1
1. Introduc,on 6. Conclusions Surface6ini,ated atom transfer radical polymeriza,on [1] High6density polymer brush surfaces with controlled physicochemical proper,es were prepared, as model surfaces to understand the rela,onship between protein adsorp,on and interac,on force. 5. Protein Adsorp,on Behavior Electrosta,c interac,on forces and hydrophobic interac,on forces genera,ng on surfaces were clearly separated using systema,cally prepared polymer brush surfaces. Long)range strong repulsion in pure water Weakening with increase of ionic strength → Electrosta;c interac;on Weak repulsion independent of ionic strength → No specific interac;on Electrosta,c and hydrophobic interac,on forces hinder the reversible detachment of proteins from the surfaces, which would lead to high protein adsorp,on. No interac;on force when retrac;ng a?er contact 4. Surface Interac,on Forces 3. Polymer Brush Surfaces • Gra? density: High enough to form the high)density polymer brush surface [2] • Hydrophilicity: High in wet condi;on [except for poly(BMA)] Constant regardless of ionic strength in medium • Surface poten;al: Different by charge proper;es of monomer units [3] Y. Inoue et al., React. Funct. Polym., 71, 350)355, 2011. Protein adsorp;on forces on well)defined polymer surfaces were analyzed. The electrosta;c or hydrophobic interac;on genera;ng on the vicinity of protein adsorp;ve surfaces plays a role as the force which inhibit the detachment of proteins from the surface. The fabrica,on of surface which enables proteins to easily detach from the surface would be important to suppress protein adsorp,on on biomaterials surfaces. Analysis of Protein Adsorp;on Force Generated at Polymer Surfaces for Designing Non)biofouling Materials Sho SAKATA , Yuuki INOUE, and Kazuhiko ISHIHARA Department of Materials Engineering, School of Engineering, The University of Tokyo e)mail: [email protected])tokyo.ac.jp hep://www.mpc.t.u)tokyo.ac.jp Polymer Gra? density Contact angle (°) ζ)Poten;al (chains/nm 2 ) in water in PBS (mV) Poly(MPC) 0.33 9 9 )5.9 Poly(TMAEMA) 0.45 17 14 64.9 Poly(SPMA) 0.55 13 11 )74.0 Poly(BMA) 0.75 73 73 )37.2 Penetra;on of proteins into polymer brush layers is negligible. Poly(TMAEMA) (Ca;onic) CH 3 C=O CH 3 CH 3 O O)R SiO 2 /Si )OH )OH )O)Si)(CH 2 ) 10 )O)C)C)(CH 2 )C) 100 )Br Substrate Ini;ator Polymer chain R : Side chains with various chemical structures Poly(MPC) (Zwieerionic) Poly(BMA) (Hydrophobic) Poly(SPMA) (Anionic) (CH 2 ) 3 CH 3 (CH 2 ) 2 N + (CH 3 ) 3 Cl ) (CH 2 ) 2 OPO(CH 2 ) 2 N + (CH 3 ) 3 O O ) (CH 2 ) 3 SO 3 ) K + [1] S. Sakata et al., Langmuir 30, 2745)2751, 2014. MPC TMAEMA SPMA BMA : 2)Methacryloyloxyethyl phosphorylcholine : 2)Trimethylammoniumethyl methacrylate : 3)Sulfopropyl methacrylate : n)Butyl methacrylate Degree of polymeriza;on (DP) was controlled by the ra;o of monomer and free ini;ator in feed. Development of regenera;ve medicine, cell engineering, and biomaterials engineering → Biological responses at interfaces should be precisely understood and controlled. It is important to understand each process of protein adsorp;on phenomena based on interac;on forces. Cell Tissue Protein Biological responses on materials surface Ini;al event Mul;layer adsorp;on Approach Detachment Conforma;on change Protein)protein interac;on Polymer brush layer probe Protein)immobilized probe → Forces on each surface → Direct interac;on force with protein (Thickness: ca.10 nm) Force (nN) Distance (nm) Aerac;ve Repulsive 0 0 Indirect long6ranged Interac,on force Direct interac,on force Poly(MPC) Poly(TMAEMA) Poly(SPMA) !50 0 50 100 150 200 250 Distance (nm) Force (nN) ― 0 mmol/L ― 1.5 mmol/L ― 150 mmol/L !2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 !2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 !50 0 50 100 150 200 250 Distance (nm) Force (nN) ― 0 mmol/L ― 1.5 mmol/L ― 150 mmol/L !2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 !50 0 50 100 150 200 250 Distance (nm) Force (nN) ― 0 mmol/L ― 1.5 mmol/L ― 150 mmol/L + + + + + + + + −− −− + + + + + + !4.0 !2.0 0.0 2.0 4.0 6.0 8.0 10.0 !50 0 50 100 150 200 250 Distance (nm) Force (nN) ― Approach ― Retract MPC, TMAEMA, SPMA (Retract curve) !4.0 !2.0 0.0 2.0 4.0 6.0 8.0 10.0 !50 0 50 100 150 200 250 Distance (nm) Force (nN) ― Poly(MPC) ― Poly(TMAEMA) ― Poly(SPMA) (150 mmol/L) Poly(BMA) No interac;on force on approach Strong aerac;on on retrac;on → Hydrophobic interac;on 0.0 1.0 2.0 3.0 4.0 Poly(MPC) Poly(TMAEMA) Poly(SPMA) Poly(BMA) Interac;on force (nN) 0.0 1.0 3.0 5.0 7.0 Poly(MPC) Poly(TMAEMA) Poly(SPMA) Poly(BMA) Interac;on force (nN) 6.0 4.0 2.0 0.0 1.0 2.0 3.0 4.0 Interac;on force (nN) 0.0 2.0 4.0 5.0 7.0 Interac;on force (nN) 6.0 3.0 1.0 Polymer brush surfaces Surface)ini;ated atom transfer radical polymeriza;on → Uniform extension of polymer chains from surface) immobilized ini;ators Refined understanding of various molecular interac;on by combina;on of polymer brush surfaces and AFM Understanding protein adsorp,on based on analysis of molecular interac,on opera,ng on the surfaces 2. Objec,ve Poly(MPC) Poly(TMAEMA) Poly(BMA) Poly(SPMA) Adsorbed amount (ng/cm 2 ) 700 600 500 400 300 200 0 100 N.D. N.D. N.D. Albumin ()) Poly(MPC) Poly(TMAEMA) Poly(BMA) Poly(SPMA) N.D. N.D. 1200 Adsorbed amount (ng/cm 2 ) 1000 800 600 400 200 0 Lysozyme (+) 10 mmol/L 150 mmol/L 10 mmol/L 150 mmol/L → Various interac;on forces on surfaces Poly(MPC) Poly(TMAEMA) Poly(SPMA) Poly(BMA) → Liele interac;on → Strong interac;on with albumin → Strong interac;on with lysozyme → Strong Interac;on with both proteins Poly(MPC) Poly(TMAEMA) Poly(SPMA) Poly(BMA) → Liele adsorp;on (< 5.0 ng/cm 2 ) → High adsorp;on of albumin → High adsorp;on of lysozyme → Independent of charge proper;es AFM f6d curves on retrac,ng AFM f6d curves on approaching Amount of adsorbed proteins Protein6protein interac,on Surface6protein interac,on Surface plasmon resonance measurement ) 1.0 mg/mL (PBS; I = 10, 150 mmol/L, pH 7.4) ) 37°C, 500 μL/min, 30 min AFM f6d curve measurement [3] ) Polymer brush surface ) PBS (I = 150 mmol/L, pH 7.4) Zwieerionic Albumin ()) Lysozyme (+) Physicochemical surface proper,es AFM f6d curve measurement ) Protein pre)adsorbed surface ) PBS (I = 150 mmol/L, pH 7.4) [2] Y. Tsujii et al., Adv. Polym. Sci., 197, 1)45, 2006. Interac;on force with proteins drama;cally decreased on the high protein adsorp;on surfaces. → Protein would not adsorb on the surfaces with enough amount protein layer. Difficult to detach Albumin ()) Lysozyme (+) Zwieerionic surface → No specific interac;on Ca;onic Surface Anionic Surface → Electrosta;c interac;on Hydrophobic Surface → Hydrophobic interac;on Single or No interac;on force operated on the surfaces. Dissolved protein Easy detachment Ca;onic Anionic Hydrophobic Zwieerionic Ca;onic Anionic Hydrophobic No adsorp;on + + + + + + + + + Approach Retract Polymer brush surface AFM probe Ini;ator Monomer Substrate Atomic force microscopy (AFM) Acquisi;on of force)versus)distance (f6d) curve Evalua;on of various interac;on by modified probe Polymer chains composed of single monomer unit Controlled surface property by chemical structure → Clarifica;on of surface interac;on force Poly(MPC) Poly(TMAEMA) Poly(BMA) Poly(SPMA) Albumin Lysozyme 1 nm Albumin from bovine serum (pI 4.8) Lysozyme from chicken egg white (pI 11.1) Nega;ve net charge at pH 7.4 Posi;ve net charge at pH 7.4 Before / A?er immersion in protein solu;on Enough amount protein layer No interac;on Equilibrium state

2014 IPC2014 Poster(最終) - University of Tokyo · 1.#Introduc,on 6.#Conclusions Surface6ini,ated#atom#transfer#radical#polymeriza,on#[1] High6density#polymer#brush#surfaces#with#controlled#physicochemical#proper,es#were#prepared,#as##model#surfaces#to#understand#the#rela,onship#between#protein#adsorp,on#and#interac,on#force

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 2014 IPC2014 Poster(最終) - University of Tokyo · 1.#Introduc,on 6.#Conclusions Surface6ini,ated#atom#transfer#radical#polymeriza,on#[1] High6density#polymer#brush#surfaces#with#controlled#physicochemical#proper,es#were#prepared,#as##model#surfaces#to#understand#the#rela,onship#between#protein#adsorp,on#and#interac,on#force

1.#Introduc,on�

6.#Conclusions �

Surface6ini,ated#atom#transfer#radical#polymeriza,on#[1]�

High6density#polymer#brush#surfaces#with#controlled#physicochemical#proper,es#were#prepared,#as##model#surfaces#to#understand#the#rela,onship#between#protein#adsorp,on#and#interac,on#force. �

5.#Protein#Adsorp,on#Behavior �

Electrosta,c#interac,on#forces#and#hydrophobic#interac,on#forces#genera,ng#on#surfaces#were#clearly#separated#using#systema,cally#prepared#polymer#brush#surfaces.#

�$Long)range$strong$repulsion$in$pure$water$��Weakening$with$increase$of$ionic$strength$��→$Electrosta;c$interac;on$

Weak$repulsion$independent$of$ionic$strength$�→$No$specific$interac;on$

Electrosta,c#and#hydrophobic#interac,on#forces#hinder#the#reversible#detachment#of#proteins#from#the#surfaces,#which#would#lead#to#high#protein#adsorp,on.#

No$interac;on$force$when$retrac;ng$a?er$contact$$

4.#Surface#Interac,on#Forces �

3.#Polymer#Brush#Surfaces �

•$Gra?$density:$High$enough$to$form$the$high)density$polymer$brush$surface$[2]$•$Hydrophilicity:$High$in$wet$condi;on$[except$for$poly(BMA)]$$

����������$$Constant$regardless$of$ionic$strength$in$medium$•$Surface$poten;al:$Different$by$charge$proper;es$of$monomer$units$

[3]$Y.$Inoue$et#al.,$React.#Funct.#Polym.,$71,$350)355,$2011.�

Protein$ adsorp;on$ forces$ on$ well)defined$ polymer$ surfaces$ were$ analyzed.$ The$ electrosta;c$ or$ hydrophobic$interac;on$genera;ng$on$ the$ vicinity$of$ protein$ adsorp;ve$ surfaces$plays$ a$ role$ as$ the$ force$which$ inhibit$ the$detachment$of$proteins$from$the$surface.$�

The# fabrica,on# of# surface# which# enables# proteins# to# easily#detach# from# the# surface# would# be# important# to# suppress#protein#adsorp,on#on#biomaterials#surfaces.#

Analysis$of$$Protein$Adsorp;on$Force$Generated$at$Polymer$Surfaces$for$Designing$Non)biofouling$Materials$

Sho$SAKATA,$Yuuki$INOUE,$and$Kazuhiko$ISHIHARA�Department$of$Materials$Engineering,$School$of$Engineering,$The$University$of$Tokyo$

e)mail:[email protected])tokyo.ac.jp$$$$hep://www.mpc.t.u)tokyo.ac.jp$

$Polymer$Gra?$density$ Contact$angle$(°)$ ζ)Poten;al$(chains/nm2)$ in$water$ in$PBS$ (mV)$

$Poly(MPC)$ 0.33$ $$9$ $$9$ $$)5.9$$Poly(TMAEMA)$ 0.45$ 17$$ 14$$$$$ $64.9$$Poly(SPMA)$ 0.55$ 13$ 11$ )74.0$$Poly(BMA)$ 0.75$ 73$ 73$ )37.2$

Penetra;on$of$proteins$into$polymer$brush$layers$is$negligible.$�

Poly(TMAEMA)$$(Ca;onic)�

CH3�

C=O�CH3�

CH3�

O�O)R

SiO

2/Si$ )OH�

)OH�

)O)Si)(CH2)10)O)C)C)(CH2)C)100)Br�

Substrate � Ini;ator$ Polymer$chain �

R$:$Side$chains$with$various$chemical$structures�

Poly(MPC)$$(Zwieerionic)�

Poly(BMA)$$(Hydrophobic)�

Poly(SPMA)$$(Anionic)�

(CH2)3CH3�

(CH2)2N+(CH3)3$��Cl)�

(CH2)2OPO(CH2)2N+(CH3)3�O�

O)�

(CH2)3SO3)$�$K+�

[1]$S.$Sakata$et#al.,$Langmuir$30,$2745)2751,$2014.$

MPC$TMAEMA$SPMA$BMA�

:$2)Methacryloyloxyethyl$phosphorylcholine$:$2)Trimethylammoniumethyl$methacrylate$:$3)Sulfopropyl$methacrylate$:$n)Butyl$methacrylate�

Degree$of$polymeriza;on$(DP)$was$controlled$by$the$ra;o$of$monomer$and$free$ini;ator$in$feed.$

Development$of$regenera;ve$medicine,$cell$engineering,$and$biomaterials$engineering$→$Biological$responses$at$interfaces$should$be$precisely$understood$and$controlled.$��$

It$is$important$to$understand$each$process$of$protein$adsorp;on$phenomena$based$on$interac;on$forces.$

Cell � Tissue �Protein �Biological$responses$on$materials$surface �

Ini;al$event�

Mul;layer$adsorp;on�

Approach$

Detachment �

Conforma;on$change$

Protein)protein$interac;on�

�$Polymer$brush$layer$probe$�$Protein)immobilized$probe$

→$Forces$on$each$surface$→$Direct$interac;on$force$with$protein$

(Thickness:$ca.10$nm)$

Force$(nN)�

Distance$(nm)�

Aerac;ve�

Repu

lsive�

0�

0�

Indirect#long6ranged##Interac,on#force�

Direct#interac,on#force�

Poly(MPC)! Poly(TMAEMA)! Poly(SPMA)!

!50$ 0$ 50$ 100$ 150$ 200$ 250$Distance)(nm)�

Force)(nN)�

―)0)mmol/L)―)1.5)mmol/L)―)150)mmol/L)

!2.0$

0.0$

2.0$

4.0$

6.0$

8.0$

10.0$

12.0$

!2.0%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

!50% 0% 50% 100% 150% 200% 250%Distance)(nm)�

Force)(nN)�

―)0)mmol/L)―)1.5)mmol/L)―)150)mmol/L)

!2.0%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

!50% 0% 50% 100% 150% 200% 250%Distance)(nm)�

Force)(nN)�

―)0)mmol/L)―)1.5)mmol/L)―)150)mmol/L)

+�+� +�+�+�+� +�+�

−�−� −�−�−�−� −�−�

−�+� −�+� −�+�

−�+� −�+� −�+�

!4.0%

!2.0%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

!50% 0% 50% 100% 150% 200% 250%Distance)(nm)�

Force)(nN)�

―)Approach)―)Retract)

MPC,$TMAEMA,$SPMA$$$(Retract$curve)$

!4.0%

!2.0%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

!50% 0% 50% 100% 150% 200% 250%Distance)(nm)�

Force)(nN)�

―)Poly(MPC))―)Poly(TMAEMA))―)Poly(SPMA))�(150)mmol/L))

Poly(BMA)!

�$No$interac;on$force$on$approach$��Strong$aerac;on$on$retrac;on$��→$Hydrophobic$interac;on$

0.0!

1.0!

2.0!

3.0!

4.0!

Poly(MPC)$Poly(T

MAEMA)$

Poly(SPMA)$

Poly(BMA)$

Interac;on

$force$(nN)�

0.0!

1.0!

3.0!

5.0!

7.0!

Poly(MPC)$Poly(T

MAEMA)$

Poly(SPMA)$

Poly(BMA)$

Interac;on

$force$(nN)� 6.0!

4.0!

2.0!

0.0!

1.0!

2.0!

3.0!

4.0!

Interac;on

$force$(nN)�

0.0!

2.0!

4.0!

5.0!

7.0!

Interac;on

$force$(nN)� 6.0!

3.0!

1.0!

Polymer$brush$surfaces$�Surface)ini;ated$atom$transfer$radical$polymeriza;on$�→$Uniform$extension$of$polymer$chains$from$surface)$��$$immobilized$ini;ators$

Refined$understanding$of$various$molecular$interac;on$by$combina;on$of$polymer$brush$surfaces$and$AFM$

Understanding#protein#adsorp,on#based#on#analysis#of#molecular#interac,on#opera,ng#on#the#surfaces#2.#Objec,ve�

Poly(MPC)�Poly(T

MAEMA)�Poly(B

MA)�Poly(S

PMA)�

Adsorbe

d$am

ount$(n

g/cm

2 )�

700�

600�

500�

400�

300�

200�

0�

100�

N.D.�

N.D.�

N.D.�

Albumin$())�

Poly(MPC)�Poly(T

MAEMA)�Poly(B

MA)�Poly(S

PMA)�

N.D.�

N.D.�

1200�

Adsorbe

d$am

ount$(n

g/cm

2 )�

1000�

800�

600�

400�

200�

0�

Lysozyme$(+)�

��10$mmol/L$��150$mmol/L�

��10$mmol/L$��150$mmol/L�

→$Various$interac;on$forces$on$surfaces �

Poly(MPC)$Poly(TMAEMA)!Poly(SPMA)$Poly(BMA)$

→$Liele$interac;on!→$Strong$interac;on$with$albumin!→$Strong$interac;on$with$lysozyme!→$Strong$Interac;on$with$both$proteins!

Poly(MPC)$Poly(TMAEMA)!Poly(SPMA)$Poly(BMA)$

→$Liele$adsorp;on$(<$5.0$ng/cm2)!→$High$adsorp;on$of$albumin!→$High$adsorp;on$of$lysozyme!→$Independent$of$charge$proper;es!

AFM#f6d#curves#on#retrac,ng�AFM#f6d#curves#on#approaching �

Amount#of#adsorbed#proteins � Protein6protein#interac,on# �Surface6protein#interac,on �Surface$plasmon$resonance$measurement$�)$1.0$mg/mL$(PBS;$I$=$10,$150$mmol/L,$pH$7.4)$�)$37°C,$500$μL/min,$30$min$

AFM$f6d$curve$measurement$[3]$�)$Polymer$brush$surface$�)$PBS$(I$=$150$mmol/L,$pH$7.4)$

Zwieerionic$

Albumin$())� Lysozyme$(+)�

Physicochemical#surface#proper,es �

AFM$f6d$curve$measurement$�)$Protein$pre)adsorbed$surface$�)$PBS$(I$=$150$mmol/L,$pH$7.4)$

[2]$Y.$Tsujii$et#al.,$Adv.#Polym.#Sci.,$197,$1)45,$2006.�

Interac;on$force$with$proteins$drama;cally$decreased$on$the$high$protein$adsorp;on$surfaces.$�→$Protein$would$not$adsorb$on$the$surfaces$with$$$$$$$$$enough$amount$protein$layer.$

Difficult$to$detach$

Albumin$())� Lysozyme$(+)�

Zwieerionic$surface$�→$No$specific$interac;on$$Ca;onic$Surface$Anionic$Surface$�→$Electrosta;c$interac;on$$Hydrophobic$Surface$�→$Hydrophobic$interac;on$$$Single$or$No$interac;on$force$operated$on$the$surfaces.$

Dissolved$protein$ Easy$detachment$

Ca;onic$ Anionic$ Hydrophobic$ Zwieerionic$ Ca;onic$ Anionic$ Hydrophobic$

No$adsorp;on$

+� +� +� +�+� +� +�

−� −� −� −�−� −� −�−� −� +� +�

App

roach�

Retract�

Polymer$brush$surface$

AFM$probe�

Ini;ator �

Monomer �

Substrate �

Atomic$force$microscopy$(AFM)$��$Acquisi;on$of$force)versus)distance$(f6d)$curve$��$Evalua;on$of$various$interac;on$by$modified$probe��$

��$Polymer$chains$composed$of$single$monomer$unit$��$Controlled$surface$property$by$chemical$structure$��→$Clarifica;on$of$surface$interac;on$force$

Poly(MPC)$$ Poly(TMAEMA)$$

Poly(BMA)$

Poly(SPMA)$

Albumin� Lysozyme�

1$nm�

��Albumin$from$bovine$serum$(pI$4.8)$��Lysozyme$from$chicken$egg$white$(pI$11.1)$

→$Nega;ve$net$charge$at$pH$7.4$→$Posi;ve$net$charge$at$pH$7.4$

��Before$/$��A?er$immersion$in$protein$solu;on�

Enough$amount$protein$layer�

No$interac;on�Equilibrium$

state�

坂田 翔
テキスト