27
Land-Ocean Interactions: Estuarine Circulation Bob Chant

2014 10 24 Estuarine Circulation

Embed Size (px)

DESCRIPTION

fddsgdsdf

Citation preview

Land-Ocean Interactions:

Estuarine Circulation

Bob Chant

Land-Ocean Interactions:

Estuarine Circulation Estuary: a semi-enclosed coastal body of water which has a free connection with the open sea and within which sea water is measurably diluted with fresh water derived from land drainage. (Pritchard,1963)

Coastal Ocean

Estuary mouth Estuary

Estuary head

River

Schematic of a typical Estuary

Density gradient

along axis of

estuary

… and in the

vertical (strongly

stratified)

Stratification evolves over time in response to freshwater inflow – shows time scale of estuary residence time can be long

Smaller estuary: salinity shows tidal variability

Characteristics of estuaries •  Most estuaries:

–  strong tidal forcing –  large density difference between river and ocean –  complex topography –  Long and narrow – can often be approximated by 2-dimensional vertical/along-

axis flow (relatively little across axis flow)

•  Mathematically we have equations for salt, mass (volume) and momentum –  significant forces: friction (mixing), pressure, nonlinearity, acceleration

(time variability) –  typically small: wind, Coriolis, longer that tidal period coastal sea level

(tides are important) –  most common dynamic balance is between pressure and friction/mixing

•  Mixing affects the salt balance … •  … which affects the pressure distribution and pressure gradient

•  Can classify estuaries based on their physics (relative magnitude of different terms), or topography/geomorphology

Physics essentials:

•  Fresh river water encounters salty ocean water •  Fresh = light; salty = heavy •  Freshwater flows seaward at the surface •  Get landward flow of more dense, salty, water

–  estuarine or gravitational or baroclinic circulation –  time scales of ~1 day … so Coriolis force is usually of

secondary importance –  circulation is evident averaged over a few tidal cycles –  mixing and entrainment processes are central to

details of the salt and volume transport balance

Solid–  surface      Dashed  -­‐-­‐  Bo3om  

Current  measurements  in  the  Hudson  Posi:ve  directed  Landward  

Muh-he-kun-ne-tuk (Mahican name for Hudson—river that flows both ways

km north of the Battery

20 25 30 35 40 45 50 55 60-15

-10

-5

0

m

5 5

5 510

10

10 10

15

20 25 30 35 40 45 50 55 60-15

-10

-5

0

m

5 5510 10

15

20 25 30 35 40 45 50 55 60-15

-10

-5

0

m

55 5

5

1010

1015

20 25 30 35 40 45 50 55 60-20

-10

0

m

55

51015 May  4th    

May  6th      

May  7th    

May  8th    

Lower  layer  (and  dye)  moving  up  river  against  the  river  flow  

River  

Ocean  

1.    No  mixing.    Zero  exchange  flow    s1=0  

 so=32  

River  

Ocean  

2.    Some  mixing:  moderate  exchange  flow    s1=20  

 so=32  

River  

Ocean  

Maximal  exchange      s1=28  

 so=32  

 Salt balance on board….

Q1  QR  

Qo  

Estuarine  CirculaFon  and  Mixing-­‐-­‐-­‐  seemingly  counter  to  the  Kundson  model  But  not  really!!  

Salt field in Hudson During Low River Flow

Neap  Fde    Exchange  flow  Dominates  And  isohalines  Slump  over    Spring  Fde    Mixing  dominates  and  water  column    becomes  well  mixed.    

High  Flow    Q=2000  m3/s            Low  Flow    Q=40  m#/s          

Stokes Settling the larger And denser a particle is the faster They fall. Micron-scale particles have (almost) No settling speed mm scale particles may fall at speeds of Mm/s When a whale dies– it falls rapidly to the bottom

1)  w=1  mm/s    turbulence  

1)  w=1  mm/s  no  turbulence  (preXy  boring!)  

2)  w=0    mm/s  turbulence    

3)  w=1    mm/s    turbulence    

1)  w=0  mm/s    turbulence    

Estuarine  Turbidity  Maximum    

The  quesFon  of  the  day:          Consider  an  estuary  that  is  50  km  long,  10m  deep  and  1  km  wide.  Moored  observaFons  at  the  mouth  show  that  the  mean  surface  to  boXom  salinity  difference  is  3  and  the  mean  river  flow  is  100  m3/s.    Use  the  Knudson  model  to  esFmate  the  volume  transport  in  the  lower  layer  and  the  residence  Fme  of  the  estuary.    Assume  that  the  mean  salinity  of  the  ocean  water  is  30.