53
Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1 st Semester Quantum Dots 2014. 5. 8. Changhee Lee School of Electrical Engineering and Computer Science Seoul National Univ. [email protected]

2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Quantum Dots

2014. 5. 8.

Changhee LeeSchool of Electrical Engineering and Computer Science

Seoul National Univ. [email protected]

Page 2: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterContents

Part I: Properties and formation of semiconductor Quantum dots: Introduction: Basic quantum mechanics applied to quantum dots (QDs): Basic properties of quantum wells and dots: Formation of quantum dots

Part II: Colloidal Quantum dot LEDs: QD-LED device structures and operating mechanism: QD-LED device performance: Red, Green and Blue: Exciton recombination and energy transfer: Inverted QD-LEDs: Polymer–QD hybrid LEDs

Part III. QD and Hybrid Solar Cells

Page 3: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Part I: Properties and formation of semiconductor Quantum dots: Introduction

: Basic quantum mechanics applied to quantum dots (QDs)

: Basic properties of quantum wells and dots

: Formation of quantum dots

Page 4: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

synthesized by S. H. Lee’s Group (SNU)

Dot TetrapodRod Hyper-branched

10 nm5 nm

5 nm 20 nm

20nm5 nm 10 nm

100 nm20 nm

Colloidal Nanocrystals

Page 5: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

• Quantum dots?

“fragments of semiconductor consisting of hundreds to many thousands of atoms - with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap” (A. P. Alivisatos, Science 271, 933 (1996).)

excitons are confined in all three dimensions of space.

Quantum dots (QDs)

core

shell surface passivation

emission wavelength(size & composition)

• Quantum dots have properties - High extinction coefficient- High electron mobility- Band gap & position tunability- Solution process capability

• Different methods to create quantum dots.

• Multiple applications: LEDs, LDs, Solar Cells, etc.

Page 6: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Conduction Band

Valence Band

Insulator Insulator

ElectronEnergy Levels

HoleEnergyLevels

Quantum dot

e-

h+

Exciton Levels Eg, bulk

E(k)

k

BulkAtom Molecule

“Quantum dot is a nanometer-scale semiconductor crystallite which confines the electron-hole pair in all three dimensions.”

Energy structure of QDs

Page 7: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Core shell shell nanocrystal: a schematic outline and b the schematic energy level diagram; c, d relationship between band gap energy and lattice parameter of bulk wurzite phase CdSe, ZnSe, CdS, and ZnS

Dirk Dorfs, Alexander Eychmueller, “Multishell semiconductor nanocrystals”, in Andrey L. Rogach (Ed.) Semiconductor Nanocrystal Quantum Dots, Synthesis, Assembly, Spectroscopy and Applications, Springer-Verlag/Wien, 2008.

Energy band of QDsLuminescence of CdSe QDs of different sizes

Quantum Dot Corp.

Page 8: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterNanoparticle applications

• Quantum dots

– QDLEDs

– Solar cells

– Biomedicine

• Magnetic nanoparticles

– Biomedicine: MRI. Hyperthemia, Drug delivery

• Metal nanoparticles

– Biodetection (Au. Ag)

– Electromagnetic shell (Fe, Ni, Co)

– Nanofluid

• Metal oxide nanoparticles

– Dielectrics

– Nanocomposite

– Nanocoating Q.-J Sun et al. (CAS, Ocean NanoTech), Nature Photonics 1, 717 (2007)

W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science, 295, 2425 (2002)

- +

PEDOT:PSSActive Layer

ITO

Al

Page 9: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

NEXXUS LIGHTING

Lighting QLED & DisplaySAIT

NANOCO

Examples of QD applications: LED, Lighting, Display

Page 10: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Coulomb charging effect with limited DOS

Single electron transistors

e2/(2C) e2/(2C) + E

E

P. L. McEuen, Nature (1997)

10

Bio-imagingEVIDENT

A. P. Alivisatos, Science (1998)

Other examples of QD applications

Page 11: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Basic quantum mechanics applied to nanoclusters (QDs)

Page 12: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterPeriodic Table

Dmitri IvanovichMendeleev (1834.2.8 –1907.2.2)In 1869, he invented the table to illustrate recurring ("periodic") trends in the properties of the elements.

A. Beiser, Concepts of Modern Physics, 6th ed., McGraw-Hill, New York, USA, 2003.

Page 13: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterSchrödinger equation

2

H 22

Um

nnn EH

Time-independent Schrödinger equation

Steady-state Schrödinger equation in 1-dim.

EUxm

2

22

2

Boundary condition energy quantization.

Erwin Schrödinger 의대표적논문• Schrödinger Eq., Energy eigenvalues for the hydrogen-like atomE. Schrödinger, Quantisierung als Eigenwertproblem (Quantization as an Eigenvalue

Problem), Ann. Phys. 1926, vol. 384, 361–376• Quantum harmonic oscillator, the rigid rotor and the diatomic molecule, New derivation of the Schrödinger equationE. Schrödinger, Quantisierung als Eigenwertproblem, Ann. Phys. 1926, vol. 384,

489–527• Equivalence of Schrödinger approach to that of Heisenberg, Treatment of the Stark effectE. Schrödinger, Über das Verhältnis der Heisenberg-Born-Jordanschen

Quantenmechanik zu der meinem, Ann. Phys. 1926, vol. 384, 734–756• Treat problems in which the system changes with time, as in scattering problemsE. Schrödinger, Quantisierung als Eigenwertproblem, Ann. Phys. 1926, vol. 385,

437–490• E. Schrödinger, Quantisierung als Eigenwertproblem, Ann. Phys. 1926, vol. 386, 109–139• E. Schrödinger, Der stetige Übergang von der Mikro-zur Makromechanik, Die Naturwissenschaften, 14. Jahrg. Heft 28, S. 664-666 (1926).

Erwin Schrödinger (1887. 8. 12 –1961. 1. 4)Nobel Prize in Physics (1933)

tiEetx )/(),(

Time-dependent Schrödinger equation

Ht

i

Page 14: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

VV

0V

0 x L

Within the box V=0. 0222

2

Em

x

xmEBxmEAn

2cos2sin

Boundary condition: ψ=0 at x=0 and a.

.321 ,2 ,0 , . . , , nnπLmEB

Schrödinger equation: Particle in a box

. . . 3, 2, 1, ,22 2

22222

n

mLn

Ln

mE n

Energy levels for a particle in a box

Wave functions for a particle in a box

Lxn

Ln sin2

Wave functions

Page 15: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

A. Beiser, Concepts of Modern Physics, 6th ed., McGraw-Hill, New York, USA, 2003, Chapter 3

)(2 , 2

2 2EUm

keT Lk-

For E<U, the particle has a certain probability - not necessarily great, but not zero either-of passing through the barrier and emerging on the other side.

Approximate transmission probability

Reflection and tunnelling of an electron wavepacket directed at a potential barrier. http://en.wikipedia.org/wiki/Quantum_tunnelling

Schrödinger equation: Tunnel effect

B.E.A. Saleh, M.C. Teich. Fundamentals of Photonics. Fig. 13.1-11.

Page 16: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterTransmission probabilities

Jaspirit Singh, Semiconductor Devices - an introduction, Chap. 1

Page 17: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterFinite potential well

xI Be

solutions) tric(antysymme sin

solutions) (symmetric coskxAkxA

II

x-III Be

oV

-L/2 L/2 x1E

2E

3E

I II III

22 /2 mEk 22 /)(2 EVm o

Boundary conditions; )

2()

2( );

2()

2(

;)2

()2

( );2

()2

(

Ldx

dψLdx

dψLL

Ldx

dψLdx

dψLL

IIIIIIIIII

IIIIII

solutions) tric(antysymme )22

tan(

solutions) (symmetric 2

tan

kLk

kLk

• Allowed particle energies depend on the well depth • The deeper the finite well, the better the infinite well approximation for the low-lying energy values• Small L larger energy level separation

Page 18: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

22

2*

max21

LVmIntn o

Bound states as a function of well thickness

Page 19: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

• Density of states (DoS) - e.g. in 3D (bulk material):

Density of states (DOS)

Volume in k-space per state: 3)2(L

Volume in k-space occupied by states with energy less than E:

)(2 ,

34 3 c

k

EEmkkV

Number of electron states in this volume:

23

23

2

3

3

3

)()2(3)/2(

3/42)( cEEmLL

kEN

Density of states with energies between E and E+dE per unit volume:

21

23

23 )()2(2

1)(1)( cEEmdE

EdNL

Eg

Lower the dimension greater the density of states near the band edge Greater proportion of the injected carriers contribute to the band edge population.

B.E.A. Saleh, M.C. Teich. Fundamentals of Photonics. Fig. 16.1-29.

B.E.A. Saleh, M.C. Teich. Fundamentals of Photonics. Fig. 16.1-10.

Page 20: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

• Exciton: bound electron-hole pair• Excite semiconductor creation of e-h pair

– There is an attractive potential between electron and hole

– mh* > me

* hydrogen-like system– Binding energy determined from Bohr

Theory

• In QDs, excitons are generated inside the dot• Excitons are confined to the dot

– Degree of confinement is determined by dot size

– Discrete energies• Exciton absorption -function-like peaks

in absorption

Optical ExcitationOrbit radii in the Bohr atom

... 3, 2, 1,n 22

22

namehnr o

on

Energy levels

... 3, 2, 1,n )1(88 222

42

nh

mer

eEono

n

Page 21: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterOptical absorption and PL of quantum wells

)11(2

)2

()2

( **2

222

2*

222

2*

222

he

ig

h

iV

e

iCVi

Ci mmL

nELmnE

LmnEEE

• Properties determined by the size of quantum wells• Smaller size larger energy band gap shorter wavelength

Page 22: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Basic properties of Quantum wells and dots

Page 23: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

From http://www.evidenttech.com/quantum-dots-explained/how-quantum-dots-work.html (Evident Technologies. 2010).

Energy levels of QDsVery small semiconductor particles with a size comparable to the Bohr radius of the excitons(separation of electron and hole).

• Typical dimensions: 1 – 10 nm• Different shapes (cubes, spheres, pyramids, etc.)• The optical and electronic properties of QDs can be controlled by their size, shape, and composition.

CdSe Quantum Dot• 5 nm dots: red• 1.5 nm dots: violet

B.E.A. Saleh, M.C. Teich. Fundamentals of Photonics. Fig. 13.1-12.

Page 24: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterSmall enough to see quantum effect

In order to see quantum effect, energy levels must be sufficiently separated to remain distinguishable under broadening (e.g. thermal).

For free electrons, ~ 6 nm (at 300 K).

nmTmk

hTkmk

BB 6

3001038.1101.9310626.6

3 ;

23

2 2331

3422

A. P. Alivisatos, Science 271, 933 (1996).)

• In metal:- Energy level spacing at the Fermi energy EF is very small.

• In semiconductors:- Effective mass m* ~ 0.1 m- EF lies between two bands, such that the edges of the bands

dominate the low-energy optical and electrical behavior. - Quantum effects occurs on size of clusters of L ~ 10 nm

(10,000 atoms)• In molecular crystals:

- Narrow band width due to weak van der Waals interaction not much size variation in optical or electrical properties.

In semiconductors, this condition can be realized for a given temperature at a relatively large size compared to metals, insulators, or molecular crystals.

Page 25: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterSize matters

In a material of a single chemical composition, fundamental properties of materials can be changed by the controlling the size of nanoclusters (QDs).

• Energy band gap• Electrical transport• Melting temperature• etc..

L. E. Brus, J. Chem. Phys. 80, 4403 (1984)G. D. Scholes, G. Rumbles, Nature Materials 5, 683 (2006)

Page 26: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

A. P. Alivisatos, Science 271, 933 (1996).)

Quantum confinement effects

G. D. Scholes, G. Rumbles, Nature Materials 5, 683 (2006)

Page 27: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

G. D. Scholes, G. Rumbles, Nature Materials 5, 683 (2006)

Hole and electron states associated with excitons seen as the prominent absorption features are labelled according to the assignments of ref. [A. I. Ekimov, et al., J. Opt. Soc. Am. B 10, 100 (1993).]. That notation specifies a hole or electron state as n*(l, l + 2)F, where n* labels ground and excited states, l is the minimum orbital quantum number and F = l + j is the total angular momentum quantum number (orbital plus spin), containing FZ from –F to +F. Usually just the major contributor out of l or l + 2, or alternatively just l, is written as S, P, D and so on. That quantum number is associated with the envelope function, usually modelledmathematically as a spherical Bessel function jl(x). The quantum number j is associated with the Bloch function. For example, the upper valence band of a zinc blende structure has j = 3/2 and jz = –3/2, –1/2, 1/2, 3/2.

Electronic transition in colloidal CdSe quantum dots

The splitting between the lowest bright and dark exciton fine structure states is analogous to the singlet–triplet splitting of the organic materials when crystal field splitting is negligible compared with the electron–hole exchange interaction.

Bright–dark exciton splitting for a selection of quantum dots: Si (tight-binding calculations), InP (fluorescence line narrowing, measured at 10 K), GaAs(pseudopotential calculations of rectangular nanocrystals),CdTe (fluorescence line narrowing, 10 K, of colloids in glass), AgI(fluorescence line narrowing, 2 K), InAs (fluorescence line narrowing, 10 K), and CdSe(fluorescence line narrowing, 10 K).

An absorption spectrum recorded at 4 K of CdSe QDs with 4.0 nm mean diameter.

Page 28: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

NANOCO

Peter Reiss, “Synthesis of semiconductor nanocrystals in organic solvents”, in Andrey L. Rogach (Ed.) Semiconductor Nanocrystal Quantum Dots, Synthesis, Assembly, Spectroscopy and Applications, Springer-Verlag/Wien, 2008.

Stokes’s shift in colloidal CdSe quantum dots

Page 29: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

How to Make Quantum Dots?

• Top-down approaches– Lithography– Epitaxy:

» Patterned Growth

» Self-Organized Growth

• Bottom-up approaches– Colloidal synthesis

Page 30: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterTop-down approaches

From lecture note of Prof. Sebastian Lourdudoss (KTH)

Page 31: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterEtched Quantum Dots By E-Beam Lithography

From lecture note of Prof. Sebastian Lourdudoss (KTH)

Page 32: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

• Growth on patterned substrates – Grow QDs in pyramid-shaped recesses– Recesses formed by selective ion

etching– Disadvantage: density of QDs limited by

mask pattern

T. Fukui et al. GaAs tetrahedral quantum dot structures fabricated using selective area metal organic chemical vapor deposition. Appl. Phys. Lett. 58, 2018 (1991)

Epitaxy: Patterned Growth

From lecture note of Prof. Joyce Poon (Caltech); http://www.osun.org/quantum-dot-ppt.html

Page 33: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

• Self-organized QDs through epitaxial growth strains– Stranski-Krastanov growth mode (use MBE, MOCVD)

• Islands formed on wetting layer due to lattice mismatch (size ~10s nm)

– Disadvantage: size and shape fluctuations, ordering– Control island initiation

• Induce local strain, grow on dislocation, vary growth conditions, combine with patterning

AFM images of islands epitaxiall grown on GaAs substrate. (a) InAs islands randomly nucleate. (b) Random distribution of InxGa1xAs ring-shaped islands. (c) A 2D lattice of InAs islands on a GaAs substrate.

P. Petroff, A. Lorke, and A. Imamoglu. Epitaxially self-assembled quantum dots. Physics Today, May 2001, p. 46.

Epitaxy: Self-Organized Growth

From lecture note of Prof. Joyce Poon (Caltech); http://www.osun.org/quantum-dot-ppt.html

Page 34: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterTunnel Injection QD Lasers Grown by MBE

From lecture note of Prof. Sebastian Lourdudoss (KTH)

Page 35: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Wet chemistry and self-assembly MBE/MOCVD method

• Formation of nanomaterials through wet chemistry• Facile and cost-efficient process

Synthesis of nanomaterials through wet chemistry

Page 36: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

• Engineer reactions to precipitate quantum dots from solutions or a host material (e.g. polymer)

• In some cases, need to “cap” the surface so the dot remains chemically stable (i.e. bond other molecules on the surface)

• Can form “core-shell” structures• Typically group II-VI materials (e.g. CdS, CdSe)• Size variations ( “size dispersion”)

Evident Technologies: http://www.evidenttech.com/products/core_shell_evidots/overview.php

M.L. Steigerwald et al., “Surface Derivatization and Isolation of Semiconductor Cluster Molecules,” J. Am. Chem. Soc. 110: 3046-3050 (1988).

CdSe core with ZnS shell QDsRed: bigger dots!

Blue: smaller dots!

Colloidal synthesis

http://quantumdot.lanl.gov/

Page 37: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Core

Shell

- Emission wavelength(size & composition)

- CdSe, CdTe, ZnTe, CdS (group II-VI)- InP, InGaP (Group III-V)

- Surface passivation(i.e. dangling bond)

-Protection layer- ZnSe, ZnS (group II-VI)- GaP (Group III-V)

Ligand - Surface stabilizer- QD solubility- COOH, NH2, P, PO, PO3

Core@Shell Structured Colloidal Quantum Dots

Page 38: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterSurface passivation of QDs

Ligand

- Surface stabilizer- QD solubility- COOH, NH2, P, PO, PO3

QD aggregation

TOPO(trioctylphosphine oxide)

O=P

Page 39: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterChemical synthesis of semiconductor nanocrystals

C. B. Murray, C. R. Kagan, M. G. Bawendi, Ann. Rev. Mater. Sci. 30, 545 (2000)

Page 40: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Peter Reiss, “Synthesis of semiconductor nanocrystals in organic solvents”, in Andrey L. Rogach (Ed.) Semiconductor Nanocrystal Quantum Dots, Synthesis, Assembly, Spectroscopy and Applications, Springer-Verlag/Wien, 2008.

La Mer plot

3. Stage III: The particle growth continues under further monomer consumption as long as the system is in the supersaturated regime.

• Experimentally, the separation of nucleation and growth can be achieved by - hot-injection method: rapid injection of the reagents into the hot solvent, which raises the precursor concentration in the reaction flask above the nucleation threshold. The hot-injection leads to an instantaneous nucleation, which is quickly quenched by the fast cooling of the reaction mixture (the solution to be injected is at room temperature) and by the decreased supersaturation after the nucleation burst. - heating-up method: the in situ formation of reactive species upon supply of thermal energy. This method is widely used in the synthesis of metallic nanoparticles, but recently an increasing number of examples of semiconductor NCs prepared by this approach can be found.

• Crystal growth from solution is in many cases followed by an Ostwald ripening process. The smallest particles dissolve because of their high surface energy and subsequently the dissolved matters redeposit onto the bigger ones. Thereby the total number of NCs decreases, whereas their mean size increases. Ostwald ripening can lead to reduced size dispersions of micron-sized colloids. In the case of nanometer-sized particles, however, Ostwald ripening generally yields size dispersions of the order of 15–20%, and therefore the reaction should be stopped before this stage.

1. Stage I: Initially the concentration of monomers, i.e. the minimum subunits of the crystal, constantly increases by addition from exterior or by in situ generation within the reaction medium. In stage I no nucleation occurs even in supersaturated solution (S>1), due to the extremely high energy barrier for spontaneous homogeneous nucleation.

2. Stage II: The energy barrier for spontaneous homogeneous nucleation is overcome for a yet higher degree of supersaturation (S>Sc), where nucleation and formation of stable nuclei take place. As the rate of monomer consumption induced by the nucleation and growth processes exceeds the rate of monomer supply, the monomer concentration and hence the supersaturation decreases below Sc, the level at which the nucleation rate becomes zero.

Page 41: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Peter Reiss, “Synthesis of semiconductor nanocrystals in organic solvents”, in Andrey L. Rogach (Ed.) Semiconductor Nanocrystal Quantum Dots, Synthesis, Assembly, Spectroscopy and Applications, Springer-Verlag/Wien, 2008.

Chemical synthesis of II-VI nanocrystals

Page 42: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterChemical synthesis of III-V and IV-VI nanocrystals

Peter Reiss, “Synthesis of semiconductor nanocrystals in organic solvents”, in Andrey L. Rogach (Ed.) Semiconductor Nanocrystal Quantum Dots, Synthesis, Assembly, Spectroscopy and Applications, Springer-Verlag/Wien, 2008.

Page 43: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterSynthesis of core/shell nanocrystals

Peter Reiss, “Synthesis of semiconductor nanocrystals in organic solvents”, in Andrey L. Rogach (Ed.) Semiconductor Nanocrystal Quantum Dots, Synthesis, Assembly, Spectroscopy and Applications, Springer-Verlag/Wien, 2008.

Page 44: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Strategy 1: Improved interface through post treatment (thermal annealing)

Core

Shell

Core

ShellPost Treatment

Core

ShellImproved interface

Key Issues:• Relieved lattice mismatch btw core and thick shell• Uniform shell growth• Straightforward and reproducible synthetic manner

Strategy 2: Composition gradient shell growth

Core Core

Shell

Reaction Time

Synthesis of Highly Luminescent Quantum Dots

Synthesis of core/shell QDs with chemical composition gradient

Prof. S. H. Lee (SNU)

Page 45: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

• Straightforward and efficient• Quantum dots with wide emission range (Green ~ Red)• General method to synthesize QDs with composition gradients• A gram-scale synthesis with minimum amount of surfactants

Cd1-xZnxSe1-ySy

Cd1-xZnxSe1-ySy

CdSe

ZnS

Prof. S. H. Lee (SNU)

One-Pot Synthesis of Quantum Dots (Green/Red)

Page 46: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

(a) 10 sec (3 nm) (b) 1 min (4.2 nm) (c) 3 min (5.6 nm)

(d) 5 min (6 nm) (e) 10 min (6.3 nm)

0 100 200 300 400 500 6001.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Size

(nm

)

Reaction Time (sec)

TEM images of QDs as a function of reaction time

Quantum dots possess spherical shape with narrow size distribution ( < 5 %).

One-Pot Synthesis of Quantum Dots (Green/Red)

Prof. S. H. Lee (SNU)

Page 47: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Zinc Blend CdSe

Zinc Blend CdSe@ZnS

Composition Analysis on Quantum Dots (Green/Red)

Prof. S. H. Lee (SNU)

Page 48: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Wavelength (nm)350 400 450 500 550 600 650 700

Abs

orba

nce

(a.

u.)

PL In

tens

ity

(a.

u.)

Reaction Time (sec)

0 100 200 300 400 500 600

PL Q

Y (%

)10

20

30

40

50

60

70

80

90

5 sec

1 min

3 min

5 min

10 min

Reaction Time (sec)

0 100 200 300 400 500 600

PLm

ax.

(nm

)

510

520

530

540

550

560

FWH

M (

nm)

22

24

26

28

30

32

PLmax.FWHM

Prof. S. H. Lee (SNU)

UV-Vis. & PL Spectra of Quantum Dots (Green/Red)

Page 49: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Wavelength (nm)450 500 550 600 650

PL In

tens

ity

(a.

u.)

FWHM < 35 nm

Se/(Se+S)0.0 0.2 0.4 0.6 0.8 1.0

PLm

ax. (

nm)

480

500

520

540

560

580

600

620

Cd/(Cd+Zn)0.0 0.2 0.4 0.6 0.8 1.0

PLm

ax. (

nm)

500

520

540

560

580

600

Cd: 0.4 mmol, Zn: 4 mmolSe+S: 4.4 mmol

Se: 0.4 mmol, S: 4 mmolCd+Zn: 4.4 mmol

Prof. S. H. Lee (SNU)

Emission Window of Quantum Dots (Green/Red)

Page 50: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

• QDs with abrupt interface• Low QY and photostability

• QDs with diffuse interface• High QY• Improved photostability

Reaction schematic for Cd1-xZnxS@ZnS quantum dots

• Straightforward and efficient (one-pot synthetic method)• Quantum dots with emission range from near UV to blue• General method to synthesize QDs with improved interface• A gram-scale synthesis with minimum amount of surfactants

Prof. S. H. Lee (SNU)

Preparation of Cd1-xZnxS@ZnS Quantum Dots (Blue)

Page 51: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Cd1-xZnxS quantum dots Cd1-xZnxS@ZnS quantum dots

• The size of quantum dots increase about 3 nm.

• Quantum dots possess spherical shape with high crystallinity.

Prof. S. H. Lee (SNU)

Preparation of Cd1-xZnxS@ZnS Quantum Dots (Blue)

Page 52: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

30 min

10 min

5 min

Before TBPS Injection

X 10

Wavelength (nm)350 400 450 500 550 600 650 700

Abso

rban

ce (a

. u.)

PL In

tens

ity (a

. u.)

Reaction Time (min)0 20 40 60 80 100 120

PL M

ax. (

nm)

440

442

444

446

448

450

452

454

No Further Injection

250 oC

280 oC

310 oC

Reaction Time (min)0 20 40 60 80 100 120

Qua

ntum

Yie

ld (%

)0

20

40

60

80

No Further Injection

250 oC

280 oC

310 oC

Prof. S. H. Lee (SNU)

UV-Vis. & PL Spectra of Cd1-xZnxS@ZnS Quantum Dots (Blue)

Page 53: 2014.1 전자물리특강 Lecture6-QD1 [호환 모드]ocw.snu.ac.kr/sites/default/files/NOTE/9223.pdf · 2018-01-30 · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

• From violet (410 nm) to blue (460 nm)• Narrow emission (fwhm < 30 nm)• High QY (up to 80 %)

• Straightforward (one-pot synthesis)• Highly reproducible ( 3 nm in PL)• Scale-up capability (in gram scale)

Deep Blue QDs

Synthesis

1st S

Injection

Cd1-xZnxS (Core) 2nd S

Injection

Cd1-xZnxS/ZnS (Core/Shell)

Cd : Zn Size PL max. QY () Cd : Zn Size PL max. QY ()

1.2 mmol 0.76 : 0.24 5.4 nm 467 nm < 5 % 8 mmol 0.14 : 0.86 9 nm 461 nm 42 %

1.5 mmol 0.72 : 0.28 5.1 nm 460 nm < 5 % 8 mmol 0.15 : 0.85 8.5 nm 450 nm 62 %

1.7 mmol 0.70 : 0.30 5.2 nm 450 nm < 5 % 8 mmol 0.16 : 0.84 8.7 nm 443 nm 70 %

2.0 mmol 0.58 : 0.42 4.7 441 nm < 5 % 8 mmol 0.16 : 0.84 8.2 nm 433 nm 81 %

2.2 mmol 0.51 : 0.49 4.5 nm 429 nm < 5 % 8 mmol 0.16 : 0.84 8.5 nm 422 nm 68 %

2.7 mmol 0.49 : 0.51 4.3 nm 423 nm < 5 % 8 mmol 0.15 : 0.85 7.5 nm 415 nm 48 %

* Reaction conditions: Cd 1 mmol, Zn 10 mmol, OA 7 ml, ODE 15 ml, Tinjection 300 oC and Tgrowth 310 oC

Prof. S. H. Lee (SNU)

Emission Window & Scale-up Capability of Cd1-xZnxS@ZnS QDs (Blue)