

,88

8960

MIH

DOW

-2,

1,0,

1 89

70 D

RAW

-1.5

,1

8980

VIE

WPO

RT 3

,127

,75,

95

8990

MIH

DOW

0,L

2,0,

20

9000

REM

***

DRA

W EL

ASTI

C AH

D TO

RQUE

SUP

PORT

. 90

10

IF K

1<K>

=0 A

ND K

2<K>

=0 T

HEN

9310

90

20 M

OUE

L3,

9 90

30

VIEW

PORT

12

4*L

3/L

2,12

4*L

3/L

2+6,

73,8

0 90

40 W

INDO

W 0,

5,0,

10

9050

MOU

E 2.

5,10

90

60

DRAW

2.5

,8

9070

RDR

AW -

1,-1

90

80 R

DRAW

1,

-1

9090

RDR

AW -

1,-1

91

00 R

DRAW

1,

-1

9110

RDR

AW 0

,-2

9120

RDR

AW

1.5,

0 91

30

RORA

W -3

,0

9140

RDR

AM

1,0

N &

9150

RDR

AW -

1,-1

91

60 R

HOlJE

1,

9 91

70 R

DRAW

1,

1 91

80 R

HOVE

1,

0 91

90

RDRA

W -1

,-1

9200

MO~JE

0, 4

92

10 P

Rit~T

•K11

9220

IF

K2(

K)=

0 TH

EH 9

310

9230

t10

VE

2.5,

9 92

40 R

DRAW

1,

0 92

50 R

DRAW

0,-

7 92

60 M

OlJE

4,4

92

70 P

RIHT

11T11

9280

VIE

WPO

RT 3

,127

,75,

95

9290

WIN

DOW

0,L

2,0,

20

9300

HO

VE L

3,7

9310

IF

H<K

)=0

THEH

937

0 93

20

MOVE

L3,

.7

9330

VIE

MPO

RT

124*

L3/

L2,

124*

L3/

l2+6

,79,

85

9340

WIN

DOW

-1

,1,-

1,1

93

50 A

1=1

9360

GOS

UB

1057

0 93

70

UIEW

PORT

3,1

27,7

5,95

93

80 W

IHDO

W 0

,L2,

0,20

93

90 L

1=L3

94

B0 H

EXT

K

9410

C1=

127

9420

VIE

WPO

RT 3

,127

,75,

95

9430

WIN

DOW

0,L

2,0,

20

9440

GOS

UB 9

460

_--9

450

_RET

U.RH

___

.. -

--

9460

REM

*** S

UBRO

UTIN

E FO

R DR

AWIN

G BO

UHDA

RV C

OHDI

TIOH

. 94

70

IF C

1>10

0 TH

EH 9

500

9480

IF

D2<

=4 T

HEH

9510

94

82

IF D

2<=8

TH

EN 9

660

I\)

~

9484

IF

D2<

=12

THEN

10

490

9486

IF

D2<

•16

THEH

996

9 94

90 G

O TO

951

0 95

00 G

O TO

D2

OF 9

510,

9660

,104

90,9

960,

9510

,966

0,10

490,

9960

95

02 G

O TO

02-

8 OF

951

0,96

60,1

0490

,996

0,95

10,9

660,

1049

0,99

60

9510

UI

EWPO

RT c

1-1.

s,c1

+1.

s,c2

-4,C

2+4

9520

WIN

DOW

0,3

,0,e

95

30 t

lOVE

0, 1

95

40 D

RAW

1.5,

4 95

50 D

RAW

3,1

9560

DRA

W 0,

1 95

70 M

OUE

0.5,

1 95

80 D

RAW

0,0.

5 95

90 H

Ol.JE

1.

5,1

9600

DRA

W 1,

0.5

9610

110

UE 2

.5,1

96

20 D

RAW

2,0.

5 96

30 1

10tJE

1.

5, 4

96

40 D

RAW

1.5,

8 96

50 G

O TO

105

59

9660

IF

C1>

100

THEN

981

0 96

70 U

IEW

PORT

c1-

1.5,

C1,

C2-

3,C

2+7

9680

WIH

DOW

0,1

,0,1

0 96

90 M

OlJE

1 ,

19

9700

DRA

W 1,

0 97

10 f

10l)E

1,

9

9720

RDR

AW -

1,-1

97

30 M

OlJE

1,

7 97

40 R

DRAW

-1,

-1

9750

MOV

E 1,

5 97

60

RDRA

W -1

,-1

9770

MOl

JE 1

, J

9780

RDR

AW

-1,-

1

9790

MOV

E 1,

3 98

00 G

O TO

10

550

N

0 O>

9810

VIE

WPO

RT c

1,c1

+1.

s,c2

-J,C

2+7

9820

WIH

DOW

0,1

,0,1

0 98

30 M

OUE

0,10

98

40 D

RAW

0,0

9850

MOU

E 0,

9 98

60 R

DRAW

1,

-1

9870

tlO

UE

0,7

98

80 R

DRAW

1,-

1 98

90 H

OVE

0,5

9900

RDR

AW

1,-1

99

10 M

OVE

0,3

9920

RDR

AW 1

,-1

9930

MOV

E 0,

3 99

40 G

O TO

10

550

9950

REH

*** T

O DR

AW G

UIDE

D EN

D 99

60

IF C

1>10

0 TH

EH 1

0230

99

70 V

IEW

PORT

c1-

J,c1

,c2-

3,c2

+7

9980

WIN

DOW

0,2,

0,10

99

90 M

OlJE

2, 7

10

000

DRAW

2,3

10

010

MOUE

1,1

0 10

020

DRAW

1,0

10

030

MOVE

1,9

10

040

RDRA

W -t

,-1

10

050

HOVE

1

,7

1006

0 RD

RAW

-1,-

1 10

070

t10VE

1,5

10

080

RDRA

W -1

,-1

10

090

MOVE

1,

3 10

100

RDRA

W -1

,-1

10

110

A1=1

10

120

MOUE

1.

5,5.

75

1013

0 VI

EWPO

RT c

1-1.

s,c1

,c2+

2,c2

+3.

5 10

140

WIN

DOW

-1

,1,-

1,1

10

150

GOSU

B 10

570

N ~

1016

0 UI

EWPO

RT c

1-J,

c1,c

2-J,

C2+

7 10

170

WIH

DOW

0,2

,e,1

0 10

180

MOVE

1.

5,4.

25

1019

0 VI

EWPO

RT c

1-1.

s,c1

,c2+

0.s,

c2+

2 10

200

WIH

OOW

-1

,1,-

1,1

10

210

GOSU

B 10

570

1022

0 GO

TO

1055

0 10

230

VIEW

PORT

C

1,C

1+3,

C2-

3,C

2+7

1024

0 W

IHDO

W 0

,2,0

,10

10

250

MOVE

0,7

10

260

DRAW

0,3

10

270

MOUE

1,

10

1028

0 DR

AW

1,0

1029

0 t10

VE

1,9

1030

0 RD

RAM

1,-1

10

310

MOVE

1,

7 10

320

RDRA

W 1,

-1

1033

0 MO~JE

1, 5

1034

0 RD

RAW

1,-1

10

350

MOVE

1,

3 10

360

RDRA

W 1,

-1

1037

0 MO

UE 0

.5,S

.75

1038

0 A1

=1

1039

0 UI

EWPO

RT c

1,c1

+1.

s,c2

+2,

c2+

J.5

1040

0 W

IHDO

W -

1,1,

-1,1

10

410

GOSU

B 10

570

1042

0 UI

EWPO

RT c

1,c1

+3,C

2-J,

C2+

7 10

430

WIN

DOW

0,2

,0,1

0 10

440

HOVE

0.5

,4.2

5 10

450

VIEW

PORT

c1,

c1+

1.s,

c2+

0.s,

c2+

2 10

460

WIHD

OW -

1,1

,-1

,1

1047

0 GO

SUB

1057

0 10

480

GO T

O 10

550

1049

0 IF

C1>

100

THEN

19

530

1050

0 MO

VE 0

,5

N .... 0

1951

0 DR

AW 0

,9

1052

0 GO

TO

1055

0 10

530

MOUE

L2,

5 10

540

DRAW

L2,

9 10

550

RETU

RN

1056

0 RE

M **

* SU

BROU

TINE

TO

DRAW

A C

IRCL

E 10

570

MOUE

A

1,0

1058

0 FO

R J4

=0 T

O 36

0 ST

EP 2

0 10

590

DRAW

A

1*CO

S<J4

),A1*

SIH

(J4)

10

600

NEXT

J4

1061

0 RE

TURN

_

. 10

620

REH

***

SUBR

OUTI

NE T

O DR

AW A

H AR

ROW

OF L

ENGT

H A2

10

630

RDRA

W -L

4,2

1064

0 RM

OVE

L4,

-2

1065

0 RD

RAW

L4,2

10

660

RMOV

E -L

4,-2

10

670

RDRA

W 0,

A2

1068

0 RE

TURH

N

.... ....

APPENDIX B.J.2

PROGRAM LISTING --- BF.AM ANALYSIS (PARl' II)

212

3815

REM

*** L

IST

DATA

38

25 U

IEW

PORT

0,1

30,0

,100

38

35 W

INDO

W 0

,130

,0,1

00

3845

HOV

E 0,

97

3855

PRI

HT

"Dra

win

g of

the

Bea

M•

3865

MOU

E 0,

72

3875

PR

IHT

"DA

TA:•

3885

IM

AGE

2E,1

X,F

A

3900

IF

U1=

1 TH

EN 3

905

3901

PR

IHT

"Fre

Que

ncy •

••••

••••

••••

••••

••••

••••

••••

••••

• ="

; 39

02 P

RIHT

USI

NG 3

885:

W,J

$ 39

05 F

OR K

=t

TO N

I 39

15 P

RINT

•F

or s

ecti

on l

"1K

;•:•

39

25 P

RINT

0L

engt

h of

th

is s

ecti

on ••

••••

••••

••••

••••

••• =

"; 39

35 P

RINT

USI

NG 3

885:

L<K

),D$

3945

PRI

NT

•Mod

ulus

of

Ela

stic

ity

••••

••••

••••

••••

••••

•• =

•; 39

55 P

RINT

USI

NG 3

885:

E<K

>,E$

39

65 P

RINT

•A

rea

HoH

ent

of I

ner

tia

••••

••••

••••

••••

••••

• =0

;

3975

PRI

NT U

SING

388

5:I1

<K),

F$

3985

GO

TO F

<K>

OF 4

155,

3995

,403

5 39

95 P

RINT

•M

agni

tude

of

unif

or"l

y di

stri

bute

d lo

ad ••

•• =•

; 40

05 P

RINT

USI

NG 3

885:

Q1(

K),

9$

4025

GO

TO 4

155

4035

PRI

NT

•Lef

t en

d of

lin

earl

y-va

ried

dis

t.

load

••••

• =";

4045

PRI

NT U

SING

388

S:Q

1(K

),8$

40

65 P

RINT

"R

ight

end

of

line

arly

-var

ied

dis

t.

load

••••

=•;

40

75 P

RINT

USI

NG 3

885:

Q2(

K),

8$

4155

IF

P1<

K>=0

THE

N 41

85

4165

PRI

NT

"Mag

nitu

de o

f C

once

ntra

ted

Load

••••

••••

••••

• a•;

41

75 P

RINT

USI

NG 3

885:

P1<K

>1

C$

4185

IF

H5<

K>=

0 TH

EN 4

215

4195

PR

IHT

"Mag

nitu

de o

f M

oMen

t •••

••••

••••

••••

••••

••••

• =•

; 42

05 P

RINT

USI

NG 3

885:

H5(

K),G

$ 42

15

IF K

1<K

>•0

THEN

424

5

I\) .... \,.

.)

4225

PRI

NT

•sti

ffne

ss o

f Su

ppor

t •••

••••

••••

••••

••••

••••

=";

42

35 P

RINT

USI

NG 3

885:

K1C

K),9

$ 42

45 I

F K2

<K>=

0 TH

EN 4

266

4255

PRI

NT

"Sup

port

Mo"

ent

Sti

ffne

ss ••

••••

••••

••••

••••

• =";

4260

PRI

NT U

SING

388

5:K

2(K

),L$

4266

IF

U1=

1 TH

EN 4

275

4267

PRI

HT

"Mag

nitu

de o

f C

once

ntra

ted

Wei

ght •

••••

••••

•• =

";

4268

PRI

NT U

SIHG

388

5:M

<K>,

C$

4270

IF

ABS

CK2<

K>>

<t.0

E-20

THE

N 42

75

4272

PRI

NT

"Wei

ght

HoH

ent

of I

nert

ia <

WRt

2>

abou

t a

• 42

73 P

RIHT

"d

io"e

ter

of d

isc

or e

leM

ent •

••••

••••

••••

••• =

";

4274

PRI

HT U

SING

398

5:I2

<K>,

Kt

4275

PRI

HT

4285

HEX

T K

42

95 R

EM **

* CHA

NGE

DATA

43

05 P

RIHT

"J

Do

you

won

t to

chong~ th

e do

to?

<Y o

r H>

•• 43

15 I

NPUT

A$

4325

IF

A$="

H"

THEN

510

0 43

35

IF A

f<>"

V"

THEH

430

5 43

45 P

AGE

4355

PRI

NT "

JWhi

ch s

ecti

on d

o yo

u w

ont

to c

hang

e?";

43

65

INPU

T N

43

75

IF N

=0 T

HEH

4378

43

77

IF H

<=H1

TH

EH 4

385

4379

PRI

NT "

Err

or!

You

only

hov

e •;

Ht;

• se

ctio

ns,

but

you

have

ent

ered

"

4379

PRI

NT H

;".

Plea

se t

ry a

gain

.•

4380

GO

TO 4

355

4385

IF

U1=

1 TH

EN 4

392

4386

PRI

NT

"Pre

sent

fre

quen

cy ••

••••

••••

••••

••••

••••

••••

••••

•• =

"; 43

87 P

RINT

USI

NG 3

883:

W,J

$ 43

98 P

RINT

"E

nter

new

fr

eque

ncy•

"•

4389

IN

PUT

W

4392

PRI

HT

•For

sec

tion

1•1

H;"

:"

4395

PRI

HT "

Pres

ent

Leng

th o

f th

is s

ecti

on •

••••

••••

••••

••••

•=";

44

05 P

RINT

USI

NG J

885:

L<H

>,D

$

N .... ~

4415

PRI

HT

•Ent

er n

ew L

engt

h an

; 44

25 I

HPUT

L<H

> 44

35 P

RIHT

•P

rese

nt M

odul

us o

f E

last

icit

y ••

••••

••••

••••

••••

•• =

";

4445

PRI

HT U

SIHG

388

5:E<

H>,

E$

4455

PRI

HT

"Ent

er n

ew M

odul

us o

f E

last

icit

y •

ul

4465

IN

PUT

E<H>

44

75 P

RIHT

"P

rese

nt A

rea

HoM

ent

of I

nert

ia ••

••••

••••

••••

••••

• ="

; 44

85 P

RIHT

USI

NG 3

885:

I1<N

>,Ff

44

95 P

RINT

"E

nter

new

Are

a M

oMen

t of

Ine

rtia

=";

4505

IHP

UT

I1<H

> ,

i ~

--45

15 G

O TO

F<N

> OF

479

5,45

25,4

585

-452

5 PR

IHT

"Pre

sent

Uni

forM

ly D

istr

ibut

ed L

oad •

••••

••••

••••

•• ="

; 45

35 P

RINT

USI

NG 3

885:

Q1<

H>,

B$

4545

PRI

NT

•Ent

er n

ew U

nifo

rMly

Dis

trib

uted

Loa

d =•

; 45

55 I

NPUT

Ql<

N>

4565

Q2<

H>=Q

1<N>

45

75 G

O TO

479

5 ~4585

PRIN

T •P

rese

nt l

eft

side

of

lin-

vari

ed d

ist.

lo

ad ••

••••

• =•;

45

95 P

RINT

USI

NG 3

885:

Q1<

N>,

C$

4605

PRI

NT

"Ent

er n

ew

left

sid

e of

lin

.-va

ried

dis

t.

load

=•;

46

15

IHPU

T Q

t(N)

4625

PRI

NT

"Pre

sent

rig

ht s

ide

of l

in.-

var

ied

dis

t.

load

••••

• =•;

4635

PRI

NT U

SING

388

5:Q

2<H

>,C$

46

45 P

RINT

"E

nter

new

rig

ht s

ide

of l

in.-

vari

ed d

ist.

lo

ad=

";

4655

INP

UT Q

2<N>

-..

4795

IF

P1<H

>=0

THEN

484

5 48

05 P

RINT

"P

rese

nt C

once

ntra

ted

Load

••••

••••

••••

••••

••••

••••

=";

48

15 P

RINT

USI

NG 3

885:

P1<N

>,C

$ 48

25 P

RINT

"E

nter

new

Con

cent

rate

d Lo

ad •

";

4835

IH

PUT

P1<H

> 48

45 I

F M

5CN>

=0 T

HEN

4895

48

55 P

RINT

"P

rese

nt M

oMen

t ••

••••

••••

••••

••••

••••

••••

••••

••··

•";

4865

PRI

HT U

SING

388

5:M

5<H

>,G

f 48

75 P

RINT

•E

nter

new

HoM

ent

••1

4885

IH

PUT

MS<

H>

N .... \.n

4895

IF

K1<

H>•0

THE

N 49

45

4905

PRI

NT

"Pre

sent

Sti

ffne

ss o

f Su

ppor

t •••

••••

••••

••••

••••

•• •"

; 49

15 P

RINT

USI

NG 3

885:

Kl<

H>,

Bf

4925

PRI

NT

"Ent

er n

ew S

tiff

ness

of

Supp

ort

=•1

4935

IH

PUT

K1<H

> 49

45

IF K

2<H>

=0

THEN

497

5 49

55 P

RIHT

"P

rese

nt S

uppo

rt M

oMen

t S

tiff

ness

••••

••••

••••

••••

• ="

; 49

60 P

RIHT

USI

HG 3

885:

K2<

H),L

$ 49

66 P

RIHT

"E

nter

new

Sup

port

MoM

ent

Sti

ffne

ss =

"I

4967

IH

PUT

K2<H

) 49

75

IF U

1=1

THEH

499

0 49

77 P

RIHT

"P

rese

nt M

agni

tude

of

Con

cent

rate

d W

eigh

t •••

••••

•• =

•; 49

78 P

RIHT

USI

HG 3

885:

M<H

>,C

f 49

79 P

RIHT

•E

nter

new

"ag

nitu

de o

f C

once

ntra

te W

eigh

t ="

; 49

80

INPU

T f1<

H>

4982

IF

ABS

<K2<

H>>

<1.0

E-20

THE

H 49

90

4984

PRI

HT

"Pre

sent

Wei

ght

Mo"

ent

of I

nert

ia <

WRt

2> •

••••

••••

• =";

4985

PRI

HT U

SIHG

388

5:12

CH

) 9K

$ 49

86 P

RINT

"E

nter

new

Wei

ght

MoM

ent

of I

ner

tia

<WRt

2)

=";

4987

IH

PUT

I2<H

> 49

90 P

RI

"JDo

you

wan

t to

cha

nge

the

data

of

anot

her

sect

ion?

<Y o

r H

>";

4992

IH

PUT

A$

4995

IF

A$=

"V"

THEN

434

5 50

05

IF A

f<>"

H"

THEN

499

9 50

10 G

OSUB

60~

5012

T=

T1

'fJ

5013

S=0

50

14 S

<S>=

1 50

15 F

OR K

4=1

TO N

I 50

25 E

t=E<

K4>

*I1<

K4>

50

30 X

=L<K

4)

5032

H=K

4 50

35 G

OSUB

F<K

4>

OF 6

189,

6270

,627

0 50

45 G

OSUB

660

0 50

55

IF P

<K4>

=0 T

HEH

5985

N .... °'

13) IS) If) .-tlS> M "It' IJ) IS) IJ) IJ)"lt'N

~ mm o :::> ::n- i-c.r".n x COLI.JO ..., '-' z..., If) If) II'> CD t.t: r .... oo •1"• IS) r.D a;,~ IO II'> II'> U"')

217

The vita has been removed from the scanned document

DEVELOPMENT OF INTERACTIVE COMPUTER PROGRAMS FOR

MECHANICAL ENGINEERING DESIGN: FATIGUE ANALYSIS,

SECTION PROPERTIES, AND BEAM ANALYSIS

by

Yiu Wah Luk

(ABSTRACJI')

This thesis presents the theory and describes three interactive

computer graphics programs for mechanical engineering designs Fatigue

Analysis, Section Properties, and Beam Analysis. The Fatigue Analysis

program sizes up a mechanical component, circular, rectangular, or any

shape, to prevent fatigue failure. Six most generally accepted

fatigue failure lines are available and any equivalent stress theories

are allowed. It can al.so calculate the significant endurance limit with

the theoretical stress concentration factor supplied by the user.

The Section Properties program finds twenty section propertie~,

such as area, area moment of inertia, and radius of gyration about

different axis, of any shape plane cross section.

Tm Beam Analysis program, using transfer matrix method, computes

and also plots the curves of deflection, slope, moment, and shear

along the beam. Static and forced, undamped dynamic analysis can be

performed for beams of uniform or variable cross section. Uniformly or

linearly varied distributed loads, concentrated point loads, applied

moments, or combinations of all three may be applied. This program

allows any combination of pinned, fixed, free, or guided flexural

boundary conditions, even normally kinematically unstable condition

can be handled if sufficient internal supports are provided. In-span

support can be elastic springs and/or elastic moment spring. Modelli~

for dynamic response uses lumped mass.

All three programs provide the option of using either English or

SI units. The programming language used is BASIC and the micro-processor

used is a Teketronix model 4051 with 32 K memory.