102
The Subatomic Universe: Canada in the Age of Discovery 2011–16 Report of the Natural Sciences and Engineering Research Council of Canada (NSERC) Long-Range Planning Committee

2011–16 - HRSBSTAFF Home Pagehrsbstaff.ednet.ns.ca/michaeljean/Notes/All Physics IB/Topic 7/Long... · REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE C1 ... over antimatter in

Embed Size (px)

Citation preview

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE C1

The Subatomic Universe: Canada in the Age of Discovery

2011–16

Report of the Natural Sciences and Engineering

Research Council of Canada (NSERC)

Long-Range Planning Committee

Cover: Theorists working on new ideas at the Perimeter Institute in Waterloo, Ontario

The Subatomic Universe: Canada in the Age of Discovery2011-16

Report of the Natural Sciences and Engineering

Research Council of Canada (NSERC)

Long-Range Planning Committee

Ce rapport est également disponible en français.

Copyright 2012 – Subatomic Physics Long-Range Planning Committee. Information

contained in this report may be copied without permission provided that the copies

are not made or distributed for direct commercial advantage, and that the title of

the report and date appear on the copies. Copyright for the illustrations remains

with their owners.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 1

Contents

1. ReapingtheOpportunitiesforCanada 2

A. The Quest to Understand and Innovate 2

B. Working Together for Discovery 3

C. Recommendations 4

2. TheFundamentalQuestions 5

1. The Nature of the Composition of the World Around Us 5

2. Why Do We Think a New Paradigm is Required? 12

3. TheGlobalPrograminSubatomicPhysics 14

1. Introduction 14

2. Accelerator Approaches 16

3. Underground Approaches 22

4. Cosmic Approaches 23

5. Theory 25

4. TheCanadianScienceProgram:PresentandFuture 26

1. Accomplishments: The Past Five Years 27

2. The Canadian Program: 2011-2016 35

3. The Longer View: Beyond 2016 48

5. BroaderImpactsonSociety 54

1. The Technological Impact of Subatomic Physics 54

2. Technological Impacts-Canadian Successes 56

3. A Skilled and Talented Workforce 60

4. Canadian Graduate Survey 63

5. Demographic Trends and Funding Pressures 69

6. Strengthening the Ties 71

6. PositioningforScientificLeadership 73

1. Canadian Subatomic Physics in 2011 73

2. What the Future Holds 78

3. Measuring Our Success 79

4. Optimizing Relationships Between Organizations

(CFI, Compute Canada, etc.) 80

7. SupportingInnovationinSubatomicPhysics 83

1. Budgetary Estimates 83

Appendix 87

Terms of Reference 87

Long-Range Planning Committee Membership 90

Glossary 92

2 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

A. The Quest to Understand and Innovate

This decade may well see a revolution in our understanding of the nature of matter and its interactions, as we seek answers to questions about our universe such as:• Doweunderstandtheoriginofmass?• Whatisthenatureofthedarkmattercontrollingthestructureofthe

universe?• Mightneutrinosholdthekeytounderstandingthedominanceofmatter

overantimatterinouruniverse?• Canweunderstandandexplainthenatureandoriginoftheatomicelements?

SubatomicphysicistsacrossCanadaareworkingonprojectsthatseektoanswer these and related questions.

Canadaispositionedfordiscoveryandinnovationinsubatomicphysicsthroughcarefulplanningandpublicinvestment.Overthepast10to15years,theCanadiansubatomicphysicscommunityhasplacedparticularfocusonasmallnumberofflagshipprojectsbothdomesticallyandinternationally.Ithasbalancedthiswitharobusttheoryprogramthatsupportstheseprojectsandincubatesnewideasandinnovation.Butithasalsobeenjudiciousinensuringtheflexibilityrequiredtoreacttonewopportunitiesfordiscoveryanddevelopment.

Canadiansocietyhasbenefitedsubstantiallyfromthisresearch,sociallyandeconomically,throughthetrainingofhighlyqualifiedpersonnelandthe innovationthatitfosters.However,maintainingthispositionofleadershipinthefutureisachallenge.Therearenewopportunitiespresentingthem-selvestoCanadaandtheCanadiansubatomicphysicscommunity.SeizingthemwillensurethatCanadaenhancesitsroleinsubatomicphysicsoverthecomingdecades,andthatthenationcancontinuetoreapthebenefits.Here,theNSERCSubatomicPhysicsLong-RangePlanningCommitteepresentsitsconclusionsandrecommendationsforfulfillingthisvision.

Reaping the Opportunities for Canada

1

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 3

B. Working Together for Discovery

Canadiansubatomicphysicsisinanenviablepositionworldwide.Asoppor-tunitiesripenandbreakthroughsoccur,agilityandflexibilitywillberequiredtomaintainCanadianrelevanceandreadinessandtoensurethereturnsonscientificinvestments.

The2006-11planhasserveduswelland,aswelookforwardto2011-16,wearewell-positionedforCanadato:• reapthescientificrewardfromtheinvestmentsithasmadeinAToroidal

LHCApparatuS(ATLAS),TokaitoKamioka(T2K)andtheSNOLABandIsotopeSeperatorandACcelerator(ISAC)experimentalprograms;

• maintainastrongtheoreticalprograminplacebothforleadershiponthefundamentalquestionsandforcollaborationwiththeassociatedexperi-mentalpriorities;

• bestrategicandengageinselecteddiscovery-potentialexperiments;• engageinresearchanddevelopment(R&D)forthenext-generation

flagshipexperiments;and• ensurecontinuedaccessto,andsupportfor,thedomesticandinternational

laboratoriesthatarekeytomeetingthescientificprioritiesoftheCanadiansubatomicphysicsprogram.

TherearenewopportunitiesonthehorizonthatwouldbuildoncurrentCanadiansuccessesandfurtherstrengthenourleadership.TheCanadiansubatomicphysicscommunitywillfacekeydecisionsinthe2011-2016periodthatwilldeterminethephysicsprioritiesbeyond2016.• Whatprojectattheenergyfrontierwillbecomeournextprioritywhen

thedefinitiveresultsfromATLASarepublished?• HowwillCanadaexploitthephysicspotentialofTRIUMF’sAdvanced

RareIsotopELaboratory(ARIEL)tomaintainourleadershipinradioac-tivebeamphysics?

• CouldanupgradetoT2Kprovideinsightintothedominanceofmatteroverantimatterinouruniverse?

• WilltheEnrichedXenonObservatory(EXO)adoptCanadiantechnologyandlooktobesituatedatSNOLAB?

• WillthesubatomicphysicscommunityhavetheresourcesatitsdisposaltoperformtheR&Drequiredforany/alloftheseopportunities?

Reaping the Opportunities for Canada

Control room of the

ISAC-II facility at TRIUMF

4 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

C. Recommendations

Providing Value for Investment• ThesubatomicphysicsenvelopehasservedtheCanadianprogramvery

well,andweurgeNSERCtomaintainitssupportfortheenvelopemodel.• ThelevelofNSERCfundingtosubatomicphysicsshouldbeincreased

by$3.5millionperyearoverthecourseofthisplan,toallowCanadianresearcherstofruitfullyexploitthepublicinvestmentstodate.

• Theprioritiesforthesubatomicphysicsenvelopemustremainthesup-portofresearchanddiscoveryactivities.

Working Together to Deliver the Scientific Reward• Maintaintheongoinginvestmentinsubatomicphysicsresearchsupport

and infrastructure from all agencies. • Thecommunityandthevariousfundingbodies—NSERC,Canada

FoundationforInnovation(CFI),etc.—shouldworktogethertoensurethemosteffectiveandstrategicuseofresearchsupportandinfrastructureprovidedforsubatomicphysicsresearch.

• ThecommunityencouragestheGovernmentofCanadatopursuethepossibilityofAssociateMembershipattheCentreEuropeanpourlaRechercheNucleaire(CERN)laboratory.

Supporting Canadian Innovation• Ensureongoingsupportforthetrainingofhighlyqualifiedpersonnel

(HQP)andtheircontributionstoentrepreneurshipandinnovationintheCanadianeconomy.

• ProvideopportunitiesforCanadianindustrytobidoncontractsrelatedtotheleading-edgedevelopmentsinmanufacturing,service,andinforma-tiontechnologytakingplaceatCERNandothergloballaboratories.

Cryomodule for the TRIUMF ISAC-II accelerator

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 5

1. The Nature of the Composition of the World Around Us

Thescientificmissionofsubatomicphysicsistoidentifytheelementaryconstituentsofmatterandtheirphysicalproperties,identifythefundamen-tal forces through which they interact, and identify how these ingredients combinetoproducetheorganizationweseearoundusinnature.Unusually,westandonthethresholdofacompleterethinkingofouranswertothesequestions,whichwillforceustodiscardtheStandardModel—thetheorythatembodiesthe40-year-oldconsensusastowhatthesebasicconstituentsandforcesare—andreplaceitwithanewandevenbetterdescription.

Fourcenturiesofstudyrevealthatnaturecomestousinanenormoushier-archyofscales,rangingfromelementaryparticlesofthesmallestsizesuptotheobservableuniverseasawholeonthelargestdistances.Whatultimatelymakesthestudyofnaturepossibleatallistheremarkablefactthatwedon’tneedtounderstandallofthesescalesatonce;anunderstandingoftheflowoftrafficdoesn’trequiredetailedknowledgeabouttheenginesthatpropelthevehiclesinvolved,soanunderstandingofatomsdoesnotdependonadetailedknowledgeofnuclei.Thepropertiesofnatureatanyonescalearelargelyindependentofdetailedphysicsatsmallerscalesanditisthisinde-pendencethatallowsphysicstoprogress. Despitethisgeneralobservation,someofthesedetailsdoturnouttobeimportantforourexplanationofthepropertiesoflargersystems.Thepropertiesofcarenginesdoconstraintheaveragespeedsthatcharacterizetheflowoftraffic.Similarly,somechemicalandthermalpropertiesofmatterdependonthesizeofatoms;atomicsizesdependontheproperties—massandcouplings—oftheirconstituentelectronsandnuclei,andsoon.Forthisreason,thepropertiesofmatteronscalessmallerthanthesizeofatomsplaya

The Fundamental Questions

2

6 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

fundamentalroleinscience;theyunderpinmanyoftheexplanationsofwhylargerthingsbehavethewaytheydo.Physicsatthesesmallestscalesmattersevenforextremelylargeobjects,allthewayuptocosmologicalscales.

Subatomicphysicsrepresentsthecuttingedgeofourknowledgeofphysicsonthesmallestscalestowhichwehaveaccess.Thecontextfortherestofthisdocumentstartswithasummaryofwhathasbeentheparadigmupuntilnow,togetherwiththereasonswhythisisbelievednowtorequireimprovement.

Figure. 1: Examining matter on ever smaller scales. As we zoom-in on detail, we see

smaller structures emerge. Quarks seem point-like, no matter how closely we look.

a. What are the constituents of matter? The20thcenturysawenormousprogressinidentifyingthefundamentalconstituentsofmatter.Intheearly1900sthesewerethoughttoconsistofseveraldozentypesofatoms,togetherwithsomeodditieslikethethen- recently-discoveredelectronandproductsofradioactivedecay.Thediscoveryofquantummechanicsandthenucleusthenallowedthemanyproperties ofatomstobeinferredfromthoseofneutrons,protonsandelectrons.Therecognition that nuclei are themselves built from smaller things eventually ledtoamuchmoreeconomicallistoffundamentalobjects—protons, neutrons and electrons.

Newparticles—muons,pions,neutrinosandahostofothernewparticles—continued to be discovered. They were initially found through studies of radioactivity and the cosmic rays that continuously bombard the Earth from space,butthenbycollidingparticlesinman-madeacceleratorfacilities.Thistemporarilyledtoamuchmorecomplicatedpicture,whoseunderlyingsimplicitydidnotemergeuntilthe1960s,whenmanyoftheparticlesknownbythatpointwerethemselvesfoundtobemadeupofstillsmallerconstituents.Whatthenemergedaselementaryparticlesremainsonow:sixspecies (orflavours)of“quarks”(up,down,strange,charm,bottomandtop)and sixspecies(orflavours)of“leptons”(electron,muon,tauandthreespecies ofneutrinos).

UU

D

MAGNIFIED by 10,000 ... by 10,000 ... by 50 ... by 100,000 ... by ?

ORGANISM CELL DNA ATOM NUCLEUS QUARK

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 7

Theresultinglistofparticlesisstrangelyredundant.Essentiallyallofevery-daymatterismadeuponlyofelectronsandupanddownquarks(thelasttwoofwhichmakeuptheprotonandneutron)which,togetherwithaneu-trino,makeupwhatiscalledthe“firstgeneration”ofelementaryparticles.

Figure 2: The atomic elements that make up matter around us are actually rich in

structure. Elements, defined by their proton or “atomic” number, have many

different isotopes—same proton number, but different numbers of neutrons. Even

a simple element like carbon has 15 known isotopes.

Remarkably,natureseemstocometouswithtwomore“generations”ofpar-ticles,whosepropertiesdirectlycopythisfirstgeneration(i.e.,thecharmandtopquarksresembletheupquark;thestrangeandbottomquarksresemblethedownquark;themuonandtauarecopiesoftheelectron;andsoon).Thereasonsforthisseeminglyredundantparticlecontent,andtheoriginsoftheircomplicatedpatternofmasses,remainunclear;apuzzleknownasthe“flavourproblem.”

b. How do the constituents interact? Progresshasalsobeenmadeidentifyingtheforcesthroughwhichconstitu-entparticlesinteract.Fourinteractionsarenowrecognizedasfundamental,onlytwoofwhich—gravityandelectromagnetism—hadbeenidentifiedinthe19thcentury.Theothertwo—thestrongandweakforces—emergedlaterastheinteractionsresponsibleforbindingquarksintoprotonsandneutrons,andtheseintonuclei,andforsomeoftheirradioactivedecays.Inthemoderndescription,eachoftheseforcesisassociatedwithafield,whosequanta—gravitons,photons,gluonsandWandZbosons—canalsobepro-ducedinreactionsmuchlikeanyotherelementaryparticles.

Nuclei of 3 Carbon Isotopes Chart of Nuclides

CARBON 12

6 PROTONS6 NEUTRONS

CARBON 13

6 PROTONS7 NEUTRONS

CARBON 14

6 PROTONS8 NEUTRONS

NEUTRON NUMBER

PR

OTO

N N

UM

BE

R

There are 15 known isotopes of carbon, ranging from 8C to 22C. Nuclei for 12C, 13C and 14C are shown above.

100

0 150

CARBON

8 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Figure 3: The particles of the Standard Model of particle physics. The Higgs boson

has yet to be observed.

The1970ssawagreatsynthesisoftheseconstituentsandinteractionsintoaverysuccessfultheory—theStandardModel—whichsurvives(onlyslightlybattered)inourowndayasthebesttheoreticalbenchmarkwehave.TheStandardModeldescribesindetailhowthefundamentalquarksandleptonsinteractthroughthreeofthefourforces—theweak,strongandelectromag-neticinteractions.Italsopostulatesonehithertoundiscoveredparticle—theHiggsboson—whosepresence(orthepresenceofsomethingsimilar)isrequiredbythetheory’smathematicalconsistency.TheStandardModel hasnothingtosayaboutthefourthforce—gravity—whichremainsbeyondthepale.Althoughwell-describedoverastrophysicaldistancesbyEinstein’sTheoryofGeneralRelativity,well-establishedtheoriesdoapoorjobofdescribing gravity over very short distances where quantum effects become important.

OneoftheStandardModel’sgreatsuccessesisthewayitnaturallyexplainsthemanypatternsthathadbeeninferredfromobservationinnumerousexperimentsovertheyears.Inparticular,itaccountsforandexplainsseveralexactandapproximateconservationlawsthatappeartoworkverywellinpractice.Amongthesearetheapproximateconservationof“parity”—invari-anceunderreflectionthroughamirror—bythreeofthefourinteractions;theapproximateconservationofCP(paritytogetherwiththeinterchangeofparticleswith“antiparticles”(seethepull-outboxonantimatter);theexactconservationofCPTsymmetry—chargeconjugationsymmetry(C)andparity(P),togetherwithtimereversalsymmetry(T)—whichisfundamentaltoquantumfieldtheoryandisthebasisoftheStandardModelandmanyofitshypothesizedextensions;theconservationofbaryonnumber,B—whichcounts the difference between the number of quarks and anti-quarks, inferredfromtheabsenceofprotondecay;andtheseparateconservationof“electronnumber”Le,“muonnumber”Lµand“taunumber”Lτ.

u c t

d s b g

Z

e WELECTRONNEUTRINO

MUONNEUTRINO

TAUNEUTRINO

Z BOSON

DOWN STRANGE BOTTOM GLUON

UP CHARM TOP PHOTON

ELECTRON MUON TAU W BOSON

HIGGSBOSON

µ

γ

τ

νe νµ ντ

FERMIONS BOSONSQ

UA

RK

S

FOR

CE

CA

RR

IER

S

LEP

TON

S

The Standard Model

Dark Energy73%

Cold Dark Matter23%

Atoms 4%

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 9

Becausetheexplanationofthese“fundamentalsymmetries”issuchanimportantpartoftheStandardModel’ssuccess,agreatdealofexperimentaleffortisspentcheckingthattheyarereallypresentinnatureinpreciselythewaytheStandardModelpredicts.Suchtestsareoftencalledthe“preci-sionfrontier,”sincetheyinvolveprecisesearchesforrarereactionsthatarepredictedbytheStandardModelnever(oronlyrarely)tooccur.ThehopeistofindexampleswheretheStandardModelgetsitwrong,sincethiswouldprovidecluestobuildingthenewtheorythatwouldbeitsreplacement.

Antimatter

It is an experimental fact of nature that for each elementary particle

discovered there is always another, called its antiparticle, with exactly

the same mass and exactly opposite charge (the electric charge and

any other conserved charge carried by the particle, like baryon

number). The only time antiparticles are not found is when a particle

does not carry any conserved charges at all, in which case it can be

regarded as being its own antiparticle. Antiparticles always interact

with the same strength as the corresponding particles. In the modern

understanding, this remarkable duplication of particle species is no

accident, being required by the consistency of two pillars of modern

physics: quantum mechanics and relativity. It is a triumph of our modern

understanding that antiparticles, required by theoretical consistency,

are actually found in nature with exactly the right properties.

10 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

c. How are they organized? ThediscoveriesleadingtotheStandardModelprovideaprecisesnapshotof the constituents of matter and their interactions down to distance scales thatarejustnowbeginningtobesurpassed.Althoughthisrepresentsamajorachievement,itisonlythefirststeptowardsunderstandingtheworldaroundus,whichinvolvesinteractingcollectionsofmanyparticles.

Experienceshowsthatsystemswithmanyparticlesoftenaggregateintocomplicatedstatesthatexhibitabroaddiversityandrichnessofproperties.Typically,theparticlesthatinteractthestrongestorganizethemselvesintoboundstatesonthesmallestscales.Quarksandgluons(whichinteractviathestrongforce)typicallybindtonuclearmatter,takinganyofamyriadofforms—nuclei,protonsorneutrons,achargedgasofquarksandgluons(a“quark-gluon”plasma)—dependingonthepressuresandtemperaturesinvolved.Largersystemsbuiltfromthese,suchasatomsandmolecules,areusuallyboundthroughthenext-strongestinteraction—electromagnetism.Theweakestlong-rangeforce—gravity—isthemainplayerindeterminingthestructureofthelargestofobjects,suchasplanets,starsandgalaxies.

WhiletheStandardModelprovidesaprecisedescriptionoftheinteractionsbetweenthefundamentalparticles,understandingthesecomplexstructuresisamuchmoredifficultproblem.Inparticular,thecomplexityofatomicnucleiandtherichvarietyoftheirpropertiesandexcitations,whichinturndetermine the number and stability of the chemical elements, are governed bythestronginteractions,butadetailedunderstandingofthepropertiesofnucleifromtheStandardModelhasbeenachallengefordecades.Itis difficulttoconnectthepropertiesofnuclearforcestotheunderlyingstronginteractions between quarks and gluons and equally difficult to understand

A Canadian physicist beside the ATLAS detector.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 11

thepropertiesofcomplexnucleiintermsofthebasicnuclearforces.Remarkablyhowever,withrecentcomputational,theoreticalandexperimen-taladvances,wearenowmakingtremendousprogressonbothofthesegoals.Calculationscannowmakedirectconnectionsbetweenthestronginterac-tionsandthepropertiesofprotonsandneutrons,andthenatureandreactionsofmorecomplexnucleiarebeginningtobeunderstoodfromtheirbasicprotonandneutroningredients.Indeed,throughobservationsofrareisotopesthataretoounstabletobefoundnaturallyonEarth,butthatcanbeartificiallyproducedandstudiedinthelaboratory,wearenowonthethresholdofaunifiedunderstandingoftheconnectivitybetweenthediversityofnuclearstructures—fromatomicnucleitoneutronstars.

d. Where did it all come from? Adeepunderstandingoftheworldaroundusdoesnotstopwithdescribingitsstructure;italsoaskswhereitcamefrom.Thisisparticularlypressinggiventhecompellingevidencethattheentireuniversewasoncesohotandsmallthatitconsistedonlyofasoupofelementaryparticles.Giventhissimplebeginning,howhasalloftheintricatestructureofthepresent-dayworldarisen?

Thisquestioncomesatseverallevels,dependingonhowfarbackintotheearlyuniverseonechoosestogo.Ourworldtodayisbuiltupofsome 300differentkindsofstableatomicnucleithatformed,togetherwithelectrons,theatomsandmoleculesthatbuiltupallthematerialsaroundus.Intheveryearlyuniverse,protonsandneutronsdidnotexist—insteadtheuniverseconsistedofahotquark-gluonplasma.Approximatelyamicrosec-ondaftertheBigBang,asthisquark-gluonplasmacooled,thedynamicsofthestronginteractionrequiredthatquarksandgluonsbecomeconfinedinneutronsandprotons,seedingtheformationofatomicnuclei.Within300secondsaftertheBigBang,theverylightestelements—hydrogen,helium,lithiumandberyllium—wereformed.Atthattime,theformationofotherchemicalelementsstoppedandonlystartedagainoncenuclearreactions ignitedinsidethefirststars,some100millionyearslater.Allelementsheavier than lithium were formed as stars burned their nuclear fuel, or in theviolentenvironmentsofexplodingstars—novaeandsupernovae—andcollidingneutronstars.Anongoinglineofresearchtriestodeterminethenuclear reactions that can occur in these different environments and drive thecreationofthechemicalelementswefindaroundus.

Anevenmorepuzzlingquestionarisesfromtheobservationthattheuniverseappearstobemadeuponlyofmatter.TheBigBangmostlikelycreatedmatterandantimatterequally.Ifthisistrue,theremusthavebeenasmalldifference—anasymmetryofonepartinabillion—betweenmatterandantimatter. Thus, when matter and antimatter annihilated each other as the universecooled,averytinyfractionofmatterparticlessurvivedandmakeupour world today.

12 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

2. Why Do We Think a New Paradigm is Required?

DespitethegreatsuccesstheStandardModelhasenjoyedwhentestedoverthedecadessinceitsdiscovery,recentyearshaverevealedsignsofincipientfailure.Inparticular,thesenew-foundflawsindicatethatitisverylikelytobereplacedatthedistancesthatarejustnowbecomingaccessibleatthehighest-energyaccelerators.Thefollowingparagraphssummarizetheevidenceforwhy a new theory is now required. Subsequent sections describe in more detailtherolethisevidenceplaysinguidingtheongoingresearchprogramworldwide.

a. Neutrino Oscillations. PerhapstheclearestevidencetodatefortheStandardModel’sfailureisthediscoveryofneutrinooscillations.Decadesofeffortculminatedinthe1990swithevidenceofpossiblereactionsthatcanturnelectrons,muonsandtausinto one another through reactions involving neutrinos. This evidence came fromneutrinosproduceddeepwithintheSunandfromneutrinosproducedbycosmicraysintheupperatmosphereonEarth,followedlaterbyexperi-mentsataccelerators.Inessence,theseobservationsimplythatLe,LµandLτ arenotseparatelyconserved,mostlikelyduetothepresenceofanonzeroneutrinomass.ThisrequiresmovingbeyondtheStandardModel,andmayhaveimplicationsforcosmology(thestudyoftheevolutionoftheuniverseasawhole)andastrophysics.

b. Dark Matter and Dark Energy. CosmologyprovidesasecondlineofevidencethattheStandardModelcannotbeacompletedescriptionofnature.AlthoughtheStandardModelunderpinstheHotBigBangmodel,whichprovidesaverysuccessful descriptionofcosmologicalobservations,observationsoverrecentyearsshow that the Big Bang model only works if the universe is dominated by matterandenergythatwedonotyetunderstand.Modernsurveysshowthatordinarymatter—describedbytheStandardModel—canmakeupatmostaboutfivepercentofthetotalenergydensityintheuniverse.Althoughneutrinosandphotonsarecurrentlythemostabundantordinaryparticlesintheuniverse,itisordinaryatoms—mostlyhydrogen—thatdominatein the energy density because they are relatively heavy. The rest consists of twocompletelydifferent,yetunknownformsofmatter—forlackofbetternames,DarkMatter(about25percent)andDarkEnergy(around70per-cent).NeitherofthesecanbeaccommodatedwithintheframeworkoftheStandardModeltogetherwithgeneralrelativity,andsoprovideimportantevidencethatsomethingismissing.Atpresentitisnotknownwhetherthisinvolvessomenewkindsofparticlesornewinteractions.Oneoftherolesofsubatomicphysicsistofigureoutwhatthisstuffmightbe.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 13

Figure4:Thedistributionofmatterandenergyintheuniverse.Wedonotyet understand the nature of the cold dark matter, nor the dark energy.

c. Including gravity. Athirdlineofevidencefortheincompletenessofourcurrentunderstandingcomesfromtheawkwardco-existencebetweentheStandardModel—de-scribingtheelectromagnetic,strongandweakforces—andgeneralrelativity—describinggravity.Althoughexperimentsarenotyetavailablethatcanprobegravityoverthesmalldistancesforwhichquantumgravityisimpor-tant,50yearsoftheoreticalresearchhaveprovenittobenotoriouslydifficulttocomeupwithanytheoreticalframeworkatallthatcancombinegravitywith quantum mechanics in a sensible way.

Very few theories have emerged over the years that can claim to have done so,andthebesttheorydevelopedoftheseisthestringtheory.Stringtheoryproposesthattheelementaryconstituentsofnaturearenotparticlesatall,butratherstrings—fundamentalobjectshavinganonzerolength,butzerowidth.Althoughthequestionremainsastowhetherornotstringtheorydescribesnatureinanyway,itstightmathematicalstructurehasprovidedsurprisinginsightsintoquantumfieldtheory—themathematicsthatisthelanguageintermsofwhichourdescriptionofnatureiscast.

u c t

d s b g

Z

e WELECTRONNEUTRINO

MUONNEUTRINO

TAUNEUTRINO

Z BOSON

DOWN STRANGE BOTTOM GLUON

UP CHARM TOP PHOTON

ELECTRON MUON TAU W BOSON

HIGGSBOSON

µ

γ

τ

νe νµ ντ

FERMIONS BOSONS

QU

AR

KS

FOR

CE

CA

RR

IER

S

LEP

TON

S

The Standard Model

Dark Energy73%

Cold Dark Matter23%

Atoms 4%

14 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

1. Introduction

Wehavedevelopedourpresentunderstandingofnatureatthesubatomiclevelbyperformingexperimentsandplacingtheresultsinthecontextoftheoreticalmodels.Becausethesubatomicregimespansdifferentdistanceandenergyscales,avarietyofparticletypes,suchaselectrons,protonsandatomicnuclei,areemployedintheseexperimentstofurtherourknowledge.Manyoftheexperimentsmanipulateparticleswithacceleratortechnol-ogyandessentiallyallusesophisticatedparticledetectortechnology.Theparticlesmaybetrappedand“cooled”tothelowestenergyachievabletostudydecays,ortheymaybeacceleratedtonearlythespeedoflightandcollidedinordertoformnewparticlesortypesofmatter.Experimentsmaybeperformedovertimescalesofdecades,requiringthousandsofscientists,engineersandtechnicians,ormaybeperformedbyseveralpeoplewithinthespanofafewdays.Somestudiesmustbeperformeddeepundergroundinorder to reduce backgrounds from cosmic and other radiation, while others specificallystudycosmicradiationofdifferentkinds.Theoreticalcalculationsmayrequirethousandsofhoursontheworld’smostadvancedcomputers,whileotheradvancesmayarisefromtheinsightofasinglepersonwithpenandpaperandamomentofgenius.Thesedifferentapproachestooursciencearecomplementaryandareresponsibleforthetremendousadvancesthatwehave made in understanding nature.

The Global Program in Subatomic Physics

3

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 15

The Global Program in Subatomic Physics

Theworldwidecommunityhasembracedadiverseapproachtoaddresstheimportantquestionsinsubatomicphysics.Herewewilldescribehowvariousaccelerator,undergroundandcosmicapproachesareused,andhowthequestforunderstandingoftenrequiresthatotherkeyquestionsbeansweredfirst.WeprovidesomeexamplesoffacilitiesaroundtheworldinordertoplacetheCanadianprogramintheglobalcontext.Figure5illustratesthebroadoverlapbetweenthesedifferentapproaches.Asnotedearlier,theexperi-mental work described here tends to be highly collaborative and is most oftenperformedbylargeinternationalteamsworkingatcomplexfacilities.Experimentalistsaresupportedbyabroadtheoreticalcommunity,workingat universities and laboratories worldwide.

Nuclear Astrophysics—an Example

The field of nuclear astrophysics can be used as an example of the in-

terplay and complementarity of the different approaches. For example,

astronomical observations use spectrographic data to determine

the chemical abundances in stars, and these data are supplemented

by cosmic gamma-ray measurements that are specific to particular

isotopes. Theoretical modelling of the stellar environments uses

knowledge of nuclear structure and predictions of reaction rates in an

attempt to reproduce the abundances. The nuclear structure informa-

tion is obtained over many experiments at both stable and radioactive

ion-beam accelerators, and direct measurements of reaction rates are

performed at these facilities including those housed in deep under-

ground laboratories (to reduce backgrounds). As the nuclear physics

information becomes more refined, the prediction of the environment

in which such reactions take place becomes more certain.

16 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Figure 5: Three broad categories of experimental approaches—accelerator,

underground, cosmic—are represented by the large rectangles. Specific physics

programs are placed within these rectangles according to the experimental

approaches that can be used to answer key physics questions. Some physics

questions can be addressed by more than one approach and so they are included

in the intersections of the rectangle regions.

2. Accelerator Approaches

Progressinacceleratortechnologyoverthepastseveraldecadeshasledtostunningadvancesinourunderstandingofsubatomicphysics.Particlebeamexperimentsoverawiderangeofenergiescanexplorephysicsofparticlesandnucleionmanyscales.Ingeneral,thehigherbeamenergiesprobephysicsatsmallerdistancescales.However,experimentsatlowerenergycanprovidecomplementaryinformationbyincreasingtheprecisionofmeasurementsorfindingsystemswhichnaturallyenhancepropertiesofinterest.

High-Energy Physics

Forseveraldecades,wehavegainedknowledgeaboutfundamentalinterac-tionsbyacceleratingparticlestohighenergyandmeasuringwhatcomesoutofacollision.Fromacceleratorprogramsaroundtheworldstartinginthe1960s,wehavelearnedoftheexistenceofquarks,the“particlezoo,”theunificationoftheelectromagneticandweakinteractions,thepropertiesofflavour, and much about the nature of the strong force. Recent advances have comefromexperimentsundertakenatprotoncolliders—liketheTevatronattheFermiNationalAcceleratorLaboratory(Fermilab),andtheLargeHadronCollider(LHC)atCERN—andatelectroncolliders—liketheLargeElectronPositronCollider(LEP)atCERN,andPEP-IIattheSLACNationalAcceleratorLaboratory.Collisionsofentirenuclei—suchasin theRelativisticHeavy-IonCollider(RHIC)machineatBrookhavenNationalLaboratory(BNL)—allowphysiciststoinvestigatepropertiesof

0

5

10

15

20

25

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

ATLAS

ISACT2K

UNDERGROUND PHYSICS

ALL FLAGSHIPS

ENVELOPE

0

10

20

FIG 7

FIG 8

FIG 9

FIG 10

FIG 6

30

40

50

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

PE

RC

EN

T0

10

20

30

40

50

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010M

ILL

ION

S O

F D

OL

LA

RS

0

2

4

6

8

10

12

14

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

FLAGSHIP PROJECTS

EQUIPMENT

THEORY

OTHER

MRS

0

2

4

6

8

10

12

14

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

FLAGSHIP PROJECTS

LINEAR TREND

ENVELOPE

CFI AWARDSSNOLABARIEL, PHASE 1PERIMITER INSTITUTE

SUPERNOVA NEUTRINOS

ASTROPHYSICAL NEUTRINOS

NEUTRINO

BEAMS

DARK

MATTER

SEARCHES

DOUBLE

BETA DECAY

SEARCHES

SOLAR NEUTRINOS

ATMOSPHERIC NEUTRINOS

HADRON COLLIDERS

LEPTON COLLIDERS

HEAVY ION COLLIDERS

MEDIUM ENERGY NUCLEAR FACILITIES

FUNDAMENTAL SYMMETRY EXPERIMENTS

RARE-ISOTOPE BEAMS

Underground Approaches

Accelerator Approaches

Cosmic Approaches

PARTICLE ASTROPHYSICS

OBSERVATIONAL COSMOLOGY

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 17

matteratextremesofpressureanddensityinordertostudythephasesofquantumchromodynamics(QCD),suchastheexistenceinneutronstarsorinthemomentsaftertheBigBang.

TheLHCatCERNisnowthefocusofworldattentioninparticlephysics.Thismachinecollidesprotonsandheavyions,suchasleadnuclei,athighenergyandintensity—theproton-protoncollisionswilleventuallyreach14teraelectronvolts(TeV)centerofmassenergy.TheLHChasfourhigh-profiledetectorsdesignedtoanswerleadingquestionsinsubatomicphys-ics.Twoofthese—ATLASandtheCompactMuonSolenoidexperiment(CMS)—willhaveunprecedentedcapabilitiesforprecisionmeasurementsoftheknowninteractionsandsensitivitytonewphysics.TheHiggsboson—oneofthekeypredictionsoftheStandardModel—isonefamousquarry,yettobehunteddown.IftheHiggsisnotfound,adramaticnewtheoreti-calframeworkdescribingnaturemayberequired;ifitisfound,itsdetailedpropertieswillbestudied.Otherquarriesincludesupersymmetricparticles,possiblytheunknownDarkMatter.Aconfirmedsupersymmetricparticlesignatureproducedonthemicroscopicscaleatacolliderwouldhavevastimplicationsforunderstandingdynamicsonthescaleoftheentireuniverse.LHCphysicistsarealsosearchingforothernewexoticparticles,forcesandextradimensions,andthesubatomicphysicscommunityiseagerlyanticipat-ing the results.

Next-generationelectroncollidershaverecentlybeenapprovedforconstruc-tioninItalyandJapantofurtherunderstandflavourphysics.Inthefuture,ahigh-energyelectronlinearcollider,liketheInternationalLinearCollider(ILC),maybebuilttofurtherinvestigatenewphysicsrevealedbytheLHC.Thedesignsforsuchacollider,whichmayreachmorethan30kilometresinlength,arenearingcompletionandcouldgoforwardlaterthisdecade.

Medium-Energy Facilities

Experimentsatmedium-energyelectronandhadronfacilitiesaredesignedtoprovideunderstandingofthequarksandgluonsandtheirmotionwithinthenucleon,andunderstandinghowQCDgivesrisetothepropertiesofthelighterhadronsandhowthesepropertiesareinfluencedbythenuclearenvironment.TheseexperimentsatresearchfacilitiesaroundtheworldmakedetailedcomparisonswithQCDpredictions,tolookforexoticformsofmatterpredictedbyQCD—suchasglueballsandhybridmesons—andto gain a three-dimensional view of how quarks and gluons give rise to the observedpropertiesofnucleonsandmesons.OneofthepremierfacilitiestostudythepropertiesofhadronsistheThomasJeffersonNationalAcceleratorLaboratory( JeffersonLab)intheUnitedStatesofAmerica(U.S.),wherebeamsofelectronsuptoenergiesof6gigaelectronvolts(GeV)arescatteredoffnuclei.ComplementingstudieswithelectronbeamsarethosethatuserealphotonssuchasattheMainzMicrotron(MAMI)facilityinMainz,Germany.TherecentlycompletedupgradesatMAMIincludeanewac-celeratorwitha1.5GeVelectronbeamtogetherwithanewpolarizedprotontarget and refurbished detector systems.

18 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

TheFacilityforAntiprotonandionResearch(FAIR)attheGSIHelmholtzCentreforHeavyIonResearch(GSI)inGermany,theJapanProtonAc-celeratorResearchComplex( J-PARC)inJapan,andthe12GeVupgradeatJeffersonLabarenoteworthynewinternationalprojectsthataredesignedtoaddress these questions, and also fundamental symmetry questions, in detail. J-PARChasalreadycommencedoperations,whileFAIRandthe12GeVupgradewillbeginoperatingduringthisfive-yearplan.FAIRwillprovidehigh-intensityantiprotonandionbeams.J-PARCwillprovideintensepro-tonbeamsupto50GeVinenergythatcanbeusedinexperimentsdirectly,or used to create intense secondary beams of neutrons, mesons and neutrinos from these mesons.

Rare-Isotope Beam Facilities

Atlowerenergies,subatomicphysics(heretermedlow-energynuclearphys-ics)enterstherealmofcompositeparticles—neutrons,protons—andtheirinteractions, which lead to the formation and determine the structure of the nucleithatdefinemostoftheobservablematterintheuniverse.Low-energynuclearphysicsfaceskeyquestionssuchashowtodescribetheobservedva-rieties of low-energy structures and reactions of nuclei in terms of the funda-mental interactions between individual nucleons, and how to understand the evolutionfromsingle-particlepropertiestocollectivemotionasfunctionsofmass,isospin,angularmomentumandtemperature.Answeringtheseques-tionshasbeenfacilitatedbythedevelopmentofanewtheoreticalparadigmfor nuclear interactions that rests on understanding of the connectivity of thedifferentsizeandenergyscalesinvolved.Advancesincomputationalabil-ityhaveenabledsolutionsofQCDappropriateforboundquarksystems(thehadrons),andneweffectivefieldtheorieshavemadetheconnectionbetweentheQCDandthenucleon-nucleonpotential.Finitenucleicannowbebuiltusingthenucleon-nucleoninteractioninasystematicway—theso-calledabinitioapproaches—thathaveshowntheimportanceofaconsistenttreat-mentofthree-bodyforcesandtheirinfluenceonthepropertiesofnuclei.

Complementingthisnewtheoreticalparadigmareadvancesintechnologythatcreatebeamsofunstableisotopeswhichallowforthedirectstudyofnu-clearreactionsthatareimportanttotheunderstandingoftheoriginsoftheelements of the universe and of the nuclei that are involved in such reactions. Nuclear reactions occurring in stars are directly observed in satellite-based observatoriesandaccurateabundancepatternscanbeobservedthrough-outthehistoryoftheuniversereachingbacktothefirststars.Rare-isotopebeams are essential tools for unravelling the reaction rates in stellar burning andstellarexplosions.Thelaboratoryexperimentsusingthesebeamsprovidetheaccuratenuclearphysicsthat,combinedwiththeobservations,deliverstheprecisioninputneededforthecomputationallyinvolvedastrophysicalsimulationsofthechemicalevolutionoftheuniverse.Weareenteringanerawherenuclearphysicsuncertaintiesarebeingreducedtothepointwheretheconditionsoftheastrophysicalsitesarebeingconstrained.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 19

Rare-isotopebeamsareobtainedbytwocomplementarytechniques,throughtheIsotopeSeparatorOn-Line(ISOL)processorthroughin-flightfragmen-tationoffastheavy-ionbeamsnearrelativisticenergies.Futurefacilitiesforexoticrare-isotopebeamsprovidestoppednuclidesandbeamswithordersofmagnitude-greaterintensitiesthanatpresent.Thesewillallowexperimentsonrareandexoticnuclei,inwhichthenumberofneutronsorprotonshasbeenincreased.Theboundaryoftheregionofpossiblenucleiiscalledthedripline;beyondthatpointnonucleuswillevenform.Intheseextremeconfigurationsnewphenomena—suchasneutronhaloandskinstructures—areexpectedtooccur.Atpresenttheneutrondriplinehasonlybeenstudieduptofluorine(Z=9);whereastheprotondriplineontheothersideofthevalleyofstabilityhasbeenstudieduptobismuth(Z=83).Inadditiontoupgradingthepresentandbuildingnext-generationacceleratorfacilities,significantadvancesinexperimentaltechniquesarekeytofurtherprogress.

Newexperimentalapproaches—suchastheuseoflargegamma-raytrackingarrays,powerfulhigh-transmissionnuclideseparators,advancedatomandiontraps,storageringsandlaserspectroscopy,alongwiththeexploitationofnewtypesofreactionsininversekinematics—suchasknockoutreactionsandintermediateenergyCoulombexcitation—arerevitalizingexperimentalcapabilities.Whereoncebeamsofatleast10particlespersecondwerestan-dard,experimentscannowbedonewithorders-of-magnitudelowerbeamintensityand,inselectedcases,atratesevenbelowoneparticleperday.

The DRAGON detector in the ISAC-I facility at TRIUMF

20 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

TheCanadiancommunityplaysaleadershiproleintheworldwideeffort,takingfulladvantageofthefactthatISAC,atVancouver-basedTRIUMF,isthehighest-powerISOLfacility.ThisgivesISACamajoradvantageforreachingthehighestintensitiesforradioactivebeams.TherecentlyupgradedISAC-IIfacilityiscurrentlytheonlyoneworldwidetoprovideacceleratedrare-isotopebeamsatorabovetheCoulombbarrieroveritsentireproductionrangeofnuclei,includingtheheaviestspeciesbelowuranium.Inthefuture,anew50megaelectronvolts(MeV)electronlinearaccelerator(eLINAC),partoftheARIELproject,willprovideauniquemulti-userrare-isotopebeamfacilityenablinglong-termexperimentswithhighdiscoverypotential.

Worldwide,therearesignificantinvestmentsinthisareaofresearchwith theconstructionofanewin-flightFacilityforRareIsotopeBeams(FRIB) atMichiganStateUniversity,theISOLfacilitySPIRAL-IIinFrance,andFAIR,aswellaswiththeoperationoftheRareIsotopeBeamFactory(RIBF)atRIKENinJapanandtheOn-LineIsotopeMassSeperator(ISOLDE)facilityatCERN.

High-Precision Approaches

High-precisionexperimentsatlowerenergycanprobemassscalesandcouplingsnotaccessibleatthehigher-energyfacilities,andprovidecrucialinformationaboutanynewparticlesthatmaybeobservedattheLHC.Forexample,theQweakexperimentinprogressatJeffersonLabscatterselectronsoffprotonstomeasureweakinteractionparametersusingparity

Canadian graduate student with the Qweak experiment at Jefferson Lab

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 21

violation,whilethefutureMOLLERexperimentatthesamelaboratorywilldeterminetheelectronweakchargetohighprecisionandhaveunparal-leledsensitivitytonewelectron-electron(e-e)interactions,probingelectronsubstructure.Thesemeasurementswillbecomplementedbyparityviolationstudiesinatomicsystems,suchastheworkwithcold-trappedfranciumatomsunderdevelopmentforTRIUMF-ISAC,andmeasurementsofrarekaondecaymodesandthemuonmagneticmomentplannedforFermilab’sProject-X.TheALPHAandATRAPexperimentsatCERNwillsearchfordifferencesinthespectroscopyofhydrogenandantihydrogen,directlytestingCPTconservation.Inhydrogentheseareamongthemostaccuratelymeasuredpropertiesinphysics.

New interactions that do not behave in the same manner when the direc-tionoftimeisreversedarenecessarytoexplaintheimbalanceofmatterandantimatterintheuniverse.Subatomicphysicistsareseekingtodetecttime-asymmetricforcesthroughprecisionmeasurementsofthepropertiesoftheneutron,atomsandmesons.Severalplannedexperimentswithultra-coldneutronswillsearchfortheneutronelectricdipolemoment(EDM)whichwouldimplyaviolationoftime-reversalsymmetry;ajointprojectundertak-enbyphysicistsinCanadaandJapanaimstoconductaworld-leadingsearchatTRIUMF.SimilarexperimentsseekingEDMsusingnuclearisotopeswithoctupoledeformationsareexpectedtobeparticularlysensitive.Someofthemostfavorablecasesinvolvetheodd-Aradonisotopes,studiesofwhichareplannedforTRIUMF-ISAC.Technologieswithcooledandtrappedatomsalsoenablefundamentalsymmetrystudies,andtheTRIUMFNeutralAtomTrap(TRINAT)experimentwilltacklepropertiesofnuclearbetadecay,sensitive to sources of time-reversal violation relatively unconstrained by EDMexperiments,whileatJ-PARCtheTREKexperimentwillperformatime-reversal violation test in kaon decay.

Accelerator Development

AcceleratorR&Discrucialiftheabovegoalsaretobeattained.Inthepastdecade, there have been tremendous advancements in accelerator technology forelectron,hadronandrare-isotopebeamproduction.Themostsuccess-fulacceleratorlaboratories,likeTRIUMF,haveintensiveR&Deffortsthatdirectlysupporttheirmissions.Technologytransferamongstthelaborato-riesensuresthateachbenefitsfromthelatestdevelopmentsandmany,likeTRIUMFandIndia’sVariableEnergyCyclotronCentre(VECC),haveformedpartnershipsforfurtherresearch.TheARIELacceleratorprojectatTRIUMF,basedon1.3gigahertz(GHz)superconductingradio-frequency(RF)technology,willbeusedtoproducehigh-intensityrare-isotopebeamsfromphoto-fissionandwilldemonstratethetechnologythatmaybeusedfortheInternationalLinearCollider.R&Drelatedtorare-isotopefacilitiesalsoincludesessentialdevelopmentworkonionsources,separators,targets,andremotehandlingofcomplextargetmodulescontaininghighlyradioac-tive materials.

22 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

3. Underground Approaches

Deep,undergroundlaboratoriesprovideanessentialvenueforshieldingsensitiveexperimentsfromcosmicradiationthatcontinuouslybombardsthesurfaceofEarth.Severalundergroundfacilitiesexistaroundtheworld,includinginCanada,theU.S.,Japan,Italy,FranceandChina.SNOLABinCanadaisapremierinternationallaboratory.

Neutrinos

Knowledgeofthepropertiesofneutrinosisessentialtotheunderstandingoffundamentalphysics,aswellasastrophysicsandcosmology.Theflavourchange(oscillation)ofneutrinos,whichimpliesthattheyhavenon-zeromass,wasfirstobservedbySuper-Kamiokande(Super-K).TheSudburyNeu-trinoObservatory(SNO)experimentthendeterminedunambiguouslythatneutrinosfromthesunaretransformingflavour.KEKtoKamioka(K2K)inJapanandtheMainInjectorNeutrinoOscillationSearch(MINOS)intheU.S.madethefirst“longbaseline”neutrinooscillationmeasurements,observing the flavour change of high-intensity neutrino beams sent over long distances.

Neutrinophysicsquestionscanbeaddressedwithbothacceleratorandundergroundapproaches.Neutrinoscanbecreatedwithaccelerators,buttheyarealsoproducedbycosmicrays,bystellarfusionreactionsandbyastrophysicalsourcessuchassupernovae.Becauseneutrinosaresoweaklyinteracting,neutrinoexperimentsmustveryoftenbedoneundergroundtoshield them from cosmic rays.

Thenewgenerationofneutrinooscillationexperiments,includingsomeob-servingnuclearreactorneutrinofluxes,andhigh-intensitybeamexperimentssuchasT2K,willhuntdowntheunknownparameterdescribingneutrinooscillation—termedθ13—overthenextfewyears.Futurephasesoftheseexperimentswillsearchforanasymmetrybetweenneutrinosandantineu-trinos,whichmayprovidecluestotheoverallmysteryofmatter-antimatterasymmetry.Ambitiousneutrinoprogramsareplannedworldwide,involvingboth high-intensity beams and very large detectors.

Low-Background Experiments

Inadditiontoprotectionfromcosmicrays,someexperimentshuntingforextremelyrareprocessesrequireenvironmentswithverylowlevelsofradio-activity.SNOLABisuniqueinitsgreatdepthandlowlevelofradioactivebackground and can satisfy both requirements.

Amongexperimentsrequiringlowbackgroundanddeepsitesarethosesearchingforexoticradioactivedecays(betadecaysinvolvingemissionoftwoelectronssimultaneouslybutwithoutneutrinos).Observationofthesewillgive insight into neutrino absolute masses and the question of whether the neutrinoisitsownantiparticle—essentialinformationaboutthebasicnature

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 23

of matter that is necessary if we are to understand the history of the universe. Severalexperimentsworldwidearesearchingforthesignatureofthisspecialdecay,includingSNO+,MajoranaandEXO.

ExperimentsthatsearchforDarkMatterthroughtheirtinynuclearrecoilsignals demand very low radioactivity environments. There is a very broad, technologicallydiverseandcompetitiveworldwideprogramofsuchexperi-ments,includingtheCryogenicDarkMatterSearch(CDMS),DarkMatterExperimentusingArgonPulse-shapediscrimination(DEAP),CryogenicLowEnergyAstrophysicswithNoblegases(CLEAN),ProjectinCAnadatoSearchforSupersymmetricObjects(PICASSO),andtheChicagolandObservatoryforUndergroundParticlePhysics(COUPP).

4. Cosmic Approaches

The last few decades have seen a variety of questions arise at the intersection ofparticlephysicsandastronomy,spawningtheinterdisciplinaryfieldofparticleastrophysicsworldwide.Informationfromeachfieldishelpingtosolveproblemsintheother.

ThemostviolentparticlecollisionsknownoccurinouterspaceandtheybombardEarthwithavarietyofcosmicparticles,fromprotonsandgammaraystoneutrinosandotherparticles.Theirdetectionprovidesawealthofinformation about the astronomical furnaces in which they are forged, about theenvironmentthroughwhichtheypassenroutetous,andaboutthenatureoftheparticlesthemselves.

Upgrading the SNO detector for the SNO+ experiment

24 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Forinstance,neutrinosproducedbystellarexplosions—supernovae—teachusaboutbothneutrinooscillationsandthephysicsoftheextremeenviron-mentofthesupernovaexplosion.Vast,cubic-kilometre-scalephotosensorarrayexperimentsundericeorwater—suchasIceCubeandAntares—searchforhigh-energyneutrinosfromcosmicsources.Cosmicradiation—mostlyordinaryparticleslikeprotons,nucleiandphotons—tellusaboutexoticdis-tantobjects,thepresenceorabsenceofparticlesorfieldsintheforeground,andpotentiallyaboutthepropertiesofDarkMatter.Oureffortstoexplaintheobservationsmadebyparticleastrophysicswilltestourunderstandingoffundamentalphysics.

Cosmology—thestudyoftheuniverseasawhole—representsanotherareaofcontactbetweenparticlephysicsandastronomy,inparticularprovidingevidencethat95percentoftheuniverseisunknowntous—DarkEnergy(70 percent)andDarkMatter(25percent).Understandingtheseisthejobofparticlephysics,andmucheffortisdevotedtodevelopingandtestingthe-ories for what they might be. This involves identifying connections between astronomicalobservationsofdistantsupernovae,galaxyclustersandtheBigBang’sresidualglow—cosmicmicrowavebackgroundradiation—andterrestrialexperimentslikeDarkMatterdetectors,acceleratorexperiments,precisiontestsofconservationlaws,etc.

Joint Perimeter Institute—Canadian Institute for Theoretical Astrophysics Workshop

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 25

5. Theory

Alloftheexperimentaltechniquesdiscussedabovearedependentuponcloseinteractionsbetweentheexperimentalandtheoreticalsubatomiccommu-nities.Theoreticalsubatomicphysicistsstudyanddevelopthetheoreticalframeworkandmathematicaltoolstounderstandcurrentexperiments,makepredictionsforfutureexperiments,andtrytounderstandtheoverallstructure of our knowledge of nature at subatomic scales. The vitality of the fieldofsubatomicphysicsdependsonthevibrancyofbothofthesecom-munities:theoreticalideasmotivatenewexperimentsandareneededtointerpretexperimentalsignals,whileexperimentsinturnarerequiredtotesttheoretical ideas.

Theoreticalsubatomicphysicscoversalargerealmofinquiry,fromthehigh-lyabstractandspeculativetodirectcalculationsofexperimentalpredictions,andfromnucleardistancesdowntoscalespresentlybeyondexperimentalreach.Broadlyspeaking,nucleartheoryisconcernedwiththecollectivebehaviorofnucleons,whileparticletheoryisconcernedwithphenomenaonsubnuclearscales.Butthisdistinctionisnotalwayscrisp,asfieldssuchaslatticeQCDandheavy-ionphysicsareofinteresttobothcommunities.Sub-atomictheoryalsohastiestorelatedfields,suchasatomicandcondensedmatterphysics,astrophysicsandcosmology,andpuremathematics.

Anotherwaytoslicethetheoryeffortistodistinguishbetweenformalresearchandphenomenologicalresearch,wherethedistinctionindicatestheextentofthedirectrelevancetocurrentornear-futureexperiments.Butevenherethedistinctionisnotalwaysclean.Forexample,inrecentyearsveryformaladvancesinquantumfieldtheoryhavebeenfoundtohavesurprisingapplicationstocalculationsusefulforcolliderphysics.Itisthesekindsofdeepandunexpectedconnectionsthatrewardsupportingtheorynotdirectlytiedtotheexperimentaleffort.

Theimportanceoftheinterplaybetweentheoryandexperimentisdemon-stratedbythefactthatalllargeinternationallaboratories—includingCERN,SLAC,BNL,Fermilab,JeffersonLab,TRIUMF,KouEnerugiKenkyuKiko(KEK),andLawrenceBerkeleyLab—havesignificanttheorygroups.Furthermore,whilethesetheorygroupscertainlyprovidesignificantsupporttothecorrespondingexperimentalprograms,theseinternationallabstypicallydonotrestricttheirtheorygroupsonlytoareasnarrowlytiedtotheirexperimentalprograms.Inpart,thisisbecause,asagroup,theoristscanchangetheirresearchdirectionmuchmorequicklythancanexperimentalgroups.

26 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

TheCanadiansubatomicphysicsprogramisdesignedtomaximizescientificoutputandimpactonaglobalstage.Strategicchoiceshavebeenmadethatallowustofocusoureffortsandstake-outaclearCanadianrole,whethertheexperimentalfacilityisinCanadaorabroad.ThesechoiceshavebeenmadeinwideconsultationwiththeCanadiansubatomicphysicscommunitythroughprocessessimilartotheonethatproducedthisdocumentand,moreregularly,throughthenationalorganizingbodies,theCanadianInstituteforNuclearPhysics(CINP)andtheInstituteofParticlePhysics(IPP).

Incaseswhereworld-leadingdomesticfacilitiesexist,theCanadiancommu-nityhasnaturallycoalescedtoexploittheseinvestments.TheISACfacilityatTRIUMFisthehighestpowerisotopeseparationon-linefacilityintheworld.Ensuringthatthisworld-leadingfacilityproducesworld-leadingsciencerequiresexperimentsconductedbyworld-classresearchers.ISACattractstheseresearchersfromwithinCanadaandinternationally.Similarly,overthepast10yearsCanadahasbuiltoneoftheworld’spremierunder-groundlaboratories—SNOLAB.TheCanadianneutrinoanddarkmattersearchcommunitieshaveflockedtoSNOLAB,andtheworldisfollowingsuit.Thepast10yearshavealsoseenthebuildingofthePerimeterInstitute(PI)—oneoftheleadingtheoreticalphysicsinstitutesintheworld.PIbringssome of the brightest members of the world subatomic theory community to Canada.

ThescaleoftheprojectsonwhichweworkmakesitimpossibleforCanada,oranycountry,tohosttheeliteinternationalfacilityineveryaspectofsub-atomicphysics.Therefore,justasresearchersfromaroundtheworldmakeextensiveuseofISACandSNOLAB,Canadianresearcherstravelabroadtotakeadvantageofleadingfacilitiesinothernations.Inthesecases,wehavealsomadestrategicchoicesandinvestments.Forexample,attheLHCtherearefourmajorexperiments.However,theCanadianefforthascoalesced

The Canadian Science Program: Present and Future

4

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 27

aroundasinglemulti-purposeexperiment—ATLAS.WeareoneofthefoundingnationsintheATLAScollaboration.ThismagnifiesCanadianim-pactandputsa“made-in-Canada”stamponoursignificantcontributionstothisproject.Asecondexamplearisesinlong-baselineneutrinoexperiments.CanadahasfocusseditseffortonT2KinJapan,ratherthanbesplitacrossmultiplefacilities.Accordingly,wecomprisemorethan10percentofthatcollaborationandplayaleadingroleinmanyaspects.AthirdexamplecomesfromJeffersonLabintheU.S.Theworldhadronicstructurecommunityhasitselfcoalescedatthispremierfacility.CanadianshavebeenactiveatJeffer-sonLabfor20yearsandhavecontributedsignificantleadershiptokeypartsofitsscientificprogram.ThesethreeexamplesillustratetheinternationalscientificpartnershipssubatomicphysicshasbuiltbetweenCanadaandEurope,JapanandtheU.S.,respectively.Aswillbeexploredfurtherinlatersectionsofthisreport,thesepartnershipshavebenefitsbeyondthescience.TheybenefitCanadianindustryandthetrainingofCanadianstudents.ThefollowingsectionhighlightssomeoftheaccomplishmentsoftheCanadiancommunityoverthepastfiveyears,detailstheongoingprogramexpectedtoyieldresultsinthenextfiveyears,andlooksaheadtolong-termopportunitiesforCanadiansubatomicphysics.

1. Accomplishments: The Past Five Years

ThelastfiveyearshaveseenkeyresultsfromresearchintheCanadiansubatomicphysicsprogram.TheSNOLABfacilityhasbeenconstructedandisnowthesiteofseveralnewexperiments.ConstructionwascompletedonT2Kandtheexperimenthasstartedtotakeneutrinooscillationdataandhaspublisheditsfirstanalysis.ATLAShasbeencommissionedandfirstresultshavebeenreported.AtTRIUMF,theISAC-IIacceleratorwascommis-sionedalongwithmajornewspectrometers—TRIUMF-ISACGamma-RayEscape-SuppressedSpectrometer(TIGRESS)andTRIUMF’sIonTrapforAtomicandNuclearscience(TITAN)—andexperimentsmakinguseofthese instruments are ongoing.

The Canadian Science Program: Present and Future

A view of the Canadian-built ATLAS Hadronic Endcap,

prior to installation

28 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Sudbury Neutrino Observatory

The Sudbury Neutrino Observatory (SNO) was built by a Canadian-U.S.-

United Kingdom (U.K.) collaboration in the Vale-Inco Creighton Mine

outside Sudbury. The detector consisted of 1,000 metric tonnes of heavy

water contained in a 12-metre radius acrylic sphere and observed by

10,000 20-centimetre photomultiplier tubes. Neutrinos are copiously

produced in the sun, and the flux of neutrinos at the Earth is about 10

billion per square centimetre, per second (about two percent of the

Sun’s energy). These neutrinos travel freely through the Sun and the

Earth, but a small fraction (about 20 per day) interacted inside the SNO

detector. Three different neutrino reactions occur in heavy water, and

distinguishing between these reactions allow us to measure the total

number of neutrinos, and provides information about types of neutrinos.

The fusion reactions in the Sun only produce electron neutrinos;

however, SNO showed that two-thirds of the neutrinos reaching the

detector were mu-neutrinos or tau-neutrinos. This means that neutri-

nos change type (or “oscillate”), which points to new physics beyond

that described in the Standard Model.

SNO took data between 1999 and 2006 in three different configurations

that counted the total number of neutrinos in three very different ways.

The initial measurements were published in 2001, but continued work

has significantly heightened its original precision by improving upon

the calibrations and combining the data from the three phases of the

experiment. Final publications are expected in 2011.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 29

Atthetimeofthelastsubatomicphysicslong-rangeplan(LRP)report,theCanadianparticlephysicscommunitywasactivelyengagedinthecollec-tionandanalysisofdatafromtheSNOexperiment,theB-Bbardetector(BaBar)experimentatSLAC,theColliderDetectoratFermilab(CDF)andD0experimentsatFermilab,andZEUSatDeutschesElektronen-SYn-chrotron(DESY),andahostofsmallerprojects.Inaddition,constructionandinstallationoftheATLASdetectoratCERNwaswellunderwayandtheconstructionofT2Khadstarted.Thenuclearphysicscommunitywasmountingstrongexperimentalprogramsinvolvinghadronicstructureatthe6GeVacceleratoratJeffersonLab,andwasworkingontheweakinteractionmeasurementsandnuclearastrophysicsatTRIUMF.Inthepastfiveyears,significantprogresshasbeenmadeandtheaccomplishmentsoftheCana-dian community have been remarkable.

CanadianparticipationintheCDFandD0experimentsatFermilabhasdrawntoasuccessfulconclusion,asexperimentalistshavenowshiftedtheirfocusandeffortstothenewenergyfrontierattheLHC.CanadianshavebeeninstrumentalinmanyofthekeyphysicsresultstoemergefromtheTevatroninrecentyears,includingthefirstobservationandsubsequentmea-surementofsingletopquarkproductionandthefirstdirectmeasurementofthecouplingofthetopquarktoaWboson.MembersoftheCanadianCDFgroupledthepreciseCDFWbosonandtopquarkmassmeasurements,andalso contributed substantially to direct searches for the elusive Higgs boson. ThesekeyelectroweakandflavourphysicsmeasurementsstronglyconstraintheStandardModelandsetthestagefornewphysicssearchesattheenergyfrontierattheLHC.

Substantialprogresshasbeenmadeinourunderstandingofflavourphysics,themixingofquarksviatheweakinteraction.SLAC’sB-factorycompleteditsdata-takingphasein2008,bringingtoanendtheCanadianoperationalresponsibilitiesforthelargevolumedriftchamber,constructedatTRIUMF,whichwasthecoreoftheCanadiandetectorcontributiontotheBaBarexperiment.AstrongCanadianpresenceinthecollaborationhascontinued,withkeycontributionsandleadershipbyCanadiansinmanyofthemostactiveareasofphysicsanalysis,andintheoverallleadershipoftheproject.ThesuccessoftheexperimentalprogramtounderstandflavourphysicswasacknowledgedbytheNobelCommitteein2008,withthesharedawardoftheNobelPrizeinPhysicstoMakotoKobayashiandToshihideMaskawafortheirexplanationofthemechanismforCPviolationwithintheStandardModel.ExperimentalverificationorrefutationoftheKobayashi-MaskawamechanismwastheprimarypurposeofBaBar.Withthisobjectivesuccess-fullyachieved,thesesamedecaymodescanthenbeusedasprecisionprobesofpossiblephysicsbeyondtheStandardModel,complementingthedirectenergyfrontiersearchesperformedattheTevatronandnowalsotheLHC.Moreover,experiencegainedontheBaBarexperimentispavingthewayforthenextgenerationofultra-highluminosityBfactoriesinItalyandJapan.

30 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

MajorCanadianinvolvementindetectorinstallationandcommissioningactivitiesfortheLHCculminatedinthefirsthighenergydatatakingfortheATLASexperimentin2010.ATLAS-Canadahassuccessfullydeliveredonitsmajorhardwareconstructionandcommissioningprojects,andinthefirstperiodofdatatakingtheCanadianforwardandhadronicendcapcalorim-etershaveoperatedaccordingtodesignexpectationsandwithnear-perfectoperationalefficiency.TheTier-1ATLAScomputingcentreatTRIUMFwassuccessfullycommissionedandiscurrentlyfullyoperational,hostingprimaryandderiveddataandATLASsimulation.Itregularlyranksamongthetopintheworld,delivering99percentavailabilityfor24hoursaday,sevendaysaweek(24/7)operationduringATLASdata-taking.CanadaalsohostsfourregionalTier-2computingcentresdistributedthroughoutthecountry.ThesecentreshavebeenrealizedusingCFIfundseitherdirectly,inthecaseoftheTier-1,orindirectlyviaComputeCanadafortheTier-2’s.AfirstATLASphysicsanalysiswaspublishedonchargedparticlemultiplicitiesin900GeVdatainearly2010andfirst7TeVphysicsresultswerepresentedwithmuchinterestatthe2010InternationalConferenceonHighEnergyPhysics(ICHEP),includingnotonlyphysicsvalidationandStandardModelmeasurements,butalsothefirstresultsofexoticsearcheswithsensitivityexceedingthatoftheTevatron.Indeed,attheEuropeanPhysicalSociety(EPS)2011conference,bothATLASandCMSalreadyshowedsensitivitytotheHiggsbosonoverawiderangeofpossiblemasses.TheyeachexcludednewHiggsmassrangesandwereinvestigatingstatisticallyinsignificantbutintriguingexcessesatthetimeofwriting.ThesenewresultsusherinanexcitingandmuchanticipatedneweraofphysicsexplorationattheLHC.Canadianswerenotonlyleadanalystsandauthorsinthiseffort,butalsocontributedtomanyofthespecificcollaborativeanalysisactivities,includingdatacalibrationandparticlereconstructionefforts,thatmaketheseseminalresultspossible.

DataacquisitionattheCanadian-basedSNOendedinNovember2006, followingthethirdphaseofoperations.Analysesofthethreephasesweredoneseparately,allowingSNOtoshowaconsistentpictureofsolarneutrinofluxandoscillationsthroughverydifferentmeasurements.Inaddition,bycombiningseveralphasesinanalyses,significantimprovementsinboth statisticalandsystematicuncertaintieswereseen.Continuedimprove-mentsintheanalysisallowedSNOtoreanalyzepreviousdatawithgreatlyimprovedprecision.Thesemeasurementsconclusivelydemonstratedthatsolar neutrinos oscillate on their way from the core of the Sun to the Earth, thusresolvingthelong-standingsolarneutrinoproblemandprovingthatneutrinoshavemass.ThecorepublicationsoftheSNOcollaborationhavegeneratedmorethat4,500citations.TheSNOdetectorceasedoperationin2007,buttheinfrastructurecontainedintheSNOdetectorisbeinggivennewlifeaspartoftheSNO+projectinthenewSNOLABfacility.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 31

BaBar

The BaBar experiment at the SLAC National Accelerator Laboratory

recorded collisions of electrons and positrons at an energy of

10.5 GeV—equivalent to about 10 times the mass energy of a proton—

between 1999 and 2008. BaBar investigated not only the nature of CP

violation in B meson decays, but also a large variety of other topics in

heavy quark physics, providing indirect probes on possible new physics

at very large mass scales. BaBar contributed to the 2008 Nobel Prize

in Physics by providing the experimental confirmation of the predic-

tions of theorists Makoto Kobayashi and Toshihide Maskawa regarding

the nature of the weak interaction and matter-antimatter asymmetry.

BaBar is an international collaboration of approximately 600 physicists

from research institutions in 12 countries. Canadian groups partici-

pated in the construction and operation of the main charged particle

tracking system for BaBar, and led data analysis efforts in several key

areas of the physics program.

32 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Indeed,theconstructionofSNOLABwascompleted,experimentswereinstalledanddatabegantoflow.ThefirstexampleisPICASSO—aCanadi-an-ledandlargelyCanadianfundedsearchforDarkMatterthatusessuper-heatedliquiddetectortechnology.Theanalysisofafirstsetoftwooutof 32newgenerationdetectorsresultedintheworld’sbestlimits.Thisanalysisispresentlybeingextendedtotheremaining30detectorsthatwereoperatedin2009-10andnewresultsareexpectedsoon. Anewgenerationofneutrinoexperimentsisnowseekingtounderstandthenatureofthemixingintheneutrinosector.Tothatend,CanadianshaveactivelycontributedtotheT2Kexperimentwithresponsibilityforthenear-detectortracker,consistingoffine-grainedscintillatingdetectorsandlarge-volumetimeprojectionchambers,andanopticaltransitionradiationbeammonitorfortheprimaryprotonbeam.R&DactivitiesforthesedetectorcomponentswereintheearlystagesatthetimeofthelastLRPexercise,buttheyweresubsequentlydesigned,constructed,testedinTRIUMF’sM11beamlineandultimatelyinstalledandcommissionedin2009.TheT2Kexperimentcompleteditsfirstdatarunin2010.ThefirstpublicationfromT2K,basedonthisdataandreleasedin2011,hasgiventhefirstindicationthatmuon-neutrinososcillatetoelectron-neutrinos.CanadaisnowoneofthelargestgroupsinT2K,totallingmorethan10percentofthecollaboration,withastrongpresenceinanalysisleadershiproles.Canadianscientistsarenowextremelywellpositionedtoleadthewayinthisexcitingareaofresearch.

TheTRIUMFWeakInteractionSymmetryTest(TWIST)collaborationhascompletedthemostprecisemeasurementofthemuondecaydistribu-tion.ThisallowsTWISTcollaboratorstoderivetheelectroweakcouplingconstantswhichdeterminetheunderlyingsymmetriesofthetheory.Exten-sionstotheStandardModel,suchasleft-rightsymmetrictheories,assumethatright-handedparticlesalsorespondtotheweakforce,butatamuchdifferentenergyscale.TheTWISTresultsforthemuondecayparametershavesetthemoststringentlimitstodateforleft-rightsymmetricmodels,makingitfarlesslikelythatthesetheoriesarethecorrectextensiontotheStandardModel.

Inawonderfulexampleofhowsmaller-scalephysicsopportunitieswithdiscoverypotentialcanemergeoverthecourseofafive-yearplan,wenotethattheAntihydrogenLaserPHysicsApparatus(ALPHA)collaborationhassuccessfullytrappedanensembleofantihydrogenatomsasafirststepinusingtheseatomsforprecisiontestsofCPTviolation.Thissuccesswashighlighted by Physics Worldasoneofthetopphysicsachievementsof2010.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 33

JeffersonLabcurrentlyprovides6GeVelectronbeamsofunprecedentedqualityandstabilityandistheworld’spre-eminentfacilityinelectromag-neticphysics.Canadianuseofthisfacilityspansa20-yearperiod,andrecentCanadianaccomplishmentsdemonstrateaveryhighscientificimpact.IntherecentlycompletedG-Zeroexperiment,parity-violatingelectronscatteringwasusedtoinferthatstrangequarksmakesmall(lessthan10percent) contributionstothebasicpropertiesoftheproton,suchasitsmagnetic momentandelectricchargedistribution.TheQweakexperiment—thefirst-evermeasurementoftheweakchargeoftheproton—isnowtakingdata followingthecommissioningoftheCanadian-fundedsolenoidalspectrometer.ThedoublingoftheJeffersonLabenergyto12GeV(withthedeliveryofthefirstbeamin2013)isdesignedtofurtherourunderstandingofthetransitionbetween the hadronic and quark-gluon degrees of freedom in nucleons and nuclei.Canadiansareonthefrontlineandcarryingspokespersonresponsi-bilitiesfortwo“A”-ratedapprovedexperiments—GlueXandthepionformfactor—andprovidinghardwarecontributionstoHallsCandD.

Duringthepastfiveyears,theISACfacilityatTRIUMFhassuccessfullymadethetransitionfromconstructiontoutilization.TheISAC-IIaccelera-torforradioactiveionbeamswascommissioned,andinitialexperimentshaveusedacceleratedbeamswithatomicnumbersA<30.TheTIGRESSγ-rayspectrometerandTITANmassmeasurementfacilitywerecompletedandareperformingexperiments,andsubstantialimprovementstoanumberofotherspectrometershavebeenmade.TheexperimentalprogramatTRIUMF-ISACtakesadvantageofthesedevelopmentsininstrumentationandusestheworld-leadingintensitiestoperformexperimentsthatcannotbepursuedatotherfacilities.

Theexperimentalprogramusingradioactivebeamshasanimpactonmanyof the fundamental questions. The nature of the weak interaction has been stringentlytestedbytheTRINATfacilityandthe8πgammarayspectrom-eter.ThesemeasurementssupporttheStandardModeldescriptionsoftheweakforceandthecouplingsbetweenthelightquarks.Thedatastronglyconstrainedthepossibilityofadditionalquarkgenerations.

Intheareaofnuclearstructure,significantnewresultshavebeenobtainedusingboththeacceleratedbeamswithISAC-II,andlow-energybeamsatISAC-I.Thenatureofso-calledhalonuclei,wherethespatialextentoftheouterneutronsgreatlyexceedsthatoftherestofthenuclearmatter,havebeenprobedinreactionsinvolvingradioactivehelium,lithiumandberyl-liumbeamsatISAC-II,andwithmeasurementsatISAC-I.Experimentshavecommencedthattestthenatureoftheinteractionofprotonandneutronsinthenucleusandhowcollectivitydevelops.Recenttheoreticaldevelopmentshavealsoprovided,forthefirsttime,amethodtosolvetheequationsgoverningcollectivebehaviourinthenucleus,providingclearguidanceforexperiments.

34 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Tevatron

The CDF and D0 experiments for the Tevatron at Fermilab, near

Chicago, recorded the collisions of protons and antiprotons at the high-

est energies accessible prior to the start-up of the LHC at CERN,

approximately 2 TeV. CDF and DO are general-purpose experiments,

designed to be able to study the broad range of physics accessible at

these energies—from the basic properties of light quark interactions

and B meson physics, to precision measurements of heavy W± bosons

and top quarks, to searches for Higgs bosons and new particles at the

highest accessible mass scales. Both experiments are operated by

large international research collaborations which include Canadian

groups. Canadian participants in the CDF collaboration played leading

roles in the flagship W± boson and top quark mass measurements and

contributed substantially to the high profile Standard Model Higgs search.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 35

TRIUMFisalreadyrecognizedworldwideforitsdirectmeasurementsofnuclearreactionsimportantincataclysmicbinarysystems.HighlightsfromtheDetectorofRecoilsAndGammasOfNuclearreactions(DRAGON)includethemeasurementofakeyradiativecapturereactionwitharadioac-tive beam, 21Na(p,γ)22Mg,andthedeterminationoftheweakestresonancestrength ever measured in inverse kinematics with a radioactive beam. Indeed,ofthesixradiativecapturemeasurementsevermadewithradioactivebeams,threewereperformedatTRIUMFusingtheDRAGONspectrom-eter.Allofthesereactionsarerelatedtotheproductionordestructionofγ-ray emitters in classical novae.

2. The Canadian Program: 2011-2016

Thestrategicinvestmentsmadeoverthepast10yearshavewell-positionedCanada.Manyimportantprojectshavemovedfromconstructionandcom-missioningtophysics.TheCanadiancommunityissettoreapthescientificrewards of these investments.

ThesubatomicphysicscommunityinCanadaiscomprisedofbothnuclearandparticlephysicists.Whilethesetwocommunitieshavemuchincom-mon,thewayinwhichexperimentalworkisorganizedineachissomewhatdifferent.Particlephysicsisoftencharacterizedbylargecollaborationsoperatingsingledetectorscontinuouslyinordertoperformamultitudeofmeasurements.Insomecases,dataformanyindependentmeasurementsarecollectedsimultaneouslyandseparatedafterthefact.Ontheotherhand,thenuclearphysicscommunityismorelikelytobuildaspecificdetectorwhichcanbeusedinamultitudeofindividualexperiments,runsequentially.

Thesedifferentwaysoforganizingtheexperimentsarereflectedinthe presentationofthissection.Forexample,ATLASispresentedasasingleprojectinspiteofthefactthatitsupportsanextremelydiversesetofstudieswhichaddressmanydifferentaspectsofthefundamentalquestionsinpar-ticlephysics.Incontrast,theGamma-RayInfrastructureForFundamental InvestigationsofNuclei(GRIFFIN)spectrometerismentionedinanumberofplacesthroughoutthissectioninthecontextofindividualnuclearphysicsexperimentswhichwillmakeuseofthedevice.

a. The Energy Frontier

Accelerator Approaches at High Energy: ATLAS at the LHC TheLHCandtheATLASdetectorhavenowmovedfromcommissioningtophysics.AsthefirstcollisionswereobservedintheATLASdetector,mil-lionsofpeoplearoundtheworldwatched,fascinatedbythescaleandscopeofthisexperiment.Bytheendof2012,itisanticipatedthattherewillbeenoughdatafromitscurrentoperationtomakeadefinitivestatementabout

36 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

theexistenceoftheStandardModelHiggsboson.Therewillalsobeenoughdatatoeitherdiscover,orsignificantlyconstrain,manypopularextensionsoftheStandardModel.After20yearsofplanning,designing,andbuildingtheATLASdetector,Canadianswillspendthenextfiveyearsreapingthehar-vest.Extensiveknowledgewillbeproduced,addressingsomeofthecentralquestionstheLHCwasbuilttoanswer.

Canada’sfaculty-levelcommitmenttoATLAShasnearlydoubledsincethelastLRPexercise,exactlyasanticipated,andCanadianresearchersandtheirstudentsandpostdoctoralresearchersareauthorsonATLASpublications.ThecontributionsofCanadiansubatomicphysicistsarealsobeingrecog-nizedwithinATLASbytheirselectionforprestigioustalksandcoordina-tionroles.ATLAS-Canadafaculty,studentsandpostdoctoralresearchersareactivelyengagedinmanyleading-edgeanalysiseffortscoveringthespectrumfromStandardModelmeasurementstothesearchfortheHiggsboson,supersymmetryandotherexotica.

Althoughverifyingtheoriginofmassisoftentoutedastheflagshipphys-icsoftheLHC,itshouldbenotedthatATLASismakingmeasurementsthataresensitivetonewphysicssuchasthesearchforextradimensions,compositeness,rareheavy-quarkdecayswithmuonsand/orphotonsinthefinalstate,andmeasurementsofCPviolatingparameters.ATLASis,insomesense,anexperimentalfacilityenablingawiderangeofphysicsmeasure-mentsandsearchestobeperformed.

TheresultsachievedbytheATLASexperimentduringthecurrentplanningperiodhavethepotentialtoimpactmanyareasofinvestigationinsubatomicphysics.Forexample,thescopeofLHCupgradesorthedesignofafuturelinearcolliderdependonwhatisfoundinthenextfiveyearsatATLAS. Theresultsobtainedduringthisplanningperiodcouldberevolutionaryforourfield.

b. The Organization of Nuclear Matter and the Origin of the Elements

Accelerator Approaches at Medium Energy: Jefferson LabAtJeffersonLab,Canadiansarespokespeoplefortwomajorexperimentalinitiativesinhadronicphysicsthatwillusethe12GeVelectronbeam—theGlueXexperimentandtheFπ-12experiment.TheGlueXexperimentwillseektheexistenceofso-called“exotichybridmesons”bydeterminingtheirunique quantum numbers, and will measure their masses and decay channels. TheexoticmesonsserveassensitivetestsofourunderstandingofQCDinthenon-perturbativeregime. Oneofthemostcriticaldetectorcomponents—theBarrelCalorimeter—isinthefinalstagesofconstructioninRegina,Canada.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 37

Ahighpriorityisthedevelopmentofaquantitativeunderstandingofhowquarksandgluonsgiverisetotheobservedpropertiesofnucleonsandmesons.TheFπ-12experimentwillmeasurethestructureofthepionatsmall-distancescales.Theso-calledpionformfactoristypicallyoneofthefirstobservablesthatarecomparedwithQCDcalculationsbecauseofitsim-portanceinunderstandingthetransitionfromshort-tolong-distancescales.

Rare Isotope Beam Facilities: TRIUMF-ISACTheCanadiancommunityisheavilyengagedinprobingthestructureofnu-clei,addressingthequestionsofthelimitsofnuclearexistence,theevolutionofnuclearshellsandpropertiesasafunctionofprotonandneutronnumber,andthenatureofcollectiveexcitations.Allofthesequestionsinvolveasyn-ergybetweenexperimentalandtheoreticaldevelopments.WhilemostofthecommunityperformstheworkattheTRIUMF-ISACfacility,therearealsoimportantcontributionsfromoffshorefacilities.

Asthenuclearphysicscommunityworksthroughthenewparadigmforef-fective interactions between nucleons, and the related calculation streams, it iscriticaltohaverobustexperimentaldatainordertoaccuratelypredictthelimitsofnuclearexistence,particularlyforneutron-richnuclei.Knowledgeofnuclearmassesprovideadirectconstraint,especiallyinextrapolatingthelimitforheavynuclei.TheCanadianmassmeasurementprogramiscentredontheuseoftheTITANfacilityatTRIUMF-ISAC.Withthecommission-ingoftheactinidetargetatTRIUMF,TITANwillbefocussingonmassmeasurementsofneutron-richnucleiinthenearfuture.Inordertodeter-minetheevolutionofthenuclearpropertiesasafunctionofneutronandprotonnumber,especiallythelocationsofthenucleonorbitals,systematicinvestigationsmustbeperformedstartingfromnucleinearstability,wherethelocationandnatureoftheshellsarewell-determined,andprogressout-wardstowardsthelimitsofexistence.

Scintillating fibres for the barrel calorimeter on the

GlueX detector

38 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

ATLAS

The LHC has redefined the energy frontier. Proton-proton collisions

are ongoing at an energy of 7 TeV (3.5 times the Tevatron energy), with

plans to ramp up to 14 TeV over the course of this planning period. This

new energy regime, and the unprecedented volume of data, will allow

us to probe for ”new physics” well beyond the current limits.

Canada has been engaged in ATLAS—one of the flagship experiments

at the LHC—since its inception. We have led the design, building and

commissioning of key elements of the ATLAS detector—the hadronic

endcap and forward calorimeters. We have also made significant hard-

ware contributions to the ATLAS trigger and to the worldwide ATLAS

computing grid through a national Tier-1 center at TRIUMF and major

analysis facilities at five Canadian universities.

Now that the ATLAS experiment is built, and the basic commission-

ing is complete, the Canadian community is using it as a platform

that enables a wide variety of research efforts across the country.

Direct searches for new physics are well underway and Canadian-led

analyses have already ruled out some possibilities. By the end of 2012,

ATLAS will have accumulated enough data to answer some of the key

questions facing the field. Toward the end of the planning period, data

collection at 14 TeV should be well underway. This period is when

Canada, and the world, reaps the scientific rewards for our invest-

ments in ATLAS.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 39

Therichvarietyofcollectiveexcitationsthatnucleidisplayareexamplesofemergentphenomenathatwouldnothavebeenpredictedevenwithcom-pleteknowledgeofnucleon-nucleonforce.However,westilldonothaveafundamentalunderstandingofhownucleimanifestcollectivephenomenanorofhowtheseexcitationsevolveespeciallyintotheregionofneutronexcess.Theseexcitationsveryoftenformthelowestexcitedstatesinnuclei,andthusarecrucialinunderstandingnuclearproperties.Detailedspectro-scopicinvestigationsareplannedforexperimentsattheTRIUMF-ISACandISAC-IIfacilities.Inthisregard,thecontinueddevelopmentoftheactinidetargetand,inthefutureARIELbeams,areespeciallyimportantastheywillprovidetheneutron-richrareisotopebeamsrequired.TheTIGRESS,GRIFFINandElectroMagneticMassAnalyzer(EMMA)spectrometerswiththeirauxiliarydevices,theTITANfacilityformassmeasurements,andthedevelopmentoflaserspectroscopyarecrucialtothesestudies.StudiesatTRIUMF-ISACandISAC-IIwillbecomplementedbyexperimentsatoth-erfacilitiesthatpossessuniqueexperimentalcapabilities.EMMAisnearingcompletionandARIELandGRIFFINarebothapprovedforconstruction.

Canadahasmadeasignificantinvestmenttoleadtheglobalefforttounderstandtheoriginoftheelements.TRIUMF,throughtheISAC-IandISAC-IIfacilities,isaleadinglaboratoryintheglobalefforttoproducetherareisotopebeamsrequiredtounderstandtheproductionofchemicalelementsinstellarburningandexplosiveastrophyiscalenvironments.TheCanadiancommunityhasfocussedonmeasurementstounderstandthena-ture of the resonances in nuclei involved and also direct measurements of key reactionratesinexperimentsatbothISACandISAC-II.TheDRAGONandTUDAfacilities,complementedbythenewTACTICdevice—atimeprojectionchamberthatemploysHegasasanactivetarget—willcontinuetoperformextensivemeasurementsofastrophysicallyimportantreactions.

The question of the origin of the heavy elements is universally acknowledged tobeoneofthemostimportantunsolvedproblemsinscience.Thepresentevidenceindicatesthatroughlyhalfoftheelementsheavierthanzinc(A>70)aresynthesizedinaseriesofrapidneutron-capturereactionsinterspersedwithphotodisintegrationsandbetadecaysknownasther-process.Thisproduc-tionmechanisminvolveshighlyunstable,neutron-richnuclei.Thepathwayalongwhichther-processproceedsisunknown,butisbelievedtoliewheretheneutronseparationenergyissolowthatitsneutroncapturerateisinequilibriumwiththephotodisintegrationrateofitsneutroncapturedaughter.Withneutron-richbeamsproducedbyISAC’sactinidetargets,thephotofis-sionofuraniumatTRIUMF’snewARIELfacility,andthespontaneousfissionof252CfattheCARIBUfacilityatArgonneNationalLabintheU.S.,

40 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

theCanadiancommunitywillbeabletomakeimportantcontributionstotheunderstandingofther-processthroughmassmeasurementswithTITANandtheCanadianPenningTrap(CPT).Inaddition,betadecaylifetimemeasure-mentsusingthe8πandGRIFFINarray,andmeasurementswiththeneutronarrayDEuteratedScintillatorArrayforNeutronTagging(DESCANT)ofthebeta-delayedneutronemissionprobabilities,whichcanshiftthefinalabundancesinther-processbyonemassunit,willbemade.

c. High-Precision Approaches: Testing Fundamental Symmetries

Measurement of Weak Charge and the Running of sin2 θW

Canadianresearchinparity-violatingscatteringexperimentsisstrongerthanever.TheMOLLERexperimentisoneoftwoexperimentshighlightedbyaninternationalreviewcommitteeofJeffersonLabfortheirdiscoverypotential(theotherbeingGlueX).Themeasurementwillbecarriedoutbyrapidlyflippingthelongitudinalpolarizationofelectronsthathavebeenacceleratedto11GeV,andobservingtheresultingfractionaldifferenceintheprob-ability of these electrons scattering off atomic electrons in a liquid hydrogen target.Theasymmetryisproportionaltotheweakchargeoftheelectron,whichinturnisafunctionoftheelectroweakmixingangle,afundamentalparameterofelectroweaktheory.Theaccuracyoftheproposedmeasurementwillprovideavalueofthemixinganglewithprecisiononparwiththetwosinglebestmeasurementsofthesameparameteratelectron-positroncollid-ers,andwillbesensitivetoextragaugebosons,leptoquarks,andsignaturesofsupersymmetryintheoneto10TeVmassrange.

Atthelow-energy,high-precisionfrontier,atomicparityviolation(APV)providesanindependentmeasurementoftheelectroweakcouplinganditsdependenceondistancescale.Atomicparityviolationisstronglyenhancedinheavyatoms,buttheatomicstructurecalculationsnecessarytoextracttheweakphysicsisonlyfeasibleinalkaliatoms.Infrancium(Fr),theAPVeffectis18timeslargerthanincesium.However,FrhasnostableisotopesandmustbeproducedataradioactivebeamfacilitysuchasTRIUMF-ISAC.TheFranciumParityNon-Conservation(FrPNC)collaborationhasbeenformedtoperformfundamentalsymmetriesmeasurementswithcold,trappedFratISAC,andwillbeginplacingequipmentonthefloorin2011.

Electric Dipole Moment Measurements Canadiangroupsareveryactiveinthisfield,whichhasastrongoverlapbetweenatomic,nuclear,andparticlephysics,andarewellpositionedtobepartofbreakthroughdiscoveries.TheCanadian-basedexperimentsbenefitfromtheuniquecapabilitiesatTRIUMF-ISAC.TheatomicEDMmeasure-ments(radon,andpossiblyfrancium)relyontheactinidetargettoproduceheavyisotopesofchoicewheretheunderlyingTime/CP-violatinginterac-tionsarestronglyenhanced,andwillbenefitfromtheavailabilityoftheGRIFFINarrayforγ-raydetection.NuclearstructurestudiesmustidentifythemostsuitableRnisotopeforEDMmeasurement,primarilythroughbetadecaystudieswiththe8πorGRIFFINarrays.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 41

CKM Unitarity TestsTestingtheunitarityoftheCKMmatrixhasbeenanimportantgoalfor Canadiansubatomicphysics.Complementaryeffortstostudyflavour physicsatCLEO,theTevatron,BaBar,andTRIUMFhaveallcontributedto stronger limits on unitarity violations.

ThefirstrowoftheCKMmatrixprovidesthemostdemandingtestoftheunitaritycondition,withthesumdominatedbythematrixelementrelevantfornuclearbetadecay.Usingbetadecaysofnucleiwithneutronnumberap-proximatelyequaltoprotonnumber,thedecayratecanbeusedtodeterminethisquantity.Theexperimentaldeterminationofthedecayrateinvolvesmeasurementsofthemassesoftheparentanddaughternuclei,toaprecisionofafewpartsin10−8,andthehalflivesandbranchingratiostoaprecisionatthe0.05percentlevel.AprogramofsuchmeasurementsatISAChasalreadybeenhighlysuccessfuland,oncetherequisitebeamsaredeveloped,additionalcasesfromthelightmass10carbontotheheavier70brominewillbestudied.Withtheabilitytomeasurehalflivestovery-highprecision,thenewGRIFFINspectrometerthatwillhaveanunprecedentedsensitivityforweakβbranches,andtheTITANspectrometerformassmeasurements,TRIUMFiswellpositionedtobetheworld-leaderinsuchmeasurements.

Beta Neutrino CorrelationsTRINAThaspioneeredtheuseoftrappedatomstomeasurebetadecaycorrelations.RecentapprovedupgradeswillenableTRINATtopursueabeta-neutrinocorrelationmeasurementthatpresentlyputsthebestmodel-independentconstraintsonscalarinteractionsinthefirstgenerationofparticles,andaspin-polarizedexperimentsensitivetoavarietyofnewinter-actions.Inparticular,TRINATwillmeasureoneofthedecaycorrelationparametersthataresensitivetosourcesoftime-reversalviolationrelativelyunconstrainedbyEDMexperiments.

Search for CPT Violation TheAntihydrogenLaserPHysicsApparatus(ALPHA)collaboration,ofwhichCanadaformsmorethanathird,seekstotesttheCPTtheoremthatunderliesquantumfieldtheories.Acomparisonofthepropertiesofhydrogenandantihydrogencanpotentiallyprovideastringenttestofthissymmetryforbaryon-leptonsystems.Theprogramaimstodevelopthetrapforantihydrogenatomsthatwillenableprecisionmeasurementofatomictransitionsandtheirgroundstatehyperfineinterval.Measurementsofthesepropertiesinhydrogenareamongthemostpreciseinexperimentalphysics.ALPHAhasrecentlysucceededintrappingantihydrogenatomsforover 16minutes,whichislongenoughtobeginstudyingtheirpropertiesindetail.Microwavespectroscopyonthetrappedantihydrogenwillcommenceinthe2012-2013timeframe,withtheprecisionmeasurementsbeginningin2014.

42 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

The T2K Experiment

The goal of the T2K experiment is to learn more about how neutrinos

oscillate. The project was conceived, designed, and constructed in the

past decade, and has been collecting data since January 2010. Protons

from the J-PARC are used to produce an intense neutrino beam of one

type—muon-neutrinos—directed to the large underground SuperKa-

miokande (SK) detector 295 kilometres away, where the fraction that

has changed to other types of neutrinos (electron- or tau-neutrinos) is

determined.

Since its inception, Canada has played a major role in the project.

Canadians proposed the idea of optimizing the neutrino beam energy

by centering it a few degrees away from the SK detector, and have

taken the responsibility for the construction and operation of critical

detectors that monitor the proton beam and the properties of neutri-

nos before they have had a chance to oscillate. The image below shows

a neutrino interaction in the first of the two dense fine-grained detec-

tors (FGDs). Hundreds of thousands of such events will be recorded so

that the properties of the neutrino beam and of neutrino interactions

will be well understood in order to make the best possible measure-

ment of neutrino oscillation.

On March 11, 2011, a devastating earthquake and tsunami struck Japan,

off the east coast, some 200 kilometres north of J-PARC. The lab was

protected from the tsunami, but the earthquake caused some damage

to the accelerator infrastructure. The detector components provided by

Canada show no sign of damage. Recovery of the accelerator is under-

way and operations are scheduled to restart at the end of 2011.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 43

d. Underground Approaches: Measuring Neutrino Mixing and Neutrino Properties

Severalphysicsgoalsareidentifiedintheneutrinosector,allofwhicharebeingaggressivelypursuedbyCanadians.TheoverallscaleofneutrinomassesandtheMajoranaorDiracnatureofneutrinosarepursuedbytheneutrino-lessdoublebetadecayexperimentsSNO+andEXO.Observationofthisprocesswouldalsodemonstratethatleptonnumberisnotaconservedquan-tity.TheT2Kexperimentwillinvestigatetheremainingunknownquantitiesnecessaryforacompletedescriptionofneutrinomixing.

T2K CanadiansstartedworkingontheT2Kprojectin2000.Beginningin2006,theyreceivedNSERCsupporttobuildkeysub-componentsofthenearde-tector(ND280)andcriticalcomponentsassociatedwithbeammonitoring;whileTRIUMFmadesignificantcontributionstoboththebeamlineanddetectorconstruction,aswellascommissioning.Canadiansnowplayleadingrolesinphysicsanalysis,includingholdingthepositionofphysicsanalysiscoordinatorforT2K’sneardetector,convenersofseveralanalysisgroups,andtheND280runcoordinator.

T2Krecentlycompleteditsfirstyearofsuccessfuloperation,collecting commissioningdatafromDecember2009toJune2010,andhasreleaseditsfirstresults.BeamresumedinNovember2010,butwasinterruptedbytheMarch2011earthquake.

By2015,T2Kisprojectedtohaveaccumulatedabouthalfofitsproposedexposure,givingitasensitivityfactor10timesgreaterthanexistingmeasure-mentsfromnuclearreactors.TwoadditionalyearsofrunningatpeakbeampowerwillallowT2Ktoachieveitsproposedstatisticalprecision.Overthisperiod,theCanadianeffortswillbefocussedonoperationsandmaintenanceoftheirdetectorcomponents,calibrationandanalysisofdatafromthesedetectors,andawidevarietyofcontributionstohigher-levelphysicsanalysis.InitialeffortsincontributingtoanalysisofT2KdatafromSuper-K(neardetectorversusfardetector)arealreadyunderway.

SNO+buildsontheSNOinfrastructurebyreplacingSNO’sheavywaterwithaliquidscintillator.BytransformingSNOintoaliquidscintillatordetector,anewexperimentwithdiversephysicsgoalshasbeencreated.First,acompetitive,next-generationdoublebetadecayexperimentcanbecarriedoutwithneodymium-150(Nd)loadedintheliquidscintillator.Next,thedetectionoflow-energysolarneutrinosand,inparticular,thepepsolarneutrinoshasthepotentialtoprobetheneutrino-matterinteractionwithsensitivitytonewneutrinophysics.Finally,theSNO+detectormaintainsexcellentsupernovaneutrinocapabilities.

44 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

SNO+willstarttakingdatain2012andwillrunintwophases.ThefirstphasewillstudydoublebetadecaywithnaturalNdloadedintotheliquidscintillator.Thesecondphasewillstudysolarneutrinosstartingin2015.AtSNOLABdepth,muon-producedbackgroundsthatpreventthismeasure-mentatothersitesarenotanissue.Thesesolarneutrinosareparticularlyin-terestingtostudybecausetheirfluxcanbepredictedwithasmalluncertain-ty.Asatestoftheneutrino-matterinteraction,SNO+isthebestforeseeableexperimentproposed.Betweenthreeandfiveyearsarenecessarytoreachtheultimatesensitivity,againdependingonthebackgrounds.

e. Low-Background Experiments: Particle Astrophysics and Direct Detection of Dark Matter

TheCanadiansubatomicphysicscommunityiscurrentlyengagedinthreecomplementarydirectDarkMattersearches,alleventuallytobebasedatSNOLAB.Theseexperiments—DEAP,PICASSOandSuperCDMS—allseektodetectweaklyinteractingmassiveparticles(WIMPs)throughcolli-sionswithnucleiinthedetectormaterial.Theprojectsarenaturaloff-shootsoftheexpertisedevelopedinSNOandtheSNOLABfacilityisidealtohostthem. There are also indirect observation searches with the Very Energetic RadiationImagingTelescopeArraySystem(VERITAS)orIceCubethroughgamma-rayorneutrinoproductionfromrelicparticleannihilation,anddirectproductionsearchesinATLAS.Inthissection,weoutlinethethreedirectDarkMattersearchexperiments. DEAP TheCanadian-ledDEAPdetectorusesliquidargonasatargetmaterialinordertoprobethespin-independentinteractionsofWIMPs.Ithastwophases:DEAP-I—aprototypeusedtoassessbackgrounddiscriminationandtodeveloplowbackgroundtechniques;andDEAP-3600—the3.6-tonnephysicsdetectorscheduledtobeinstalledinSNOLABin2012.ThehighsensitivityofDEAP-3600willbeachievedfromtheverylargetargetmassandtheverylowbackgroundspossibleintargetanddetectorconstruction,self-shielding of background radiations and the radio-quiet environment of SNOLAB.

ThedesignfortheDEAP-3600detectorisalargesphericalacrylicvesselfilledwith3.6tonnesofliquidargon(Ar),viewedby266photomultipliertubes(PMTs)throughacryliclightguides.TheDEAP-Iprototypehasdemonstrated the ability to sufficiently discriminate between nuclear and electronicrecoilsinliquidAr,withfuturerunsofDEAP-3600expectedtouseArdepletedin39Artoreducethisbackgroundfurther.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 45

PICASSOTheCanadian-ledPICASSOdetectorisamaturetechnologyfocussedonthesearchforWIMPsthroughtheirspin-dependentcouplingtotargetnuclei(incontrasttoDEAP’ssensitivitytospin-independentcouplings),specificallyfluorine-19.WIMPsmayhavestrongerspin-dependentinter-actions,leadingtoafirstobservationwiththesetechniques,andthespindependentandindependentcrosssectionsarelargelyuncorrelated;there-fore,limitsfrombothprovideapowerfultoolformodeldiagnostics.Thedetectionofaninteractionusesthebubblechamberprinciple,withacousticreadoutofthesignal.Thisdetectorhasbeenoperationalsince2008,andhasrecentlybeenrelocatedtothenewLadderLabfacilitywithinSNOLAB.The2009analysisofdatacollectedfromthePICASSOarrayledtoaworld-bestlimitonthespin-dependentinteractioncross-sectionsofWIMPparticlesonnuclei.ImprovementsinthebackgroundsofthePICASSOmodulesareexpectedinfutureruns,withthedevelopmentofaloweractivitymatrixforthesuper-heateddroplets.

SuperCDMSTheinternationalCDMScollaborationcurrentlyoperatesanarrayoflowtemperaturegermaniumandsilicondetectorsattheSoudanundergroundfa-cilityinMinnesota.Thedetectorssearchforspin-independentelasticrecoilsofWIMPsoffthegermaniumnucleibysearchingfortheionisationandphononsignaturesexpectedwiththisinteraction.

Newdetectortechnologiesarebeingexploredforthefutureproject,Su-perCDMS,whichwilluselargercrystalswithanewelectrodestructuretofurtherimprovebackgroundrejection,specificallythelowenergysurfacebetainteractions.ThefinalobjectiveofSuperCDMSisadetectormassof150to200kilograms,withthisphasetobedeployedatthegreaterdepthsofSNOLABtoremovepotentialcosmic-raymuon-inducedbackgroundsinthe larger array.

The DEAP-I prototype detector

46 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

The SNOLAB Laboratory

The SNOLAB underground laboratory in Vale’s Creighton mine has

been designed to house the experiments that seek to answer the fun-

damental questions of particle-astrophysics, and particularly focus on

the direct detection of Dark Matter and on measurements of neutrinos.

The underground infrastructure is shown above. The objective is

to provide sufficient space so that a number of experiments can be

accommodated, with an expected program that supports the project

lifecycle of prototyping, construction and operation. The major

experimental space consists of the existing SNO cavern and support

areas, the new large rectangular hall (Cube Hall) and its support

space, the Cryopit cavern, engineered to handle experiments with

large volumes of cryogens or noxious gases, and the Ladder labs for

medium-sized experiments.

In contrast to other underground laboratories, the entire space is con-

structed and operated to be a clean room of about class 2000 through

high-efficiency particulate air (HEPA) filtering of incoming air and

careful management and cleaning of materials and personnel. With

this level of cleanliness, it is much easier and more reliable to achieve

the low backgrounds in critical spaces required for the next-generation

of experiments.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 47

f. Theory

ContinuedCanadianleadershipinsubatomicphysicsalsorequiresthatthestrengthoftheoreticalsubatomicphysicsinCanadabemaintained.Closeinteractionsbetweentheoristsandexperimentalistsareacrucialpartofanyscientificprogram,andseveraltheoristsinCanadaaremembersof,orcollaboratecloselywith,experimentalcollaborationsliketheATLAScol-laborationatCERN,wheretheyprovidetheoreticalinsightintoapproachestodataanalysisandpossiblesignalsofnewphysics.Morebroadly,avibrantand diverse theoretical community with interests reflecting the most actively pursuedquestionsinthefieldisnecessaryforCanadiansubatomictheorytoparticipateatthehighestlevelinternationally.

But,liketheexperimentalprogram,subatomictheoryisaninternationalenterpriseandcollaborationsbetweentheoristsandexperimentalistsarenotrestrictedjusttowithinCanada.JustasCanadianexperimentersprofitfromcollaborationswiththeoristselsewhere,theoristsinCanadainteractwithavarietysubatomicphysicsexperimentsaroundtheworld,suchastheCMSexperimentatCERN,darkenergyexperiments,andothers.ThisdiversityallowsCanadatobenefitfrombreakthroughsintheseotherprogramsinaway that strengthens our own targeted research activities, most notably the flagshipresearchprograms.

ThepastdecadehasseensignificantrenewalintheCanadiansubatomictheorycommunity,withapproximatelyhalfofthecurrentsubatomictheoryfacultyinCanadahiredoverthisperiod.Inparticular,theCanadiansubatomictheorycommunitycurrentlyhasasignificantcohortofyoung,highlyactiveresearchers,manyofwhomhavebeenattractedtoCanadaovercompetinginternationaloffersbecauseofthestrengthandvitalityoftheCanadianresearchenvironmentandtheinternationallycompetitivelevelofsupportavailable.TheresearchactivitiesintheCanadiantheorycommunityfullyreflectthechallengesposedbythefundamentalquestionsofinteresttoCanadiansubatomicphysics,andrangefromnuclearstructureandnuclearastrophysicsthroughparticlephenomenologyandparticleastrophysicstostringtheory.Thesescientistsarebasedlargelyatuniversities,butTRIUMFandthePerimeterInstitutealsohostsignificantnumbers.

Althoughtheoristsmaysometimesseemtoworkalone,mostcollaborateinsmallgroupsonparticularproblems.Thesecollaborationstendtoseeresultsemergequicklyandthusevolverapidlywhencomparedtomostexperi-mentalprojects.Thisframeworkallowsindividualtheoriststheautonomyrequiredtomovequicklyinnewandpromisingdirections.Atthesametime,astrategicmovetoparticipateinsignificantnewexperimentalprogramsistypicallyaccompaniedbythehiringoftheoristsinrelatedareas.Inparticlephysics,forexample,theadventoftheLHCwasaccompaniedbyanum-beroftheoryhiresinparticlephenomenology,togetherwithsignificant

48 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Canadian-basedeffortstoincreasetheinteractionsbetweentheoristsandexperimentalists.Thus,theCanadiansubatomicphysicscommunity’slong-rangeplanningandprioritizationprocessnaturallyinfluencestheresearchconcentrations of the theory community.

ThemostsignificantstructuralchangetothetheorylandscapeinCanadaoverthepastdecadehasbeenthegrowthofthePerimeterInstitute(PI)inWaterloo,whichnowincludesworld-classgroupsinquantumgravity,cosmologyandstringtheory(inadditiontoothertargetedfieldsoutsideofsubatomicphysics).Since2006,thePIhasgrownsignificantly.Inaddition,roughlyone-thirdofallsubatomictheorypostdoctoralpositionsinCanadaarecurrentlyassociatedwiththePI.SubatomicphysicsisidentifiedasacentralscientificpriorityinthePI’sfive-yearplanandthereareplansforfurtherexpansioninthearea,includingtherecentlaunchofanewgroupinparticlephenomenology.AswithTRIUMF,thePIisworkingwiththerestofthesubatomicphysicscommunitytoensurethatCanadamaintainsandenhancesitsleadershipinstrategicareasoftheoreticalsubatomicphysics.

3. The Longer View: Beyond 2016

Weexpectsignificantnewresultsthatwillreshapeourunderstandingofsubatomicphysicsinthecomingfiveyears.LHCexperimentsmayhavedis-coverednewphysicsattheelectroweakenergyscale,DarkMattermayhavebeendetected,T2Kmayhaveobservedoscillationfrommuontoelectronneutrinos, and neutrinoless double beta decay may have been observed. Planningbeyond2016dependsontheoutcomesofthecurrentsetof experiments,thoughvirtuallyalloftheprojectslistedherearecertaintomove forward in some form.

a. ARIEL

DuringthetenureofthecurrentLRP,TRIUMFwillbuildanewelectronLINAC,thekeystoneoftheARIELproject.ARIEL’sroleistwo-fold:itwilltestaccelerationtechnologyandthecapabilityofCanadatobuild1.3GHzRF-cavitiesfortheInternationalLinearCollider;anditselectronbeamswillproducerareisotopebeamsthroughphotofissionofuranium.ARIELrepresentsashowcaseofcollaborationbetweensubatomicphysicsR&D(fortheILC),supportfortheexistingprogram(thiswillbenefittheTRIUMF-ISACprograminmultipleareas)andcollaborationwithCanadianindustrytohelptheminnovateandengageinglobalprojects.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 49

TheARIELprojectisplannedtoultimatelyprovide50MeVelectronenergy,high-average-currentof10milliamps.Thephotofissionofuraniumwillprovideanintensesourceofneutron-richnucleiforstudy.Theseneutron-richisotopeswillbeusedforanextensiveprogramofnuclearstructureandastrophysics.Akeyaspectofdevelopingthiscapabilityistheconstructionofnewtargetstations,massseparators,andbeamtransportlinesintheperiodbeyond2016.TheARIELprojectwillalsoprovidefortheconstructionofasecondprotonbeamlineforrareisotopeproduction.TheseimplementationswouldputISAConthetrajectorytobecomethefirstmulti-userradioactivebeamfacilityworldwidewithtremendouspotentialforscientificdiscoveryandadvancementinthefield.

b. ATLAS Upgrade

ThecurrentATLASdata-takingperiodisforeseentocontinuethroughouttheperiodofthenextfive-yearplan.However,therearealreadyupgradeplansfortheLHCtoincreasethedesignluminositybyanotherorderofmagnitude,instages.Inadditiontothis,severalofthedetectorsubsystemswillalsobereachingtheirradiationdamagelimitsbyabout2014.UpgradestoboththeLHCandATLASwillultimatelybedrivenbytheneedtoimprovetheprecisionofanyinitialdiscoveries,suchastheHiggsoradarkmattercandidate,and/ortoextendthereachoftheexperimentintonewdomainssuggestedbytheinitialresults.TheCanadianATLASgrouphasalreadybeeninvolvedinthedetectorupgradeR&Deffortintheareasofveryhigh-rateenergymeasuringcalorimeters,advancedhighrateCherenkovcountersandthin,radiation-tolerantpixelradiationdetectors.Anotherop-tionunderconsiderationistoupgradetheenergyoftheLHCto28TeVinproton-protoncollisioncentreofmass.AnysucheffortwillbewellbeyondthecurrentplanningperiodandCanadianresearchershavenotyetidentifiedpossiblerolesinthisupgrade.

c. EXO

TheEXOcollaborationisdevelopingtimeprojectionchamber(TPC)tech-nologytosearchforneutrinolessdoublebetadecayofxenon-136.Canadianshavebeeninvolvedsince2004inEXO,providingtheresourcesandexpertisenecessarytobuildadedicatedprototypeforagaseousconfigurationoftheexperiment.

TheEXO-200detectoriscurrentlybeingcommissionedattheWasteIsola-tionPilotPlantnearCarlsbad,NewMexico.EXO-200willtakedataforthreetofiveyears.Beyondthephysicsresults,EXO-200willhavedeter-minedthebackgroundsandease/costofoperatingalargeliquiddetector.Atthatpoint,aprototypeexperimentknownastheXenonElectrolumi-nescencePrototype(XEP)willhaveansweredsimilarquestionsforagasdetector.DesignsforaliquidandagasfullEXOdetectorareunderway.AdecisiononthetechnologychoiceforthefullEXOexperimentisexpectedby2015.

50 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

ISAC

ISAC at TRIUMF uses the proton beam from the main TRIUMF cyclo-

tron to produce rare isotopes via spallation reactions on various tar-

gets. Proton beams bombard a variety of targets, from silicon carbide

to tantalum, and recently a uranium carbide target has become avail-

able for use with up to 10 microamps. The isotopes produced in the

target are extracted and ionized. Passing the positively-charged ion

beams through a magnetic separator allows the selection of the mass

with a resolution better than one part in a thousand—sufficient to

separate nuclei with different total numbers of proton and neutrons.

These mass-separated beams can then be transported to experimen-

tal stations or accelerated to higher energy.

The experimental instruments at ISAC are state-of-the-art, and

include devices such as TITAN for mass measurements, the 8π and

TIGRESS arrays for γ-ray spectroscopy, the DRAGON and the TRIUMF

U.K. Detector Array (TUDA) spectrometers for reaction measurements

important for nuclear astrophysics, and the TRINAT facility for preci-

sion weak-interaction tests.

All together, ISAC is one of the premier facilities for experiments

with rare isotope beams, addressing the leading questions in

subatomic physics.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 51

d. ILC

TheILCisaproposalforanewe+e−linearcolliderwiththestatedaimofperformingprecisionstudiesofthephysicsrevealedbytheLHCdata.Theprojectdesignwillbecompletedbytheendof2012andCanadianshaveplayedrolesinboththeacceleratoranddetectorresearchanddevelopment,aswellastheoreticaleffortsinILCphenomenologyandcoordinatingrolesintheworldwidestudiesforthephysicscase.

ThedesignoftheILCcallsforsuper-conductingradiofrequency(SRF)cavitiesandCanadiansaredevelopingtheexpertisetobeabletoconstructsuchcavitieshereinCanadaworkingwithindustry.Throughthisproject,Canadianuniversitiesareworkingtodevelopgraduateprogramsinaccelera-torphysicstotrainthenextgenerationofCanadianacceleratorexpertsandare actively recruiting graduate students.

TheCanadianILCdetectordevelopmenteffortisfocussedaroundtwoareas:timeprojectionchambers(TPCs)andcalorimetry.CanadiangroupshavebeenactiveinILCTPCR&Dsince1999,andhavemadesignificantcontributionstothefield.ThisworkdirectlyledtotheincorporationofTPCsfortheneardetectorsoftheT2KexperimentforwhichCanadatookresponsibility.Since2005,CanadahasbeenamemberoftheCAlorimeterfortheLInearColliderExperiment(CALICE)collaborationforILCcalo-rimetryandhasbeenactivelyinvolvedinanalyzingtestbeamdatacollectedatCERNandFermilab.

Bytheendof2012,theILCcommunitywillcompleteacost-to-perfor-manceoptimizationoftheacceleratoranddetectordesigns.Givensuitablephysicsmotivation,thiswouldputtheinternationalparticlephysicscommu-nityinastrongpositiontomoveforwardquicklytoproposesuchalargein-ternationallycooperativeproject.Inparallel,R&Donalternativeacceleratortechnologies,suchasCompactLinearCollider(CLIC)oramuoncollider,withthepotentialforhigherleptoncollisionenergiesisbeingpursuedintheeventthatmorethanoneTeVisneededtopreciselymeasurethenewphysicsuncoveredattheLHC.

52 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

e. SNOLAB: Neutrinos and Dark Matter

IfthecurrentgenerationofexperimentsdiscoversDarkMatter,thefocuswillbecometomeasuretheproperties—mass,energy,directiondistribu-tions—ofthoseDarkMatterparticles.IfDarkMatterremainselusive,ex-perimentalprogramswillneedtobedesignedtoprobetheshrinkingregionsofparameterspace.

TheSNO+experimentalprogram—doublebetadecayandsolarneutri-nos—isexpectedtorunwellbeyond2016.SNO+canbegreatlyenhancedwithenrichedisotopesornewtechniquesforincreasingtheloadingofdouble beta decay candidates into liquid scintillator.

f. SuperB

The study of the flavour structure of the quark sector has been a key area of researchforCanadianhighenergyphysics.AlthoughtheoverallpictureisconsistentwiththeStandardModelinterpretation,anumberof“tensions”arepresentinthecombinedfitoftheseresults—potentialsignsthatnewphysicswaitstobediscovered.Overthefirstfiveyearsoftheplanningpe-riod,CanadianswillstillbeanalyzingthewealthofdataproducedbyBaBar.Simultaneously,thecommunitywillbepreparingforthenextgenerationofflavourexperiment—SuperB.

TheSuperBproject,whichrecentlyreceivedfullfundingapprovalfromtheItaliangovernment,willbesitednearRome,Italy.Itisexpectedtoimprovethestatisticalprecisionofheavy-quarkphysicsmeasurementsbyanorderofmagnitudecomparedtothatofthepresentexperiments.TheCanadiangroupiscontributingtothedevelopmentofafullTechnicalDesignReportfortheSuperBprojectwhichisexpectedtobecompletedby2012.The CanadianeffortfocussesonR&Dforthelarge-volumedriftchamberwhichwillbetheprimarytrackingsystemforchargedparticles.TheCanadiangroupisdevelopingnoveltechniquesforgaseoustrackingandparticleidentificationinahigh-luminosityenvironment.Membersofthegroupalsocontributetophysicsstudieswhichwillultimatelydefinethebenchmarksfordetectorperformance.

g. T2K

ThefutureofT2Kdependstoalargeextentonthefindingsfromitscur-rentrunandfromotherexperiments.ThesearchforleptonicCPviolation,expressedasadifferencebetweentheνμ → νe and ν

_μ → ν

_eprobabilities,would

motivateafollow-upmeasurement.ProposedexperimentssuchasHyper–KamiokandeinJapanandtheLongBaselineNeutrinoExperiment(LBNE)experimentintheU.S.wouldusemuchlargerfardetectorsandbeampower

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 53

upgradestosearchforthismatter-antimatterasymmetry.TheCanadianT2Kgroupisfollowingthesedevelopmentsclosely,anddependinguponinitialresultsfromT2KcouldbecomeinvolvedinR&Dforaphase-twoexperi-mentinthe2013-15period,withconstructionofnewdetectorsbeginningafter2015.

h. UCN

TheUltra-ColdNeutron(UCN)facilitybeingconstructedatTRIUMFwillproducetheworld’smostintensesourceofcoldneutronsthatcanbeusedforavarietyofstudies.Thefirststage,incollaborationwiththeRe-searchCentreforNuclearPhysics(RCNP),Osaka,willseeaneutronEDMexperimentmountedattheRCNPwiththegoalofimprovingthecurrentlimitbyafactorofthree.Duringthattime,thenewbeamlinewillbecon-structedatTRIUMFwiththeaimofmovingtheUCNsourcefromRCNPtoTRIUMFin2014.TheUCNfacilitywillbecommissionedin2015,withtheundertakingoffurtherneutronEDMexperimentsthefirstpriority.

InadditiontomakinganewmeasurementoftheEDMoftheneutron,ahostofotherphysicsexperimentsarealsoenvisionedattheUCNsourceatTRIUMF.Forexample,onecanprobeshort-distancegravityfromneu-tron quantum states in a gravity well, or neutron-antineutron oscillations. TheprojectispresentlyacollaborativeeffortbetweenresearchersinJapan,Canada,andtheU.S.ThegroupiscurrentlyinvestigatingandprototypingtheexperimentalsystemwithactivitiesinJapanandCanada.

i. Summary: The Canadian Program

Internationalscienceis,byitsverynature,bothcooperativeandcompetitive.Cooperation,planningandstrategicdecision-makingwithinCanadahavebuiltastrongprogramthatpositionsuswellinternationally.Ourpastscien-tificaccomplishmentshavegainedustherespectoftheworldwidesubatomicphysicscommunity.

Strategic investments in both domestic and international facilities over the past10yearshavebroughtustothebrinkofdiscoveryinseveralareasofsub-atomicphysics.Wearenowpreparedtoreapthescientificrewardsfortheseinvestments.Aswemoveforward,theCanadiansubatomicphysicscommu-nitywillcontinueitstraditionofevaluatingthephysicsbenefitsofemergingprojectsandmakingcarefulchoicesthatbuildonourpastsuccesses.

54 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Canadahastraditionallyplayedastrongroleintheinternationalsubatomicphysicsresearchcommunity.Inthisquesttopushthefrontiersofhumanknowledge,newtoolsaredeveloped,newglobalpartnershipsarebuilt,newmarkets are created, and a new generation of innovators is trained with a uniqueskillset.Canada’sleadershippositioninsubatomicphysicshascreatedthesefavourablesocietalimpactsandimpressivereturnsoninvestments.ThereareseveralexcellentexamplesofCanadiansuccessstoriesthatwillbeillustratedinthissectionoftheLRPdocument.Thereisthepotentialtofurtherexploitboththescientificandeconomicopportunitiesthatwillariseinthecomingyears.Todoso,itisvitalthatinvestmentinsubatomicphysicsresearch grow and that the ties to industry be strengthened.

1. The Technological Impact of Subatomic Physics

Subatomicphysicsresearchrarelyreliesontechnologiesthataresimply“offtheshelf.”Technologicalinnovationisaprerequisitefordiscoveryinthisfield,andtheseinnovationsoftenoccurthroughpartnershipsbetweensub-atomicphysicistsandindustry.Technologiesdevelopedaspartofsubatomicphysicsresearchhavechangedtheworldwelivein.

• Human Health—Cancer Therapy:Radiationtherapy,usingradioactivematerialsplacedinsidethebody(brachytherapy)orparticlebeams (externalbeamtherapy),wasdevelopedfromsubatomicphysicsresearch.Thereareabout10,000acceleratorsworldwidepresentlydevotedtoradiationtherapy,withmillionsofsuccessfultreatments.DuetoCanada’sstrongbackgroundinexperimentalnuclearphysics,manyoftheradiationphysicstechniquesusedworldwideinthistherapywerealsodeveloped inCanada.

Broader Impacts on Society

5

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 55

• Human Health—Magnetic Resonance Imaging (MRI):TheprinciplesbehindMRIwereestablishedmorethan60yearsagothroughtheunder-standingoftheinfluenceofstrongmagneticfieldsontheatomicnucleus.However,thisdidnotmeanthatapracticalMRImachinecouldbebuilt,sincethemagneticfieldsrequiredtoobtainausefulimagearehuge.Theproblemwaseventuallysolvedwhensuperconductingwirecapableofhandlingahighoperatingcurrentwasdevelopedforparticleaccelera-tors.OxfordInstruments,locatednotfarfromthesubatomicphysicslaboratorythatsucceededinthisdevelopment,askedtheresearcherstodevelopthefirstpowerfulmagnetsforMRIscanners,whichhavebecomestandarddiagnosticequipmentforlargehospitalsacrosstheworld.

• Human Health—Particle Accelerators for Nuclear Medicine:Particleacceleratortechnologyoriginallydevelopedforsubatomicphysicsre-searchcurrentlysuppliesabout10percentoftheworldsupplyofmedicalisotopes.InVancouver,NordionInc.operatesthreemedicalcyclotronsfortheproductionofisotopes—suchasSr/Rb-82,I-123,Tl-201—whichareexportedworldwide.Thisworkisadirectspin-offofCanada’sinvest-mentsintheTRIUMFsubatomicphysicslaboratory.

• Security:SubatomicphysicstechniquesarenowusedinRadioactiveThreatDetectiontechnologytodetectneutrons(nuclearwastematerials)andgammarays(dirtybombs)duringroutinex-rayinspectionsofcargoandatbordercrossings.Subatomicphysicstechniquesarealsousedtodetectlandminesandimprovisedexplosivedevices.

• Information Technology:Subatomicphysicsresearchiscomputation-andnetwork-intensive.Tomeettheirgoals,subatomicphysicsresearch-ershavebeenattheforefrontofinnovationinthisfield,withsignificantcontributionstogridcomputing,datamining,andcloudstorage.Anoften-citedhistoricexampleistheinventionoftheWorldWideWebatCERNtosolvesomeoftheinformationsharingchallengescreatedbyworldwidesubatomicphysicscollaborations.

• Manufacturing—Industrial Electron Beams: The market for industrial electronbeamsnowtotals$50billionperyear.Forexample,mostofthecerealboxesinthegrocerystoreaisleareprintedusingelectron-beam-curedinksandcoatings.Theirfastdryingtimesallowforfasterweb-pressprinting.

• Materials Science—Synchrotron Radiation Facilities:Firstobservedinearlyparticleaccelerators,theintensex-raybeamsproducedatsynchro-tronradiationfacilitiesprovideapowerfulprobeformaterial/biologicalsciencesandtechnologies.Suchfacilitiesareoftendevelopedfrom,orinterlinkedwith,nuclearandparticlephysicsacceleratorfacilities.

• Digital Electronics:Thousandsofacceleratorsareatworkeverydaypro-ducingparticlebeamsinmanufacturingplantsandindustriallaboratories.Forexample,alldigitalelectronicsnowdependonparticlebeamsforionimplantation,creatinga$1.5billionannualmarketforion-beamaccelera-tors.Alltheproductsthatareprocessed,treated,orinspectedbyparticlebeamshaveacollectiveannualvalueofmorethan$500billion.

56 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

The Role of Accelerators Theuseofacceleratorsisacommonfeatureinmanyspin-offtechnologiesfromsubatomicphysicsresearch.Thechartbelowshowsthebreakdownoftheapproximately26,000acceleratorsintheworldtoday.Eighty-fivepercentofthetotalareusedforionimplantersorradiotherapy,whileonlyasmallfractionareusedinpureresearchapplications.

2. Technological Impacts—Canadian Successes

TherearemanystoriesofCanadiansubatomicphysicistswhohavebroughttechnologicalinnovationtotheprivatesector.Belowwehavechosenafewselectexamplesfromhumanhealth,securityandinformationscience.

Human Health: Positron Emission Tomography

TRIUMF’sThomasJ.Ruthistherecipientofthe2011MichaelJ.WelchAward,inrecognitionofhiscontributionstothedevelopmentofPositronEmissionTomography(PET)—atechniquetoimagetumoursandtostudybrainandheartfunctionthroughtheuseofshort-livedisotopesproducedatanearbyaccelerator.Duringhiscareer,heoversawtheinstallationoffourPETscannersandtheTR13cyclotron,whichisspeciallydesignedforproducingmedicalisotopes.TheTR13becametheprototypeforthelow-energyTRseriesofcyclotronsmanufacturedbyACSIinRichmond.HehasalsobeenworkingwithresearchersattheBCCancerAgency,LawsonHealthResearchInstituteinLondon,OntarioandtheCentreforProbeDevelopmentandCommercializationinHamilton,Ontarioontheproposaltodeveloptheproductionoftechnetium-99m(Tc-99m)viaPETcyclotronstohelpeasetheshortageofthisisotope.

Human Health: Time of Flight Mass Spectrometry

UniversityofManitobaphysicsprofessorKennethStandingstartedhis careerasanuclearphysicist.Time-of-flightmassspectrometryhasexistedsincethe1940sbutitwasinthe1970s—withbettercomputersandelec-tronics,andanewkindofionsource—thatitbecamepracticalforbiologicalapplications.That’swhenStandingshiftedhisfocustomassspectrometry.

INDUSTRIAL PROCESSING AND RESEARCH

›1GeV RESEARCHRESEARCH

MEDICAL RADIOISOTOPES

ION IMPLANTERS AND SURFACE MODIFICATION

RADIOTHERAPY

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 57

AdvancesinionsourcesandmassspectrometersfromStanding’sgrouphaveallowedfortheanalysisofincreasinglylargerbiologicalmolecules,likepro-teins.Asaresult,massspectrometryisnowapivotaltoolinthenewfieldofproteomics—theattempttoidentifythestructureandabundanceofalloftheproteinsinanorganism,justasgenomicsseekstoidentifyallofthegenes.

In2003,membersoftheStanding/EnsresearchteamhelpedidentifyandcharacterizekeyproteinsoftheSARSvirususingmassspectrometrytech-niques,weeksbeforeitsgenomewasfullysequenced.Theresearchgrouphasparticipatedinprojectsthatevaluatecancertreatments,studytissuetransplantrejectionandaimtounderstanddiseaseresistanceinwheat.Re-cently,ithasparticipatedinaprojectthatisdevelopingimprovedmethodsofbiofuelproduction.

Security: Detection of Land Mines

Hiddenorobscuredbulkexplosivesthreats—suchasunexplodedordnance(UXO),landminesandimprovisedexplosivedevices(IEDs)—areamajorconcerntothearmedforcesandpublicsecurityagenciesofmanycountries.AfterreceivinghisPhDinnuclearphysicsfromMcMasterUniversityin1978,JohnEltonMcFeeofDefenceR&DCanadahasbeenconduct-ingresearchinthedetectionofmines,minefields,unexplodedordnanceandimprovisedexplosivedevicesforover30years,andisinternationallyrecognizedasbeingamongtheleadingresearchersinthefield.Forthelast16years,hehasresearchednuclearmethodsofdetectingbulkexplosives.InclosecollaborationwithafewkeyCanadiancompanies,methodssuitableforvehicle-mountedorfixed-positionapplicationsandthosesuitableforperson-orsmallrobot-portableroles,havebeenstudied.Vehicle-mountedsystemsmainlyemploydetectionofcharacteristicradiation,whereasperson-portablesystemsuseimagingofback-scatteredradiation.Dr.McFeesharedthe2000CanadianNuclearSocietyHewittAwardfordevelopingthefirstfieldedthermalneutronanalysis(TNA)minedetectorandhisdevicesareinusebyCanadianforcespersonnelinthefield.

Inside TRIUMF’s 500 MeV H- cyclotron, the world’s largest cyclotron.

58 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Information Technology: Data Mining

AftercompletinghisPhDinparticleastrophysicsatMcGillUniversity,ClaudeG.TheoretbecamethefounderandPresidentofNexalogyEnvi-ronics.Thecompanyemploysadvancedsemanticdata-miningtechniquesoriginatinginsubatomicphysicstoquicklyandaccuratelyprocessthelargeamountofdataavailableinthesocialmedialandscape.Thisanalysisisbasedon co-word analysis and actor-network theory, which is used to identify and interpretvitalnetworkscommunicatingon-line.Dr.TheoretisresponsibleforthedevelopmentoftheadvancedanalysistoolsatNexalogyEnvironicsand manages all quantitative analytics.

ExamplesoftheindustrialspinoffcompaniesthatsubatomicphysicshasalreadyprovidedtoCanadainclude:

Advanced Applied Physics Solutions Inc. (AAPS) WithsupportfromthefederalNetworksofCentresofExcellenceprogram,TRIUMFcreatedAAPSin2008.AAPSoperatesatarmslengthfromTRI-UMFandisoneoftheonlyCentresofExcellenceforCommercializationandResearch(CECRs)inCanadathatfocussesoncommercializingphysicsandtechnologyarisingfromsubatomicphysicsresearch,including:• muongeotomography:undergrounddetectionandanalysisofcosmic-ray

muonsareusedtoidentityandmapundergroundorebodies;• high-efficiencyelectromagneticseparationofisotopes:technologies

relatedtoionsourcesandhigh-resolutionmassspectrometryareusedtodramaticallyincreasetheefficiencyandyieldofstableradioactiveisotopesandaugmentproductiontechniquesthataretypicallylimitedbylow-specificactivity;and

• detectionofconcealedspecialnuclearmaterial:appliedsubatomicphysicstechnologyisusedtodevelopthiscapabilityinconjunctionwithCarletonUniversity,theDepartmentofNationalDefenceandtheCanadianForces.

A group of technicians from Alston Canada (Lévis, Quebec) with one of the quadrapoles

designed at TRIUMF and built in Canada by Alstrom for the LHC at CERN.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 59

Advanced Cyclotron Systems Inc. (ACSI) InDecember2010,TRIUMFandACSIannouncedanewpartnershipagreementwiththeintentionofputtingTRIUMF’sintellectualexpertiseinmedicalcyclotronsandbeamtargetsbehindACSI’sworld-classproductline.In2010,ACSIsoldnearlyadozencyclotronsaroundtheworld,capturingalarge fraction of the global cyclotron market.

D-Pace Inc. D-Paceprovidesion-source,acceleratorandbeam-linetechnologiesanddesignservicestotheappliedparticleacceleratorindustry,suchasthesemi-conductorindustryforionimplantation,andinternationalnuclearenergyinstitutes.D-PaceandTRIUMFhaveco-operatedcloselyformanyyears,especiallyafterDecember2001,whenD-PacelicensedagroupofcyclotroncomponenttechnologiesfromTRIUMF.ThecompanyhassincegeneratedsalesinEuropeandAsiafromtheion-sourcetechnologyitlicensedfromTRIUMF.WithcontinuingencouragementandsupportfromTRIUMF,D-PacehasdoubleditsrevenuesineachofthepastfouryearsandnowhascustomersfromFrance,Japan,SouthKorea,Taiwan,theNetherlands,andtheU.S..OnSeptember17,2009,D-PacewasrecognizedasaCanadianInnovationLeaderbytheGovernmentofCanada,inacknowledgementofitsroleinresearching,developing,supplying,andcommercializingproductsand services for the international commercial accelerator industry, linking scientificresearchtocommercialization,jobsandeconomicgrowth.

Nordion Inc. Nordionisatransnationalhealthandlifesciencescompanythatspecial-izesinradioisotopeproductionandradiation-relatedtechnologiesusedtodiagnose,preventandtreatdisease.Itsuppliesovertwo-thirdsoftheworld’smedicalisotopesusedfordiagnosingheartdisease,braindisordersandinfec-tions.ItsVancouverfacility,locatedattheTRIUMFsite,providesmorethan15percentofCanada’smedicalisotopeexports,includingPalladium-103usedinprostatebrachytherapy.ThisproductisbasedonmedicalisotopeproductionknowledgelicensedfromTRIUMF.Inaddition,alow-energyprotonbeamfromthemainTRIUMFcyclotronisusedtoproduceheart-imagingisotopes.A1995reportbytheU.S.InstituteofMedicinesCommit-teeonBiomedicalIsotopescitedtheTRIUMF-Nordionrelationshipasamodelofpublic-privatepartnership,onethatcouldbeemulatedintheU.S.In2004,TRIUMFandNordionreceivedtheNSERC2004SynergyAwardforInnovation.Sincethattime,NordionandTRIUMFhavesuccessfullylaunchedseveraljointventures—oneisamulti-milliondollarradiotracerlaboratoryatTRIUMFwherescientistsfrombothlaboratorieswillworksidebyside,whiletheotherisanNSERCCollaborativeResearchandDe-velopmentprojectwiththeUniversityofBritishColumbia.Onepatenthasalreadybeenfiledforapromisingnewradiopharmaceuticalproduct.

60 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

PAVAC Industries Inc. PAVACisaworldleaderindevelopingcommercialhigh-energyelectronbeamapplications,mostnotablythePAVACLASTRONbeamforelectron-beamwelding.Buildingonthisexpertise,TRIUMFandPAVAChavejoinedforcestofabricate,assembleandtestsuperconductingradiofrequencyaccel-eratorcavities.Thesesuperconductingdevicesareassembledintomodulestoformnext-generationacceleratorswithapplicationsinhealthcare,environ-mental mitigation and remediation, advanced materials science and high-energyphysics.ThissuccessregistersCanadaasoneofonlyfivecountriesintheworldwiththiscovetedcapability,anditallowsPAVACtobidonandsupplysuchdevicesinternationally.Sincethismilestone,PAVAChasbeeninvitedtobidoncontractsintheU.S.and,throughintroductionsTRIUMFmadeinIndia,hassoldtwoofitsmillion-dollarweldingunitstoIndia.

3. A Skilled and Talented Workforce

“Talented,skilled,creativepeoplearethemostcriticalelementofasuccessfulnationaleconomyoverthelongterm.”

- Mobilizing Science and Technology to Canada’s Advantage –2007

TheCanadianeconomyincreasinglyreliesonahighlyskilledworkforcewhichiscapableofadaptingtoarapidlychangingtechnologicalenviron-ment.Further,thisnewworkforceneedstobecomfortableworkinginnationalandinternationalcollaborations.AccordingtotheStatistics Canada 2009 Innovation Analysis Bulletin,theprobabilityofafirmbeinginnovativeishighlycorrelatedwiththeskillstructureofitsemployees,withinnovativefirmsbeingmorelikelytohirepeoplewithadvanceddegreesinscience.Thehighsalariesandtheverylowunemploymentrateenjoyedbythoseholdingphysicsdegreesindicatethehighvaluethatbusinessesattachtotheskillsbroughtbyphysicsgraduates. Inparticular,subatomicphysicsgraduatestudentsaretrainedtouseanddevelopinnovativetechnologies,areaccustomedtoworkingininternationalcollaborations,andareforcedtoinnovateinordertoproduceworld-classre-searchresultsinahighlycompetitiveenvironment.Graduateswithadvanceddegreesinsubatomicphysicswhohavemovedto“non-traditionalcareers”have distinguished themselves with their unique skill sets that contribute significantlytotheirpersonalandemployer’ssuccess.Commonlylistedskillslearnedinsubatomicphysicsthatarehelpfulinsubsequentcareersinclude:• creativeproblem-solvingskills—beingabletolookatproblemsfrommul-

tipleviewpointsandfromadifferentperspectivethantheirpeers.Thiscreativityistypicallycombinedwithsophisticatedmathematicalskills,allowingdetailedquantitativeanalysis;

• adeadline-drivenandmulti-taskingoperationalenvironment.Insubatomicphysicsexperiments,24/7operationandstrictdeadlinesarethenorm;

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 61

• aninternationalteam-orientedworkingenvironmentincludingawidevarietyoflanguages,andcultures.Theopportunitytointeractwithandlearnfromthebestscientistsintheworld;

• hardwareskillswithnovelmaterials,high-speedelectronics,accelerators,etc.;

• complexsoftwaredesignandimplementation;and• quantitativestatisticalanalysis.

Belowareseveralexamplesfromcompaniesthathavefoundtheseskillsto be useful.

Skill Set: Data Mining

Agrowingareaofinterestandconcernintheprivatesectoristheexponentialgrowthofdatausedtomanageabusiness;withbusi-nessintelligenceanever-expandingareaofspecializationandfocus.IhavefoundtheskillsIdevelopedinsubatomicphysics—managingandanalyzinglargevolumesofdata—indispensableinpositioningmeasanexpertinthisarea.Beyondreporting,businessesareincreas-inglyrequiringanalyststosiftthroughlargevolumesofdata,providetrendinganalysis,andputforwardcomprehensive“what-if ”scenariosandinsightintotheirbusinesses.Modellingskillsandunderstandingresultsfromdataanalysisareallsubatomicphysicsskillsthathaveadirectimpactonbusinessestoday.Asaseniormanagerandexecu-tiveinanumberofinformationtechnology(IT)organizationssinceleavingacademia,Ihavehiredanumberofindividualswithsubatomicphysicsbackground(uptothePhDlevel)inthecapacityofprojectmanagers and technical consultants. These individuals have generally stood out from the crowd when it comes to work ethic, ability to have insightintoproblemsandsolvethemquickly,anddesignsophisticatedsolutionsforbusiness.Most,ifnotall,oftheseindividualshavemovedontomoreseniorleadershippositionswithintheirrespectivefieldsofexpertiseandorganizations.John Mayer, PhD Vice-President Enterprise Solutions, Indigo Books & Music Inc.

Data centre for Fermilab collider experiments

62 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Skill Set: Collaborative Skills

Thebroadscopeofhigh-energyphysicshasbeenanexcellentprepara-tionformycareerintheprivatesector.By“broadscope”Imeanawiderangeofaspects,includingnon-academicones.Forinstance,havingtofindone’swayaroundinabroadcollaboration,withoutguidanceaboutwhomtoaskforadviceor(initiallyatleast)withoutaclearly-de-finedscope,isnotunlikestartingtoworkforalargebankandgettingtoknowthesystemsandprocesses.

IamcurrentlyinamanagerialpositionandIhavehiredanumberofpeopleinrecentyears.However,whileIkeepacloseeyeonrésumésthatlistaphysicsdegree,Ifindthesetobeexceedinglyrare.Perhapsthemessagethatadegreeinphysicsisanexcellentstartingpointforacareerinfinanceneedstobecommunicatedmoreclearlytograduatestudents.Similarly,amongmypeers,Ioftenencounterthetendencytohiresomebodyspecificallyforthetaskathand,withoutseeingthepotentialinapersonasapotentiallong-termemployee.Iamactivelyworkingtodispelthismindset,withlimitedsuccess.Improvingthissituation should be on the list of long-term goals of everybody in aca-demiaandintheprivatesector.Bjoern Hinrichsen, PhDLarge-Scale Computing, CIBC

Skill Set: Creative Problem Solving Havingbeentrainedwiththetechniquesusedinthefieldofsubatomicphysics,Igainedamuchbettergraspofthefundamentalrelationshipthatexistsbetweenexperimentalmeasurementsandtheirstatisticalnature.ThisallowsmetoexerciseacriticalandinformedjudgmentonthequalityofthedatathatIreceiveandhowitshouldbeusedinanalyses—whatcanbegeneralized,whatcansafelybediscarded,howdifferentwaysofmakingthemeasurementsorsamplingthedatacanbesuggested, how conservative limits can be deduced, etc.

Thetraininginsubatomicphysicsalsomademeproficientinnumericalprogrammingandprovidedmewithacomputingtoolsetthatmakesmeresourcefulamongmycolleaguesforfindingsolutionstoexperi-mentaldata-handlingproblems.

Theanalyticalskillsthatweredevelopedinthecontextofphysics studiesalsorepresentagreatassetinthattheyprovideameansfor findingapproximationstodifficultproblems.Theyalsogiveasense ofwhatisofgreaterimportanceinaformulaandhowitcanbeadaptedtoparticularsituationsthatrequireoptimizationforlengthy computations.ThesequalitiesarethereasonswhymyemployerhiresmanyphysicsPhDgraduatesforhisteamandproudlyadvertisesourgreatcompetencetoourcustomers.Luis Valcarcel, PhDResearch Scientist, SES Technologies

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 63

4. Canadian Graduate Survey

Inthepreparationofthisdocument,wesolicitedtestimonialsfrompastgraduatesofsubatomicphysicsin“non-traditional”careers.Theoverwhelm-ingresponsetoourrequestindicatesthatthesegraduateshavefoundcareersbroadlydistributedthroughtheCanadianeconomy,including:• Businessentrepreneur(softwareandengineeringcompanies);• Electronicsandengineering;• Finance(quantitativeanalyst,financialriskmanagement);• Geophysics• Government(radiationstandards,radioactivethreats,defence);• Medicalimaging;• Nuclearpower(reactordesign);and• Software(webapplications,datamining,programmer).

Career Profile: Entrepreneur MoeKermani—CHAOSExperiment,UniversityofBritishColumbia,1997Now—VicePresident,NetApp

MoeKermaniobtainedhisPhDfromtheUniversityofBritishColum-biain1997forhisworkontheCHAOSpionscatteringexperimentatTRIUMF.Hehassubsequentlyhadaverysuccessfulcareerasahigh-techentrepreneur:firstwithlocalVancouverstart-upSonigistixastheirR&DDirector;thenasco-founderandCEOofBycast—aleadingproviderofstoragevirtualizationsoftwareforlarge-scaledigitalarchivesandcloudstorage.In2010,BycastwasacquiredbyNetApp,whereDr.KermaniisnowVice-President.Dr.Kermanihasextensiveexperienceworkingwithentrepreneurialcompaniesandtakinglead-ing-edge technology solutions to market. He currently serves on the boardofdirectorsoftheBritishColumbiaTechnologyIndustryAs-sociation and is a winner of the Business in VancouverForty-under-40.

Students working on the barrel

calorimeter for the GlueX detector

64 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Career Profile: Financial Analyst J.Wendland—HERMESExperiment,SimonFraser,2003Now—QuantitativeResearchManager,FINCAD

JeurgenWendlandcametoCanadatoobtainhisMScandPhD(2003)inparticlephysicsatSimonFraserUniversity.There,heworkedontheHERMESexperiment.Aftergraduation,hereceivedapostdoctoralfellowshipattheUniversityofBritishColumbiatoworkonSNOandT2K.HeiscurrentlywithFINCAD—aCanadianfinancialsoftwarecompanylocatedinSurrey,BritishColumbia,whereheleadsateamofquantitativeanalystsinR&D.Thesoftwareandnumericalanalysisskillsthatheacquireddoinganalysisofparticlephysicsdataweredirectlyapplicabletoproblemsinfinance,suchas,minimizationalgorithmsandMonteCarlosimulationmethods.

Career Profile: Financial Analyst YasharAghababaie—ParticleTheory,McGillUniversity,2005Now—ManagingDirector,GoldmanSachs

YasharAghababaieisManagingDirectoratGoldmanSachsInvest-mentBanking,whichhejoinedaftercompletinghisPhDintheoreticalparticlephysicsatMcGillUniversityandapostdoctoralpositionattheUniversityofToronto.BeforehisrecentpromotiontoManagingDirector,YasharwasVice-PresidentatGoldmanSachs,withresponsi-bilities in quantitative, algorithmic volatility trading and high frequen-cyoptionsmarketmaking.ThisistheorganizationwithinGoldmanSachsthatspecializesinusingveryfastcomputer-driventradingtoprofitfrompricespreads.

Career Profile: Security AnthonyFaust—OPALExperiment,UniversityofAlberta,1999Now—HeadofExplosivesDetectionGroup,DefenceR&DCanada

AnthonyA.FaustisHeadoftheExplosivesDetectionGroupatDefenceR&DCanada.Dr.FaustreceivedaPhDinPhysicsfromtheUniversityofAlbertain1999,aspartoftheHiggssearchteamfortheOPALexperimentatCERN.Uponmakingthejumptofederalscience,hefoundthathissubatomicphysicsbackgroundwasdirectlyrelevanttohisnewprincipalresearcharea—thedevelopmentofactiveneutronandphotoninterrogationtechniquesforthedetectionofexplosivehazardslikelandminesandimprovisedexplosivedevices.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 65

Wealsoreceived25testimonialsfromgraduatesabouttherelevanceoftheireducationtotheircurrentcareers.Spacerestrictionspreventusfromlistingallofthetestimonialsreceived.Aneditedselectionofthemappearsbelow.Pleaseconsultsubatomicphysics.caforthefulllist.

Testimonial: Data Retrieval Entrepreneur

Sincecompletingmystudiesinhighenergyphysics,Ihaveco-foundedDelphesTechnologiesInternational—asoftwarecompanyintheareaofinformationretrievalandextractionbasedonahighlycomplextreatmentofnaturallanguages.Irealizedrapidlythatcombiningnaturallanguageswithcomputersciencerevealshighcomplexityproblemssimilartothoseencounteredduringmyworkinsubatomicphysics.TheexperienceIhavegainedduringmyresearchinhigh-energyphysicshas,withoutadoubt,providedmewiththeabilitytofacethosechallengesandtofindoriginalandinnovativesolutionstobuilding highly efficient natural language information management andretrievalsoftware.Thesoftwarewedevelopedhasbeenusedbylargecorporationsandgovernments.Forexample,thesolutionhasbeendeployedastheinformationretrievalengineforallGovernmentofQuebecdepartmentsandorganizations.Wealsoraisedmorethan$8millionfrominternationalinvestorscreatingmorethan65jobsforhighlyqualifiedengineers,researchersandscientists.ThisexperienceledtomypositionasVice-President,ResearchandDevelopment,atAlphinatInc.—aMontréal-basedpublicsoftwarecompanyprovidinginnovativesolutionsforrapidwebdevelopment.Iamalsoactingasconsultingexpertinthesoftwaredevelopmentareathroughmyownconsultingfirm—TimelessTechnologiesInternational.Denis Michaud, PhDVice-President, Research and Development, Alphinat Inc.

A subatomic physics graduate student working on the 8pi Gamma-Ray Spectrometer

at TRIUMF’s ISAC facility..

66 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Testimonial: Engineering Entrepreneur Asanentrepreneurandleader,Ibelievemytrainingasaphysicistuniquelypreparedmefortheworldofbusiness.ThroughmyeducationinexperimentalsubatomicphysicsIwasgivenalife-changingoppor-tunitytoworkaspartofagroupofworld-classphysicists,engineersandtechnologists.Inthisworld,wherenewideaswereencouragedanddecisionsmadenotonsenioritybutbyapplyinglogicalprinciples,itwaspossibleforaPhDstudentinhis20stoinfluencethedesign,constructionandeventualoutcomeofamulti-milliondollarphysicsexperiment.Ibelievethatmysuccessinbusiness—12full-timeemploy-eesand$2millioninsalesin2010—caninlargepartbeattributed tothisexperienceaswellastheab-initioapproachtoproblemsolving Ilearnedinsubatomicresearch.Matthew Smith, PhD General Manager, SKC Siu Engineering Ltd.; and President,MxV Engineering Inc.

Testimonial: Finance

Asadiscipline,subatomicphysicsisperhapsoneofthemostusefulgroundingsinbasiclogicandproblemsolvingthatonecanhave. Ihavetravelledasomewhatunconventionalroutesincegraduation,andhavefoundmyselfworkinginthefinancialservicesindustryinToronto.Physiciststendtolearntoevaluateproblemsusingextremes,askingquestionslike,“WhatwouldhappenifALLofthisdemandweretosuddenlymovethisway,wouldthatbeaproblem?”,andlearnnottoshrinkfrommakingestimateswherejustifiableanddoingthemathwhererequired.Inmybusiness,andinmuchofsociety,thisisnolongertrue—ifitcan’tbelookedupontheInternet,thenitisaninsurmountableproblem.Wheresomeofmyanalystpeersareforcedtorelyonthepronouncementsofcompaniesontopicswithtechnicalthemes,Iamfreetobringalotmoreexperiencetobearinaskingtherightquestionsofmanagement.IhavebecomeregardedastheanalystonBayStreetthatinvestors,whohavebeenapproachedwithatechnol-ogyopportunitythatseemstoogoodtobetrue,shouldcall.Iamfairlyuniqueinthatregard,andtoalargemeasurethatisduetomyphysicstrainingandresearchbackground.Iwouldcertainlyhiremoreofthissortofperson,ifIcouldfindthem.Jon Hykawy, PhDHead of Global Research, Clean Technologies and Materials Analyst, Byron Capital Markets

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 67

Testimonial: Finance

Mytheoreticalparticlephysicseducationhasprovidedmewithskillsthatareindispensableinmycareerasafinancialriskmanager.Thepastfewyearshaveprovedtobeoneofthemostinterestingandchallengingtimesforcapitalmarkets.Mytraininginphysicshelpedmetodevelopthe ability to question what we believe to be true and why we believe it.Thisstrengthhashelpedmetoadaptquicklyinachangingenviron-mentbydispensingwithideasthatnolongerfunction,andadoptingandlearningnewideasthatmaybemorepromising.Theprocessofearningadoctoraldegreealsohelpedmetodevelopconfidencetoquestionthe“statusquo”andtosharethenewideaswithothers.Thisabilitytochallengecurrentbeliefs,analyzecomplexsituationsinarig-orousway,andtocommunicateclearlyandeffectively,areallexamplesofskillsthatwereencouragedduringmyparticlephysicstraining.Alexander Marini, PhD Senior Manager, Market Risk and Risk Technology, La Banque Nationale du Canada

Testimonial: Information Technology IamcurrentlyworkinginthefieldofIT,foracompanythatisatech-nologysolutionprovidertolargeenterprisesinCanadaandabroad.Partofmyworkinvolvesevaluatingnewtechnologiesandcomingupwith innovative ways of using these technologies to solve real business problems.Insomeways,thisisnotverydifferentfromcertainaspectsofmyworkinexperimentalparticlephysics.Duringmygraduatepro-gramattheUniversityofTorontoinexperimentalparticlephysics,Iwasheavilyinvolvedinmanyaspectsofbuildinganextremelycomplexenvironment—fromdesigningandbuildingthedetectorcomponents,tobuildingthecomputingsystemsrequiredtorunandoperatethedetectorsandanalyzethedata.Theparticleacceleratorsanddetectorsaresomeofthemostcomplexmachinesinexistencetodayandpresentuswithmanytechnicalchallengesthatoftenjointlydriveinnovationinthetechnologyindustry.Thistypeofinvolvementhasprovidedmewithreal-worldskillsthatcanbeappliedtomostbusinessenviron-ments.Inaddition,theskillsacquiredwhileworkingonthephysicsanalysiswithinaninternationalcollaborationofhundredsofphysicistsarealsoveryapplicabletomanyrolesincorporateenvironments.Beingabletoarticulateyourfindingsorsolutionsclearly,bothinwritingandin-person,isalsosomethingthatonehastolearnwhilecollaboratinginthesubatomicphysicscommunity.Milos Brkic, PhDDirector, Datacenter Technologies, OnX Enterprise Solutions

68 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Testimonial: Nuclear Industry Iwastrainedasanexperimentalnuclearphysicist.Thereareveryfewpeopleleftwhocallthemselvesnuclearphysicistsandthereisaclearneedinaresurgingindustry.Thereisahugeneedforpeopleinthenu-clearindustrytosupplydisciplinesperipheraltonuclearandsubatomicphysics—radiationprotection,healthphysics,nuclearengineering,reactorphysics,nuclearmedicine,radiationindustries(e.g.,radiogra-phy,contractsterilization)—allrequiringthesebasicsskills.NotethatIworkinacompanythatheavilyservicesthenuclearindustrybuthasa large number of clients in healthcare, agriculture and other energy industries.Subatomicandnuclearphysicsaredisciplinesthatareverybasic and very innovative, so graduate students have to necessarily be very creative and innovative on their own terms but also learntogetsupportfromlike-mindedindependentindividualswher-evertheycan.Ithinkthisunderstandingmakesforadaptabilityandindependencethatisnotdisruptivetoteamfunctioning.That’swhatIthinkhasdistinguishedmefrommypeers.Ilearnedearlytostart-outwithsomebriefcalculationsonthebackofanenvelopeandbuildonthe results. John Barnard, PhDDirector, Research and Technology, Acsion Industries Incorporated

Testimonial: Nuclear Security IamaresearchscientistinappliedsubatomicphysicswithNaturalResourcesCanada.Asanexperimentalsubatomicphysicist,Iapplymyeducationanddomanyofthesamethingsthatanysubatomicphysicsresearcherdoes.Ideveloptechniquesanddesigndetectorsforlocaliza-tionandcharacterizationofradioactivethreatmaterial.Iamleadingamulti-instituteresearchteamofparticlephysicistsinthedesignandconstruction of a gamma imager with state-of-the-art scintillation light collection,aswellasmulti-channelpulsedigitization,synchronizationandtriggering.WeuseMonteCarlosimulationtounderstandtheper-formanceofvariousdetectordesigns.Wevalidateoursimulationswithcarefullaboratoryexperiments.Theonlydifferenceisthatratherthantestingthefundamentalnatureofourphysicalreality,Iamworkingtowardkeepingpeoplesafeandsecure.Laurel E. Sinclair, PhDResearch Scientist, Natural Resources Canada

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 69

Testimonial: Electrical Engineering ThroughmytraininginexperimentalsubatomicphysicsIhavedevelopedlastingskillsthathaveplayedakeyroleinthesuccessofmyearly engineering career. The critical thinking required to resolve challengingtechnicalissuesinthesubatomicphysicsfieldhasbeendirectlytransferabletothedevelopmentofnovelengineeringconceptsanddesigns.Icannotimagineanotherfieldwherethelimitsofwhatispossiblearesoroutinelyredefinedbythoseinvolved.Theapplicationofthisphysicsmindsetinanindustrialdesignsettingistheperfect recipeforinnovation.Joey Gallant, MScEngineer-in-Training, Corrpro Canada

5. Demographic Trends and Funding Pressures

Compellingscientificquestionsandaccomplishmentshavemadesubatomicphysicsaleadingandgrowingfieldofresearch.Theopportunitiesaffordedbynewtechniquesandfacilitieshavecreatedinterfaceswithotherfields (e.g.,astronomerscollaboratingwithnuclearastrophysiciststobetterunder-standcore-collapsesupernovae,atomicphysicistscontributingtheirexpertisetoantimattertrapping,radiochemistscontributingtoultra-cleanunder-groundexperiments).Asaresultofthesevibrantandexcitingchallenges,thenumberofsubatomicphysicistsinCanadacontinuestogrow,withanaverageofsixnewfacultyhiresperyearineachofthelastfiveyears.Thishasledtogreatscientificopportunities,andstresses,intheCanadiansubatomicphysicscommunity. SubatomicphysicsisanexcitingfieldthatcontinuestoattractsomeofthebestandbrightestyoungmindsinCanada.Tobetterunderstandthedemographictrends,thecommitteeminedthehighly-qualifiedpersonnelinformationintheNSERCPersonalDataForms(Forms100),submittedaspartoftheDiscoveryGrantsapplicationprocess.Thisinformationissum-marizedinFigure6.ThenumberofstudentsenrolledinsubatomicphysicsPhDprogramsatCanadianuniversitieshasbeenrelativelystableatabout350peryear.TherehasbeenadeclineinthenumberofexperimentalMScstudentssince2004,whichislikelyduetotwofactors:whenexperimentstransitionfrominstallation/calibrationtodata-taking,theemphasisshiftstosupervisingPhDstudentsoverMScstudents,astheyarecapableandwillbenefitmorefromthemore-involvedphysicsanalysis;anduniversities,ingeneral,areencouragingstrongstudentstomovequicklyintoPhDprogramsfromMScprograms,mirroringwhathasbeenalong-standingpracticeinthe

70 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

U.S.Themake-upofthepostdoctoralfellows(PDFs)researchpoolhasalsoevolved,withthenumberoftheoryPDFstrendingsteadilyupward(from110in2002,toabout150in2008),reflectingtheincreasedresearchcapac-ityandproductivityintheorysupportedaspartofthe2002ReallocationsExercise.After2007,therearemoretheoryPDFsthanexperimentalPDFsworkingwithCanadiansubatomicphysicsresearchers,withabout1.3theoryPDFspertheoryPhDstudent,onaverage,nationwide.

Thechallengingoperatinggrantsituationforexperimentalsubatomicphysi-cistsisalikelyexplanationforseveraloftheobservedtrends.Incontrasttothesituationfortheorists,thereareonly0.6experimentPDFsperexperi-mentPhDstudent.Itappearstherehasbeenashiftwithinseveralexperi-mentalcollaborationstoPhDstudentsinsteadofPDFs,duetoconstrainedoperatinggrantfundingandtheconcurrentneedtohaveacriticalmassonthegroundinforeignlaboratories.Aswehavedemonstratedabove,youngsubatomicphysicistshaveahighdegreeofcompetenceindisciplineswithapplicabilityfarbeyondsubatomicphysics.Asagroup,theyareenergetic,hard-working, and highly motivated. They are a valuable national resource, anditisimportanttooptimizeandmakethemostofthebenefits—scien-tific,societalandeconomic—thattheirtalentsbring.Consequently,thecontinuedinflationaryerosionofNSERC’ssubatomicphysicsenvelope,andthelong-termimplicationsthiswillhaveforthenumberofyoungpeopleabletoenterthefield,isofgreatconcern.

0

100

200

300

400

0

100

200

300

400

MS

c

Un

derg

radu

ate

2002 2004 2006 2008

PO

STD

OC

TOR

AL

Ph

D

2002 2004 2006 2008

TOTAL EXPERIMENTALISTS THEORISTS

Figure 6: The number of postdoctoral fellows, PhD students, MSc students and

undergraduates undertaking subatomic physics research in Canada for the years

2002-08. Experimentalists are shown in brown, theorists in black, and the total in a

dotted line. The years shown represent those for which complete data is available,

accounting for grant renewal cycles.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 71

6. Strengthening the Ties

WhileweseepositiveimpactsofsubatomicphysicsresearchonCanadiansociety,stepsshouldbetakentofurtherstrengthenthetiesbetweenbasicresearchandeconomicbenefit.Inparticular,certainopportunitieswillpresentthemselvesinthenextfiveyearsandshouldnotbemissed. Opportunitiesexistbothinincreaseddirectindustrialactivityandinthetraining of a skilled workforce.

a. Opportunity: Joining CERN

“ForCanadatoprosperintheglobalknowledgeeconomy,wemustexcelatconnectingtotheglobalsupplyofideas,talentandtechnology.”

- Mobilizing Science and Technology to Canada’s Advantage –2007

CERNisoneoftheworld’slargestandmostrespectedcentresforscientificresearch.CanadahasbeeninvolvedinresearchatCERNfordecadesandasignificantfractionofoursubatomicphysicsresearchcommunityreliesontheirfacilities.However,CanadahasnoformalrelationshipwithCERN.Inthepast,wehavenegotiatedparticipationinCERNexperimentsonaproject-by-projectbasis.Assuch,wehavenoinfluenceonthefuturepriori-tiesofthelaboratoryandCanadiancompaniesdonothaveaccesstoCERNcontracts. CERNhasrecentlydecidedtoestablishanew“AssociateMembership”fornon-Europeancountries.Canadawouldbeanaturalcandidateforsuchamembership,andbenefitsinclude:• CanadiancompaniesbingpermittedtobidonCERNcontractsand

beingawardedthesecontractsinproportiontoCanada’scontribution.Approximatelyone-thirdofCERN’sbudgetgoestoprocurement;

• CanadiancitizenshavingaccesstoCERNeducationandtrainingpro-gramsandlimited-termstaffpositions;and

• Canadahavingavoiceinthescientificandfinancialdecision-makingofthe laboratory.

ThebenefitstoindustryfromassociationwithCERNareclear.Astudyoftechnologytransferin629companieswithCERNcontractsrevealed:1

• 38percenthaddevelopednewproducts;• 42percentincreasedinternationalexposure;• 44percentimprovedtechnologicallearning;• 17percentopenedanewmarket;• 60percentacquirednewcustomers;• 52percentattributedimprovedsalesperformancetotheirrelationship

withCERN;and• allfirmsderivedgreatvaluefromusingCERNasamarketingreference.

1TechnologytransferandtechnologicaltrainingthroughCERN’sprocurementactivity;E.Autio,

M.Bianchi-Streit,Ari-PekkaHameri(CERN,2003)

72 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Thebenefitsfromthescientifictrainingperspectivearealsoclear.CERNisnotonlyanelitefacilityforsubatomicphysiciststoreceivetrainingandemployment,itisalsoanelitetrainingfacilityforotherdisciplines.Thema-jorityofCERNfellowsworkinengineering,computingorappliedphysics. MemberstatespayfortheoperationofCERNinproportiontotheirGDPs.AssociateMemberswouldpay10percentoftheFullMembercost.Inthisscenario,thevalueofdirectcontractstoCanadianindustrywouldbeexpectedtoincreasefromapproximately$30,000in2010tomorethan$3millionperyear.Thetotalfinancialvaluereturnedthroughindustrialcontractsandtrainingwouldamounttonearlytwo-thirdsoftheCanadiancontributiontoCERN. FormalizingourrelationshipwithCERNwouldthereforestrengthenCana-diantieswithEuropepolitically,aswellaseconomically,throughstrength-enedtiestoCanadianindustry.Itwouldprovideuniquetrainingopportuni-tiesforyoungCanadianscientistsandengineers.

b. Opportunity: Training of Accelerator Physicists

Acceleratorsarebigbusinessthroughouttheworld.Newdevelopmentsinparticleacceleratortechnologiesplayacrucialrolenotjustinsubatomicphysics,butalsoincondensedmatterphysics,healthresearch,medicaldiagnosis and treatment, and industry. This is illustrated in the success stories describedinprevioussections. Thereisashortageofhighlyqualifiedgraduateswithadvanceddegreesinac-celeratorscience.TRIUMF,inco-operationwithseveraluniversities,hasbe-gun an initiative aimed at addressing this shortage in order to fuel growth in researchandbusinessinCanada.Wesupportthecontinueddevelopmentofacceleratorhighlyqualifiedpersonnel(HQP)trainingprogramsinCanada,andencourageNSERCandotherrelevantbodiestoensureanappropriatemechanismtoevaluatethefundingrequestsfortheseprograms.

Superconducting accel-

erator structures made

of niobium, developed

for research towards a

future linear collider.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 73

Giventhenatureofexperimentsneededtocontinueprogressinthefield,frontiersubatomicphysicsresearchrequireslong-termcommitmentsfromgovernments,laboratories,andphysicists.Laboratoriesthatmounttheex-perimentsemployhundredsorthousandsofstaff.Largecollaborativeteamsarenecessarytobuildandoperatetheexperimentalapparatus.Inordertohavetheexpertisenecessarytomountasuccessfulexperiment,teamstendtobecomposedofscientistsfromaroundtheworld.Theconstructionanddata-takingphasesoftheexperimentscaneachtake10yearsormore.Asaresult,newtheoreticalmodelsmaytakedecadestoconfirmorrefute.

Toefficientlyandeffectivelyparticipateinthisenterprise,subatomicphysicsresearchfundingneedstobecarefullymanaged.Fundsmustbeavailabletosupportthesmalltomid-sizecapitalinvestmentsandtoprovidetheresearchsupportrequiredtodevelopthenextgenerationofexperimentsthatadvancethefield.Whennewopportunitiesarise,significantcapitalisrequiredfortheconstructionoffacilitiesandexperiments.Successreliesonallpartnerscon-tinuingtheirparticipationintheproject.Therefore,coordinationoffundingsourcesforcapitalandoperationisessentialtoensurethatnewprojectsarecarriedthroughtocompletion.

1. Canadian Subatomic Physics in 2011

Approximately240full-timefacultyareactiveinsubatomicphysicsresearch,andthecommunityhasgrownbyapproximately10percentoverthepastfiveyears.Graduatestudentnumbersarelargelystabilizednowafterthesubstan-tialgrowthnotedinthelastplan.

ThepastfiveyearshaveseenthecommunitytransitioningfromconstructionofnewmajorfacilitiesanddetectorstotheirexploitationintheCanadianefforttofurtherknowledgeinsubatomicphysics.Thenamedprioritiesof

Positioning for Scientific Leadership

6

74 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

thelastLRP—ATLAS,T2K,theISACandSNOLABexperimentalpro-grams—arealloperationalandexperimentalresultsareflowingfromallfour.Researchsupportfundingfortheseprojectshasgrownaccordingly(Figure7).Duringthissametime,wehaveseenadeclineinthefractionoftheNSERCsubatomicphysicsenvelopeavailableforexploringuniqueexperi-mentswithhighdiscoverypotentialandforplanningthenextgenerationofprojects(Figure8).Indeed,by2011thishaddeclinedto19percentofthespendinginthesubatomicphysicsenvelope.Aspecificimpactofthisdeclinehasbeenthereductionoffundingdirectedtowardsequipment,ascanbeseeninthemoredetailedbreakdownofFigure9.ThisisallaninevitableconsequenceoftheNSERCsubatomicphysicsenveloperemainingpracti-callyunchangedoverthelastfiveyears,whichisbringingtremendouspres-suretobear.Thefundsdirectedtowardssmaller,non-flagshipexperimentaleffortshavedroppedbyafactorofnearlytwooverthesametime.Althoughtheseprojectsaresmallerinscalethantheflagshipprojects,theypossesssignificantdiscoverypotentialinspecificareasofresearchandmayrepresentpotentialfuturedirectionsforthebroaderCanadiansubatomicphysicscom-munity.Theneedforstablefundingofthelargeflagshipprojectshasplacedenormouspressureonthesesmallerprojects.Balancingthesecompetingneedsposesoneofthegreatestchallengestothecommunity.

Figure 7: The funding allocated to the flagship activities from the NSERC subatomic

physics envelope over the past 10 years.

0

5

10

15

20

25

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

ATLAS

ISACT2K

UNDERGROUND PHYSICS

ALL FLAGSHIPS

ENVELOPE

0

10

20

FIG 7

FIG 8

FIG 9

FIG 10

FIG 6

30

40

50

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

PE

RC

EN

T

0

10

20

30

40

50

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

MIL

LIO

NS

OF

DO

LL

AR

S

0

2

4

6

8

10

12

14

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

FLAGSHIP PROJECTS

EQUIPMENT

THEORY

OTHER

MRS

0

2

4

6

8

10

12

14

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

FLAGSHIP PROJECTS

LINEAR TREND

ENVELOPE

CFI AWARDSSNOLABARIEL, PHASE 1PERIMITER INSTITUTE

SUPERNOVA NEUTRINOS

ASTROPHYSICAL NEUTRINOS

NEUTRINO

BEAMS

DARK

MATTER

SEARCHES

DOUBLE

BETA DECAY

SEARCHES

SOLAR NEUTRINOS

ATMOSPHERIC NEUTRINOS

HADRON COLLIDERS

LEPTON COLLIDERS

HEAVY ION COLLIDERS

MEDIUM ENERGY NUCLEAR FACILITIES

FUNDAMENTAL SYMMETRY EXPERIMENTS

RARE-ISOTOPE BEAMS

Underground Approaches

Accelerator Approaches

Cosmic Approaches

PARTICLE ASTROPHYSICS

OBSERVATIONAL COSMOLOGY

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 75

ItisaparticularconcernthatthecapacityoftheNSERCsubatomicphysicsenvelopetofundcapitalexpenditureshasbeendramaticallyreduced.Thisisreflectiveofasignificanttransitionthathasoccurredoverthepastfiveyears.Thisreductioninequipmentfundinginthesubatomicphysicsenvelopecreatesasignificantrisk.SubatomicphysicshasbenefitedenormouslyfromtheabilitytoawardResearchToolsandInstrumentsGrants-Category1(RTI-1),RTI-2,andRTI-3whennewresearchprogramsareenteringacriticalphase,particularlywhentheequipmentneedsaremodestand/ordonotfitwellunderanyCFIprograms.Inthepastfiveyears,approximately$4.2millionhavebeenawardedinRTI-2and-3grantstoprojectsthatwereineligibleforfundingthroughtheCFI.Further,RTI-1fundinghasallowedprojectstodealwithsmallerreal-timeequipmentneedsthatarisethroughtheR&Dprocessorbecauseofachangeindirectionrequiredofanexperi-mentalproject.WiththefractionoftheNSERCsubatomicphysicsenvelopedevotedtoequipmentataboutfivepercentin2011,itwillbedifficulttolaunchanewcapitalinitiativewherethenatureandneedsdonotfittheCFIconstraints.Theleadtimeforsuchinitiativesisfiveto10years,aswesawwithATLAS.TointegratesuchequipmentintoanRTI-2or-3requestfromtheNSERCsubatomicphysicsenvelopenow,itwoulddecimatetheoperationsofprojectswhichbenefitedfromsuchinvestmentsyearsbefore.IftheCFIrouteisindeedclosedfortheseprojects,itisthereforenowimpos-sibletoinitiateamajornewcapitalinvestmentinanyinternationalprojectwithoutsignificantlyreducingresearchsupportforprojectswehavebroughttofruitionoverthepastdecade.

Figure 8: The fraction of the NSERC subatomic physics envelope available for seiz-

ing opportunities and planning for the next generation of experiments over the past

10 years. This fraction has been in precipitous decline due to the growing needs of

the flagship projects.

0

5

10

15

20

25

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

ATLAS

ISACT2K

UNDERGROUND PHYSICS

ALL FLAGSHIPS

ENVELOPE

0

10

20

FIG 7

FIG 8

FIG 9

FIG 10

FIG 6

30

40

50

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

PE

RC

EN

T

0

10

20

30

40

50

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

MIL

LIO

NS

OF

DO

LL

AR

S

0

2

4

6

8

10

12

14

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

FLAGSHIP PROJECTS

EQUIPMENT

THEORY

OTHER

MRS

0

2

4

6

8

10

12

14

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

SFLAGSHIP PROJECTS

LINEAR TREND

ENVELOPE

CFI AWARDSSNOLABARIEL, PHASE 1PERIMITER INSTITUTE

SUPERNOVA NEUTRINOS

ASTROPHYSICAL NEUTRINOS

NEUTRINO

BEAMS

DARK

MATTER

SEARCHES

DOUBLE

BETA DECAY

SEARCHES

SOLAR NEUTRINOS

ATMOSPHERIC NEUTRINOS

HADRON COLLIDERS

LEPTON COLLIDERS

HEAVY ION COLLIDERS

MEDIUM ENERGY NUCLEAR FACILITIES

FUNDAMENTAL SYMMETRY EXPERIMENTS

RARE-ISOTOPE BEAMS

Underground Approaches

Accelerator Approaches

Cosmic Approaches

PARTICLE ASTROPHYSICS

OBSERVATIONAL COSMOLOGY

76 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Figure 9: A detailed comparison of the different funding components of the NSERC

subatomic physics envelope over the past 10 years. It is clear that funding for equip-

ment has shrunk over this time. Similarly, the funding for other activities, specifi-

cally R&D and small discovery-potential projects, has shrunk by a factor of two in

the past decade.

WheresignificantcapitalinvestmentsinCanadian-basedexperimentshavebeenrequired,theyhavelargelybeenmetbyCFIfunding,withinitialR&DeffortsfundedbytheNSERCsubatomicphysicsenvelope.Indeed,CFIfundingoverthepast10yearshasbeen,onaverage,equivalenttonearly 50percentofNSERCfundingtosubatomicphysics,distributedasshowninFigure10.Theinjectionofinfrastructurefundingtothecommunityhasbeenwelcome,buthasalsocreatedpressures;thiswillbediscussedinSec-tion4ofthischapter.

Wealsoneedtorecognizethedemandsthecommunityplacesonthenationalfacilities,particularlyTRIUMFandSNOLAB.TRIUMFhaslongprovidedinfrastructuresupporttotheparticlephysicscommunity,andTRIUMFhousestheISACfacility.TRIUMFsuccessfullyengagedthesubatomicphysicscommunityinthedevelopmentofthelastfive-yearplan,whichpresentedacoherentframeworkforthelaboratory’ssupportof Canadiansubatomicphysics.Thestrengthofthisvisionresultedin TRIUMFmaintainingconstantfundingforoperationsduringatimeofsignificantbudgetpressuresonthefederalgovernment.

0

5

10

15

20

25

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

ATLAS

ISACT2K

UNDERGROUND PHYSICS

ALL FLAGSHIPS

ENVELOPE

0

10

20

FIG 7

FIG 8

FIG 9

FIG 10

FIG 6

30

40

50

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

PE

RC

EN

T

0

10

20

30

40

50

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

MIL

LIO

NS

OF

DO

LL

AR

S

0

2

4

6

8

10

12

14

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

FLAGSHIP PROJECTS

EQUIPMENT

THEORY

OTHER

MRS

0

2

4

6

8

10

12

14

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

FLAGSHIP PROJECTS

LINEAR TREND

ENVELOPE

CFI AWARDSSNOLABARIEL, PHASE 1PERIMITER INSTITUTE

SUPERNOVA NEUTRINOS

ASTROPHYSICAL NEUTRINOS

NEUTRINO

BEAMS

DARK

MATTER

SEARCHES

DOUBLE

BETA DECAY

SEARCHES

SOLAR NEUTRINOS

ATMOSPHERIC NEUTRINOS

HADRON COLLIDERS

LEPTON COLLIDERS

HEAVY ION COLLIDERS

MEDIUM ENERGY NUCLEAR FACILITIES

FUNDAMENTAL SYMMETRY EXPERIMENTS

RARE-ISOTOPE BEAMS

Underground Approaches

Accelerator Approaches

Cosmic Approaches

PARTICLE ASTROPHYSICS

OBSERVATIONAL COSMOLOGY

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 77

Figure 10: The value of CFI-funded infrastructure for subatomic physics projects

between 2001 and 2010, compared to the NSERC subatomic physics envelope.

The major facility projects—SNOLAB, Perimeter Institute, ARIEL Phase 1—are

shown separately.

WhilethisrepresentedasubstantialachievementforTRIUMF,itlim-itedtheabilityofthelaboratorytoprovideinfrastructuresupporttothecommunity.CompletionandoperationofARIELbeyond2016willlimitTRIUMF’sabilitytosupportmajorsubatomicphysicsinitiativeswithoutanincreaseinfederalfundingforTRIUMFinitsnextfive-yearplan.

AsforSNOLAB,theconcernexpressedinthelastLRPremains,namely,howwillthelong-termoperationsofthefacilitybefunded?AnewCFIprogramofferssomehopethatthisproblemwillberesolved,andthiswillbediscussedfurtherinSection4ofthischapter.

The2002ReallocationsExerciseresultedinanincreaseofthemedianNSERCDiscoveryGrantsinsubatomictheorybyapproximately40percentbetween2001and2006.ThisincreasewasessentialinallowingCanadiansubatomictheoriststoremaincompetitiveinternationally.Atthesametime,thetopquartileoftheoreticalsubatomicphysicsDiscoveryGrantsincreasedbyabout65percent,indicatingthatratherthanprovidingacross-the-boardincreases,thesefundswerebeingpreferentiallydirectedtothemostproduc-tiveresearchers.Since2006,however,fundingfortheoryhasbeenessentiallyflatwhilenewhirescontinuetoputpressureontheNSERCsubatomicphysicsenvelope.CompetitionwiththeU.S.andabroadforpersonnel—par-ticularlypostdoctoralresearchersandfaculty—isintense,anditisthereforecrucialforthefieldthatfundingfortheoristsbesufficienttokeepgraduateandpostdoctoralsupportcompetitiveinternationally.

0

5

10

15

20

25

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

ATLAS

ISACT2K

UNDERGROUND PHYSICS

ALL FLAGSHIPS

ENVELOPE

0

10

20

FIG 7

FIG 8

FIG 9

FIG 10

FIG 6

30

40

50

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

PE

RC

EN

T

0

10

20

30

40

50

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

MIL

LIO

NS

OF

DO

LL

AR

S

0

2

4

6

8

10

12

14

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

FLAGSHIP PROJECTS

EQUIPMENT

THEORY

OTHER

MRS

0

2

4

6

8

10

12

14

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

FLAGSHIP PROJECTS

LINEAR TREND

ENVELOPE

CFI AWARDSSNOLABARIEL, PHASE 1PERIMITER INSTITUTE

SUPERNOVA NEUTRINOS

ASTROPHYSICAL NEUTRINOS

NEUTRINO

BEAMS

DARK

MATTER

SEARCHES

DOUBLE

BETA DECAY

SEARCHES

SOLAR NEUTRINOS

ATMOSPHERIC NEUTRINOS

HADRON COLLIDERS

LEPTON COLLIDERS

HEAVY ION COLLIDERS

MEDIUM ENERGY NUCLEAR FACILITIES

FUNDAMENTAL SYMMETRY EXPERIMENTS

RARE-ISOTOPE BEAMS

Underground Approaches

Accelerator Approaches

Cosmic Approaches

PARTICLE ASTROPHYSICS

OBSERVATIONAL COSMOLOGY

78 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

2. What the Future Holds

ThereisnodoubtthatamodelforresearchsupportthatdoesnotgrowwiththesizeofthecommunitywillthreatenCanadianleadershipandnegativelyimpactitinthelongerterm,andwearealreadyatacriticaljuncture.Wefacea choice between leading in science now but ignoring the future, or continu-allybuildingforthefuturewhilelimitingourimpactonongoingprojects.Neitherisawisepathforthecountryasitseekstoleadinscientificinnova-tion.Thisextendstothenextphaseinpursuingthecommunity’sphysicspri-orities.Forexample,CanadawouldbenefitfromhavingsignificantimpactinSuperBandthenextstepinflavourphysics—anareawherethecountryhasledandcouldleadagain.WewillseewithinthenextyearwhethertheHiggsbosonisfound,orwhetheraradicalreconsiderationoftheStandardModelisrequired.ThiswillimpactdiscussionsofanupgradetotheLHCandtheimpetusforalinearcolliderproject.Canadaneedstobepositionedtorespondtotheseinternationaldecisionsanddirectionswhilesimultaneouslypursuingthescienceinfluencingthesedecisions.TheNSERCsubatomicphysicsenvelopeneedstobeexpandedforthistohappen.

Thecommunitycouldpotentiallyfree-upfundsintheNSERCsubatomicphysicsenvelopebyreducingactivitiesonflagshipexperiments,eliminat-ingR&Dactivities,andreducingactivitiesonsmallerprojectswithhighdiscoverypotential.However,thiswouldsubstantiallydilutetheCanadianpresenceonexperimentswhereCanadahasmademajorinvestmentsoverthepast10years(ormore),possiblyevencreatingasituationwherethereislittleCanadianeffort(letaloneleadership)atnationalfacilitiessuchasISACandSNOLAB.Thiswouldrepresentamajorlossofbothfinancialandintellec-tual investment to the country.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 79

3. Measuring Our Success

WeareawarethatNSERChaschargedtheCanadianCouncilofAcademieswithstudyingpossiblemetricsforscientificactivityandimpactthatcouldbeusedinafuturereallocationsexercise.Ashasbeennotedthroughoutthisplan,theworkingsofthesubatomicphysicscommunityaresomewhatunique,especiallythelargescaleofinternationalcollaborationandlong-termplanningandinvestment.Indeed,wearecelebratingthe20thyearofthesubatomicphysicsenvelope—auniquestructurewithinNSERCthatcontinuestoproveitselfcrucial,timeandtimeagain,asthesubatomic physicscommunityhasprogressedthroughsuccessivelong-rangeplans. Wewouldwelcometheopportunitytoprovideinputinhelpingdevelop appropriatemetricstorecognizeandbalanceouruniquecharacteristics.

Anymethodseekingtomeasureresearchqualityandproductivityinsub-atomicphysicsneedstoaccountforthelarge-scaleandlong-termnatureofresearchprojectsinthisdiscipline.Metricsappropriateforotherfields,inwhichanexperimentcanbeconceived,performed,analyzed,andpublishedbyasmallgroupwithinoneortwoyears,maynotbesuitable.Researchersmayspendmanyyearsdesigningandbuildinganexperiment,resultinginalowpublicationrateduringtheperiod.Forexample,theATLAScol-laborationformedin1992anddata-takingonlybeganin2009.Theoreticalresearchpublicationsmaywaitmanyyearsforsignificantcitationsbecauseofthetimescalefordevelopingexperimentscapableoftestingthenewtheories.Experimentalresearchpublicationsmayincludehundredsorthousandsofscientistsintheauthorlist,makingitdifficulttoattributespecificcontribu-tionstoindividualsorgroups.Forlargecollaborations,thereareinternalindicatorsforresearchproductivity,suchasappointmenttoleadershippositions(typicallyforseniorresearchers)andselectiontospeakonbehalfofthecollaborationatconferences(typicallyforyoungerresearchers).Anotherrecordofresearchcontributionscomesintheformofunpublishedinternalpapers,writtenbysmallgroupsthatdescribe,indetail,thevariouselementsthatwerenecessarytoproducetheresultsthatappearinpublishedpapers.ResearchqualityandproductivityarereflectedbytherecordofHQPtraining,sincedisciplineswithstrongresearchprogramsgenerallyattractexcellentstudents.Inhighlycollaborativedisciplineslikesubatomicphysics,thelearningenvironmentforHQPisenhancedthroughdirectcontactwithexpertteammembersfromaroundtheworld.MeasurementsofresearchqualityderivedfromHQPoutcomesshouldtakeintoaccountthetrainingbenefitsofcollaborativeresearch.

80 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

4. Optimizing Relationships Between Organizations (CFI, Compute Canada, etc.)

Aswehaveseenthroughoutthisplan,theuniquenatureofsubatomicphys-icstypicallyrequireslargeinternationalcollaborationsbuildingandoperat-ingsophisticatedinstrumentsforexperimentsthatareoperatedformanyyearsandaddressquestionsabouttheverynatureofouruniverse.NSERChasrecognizedtheuniquenatureofsubatomicphysicsbyimplementingafundingenvelopemodel,whichallowsthecommunitytoplanandprioritize.ThishasbeenverysuccessfulandhasallowedtheCanadiancommunitytobecentralintheglobalsubatomicphysicsenterprise.

TheCFIhasbeenatransformativeadditiontotheCanadianfundingenvironment.IthasallowedCanadianstodevelopworldclassinfrastructureandfacilities.SubatomicphysicsgroupshavedemonstratedthattheymeetthestandardsofexcellenceandimpactforCanadaandhavebeensignificantbeneficiaries.TheCFIhasbeenthemajorsourceoffundingforkeyfacili-ties(SNOLABandARIEL,alongwiththePI),besidesinfrastructure-sup-portingflagshipexperiments(e.g.,Tier1andTier2computingcentersforATLAS,SNO+,andDEAP-3600).

Thecommunityisnowengagedinresearchutilizingthesignificantinvest-mentsinsubatomicphysicsinfrastructuresupportedbyNSERCandtheCFIinthepast10to15years.Ashasbeennoted,thefundingforresearchsupportfromtheNSERCsubatomicphysicsenvelopehasremainedcon-stant.ThisimbalancewillcontinuetocausesignificantproblemsfortheproperutilizationoftheinfrastructureandforconsideringhowtobestplananddoresearchinCanada.

TheCFI-MajorScienceInitiative(MSI)hasbeenverywelcomenews.ThelastLRPnotedthesubatomicphysicscommunity’sconcernregard-ingthesourceofoperatingfundsforSNOLAB.Givenlimitedfunds,itwasimpossibletoforeseeascenariowheretheprioritygiveninthatplantotheSNOLABexperimentalprogramcouldberealizedwithoutnewfundsbeingfoundtooperatethefacility.TheLong-RangePlanningCommit-tee,onbehalfoftheCanadiansubatomicphysicscommunity,isgratefultoNSERCandtheCFIforworkingtogethertoprovideinterimsupporttowardsSNOLAB’soperationswhileaframeworkforthesupportofMajorScienceInitiativeswasbeingdeveloped.TheCFI-MSIinitiativemighthelpfinallyresolvethatconcern.Thereissomequestionastowheretherequiredmatchingfundswillbefound,thoughprovincialgovernmentshavealreadydemonstratedcommitmenttothelargeCFIfacilitiespositionedwithintheirterritoriesthroughcontributionstotheoperatingbudgets.Grantingagen-ciesarealsoeligiblepartners,thoughitisclearthattheNSERCsubatomicphysicsenvelopeoranyothercomponentoftheNSERCDiscoverysuite

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 81

ofprograms,whoseobjectiveistosupportresearchactivities,isill-suitedtosupporttheoperationsandmaintenancecostsofanationallaboratorysuchasSNOLAB(orTRIUMF).TothinkotherwisewouldrevivetheconflictseeninthelastplanbetweenfundingSNOLABoperationswithnodirectscientificordiscoveryreturn,andtheexperimentstobehousedatthefacilitywhichalignswiththescientificprioritiesofthecommunity.WewillwatchwithinterestasthecompetitionproceedsandhopethattheCFI-MSIprogramleads to sustained solutions to the funding of these large infrastructure sites.

ComputeCanadahasalsobeenasignificantadditiontoCanadiancapa-bilities,withtheprovisionofworld-classcomputerfacilitiestoCanadianresearchers.TRIUMFprovidessignificantresourcestoCanadiansubatomicphysics—boththroughtheoperationoftheTRIUMF-basedfacilities,andtheenablingofresearchatotherlaboratories—suchasATLAS,T2K,andSNOLAB.

Aswelooktothefuture,workingwithinaparadigmwithmultipleagenciesandacomplexfundingparadigmoffersseveralchallenges.Oneissueishowtoeffectivelybalancetheprioritiesandrestrictionsontheuseoffundsfromdifferentfundingagencieswiththeprioritiesofthecommunity.TheprimarysourceoffundingforresearchactivitiesisbyfartheNSERCsubatomicphysicsenvelope,andwehaveseenanever-increasingfractionofthatenve-lopedirectedtowardsongoingresearchsupportforexistingprojects.ItisthuscrucialforthenextgenerationofCanadiansubatomicphysicsprojectsthatCFIfundingbemadeavailableinthefutureforinternationallysitedinfrastructureinvolvingtheCanadiansubatomicphysicscommunity,inad-dition to nationally sited infrastructure.

ManyexperimentalprojectsrequireanintegratedapproachtomanagingR&D,capitalfunding,andresearchsupport.ThiswastheoriginalpurposeoftheNSERCsubatomicphysicsenvelope—toletthecommunitymanagefunds through the ebb and flow of the different stages of large, long-term projects.Fromaresearcher’sperspective,aprojectisorganizedsystemati-callyfromanR&Dphasetoconstruction,andthenontomakingmeasure-mentsinthequestfornewphysicsunderstanding.ThisprocesswasrelativelystraightforwardwhenmanagedsolelyundertheNSERCsubatomicphysicsenvelope,butthenewrealitymayinvolvebothNSERCandtheCFItogeth-er,orseparately,atdifferentphasesoftheproject.ItisfurthercomplicatediftheprojectrequiressupportfromTRIUMFinordertoproceed.TRIUMF’spotentialsupportforaprojecthasbeenapartoftheconsiderationgivenbyNSERCwhendeterminingfunding,soadegreeofintegrationhasbeenputinplacethatwewouldliketoseetocontinue.AsimilarmodelmaywellevolvewithrespecttoexperimentshousedatSNOLAB.WealsoseeexampleswhereCanadiansubatomicphysicistsreceivesupportfrominterna-tionallaboratoriestodevelopnewexperiments.

82 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Therearenon-trivialissuesassociatedwiththiscoordination,specificallywhentheCFIisfundingsignificantcapitalassociatedwithalargerproject.ThemaximumbenefittoCanadaandtheresearchprogramwouldseeaholisticapproachtothephasingofR&D(NSERC)andconstruction(CFI)ofmajorresearchinfrastructure,especiallywithrespecttoengineeringandsciencereviews.Otherbodiesplayaroleinthiseffortaswell,particularlythehostlaboratories—TRIUMFandSNOLAB.Thus,itwouldbetoCanada’sstrategicadvantageiftherewascoordinationbetweenorganizationswhenfundingmajorprojectsinsubatomicphysics.

Afurtherquestionariseswhenlargeprojectsaretobehousedoff-shore—aloomingissueasCanadiansubatomicphysicslookstothenextgenerationoflargeinternationalexperiments.ItisunclearwhatmechanismsexistwithintheCFItoallowforafundingproposaltoCFIthatwouldauthorizeinstal-lationofequipmentcomponentsatalargeoff-shoreexperiment,aslongasownershipremainswithCanadianuniversities.Furthermore,thecommunitywouldwelcometheopportunitytoworkwiththeCFIsothattheLRPcanassisttheorganizationtomaximizethebenefitsofitsinfrastructureinvest-mentsinsubatomicphysics—betheyinCanadaoratinternationalfacilities.

Thereisaparallelproblemofcoordinationofeffortbetweenexperimentalprograms,ComputeCanadaandothers.Asnoted,ComputeCanadaman-agesthelargeplatforms,butthesubatomicphysicsresearchprogrammustensurethatithastheappropriatepriorityofaccesstotherelevantfacilities,andalsobeabletoavailitselfofthe(highlyspecialized)technicalsupportrequiredforitsapplications.

AllorganizationsareworkinghardtosupportCanadianscience,andthecommunityvaluestheirsupport.OurgoalistoensurethatallareworkingtogethertoensuremaximumscientificimpactandreturnfromtheCanadianinvestmentinsubatomicphysics.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 83

1. Budgetary Estimates

The Need to Support R&D

Thesubatomicphysicscommunityhasbeensuccessfulinitsgoalstofocusitsactivitiesonflagshipprojectsandisnowpositionedtoreapthescientificbenefitsofpastinvestments,whilesimultaneouslyfacingtheneedtoprepareforthenextgenerationofprojects.Inreachingthispoint,thecommunitynowfacesmanypressures.Asnotedearlierinthedocument,thesubatomicphysicsenvelopefacesseverechallengesinitsabilitytomanageprojectsinsubatomicphysicsoverthetypical10to20yeartimescale—fromconcep-tiontoreapingthescientificreward.Inparticular,aswelooktotheR&Drequiredforthenextgenerationofprojects,theavailablefundingfor RTIgrantshasfallentofivepercentoftheenvelope—wellbelowthelevelof15percentthatwasrequiredtoprovidefortheR&Dassociatedwiththecurrentflagshipprojects.Ashasbeendescribedearlierintheplan,thisdropwasunavoidableinlightoftheneedtoprovidethefundsrequiredforresearchactivitiesassociatedwiththeflagshipprojects.IfCanadaistocontinuetoleadinthenextgenerationofprojectsofnationalandglobalimportance,thecommunitymusthaveaccesstoappropriateresourcesforR&D.ItisthereforeanutmostprioritytoseeadditionalfundsaddedtothesubatomicphysicsenvelopetoprepareforcontinuedCanadianleadershipinsubatomicphysicsthroughthenext20yearsormore.Basedonthe2011fundingofthesubatomicphysicsenvelope,increasingtheRTIcomponentfromfiveto15percentrequiresthattheannualfundingallocationforthesubatomicphysicsenvelopebepermanentlyincreasedbyapproximately $2.5million.Asnotedearlier,theneedforthesefundsisimmediate.Ifthisissueremainsunresolvedoverthetimeframecoveredbythisplan,theeffectsontheCanadiansubatomicphysicsprogramcouldbecatastrophic.

Supporting Innovation in Subatomic Physics

7

84 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Maintaining a Restrained Yet Efficient Program

Wealsocannotignorepressuresthatexistasidefromanyupgradesornewinitiativeswithintheflagshipprojects.Overthepast10years,thefundingtotheflagshipresearchprogramshasgrownbyanaverageof6.5percentperyear. This growth tracks the increased research activity associated with these projects,movingfromthedevelopmentandconstructionphasescoveredbypreviouslong-rangeplanstowardsbeingfullyoperationaloverthecourseofthisplan.Throughoutthistime,theGrantSelectionCommittees(GSC),andthentheEvaluationSections(ES),workedtoensurethatthesefund-ingincreaseswereabsolutelyvitaltothesuccessoftheseprojects.Theywerevery concerned about the consequence of these necessary increases for the restofthesubatomicphysicsenvelope,andtheseconcernswererepeatedlyexpressedinthereportsoftheChairstoNSERCandthecommunity.Theseincreaseshavebeendrivenbytheflagshipprojectsapproachingthestageofdata-takingandscienceexploitation,whichrequirealargerinvolvementofHQPwhilefacingcompetitivepressuresinrecruitingthem,aswellasanex-pandedparticipationoftheCanadiancommunity.Thecommunitywasverycarefulinmakinguseofthemosteffectivefundingmechanismstosupportthisgrowthinparticipationandreachacriticalmassineachoftheflagshipprojectsinordertobearecognizedcontributorandleader.Inparticular,thecommunityhasjudiciouslysoughtsupportfromtheCFIfortheconstruc-tionofmajorinfrastructure(post-R&D).However,thecommunityandthesubatomicphysicsenvelopefacecontinuouspressurestoensureaconstrainedyeteffectivesupporttoresearchactivitiesandtheaccompanyingHQP.Theflagshipprojectshavenotyetreachedtheir“maturity,”andtheystillneedincreasedsupport.Ifitisnotrealistictoarguetomaintaina6.5percentgrowth,thepressuresontheCanadiansubatomicphysicscommunityarenonethelessreal.Indeed,thisdrawsattentionagaintothefactthatthereislittleroomleftwithintheenvelopetosupporttheR&DactivitiesthatwillensurethevitalityoftheCanadianprogram15to20yearsfromnow.

Figure 11: Linear trendline fit to flagship project funding. Growth averages 6.5 per-

cent per year in this period.

0

5

10

15

20

25

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

ATLAS

ISACT2K

UNDERGROUND PHYSICS

ALL FLAGSHIPS

ENVELOPE

0

10

20

FIG 7

FIG 8

FIG 9

FIG 10

FIG 6

30

40

50

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

PE

RC

EN

T

0

10

20

30

40

50

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

MIL

LIO

NS

OF

DO

LL

AR

S

0

2

4

6

8

10

12

14

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

FLAGSHIP PROJECTS

EQUIPMENT

THEORY

OTHER

MRS

0

2

4

6

8

10

12

14

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

MIL

LIO

NS

OF

DO

LL

AR

S

FLAGSHIP PROJECTS

LINEAR TREND

ENVELOPE

CFI AWARDSSNOLABARIEL, PHASE 1PERIMITER INSTITUTE

SUPERNOVA NEUTRINOS

ASTROPHYSICAL NEUTRINOS

NEUTRINO

BEAMS

DARK

MATTER

SEARCHES

DOUBLE

BETA DECAY

SEARCHES

SOLAR NEUTRINOS

ATMOSPHERIC NEUTRINOS

HADRON COLLIDERS

LEPTON COLLIDERS

HEAVY ION COLLIDERS

MEDIUM ENERGY NUCLEAR FACILITIES

FUNDAMENTAL SYMMETRY EXPERIMENTS

RARE-ISOTOPE BEAMS

Underground Approaches

Accelerator Approaches

Cosmic Approaches

PARTICLE ASTROPHYSICS

OBSERVATIONAL COSMOLOGY

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 85

IfadditionalfundsaremadeavailableforR&DthroughtheRTIcompo-nentofthesubatomicphysicsenvelope,wewouldexpectsomeincreaseinresearchactivitydirectedatthenextgenerationofprojects.Thiswillhelpquenchtheaveragegrowthrateoffundingtotheflagshipprojects,asmembersofthecommunitywillbeexpectedtore-focustheiractivities.Still,onecouldprudentlymakeuseofthenationalinflationrate(averagedoverthelastfiveyears/2006-10)asameasureofwhattheaverageincreasecouldbeinsupportingtheflagshipprojects.Thisaveragerateis1.7percent,1 which representsaneedfortheadditionof$1.0millionperyearinfundingtothesupportprovidedtotheseflagshipprojects,by2016.Thesubatomicphysicsenvelopecannotsustainthepressuretoprovidethisfunding.Thesefundswouldneedtobenewtotheenvelope.

AsshowninTableA,theoverallimpactofthevariouspressuresonthesubatomicphysicsenvelopeforresearchsupportwouldrequireaninjectionof$3.5millionbytheendofthefiveyearscoveredinthisplan.Thedevelop-mentworktowardsnext-generationprojectsmayplacefurtherdemandsthatcannotyetbefullyquantified.Werecognizethatthisischallengingintheexistinggovernmentfundingenvironment,butarecommittedtoworkingwithallrelevantpartiestogarnerincreasedsupportforNSERC’sDiscoveryprogramsingeneral,andforthesubatomicphysicsenvelopeinparticular.

Table A: Summary of critical funding needs for the NSERC subatomic physics envelope over the next five years

Project

PermanentFundingIncreaseNeededfortheSubatomicPhysicsEnvelope

Restore funding for R&D through RTI funding to 15% of the subatomic physics envelope

$2.5 million

Funding to reap scientific reward from investments in flagship projects

$1.0 million

Total $3.5 million

New opportunities

Thereareexcitingopportunitiesfornext-generationprojectsconsistentwiththefocussedobjectivesoftheCanadiansubatomicphysicscommunity,andeachhasasignificantcostwhichmustbegintobeaddressedwithinthenext5to10yearsoropportunitieswillbelost.TheseprojectswillrequirebothcapitalfundingandR&Dsupport.AsummaryofthecapitalcostscanbefoundinTableB.

1StatisticsCanadaConsumerPriceIndex—HistoricalSummary,http://www40.statcan.ca/l01/cst01/ECON46A-eng.htm

86 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Table B: Capital costs required from various agencies to develop and participate in new opportunities

DirectCapitalCost2

(Estimated)ApproximateTimeframe

ATLAS Upgrade $9 million 2014-16

SuperB $2 million 2013-15

T2K upgrade $1 to 2 million 2013-15

EXO $15 million 2015-18

TheR&DofCanadiancomponentsfortheseexperimentswillneedtobefundedthroughtheNSERCRTIGrantsasjustpresented.Whenitcomestothefinalpurchaseofcapitalequipment,EXOispotentiallyaCFI-fundedproject(assumingEXOissitedatSNOLAB)underexistingprecedents.TheotherthreearesubjecttoclarificationonCFIfundingofoffshoreprojects.Inallcases,theenvelopehaslosttheflexibilitytoabsorbthefundingofthefullcapitalcontributionsasitdidforATLAS,T2K,BaBar,andseveraldetectorsrelatedtoISAC,evenifthefundsavailableareincreasedforRTIapplicationsinthesubatomicphysicsenvelope,asproposedhere.IfdevelopmentoftheseprojectsrequiresinfrastructuresupportfromTRIUMF,thereneedstobefurthercoordinationwiththelaboratoryinordertosecurethatsupport.

Wemustemphasizethattheseinitiativeswillallincreasetheresearchpoten-tialforCanadiansubatomicphysics,butseizingthatpotentialwillrequireincreasedresearchcapacity.Therewillbeaneedforenhancedresearchsupportassociatedwiththedevelopment,constructionand,ultimately,discoveryphasesoftheseprojects.

TRIUMFispreparingforARIELPhaseII.3Thisprojectwillincrease(three-fold)thesimultaneousbeamstoexperimentsinISACandISAC-II.ThiswouldnotnecessarilytripletheresearchneedsoftheISACgroups,butwouldcertainlyincreasethemiftheyaretoexploittheadvantagesARIELpresentstoCanada.AbettersenseoftheseneedswillbedevelopedthroughthenextTRIUMFfive-yearplanningexercise,whichwillbeginsoon.Itmay,infact,bepossibleforTRIUMFtoprovidedirectguidancetoNSERCabouttheadditionalresearch-supportneedsarisingfromARIELPhaseII.

TheATLASandT2Kupgradeswouldbeundertakenbytheexistinggroups.Thenewexperimentalinitiativesonthehorizon—SuperBandEXO—willalsorequirenewresearchsupport.WecananticipatethatSuperBwouldlikelyrequirefundingatleastconsistentwithBaBarfundingatitspeak(about$1millionperyear)whenitreachesfullinstallationandoperationphases.EXOissomewhatmoredifficulttopredict,asmanydecisionsarerequiredbeforethescopeofCanadianparticipationcanbedetermined.

2 FundingestimatesfromtheInstituteofParticlePhysics(IPP)brief3PhaseIoftheARIELprojectisalreadyfundedthroughcontributionsfromtheGovernmentofCanadaandtheGovernmentofBritishColumbia.UndertheunderstandingbetweenTRIUMFandNSERC,resourcestocompleteARIELPhaseIIwillcomefromoutsideNSERCwithcontributionsfromIndustryCanada,otheragenciesoftheGovernmentoftheCanada,andinternationalinvestments.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 87

Appendix

The Long-Range Plan for Canadian Subatomic Physics: 2011-16

Terms of Reference

I. Context

UnderNSERC’saegis,theCanadiansubatomicphysicscommunityestablishesitsscientific,andthusfunding,prioritiesthroughfive-yearLong-RangePlans(LRPs).TheseplansadviseNSERCandtheSubatomicPhysicsEvaluationSectiononthecommunity’sprioritiesforbothcurrentandfutureendeavours.ThemostrecentLong-RangePlancoveredtheperiod2006-11,inadditiontoprovidinganassumption-basedforecastfortheperiod2011-16.Sincethen,thetimelinesofsomeexperimentsandfutureprojectshaveevolved,newfundingformajorequipmenthasbeensecured,andTRIUMF’snewfive-yearplanhasbeendeveloped(anditsfundingshouldbeknowninearly2010).Newresearchopportunitiesmayalsohaveemerged.AnewLRPexercisewillbeconducted.Itwillcovertheperiod2011-16andincludealookaheadto2021.

II. Committee

TheLRPprocesswillbedrivenbytheCanadiansubatomicphysicscom-munity.Acommitteewillbeaskedtoreviewthiscommunity’sinputandtoformulatetheLRP.TheLRPCommitteewillbecomposedofanappropri-atenumberofexpertswhowillcoverthemainsub-disciplinesreviewedbyNSERC’ssubatomicphysicsEvaluationSection,includingbothexperimen-talandtheoreticalaspects—nuclearphysics,nuclearastrophysics,physicsofelementaryparticlesandfields,andparticleastrophysics.TheCommitteewill be chaired by a senior member of the research community with an extensiveknowledgeoftheCanadianandinternationalsubatomicphysicsresearchenvironments.ThemembershipmayhavesomeoverlapwiththatofthepreviousLRPCommitteetoensurecontinuity.

88 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

TheLRPCommitteewillalsoincludeexofficiomemberswhowillonlybeobserversandresourcesfortheothermembers.Theseexofficiomembersare:• theChairofthesubatomicphysicsEvaluationSection;• theDirectoroftheCanadianInstituteofNuclearPhysics;• theDirectoroftheInstituteofParticlePhysics;and• TRIUMF’sAssociateDirector.

Observersfromotheragencieswillbeinvitedtoattend.

TheLRPCommitteemaychoosetoholdcertainclosedsessionswithoutthepresenceofexofficiomembersorobservers.

NSERCrepresentativeswillactasobserversandresourcesatalltimes.

III. Mandate

Takingintoaccount:theever-increasinginternationalizationofprojectsandcollaborationsinaddressingthefundamentalquestionsofsubatomicphys-ics;theconcurrentrequirementtomaintainandfurtherdevelopworld-classdomesticresearchprogramsandinfrastructure;theestablishedexpertiseandstrengthsoftheCanadiancommunity;andtherecognitionofthefactthattheCanadiansubatomicphysicscommunitycannotbeinvolvedinallresearchendeavours(asstatedbythelastLRPCommitteeinitsreport).TheCommitteeisaskedtoidentifysubatomicphysicsscientificventuresandprioritiesthatshouldbepursuedbythecommunityonafive-to10-yearhorizonthatwouldensurecontinuousCanadianglobalscientificleadership.Budgetaryestimatesmustalsobeprovided,includingfundingrangesforpri-oritizedendeavours.Theserangesshouldincludefundinglevelsthatwouldallow for a restrained, yet efficient, contribution to the ventures, and levels thatwouldenableamoreextensivecontribution.

TheCommittee’sassessmentwillbebasedonabroadconsultationwiththeCanadiansubatomicphysicscommunity.Itmustbeguidedonlybythecurrentandfuturescienceinsubatomicphysics.TheCommitteewillhavetoassessthefeasibility,technicalreadinessandrisksassociatedwithparticularendeavours.Itiscrucialthatsuchanassessmentbemadethroughafairandrigorousprocess.

TheCommitteeisalsoaskedtoconsideranddiscussfactorsthataffectthesubatomicphysicscommunityandtomakerecommendationsonhowtopossiblylessenanynegativeimpactstheymayhave,orenhanceanypositiveones.Examplesofsuchfactorsinclude,butarenotlimitedto,NSERCpro-gramsotherthanthoseinthepurviewofthesubatomicphysicsEvaluationSection,therelationshipbetweenNSERCandotheragenciesandorganiza-tions,andtheactivitiesofnationalresearchorganizations.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 89

IV. Process and Timeline

TheLRPCommitteemembershipwillbecompletedbytheendof May2010,andakick-offmeetingwillbeheldimmediatelyafter.

TheCanadianInstituteofNuclearPhysics(CINP)andtheInstituteofPar-ticlePhysics(IPP)willbetaskedtopreparebriefsfortheLRPCommittee.Thesebriefsmustsummarizethescientificvisionandprioritiesputforwardbythesub-communitiestheyrepresentandserve,includingbothexperimen-talandtheoreticalfacets.Overallrecommendationsmayalsobeincludedinthebriefs.Itisexpectedthateachinstitutewillbroadlyconsultwiththesub-communitiesthroughvariousformats,andensureafairandrigorousprocess.ThebriefsaretobesubmittedtoNSERCnolaterthanSeptember1,2010,andtheywillbeforwardedtotheLRPCommittee.TheCNIPandIPPmustensure that the briefs are available to the entire community through their publicWebsites.Eventualresponsestothebriefsbyindividualsororganiza-tionswouldbeacceptedandshouldbesubmittedtoNSERC;theywouldbeforwardedtotheLRPCommittee.Throughouttheprocess,theLRPCom-mitteemayalsosolicitadditionalinputfromvarioussources,asitseesfit.

TheLRPCommitteewillholdpublicconsultations(townhallmeetings)duringthefallof2010,afterreceivingthebriefs.Face-to-faceorphonemeet-ingsoftheCommitteewillthenbehelduptothespringof2011.AfinalreportistobeprovidedtoNSERCnolaterthanSeptember1,2011.

V. Deliverables

TheLRPCommitteewillsubmititsfinalreporttoNSERCnolaterthanSeptember1,2011.Thereportwillbepubliclyreleased,thereafter,inbothofficial languages.

VI. Conflicts of Interest and Confidentiality

AllmembersmuststrictlycomplywiththetermsofthestatementonethicsforNSERCselectioncommitteesandpanels.Moreover,forthepurposeofthisexercise,amemberwillbeconsideredtobeinasituationofconflictofinterestduringadiscussiononprioritizationofaspecificendeavourthatwoulddirectlybenefitthememberorthemember’sorganization.

VII. Financial Support

NSERCwillprovidetheLRPCommitteewithfinancialsupportforthepurposeoforganizingappropriatemeetings,forthetravelofCommitteememberstothesemeetingsandforthepreparationofthereport.

90 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Long-Range Planning Committee Membership

• MalcolmButler(Chair) CarletonUniversity Nuclearphysicstheory;neutrinoastrophysics;low-energytestsofquan-

tumchromodynamics;astrophysics• Äystö,Juha UniversityofJyväskylä,Finland Experimentalnuclearphysics;nuclearstructure;reactionsanddecays

ofnucleifarfromstability;radioactiveionbeams;heavy-ionphysics;techniquesofnuclearspectroscopy;appliedacceleratorphysics;nuclearastrophysics;atomicphysics;high-precisionmeasurementsonfundamen-talconstantsandinteractions;laser-assistedmethodsinnuclearphysics;environmental detection methods

• Burgess,Clifford McMasterUniversity/PerimeterInstituteforTheoreticalPhysics Formaltheory;high-energyparticletheory;stringsandbranes;effective

fieldtheorytechniques;DarkMatterandDarkEnergy;cosmology• Garrett,Paul UniversityofGuelph Experimentalnuclearphysics;nuclearspectroscopy;gamma-ray,neutron,

andcharged-particledetection;nuclearinstrumentation;nuclearreac-tions;betadecay;collectiveandsingle-particleexcitationsinnuclei

• Hallin,Aksel UniversityofAlberta Experimentalhigh-energyphysics;DarkMatter;neutrinophysicsand

astrophysics;particleastrophysics• Huber,Garth UniversityofRegina Experimentalintermediateenergynuclearphysics;studiesofhadronic

structure;quantumchromodynamics• Karlen,Dean UniversityofVictoria Experimentalhigh-energyphysics;detectordevelopment;linearaccelera-

tors;neutrinoproperties• Luke,Michael UniversityofToronto Elementaryparticletheory:bquarkphysics;quantumchromodynamics;

heavyquarks;effectivefieldtheories

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 91

• O’Neil,Dugan SimonFraserUniversity Experimentalhigh-energyphysics;fundamentalparticlesandtheirinter-

actions;proton-antiprotoncollisions;ATLASexperiment;highperfor-mancecomputing

• Robertson,Steven McGillUniversity/InstituteofParticlePhysics Experimentalhigh-energyphysics;collider-basedexperimentalsearches

forevidenceofphysicsbeyondtheStandardModel;searchesforraredecaysofBmesons;driftchamberresearchanddevelopment;High-LevelTriggerphysicsalgorithmdevelopment

• Scholberg,Kate DukeUniversity,U.S. Experimentalhigh-energyphysics;astrophysics;cosmology;lowback-

ground(underground)experiments;neutrinophysics

92 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Glossary

ALPHA(AntihydrogenLaserPHysicsApparatus):AnexperimentatCERNtrappingandstudyingthepropertiesofantihydrogenatoms.

ANTARES(AstronomywithaNeutrinoTelescopeandAbyssenvironmentalRESearch):Ahigh-energyneutrinodetectionexperimentthatisbeingbuilt50kilometresoffthecoastofFrance,about2,400metresbelowsealevel.

ARIEL(AdvancedRareIsotopELaboratory):Aprojecttobroaden TRIUMF’scapabilitiestoproducerareisotopebeamsandtoshowcasenewCanadianacceleratortechnology.

ATLAS(AToroidalLHCApparatuS):AparticlephysicsexperimentattheLargeHadronCollideratCERN.

ATRAP(AntimatterTRAP):AnexperimentatCERNtrappingandstudyingthepropertiesofantihydrogenatoms.

BaBar(B-Bbardetector):ExperimentattheSLACNationalAcceleratorLaboratorytostudythepropertiesofBandBbarmesonsathigh-precision.

BNL(BrookhavenNationalLaboratory):Oneof10nationallaboratoriesoverseenandprimarilyfundedbytheOfficeofScienceoftheU.S.Depart-mentofEnergy,locatedinUpton,NewYork,U.S.

CALICE(CAlorimeterfortheLInearColliderExperiment):AdetectorproposedandunderdevelopmentfortheInternationalLinearCollider.

CARIBU(CAliforniumRareIsotopeBreederUpgrade):Afacilityforcreatingneutron-richrareisotopesatArgonneNationalLaboratoryinIllinois,U.S.

CDF(ColliderDetectoratFermilab):Anexperimenttostudyproton-anti-protoncollisionsattheTevatron,locatedattheFermilabinIllinois,U.S.

CDMS(CryogenicDarkMatterSearch):ADark-Matterexperiment currentlybasedattheSoudanUndergroundLaboratoryinMinnesota,U.S.

CERN(CentreEuropeanpourlaRechercheNucleaire):TheEuropeanOrganizationforNuclearResearch,basedinGeneva,Switzerland.

CINP:CanadianInstituteofNuclearPhysics

CLEAN(CryogenicLowEnergyAstrophysicswithNoblegases):ADarkMatterexperimentbeinginstalledatSNOLAB.

CLEO:AnearlyexperimenttostudythepropertiesofmesonswithbquarksatCornellUniversityintheU.S.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 93

CLIC(CompactLinearCollider):AnR&Dprojectaimedatdevelopingcost-effectivetechnologyfortheInternationalLinearCollider.

CMS(CompactMuonSolenoidexperiment):AparticlephysicsexperimentattheLargeHadronCollideratCERN.

COUPP(ChicagolandObservatoryforUndergroundParticlePhysics): ADarkMatterexperiment,basedattheFermilabinIllinois,U.S.

CPT(CanadianPenningTrap):TheCPTspectrometerisdesignedtopro-videhigh-precisionmassmeasurementsofshort-livedisotopes.ItislocatedattheArgonneNationalLaboratoryinArgonne,Illinois.

D0:Namedforitslocationontheacceleratorring,anexperimentto studyproton-antiprotoncollisionsattheTevatron,locatedattheFermilabinIllinois,U.S.

DEAP(DarkmatterExperimentusingArgonPulse-shapediscrimination): ADarkMatterexperimentbasedatSNOLAB.

DESCANT(DEuteratedSCintillatorArrayforNeutronTagging):Aneu-trondetectorarraytobeusedatISAC.

DESY(DeutschesElektronen-SYnchrotron):Aparticleacceleratorfacility,basedinHamburg,Germany.

DRAGON(DetectorofRecoilsAndGammasOfNuclearreactions):Adetectordesignedtomeasuretheratesofnuclearreactionsimportantinastrophysics,basedatISAC-I.

EMMA(ElectroMagneticMassAnalyzer):AdevicebeingconstructedtostudytheproductsofnuclearreactionsinvolvingrareisotopesatISAC-II.

EXO(EnrichedXenonObservatory):Anexperimentseekingtomeasureneutrinoless double beta-decay.

FAIR(FacilityforAntiprotonandIonResearch):Anacceleratorfacilityforstudyingnuclearstructureandnuclearmatter,basedatGSI.

Fermilab:TheFermiNationalAcceleratorLaboratoryinIllinois,U.S.

FRIB(FacilityforRareIsotopeBeams):Anewuserfacilityfornuclear science,operatedbyMichiganStateUniversity,U.S.

FrPNC(FranciumParityNon-Conservation):Anexperimenttostudyatomicparitynon-conservationinfrancium,basedatISAC-I.

94 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

GRIFFIN(Gamma-RayInfrastructureForFundamentalInvestigationsofNuclei):AdetectoratISAC-Iforstudyingnucleardecaysathighresolution.

GSI:TheGSIHelmholtzCentreforHeavyIonResearchinDarmstadt,Germany.

Hyper-Kamiokande:Aproposedprojectforahalf-megatonwaterCherenkovdetectorattheKamiokaObservatoryinJapan.

IceCube:Ahigh-energyneutrinodetectorembeddedintheiceattheSouthPole.

ILC(InternationalLinearCollider):Aproposedelectron-positronlinearcollider,currentlyunderresearchanddevelopment.

IPP:InstituteofParticlePhysics(Canada).

ISAC(IsotopeSeparatorandACcelerator):Arareisotopeacceleratorfacility,basedatTRIUMF.Therearetwoexperimentalhalls—ISAC-IandISAC-II.

ISOLDE(On-LineIsotopeMassSeparator):Afacilityforthestudyoflow-energybeamsofradioactiveisotopesatCERN.

JeffersonLab:TheThomasJeffersonNationalAcceleratorLaboratoryinVirginia,U.S.

J-PARC( JapanProtonAcceleratorResearchComplex):AnacceleratorfacilityfornuclearandparticlephysicsresearchinJapan.

KEK(KouEnerugiKenkyuKiko):Ahigh-energyacceleratorfacilityinJapan.

K2K(KEKtoKamioka):Along-baselineneutrinooscillationexperiment inJapan.

LBNE(LongBaselineNeutrinoExperiment):AproposedexperimenttostudyneutrinooscillationsbetweenFermilabandtheSandfordUnder-groundLaboratoryinNorthDakota,U.S.

LEP(LargeElectronPositronCollider):Aretiredhigh-energyelectron-positronacceleratorbasedatCERN.

LHC(LargeHadronCollider):Theworld’shighestenergyparticleaccelerator,basedatCERNinSwitzerland.

MAMI(MainzMicrotron):Anelectronacceleratorfacility,basedinMainz,Germany.

Majorana:Anexperimentwhoseobjectiveistostudydoublebeta-decayin76Ge.

REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE 95

MINOS(MainInjectorNeutrinoOscillationSearch):Aneutrinooscillationexperiment,basedatFermilabinIllinois,U.S.

MOLLER:Anexperimenttomeasuretheparity-violatingasymmetryinelectron-electron(Møller)scatteringatJeffersonNationalLaboratoryinVirginia,U.S.

PEP-II(PositronElectronProject):Anelectron-positroncolliderfacilitybasedattheSLACNationalAcceleratorLaboratoryinCalifornia,U.S.

PICASSO(ProjectInCAnadatoSearchforSupersymmetricObjects):ADarkMatterexperimentbasedatSNOLAB.

QCD(QuantumChromoDynamics):Thetheorydescribingtheinterac-tions between quarks and gluons.

RCNP(ResearchCentreforNuclearPhysics):Anationalcentrefornuclearphysics,basedinOsaka,Japan.

RHIC(RelativisticHeavy-IonCollider):Ahigh-energyheavy-ioncolliderfacilitybasedatBrookhavenNationalLaboratoryinNewYork,U.S.

RIBF(RareIsotopeBeamFactory):Anewuserfacilityfornuclearscience,locatedatRIKEN.

RIKEN:AJapaneseorganizationthatcarriesouthigh-levelexperimentalandresearchworkinawiderangeoffields—includingphysics,chemistry,medical science, biology and engineering.

SLACNationalAcceleratorLaboratory:Originallyaparticlephysicsresearchcenter,SLACisnowamulti-purposelaboratoryforastrophysics,photonscience,acceleratorandparticlephysicsresearchbasedinStanford,California.

SNO(SudburyNeutrinoObservatory):AnexperimentbasedinSudbury,Canada,thatproved,conclusively,thatneutrinoschangeflavour(oscillate)asthey travel from the Sun to the Earth.

SNO+:AnexperimentunderconstructionatSNOLAB,whoseobjectiveistousetheinfrastructurefromSNOtostudydoublebeta-decayandlower-energy solar neutrinos using a liquid scintillator instead of heavy water.

SNOLAB:Anundergroundsciencelaboratoryspecializinginneutrinoanddarkmatterphysics,basedinSudbury,Canada.

SPIRALII:Aheavy-ionacceleratorfacilityinCaen,France.

SuperB:Anext-generationBmesonfactory,tobebuiltinItaly.

SuperCDMS:AproposalforalargerversionoftheCDMSexperiment.

96 REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

Super-K(Super-Kamiokande):AwaterCherenkovdetectorusedforneutrinophysicsandprotondecay,basedattheKamiokaObservatoryinJapan.

T2K(TokaitoKamioka):Aparticlephysicsexperimentstudyingneutrinooscillations,basedinJapan.

TACTIC(TRIUMFAnnularChamberforTrackingandIdentificationofChargedparticles):AdeviceusedinconjunctionwithTUDA.

TEVATRON:Thesecond-highestenergyparticleacceleratorintheworld,locatedatFermilabinIllinois,U.S.

TIGRESS(TRIUMF-ISACGamma-RayEscape-SuppressedSpectrometer):AdetectoratISAC-IIforstudyingnucleardecaysathighresolution.

TITAN(TRIUMF’sIonTrapforAtomicandNuclearscience):AniontrapfacilityatISACforhigh-precisionmassmeasurementsofrareisotopes.

TRINAT(TRIUMFNeutralAtomTrap):Adevicetotrapandstudytheradioactivedecaysofneutralatoms,basedatISAC-I.

TRIUMF:Canada’snationallaboratoryforparticleandnuclearphysics,basedinVancouver,Canada.

TUDA(TRIUMFU.K.DetectorArray):Adetectordesignedtomeasuretheratesofnuclearreactionsimportantinastrophysics,basedatISAC-I.

TWIST(TRIUMFWeakInteractionSymmetryTest):Anexperimenttomeasurethedecaypropertiesofmuonstohighprecision.

UCN(Ultra-ColdNeutron):ACFI-fundedfacilitytostudyneutronprop-ertiesathighprecision,tobesitedatTRIUMF.

VECC(VariableEnergyCyclotronCentre):R&DunitofIndia’sDepartmentofAtomicEnergy;oneoftheconstituentinstitutionsofHomiBhabhaNationalInstitute.

VERITAS(VeryEnergeticRadiationImagingTelescopeArraySystem): Adetectorforhigh-energygammaraysfromastrophysicssources,basedinArizona,U.S.

WIMP(WeaklyInteractingMassiveParticle):Aclassofhypothetical particlesthatisacandidateforthenon-baryonicDarkMatter.

XEP(XenonElectroluminescencePrototype):Aprototypedetectorstudyingthegas-phaseoptionfortheEXOexperiment.

ZEUS:AnexperimentatDESYstudyingelectron-protoncollisionsathigh energy.

Photo Credits

Courtesy Cliff Burgess, McMaster

University/Perimeter Institute

Page 10

© CERN

Page 38

Courtesy DESY, Hamburg

Page 72

Courtesy ESA/Hubble

Page 15

Courtesy FNAL Visual Media Services

Page 61

Courtesy the GlueX Collaboration

Page 37, 63

Courtesy Roy Langstaff, University of

Victoria/TRIUMF

Page 27

Courtesy Perimeter Institute

Cover, Page 24

Courtesy the Qweak Collaboration

Page 20

Courtesy SLAC National Accelerator

Laboratory

Page 32

Courtesy the SNO Collaboration

Pages 23, 28

© SNOLAB

Pages 45, 46

Courtesy C. So

Page 9

Courtesy the T2K Collaboration

Page 42

© TRIUMF

Pages : 3, 4, 19, 50, 57, 58, 65

Natural Sciences and Engineering Research Council

350 Albert Street

Ottawa, Ontario

K1A 1H5

www.nserc.gc.ca

For further information:

Malcolm Butler, Dean of Science

Carleton University

Chair of the 2011 Long-Range Planning Committee

(613) 520-4388

[email protected]

Natural Sciences and Engineering Research Council of Canada

Conseil de recherches en sciencesnaturelles et en génie du Canada