60
Offshore Wind: Foundations for Growth 29 November 2011

20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Embed Size (px)

DESCRIPTION

Meest recente rapport van Bloomberg en Rabobank over offshore wind energie

Citation preview

Page 1: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Offshore Wind: Foundations for Growth

29  November  2011

Page 2: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

2

Foreword

Sipko  Schat  &Michael  Liebreich

Section  1  

Executive  summary  

Section  2    

Support    mechanisms  &    political  risk  2.1 EU policy 142.2 Role of o!shore wind according to NREAPs 152.3 National policy 16

Section  3    

Costs  &    supply  chain  

3.1. Levelised cost of energy (LCOE) 273.2. Capital cost projections 283.3. Supply chain 293.4. Improved "nancing terms 363.5. Change in project environment 37

Contents

p05

p08

p12 p24

Page 3: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

3

Section  4  

Market  size    projections  

4.1. Scenarios 404.2. Markets 404.3. Forecast in context 43

Section  5    

Funding  require-­‐ment  &  potential  investors  

5.1 Investment required 465.2 Equity investors 465.3 Debt providers 495.4 Capital structures 505.5 Investment volume by investor type 52

Appendices  

Appendix A: O!shore Wind Cost Model 56Appendix B: Forecast methodology 58

Colofon

p39 p44

p59

p54

Page 4: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

4

Table  of  Figures

Figure 1 Electricity generation from renewable sources according to NREAPs, 2010 and 2020 (TWh) 15

Figure 2 LCOE of o!shore wind and selected technologies (EUR/MWh) 15Figure 3 Classic EEG 2009 tari! Germany (EUR/MWh) 19Figure 4 Compression EEG 2012 tari! Germany (EUR/MWh) 19Figure 5: UK o!shore wind project LCOE in Central Scenario, 2012-20 (EUR/MWh) 26Figure 6 Experience curves for o!shore and onshore LCOE as a function

of cumulative capacity installations 27Figure 7 Experience curves for o!shore and onshore LCOE over time (EUR/MWh) 27Figure 8 Actual and modelled UK project costs, 2010-20 (EUR/MW) 28Figure 9 Actual and modelled German project costs, 2010-20 (EUR/MW) 28Figure 10 Annual o!shore wind turbine installations by manufacturer, 2011-15 29Figure 11 Expected commercial launches for o!shore wind turbine models 30Figure 12 Annual o!shore wind foundation installations by type, 2010-20 32Figure 13 Estimated cost of foundations for 3MW turbines by water depth, 2011

(EUR/unit & metres) 32Figure 14 Estimated cost of foundations for 5MW+ turbines by water depth, 2011

(EUR/unit & metres) 32Figure 15 Estimated number of operating TIVs by crane capacity, 2010-13 33Figure 16 European high voltage export cable supply/demand balance by year

of cable manufacture, 2010-15 (km) 34Figure 17 Annual European high voltage export cable installations by manufacturer,

2011-14 35Figure 18 UK project change in LCOE due to change in capital structure

and risk profile, 2012-20 36Figure 19 Total cost of debt for euro area onshore wind project 37Figure 20 Project water depth and distance from shore by project status, 1991-2015 38Figure 21 EU o!shore wind installations, 2010-20 (MW) 40Figure 22 Annual o!shore wind installations by country, 2010-20,

BNEF/Rabobank Central scenario (MW) 41Figure 23 Central scenario total o!shore wind investment by country, 2012-20 46Figure 24 Entry and exit timings for equity investors with target risk adjusted returns (%) 47Figure 25 Project finance capital structures and loan guarantee coverage 2006-2011 51Figure 26 Annual investment in o!shore wind by year of commissioning and investor type,

2012-15 by existing commitments and 2016-2020 forecast 53

Table  of  Tables

Table 1 Role of o!shore wind in the EU according to the NREAPs 16Table 2 O!shore wind RO remuneration to 2017 (GBP/MWh) 18Table 3 Details of extension period 19Table 4 SDE premium for 600MW Bard Nederland (EUR/MWh) 21Table 5 Belgian o!shore wind subsidy based on GCs (EUR/MWh) 22Table 6 French tender tari!s (EUR/MWh) 23Table 7 Notable foundation manufacturers 31Table 8 TIV owners and operators 34Table 9 2020 forecast scenarios 41Table 10 Danish tender results 42Table 11 Policy risks in North Sea countries for BNEF/Rabobank Central scenario 43Table 12 Equity investor profiles 49Table 13 Debt investor profiles 50Table 14 Potential capital structures of o!shore wind farms 51Table 15 Project turbine prices by manufacturer and turbine, 2018 56Table 16 Foundation costs by type, 2018 (EURm per unit) 56Table 17 High voltage cable costs, 2018 57Table 18 TIVs under construction with estimated delivery date 57

Page 5: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Foreword

Foto: Ballast Nedam

5

Page 6: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

6

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

The  rationale  for  fuelling  the  future  with  renewable  energy  has  never  

been  greater.  Only  this  month  the  Executive  Director  of  the  Interna-­‐

tional  Energy  Agency  called  for  drastic  policy  moves  in  energy  genera-­‐

high-­‐carbon  energy  system .  The  IEA  projects  that  demand  for  energy  

will  grow  by  a  third  between  2010  and  2035,  with  coal  use  rising  by  

65%.  The  world  will  increasingly  come  to  rely  on  a  small  number  of  

Middle  Eastern  and  North  African  countries,  which  are  forecast  to  sup-­‐

ply  90%  of  the  required  output  growth.  The  IEA  considers  that  we  are  

on  track  for  unprecedented  climate  change  of  between  3.5°C  to  6°C,  

depending  on  whether  more  stringent  policies  will  be  introduced.  

Although  their  consumption  is  at  a  much  higher  volume,  global  subsi-­‐

dies  for  fossil  fuels  are  still  estimated  at  over  six  times  those  for  renew-­‐

ably  energy.    

Europe  has  been  at  the  forefront  of  the  transition  to  renewable  energy  

sources.  Now  the  market  has  expanded  in  the  US  and  China,  and  suc-­‐

cess  has  followed  scale:  onshore  wind  power,  for  instance,  has  reached  

grid  parity  in  a  number  of  markets,  and  even  in  cloudy  Holland,  a  num-­‐

ber  of  research  institutes  this  month  calculated  photovoltaics    

are  cheaper  than  conventional  electricity.  

Offshore  wind  energy  has  a  big  part  to  play  in  the  transition  towards  a  

more  sustainable  future:  with  a  growth  rate  in  new  installed  cumula-­‐

tive  capacity  of  32%  targeted  between  2010  and  2020  under  the  imple-­‐

mentation  plans  of  the  EU’s  20-­‐20-­‐20  Directive,  offshore  wind  has  one  

F O R E W O R D

1    http://www.iea.org/press/pressdetail.asp?PRESS_REL_ID=426

2    Amongst  which  KEMA  and  ECN,  http://www.kema.com/nl/news/pressroom/press-­‐releases/2011/Particuliere_zonnestroom_in_Nederland_kan_in_2020_  verveertigvoudigen.aspx

of  the  highest  renewable  energy  growth  rates.  However,  as  a  young  

technology,  it  is  still  relatively  more  expensive  than  most  other  alter-­‐

natives  on  a  per  MWh  basis.  The  offshore  wind  industry  recognises  

the  need  to  lower  costs,  and  thereby  subsidies,  over  time  to  secure  a  

sustainable  future  for  offshore  wind.  The  industry  believes  that  with  

-­‐

tions  should  be  possible,  just  as  have  been  achieved  in  other  technolo-­‐

gies.  Rabobank  subscribes  to  this  opinion.  Europe  is  leading:  virtually  

all  offshore  wind  farms  so  far  have  been  built  here.  In  the  Netherlands,  

a  strong  local  industry  has  also  grown  on  the  back  of  the  traditional  

North  Sea  oil  and  gas  exploration  and  dredging  expertise.  This  could  

become  an  even  bigger  market  in  line  with  the  current  capacity  instal-­‐

lation  forecasts.

Rabobank  is  keen  to  work  closely  together  with  all  relevant  stakehold-­‐

ers,  corporates,  institutional  investors  and  governmental  agencies  to  

create  a  long  term  viable  offshore  wind  sector.

 

Bloomberg  New  Energy  Finance  provides  insight,  analysis,  news  and  

data  into  all  clean  energy  markets  including  offshore  wind.

Sipko SchatMember of the Executive Board Rabobank Group

Page 7: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

7

of  the  highest  renewable  energy  growth  rates.  However,  as  a  young  

technology,  it  is  still  relatively  more  expensive  than  most  other  alter-­‐

natives  on  a  per  MWh  basis.  The  offshore  wind  industry  recognises  

the  need  to  lower  costs,  and  thereby  subsidies,  over  time  to  secure  a  

sustainable  future  for  offshore  wind.  The  industry  believes  that  with  

-­‐

tions  should  be  possible,  just  as  have  been  achieved  in  other  technolo-­‐

gies.  Rabobank  subscribes  to  this  opinion.  Europe  is  leading:  virtually  

all  offshore  wind  farms  so  far  have  been  built  here.  In  the  Netherlands,  

a  strong  local  industry  has  also  grown  on  the  back  of  the  traditional  

North  Sea  oil  and  gas  exploration  and  dredging  expertise.  This  could  

become  an  even  bigger  market  in  line  with  the  current  capacity  instal-­‐

lation  forecasts.

Rabobank  is  keen  to  work  closely  together  with  all  relevant  stakehold-­‐

ers,  corporates,  institutional  investors  and  governmental  agencies  to  

create  a  long  term  viable  offshore  wind  sector.

 

Bloomberg  New  Energy  Finance  provides  insight,  analysis,  news  and  

data  into  all  clean  energy  markets  including  offshore  wind.

Sipko SchatMember of the Executive Board Rabobank Group

Michael LiebreichCEO Bloomberg New Energy Finance

Page 8: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

8

Page 9: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Section  1Executive summary

Foto: Ballast Nedam

9

Page 10: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

10 S E C T I O N 1 E X E C U T I V E S U M M A R Y

17  European  Union  (EU)  countries  plan  to  build  46.4GW  of  offshore  wind  by  2020.  Bloomberg  New  Energy  Finance  and  Rabobank  understand  that  the  magnitude  of  this  build  out  plan  and  the  current  economic  uncertainty  in  Europe  means  that  there  are  a  wide  range  of  opinions  as  to  whether  and  how  the  industry  will  manage  to  achieve  these  goals.  This  report,  launched  at  the  European  Wind  Energy  Association  Offshore  Wind  Conference  in  Amsterdam,  November  2011,  provides  a  roadmap  for  the  industry  and  investors  –  what  supply  chain  players  need  to  do,  how  much  capital  will  be  required,  from  whom  and  at  what  rates  of  return;  and  whether  the  political  and  regulatory  situation  in  place  enables  the  innovation  and  dynamism  of  private  enterprise  to  deliver  the  cost  reductions  and  investment  volumes  required  by  society.  In  our  Central  scenario  we  project  offshore  wind’s  levelised  cost  of  energy  (LCOE)  will  fall  by  20-­‐30%  in  real  terms  and  that  as  a  result  35.5GW  offshore  wind  will  be  built  by  2020.  This  entails  a  compound  annual  growth  rate  (CAGR)  of  22.4%  in  2011-­‐20  and  EUR  127bn  invest-­‐ment.  If  cost  reductions  in  offshore  wind  follow  a  similar  path  to  onshore  wind  with  a  26  year  lag,  its  LCOE  will  be  approximately  EUR  112/MWh  by  2020,  EUR  65/MWh  by  2030  and  less  than  EUR  50/MWh  by  2040.  We  have  been  slightly  more  conservative  and  expect  offshore  wind  costs  to  fall  to  EUR  128/MWh  in  2020.  The  period  of  greatest  cost  reductions  in  the  onshore  experience  cost  curve  occurred  in  1991-­‐96.  This  would  transpose  to  2017-­‐22  for  offshore  wind  –  the  period  when  we  expect  a  high  capacity  installation  rate  due  to  UK  Round  3  projects  and  

economies  and  improve  energy  security.  One  such  goal  is  for  20%  of  energy  consumption  to  come  from  renewable  sources  by  2020,  putting  them  squarely  at  the  core  of  the  EU’s  energy  and  climate  strategy.  In  2008  renewables  accounted  for  just  10%  of  energy  consumption  across  the  EU-­‐27,  according  to  the  European  Commission.  In  January  2011,  the  European  Commission  (EC)  said  that  the  EU  should  be  able  to  meet  its  renewables  target,  provided  

46.4GW  of  offshore  wind  operating  in  2020,  which  would  constitute  9.6%  of  renewable  energy  capacity  and  meet  4.1%  of  the  EU’s  gross  electricity  generation.  This  would  entail  new  installations  of  43.4GW  of  capacity  between  2011  and  end-­‐2020.

Germany  –  and  three  secondary  markets  –  the  Netherlands,  Belgium  and  Denmark.  Each  has  tariff  systems  for  offshore  wind  and  varying  degrees  of  political  support  behind  the  long-­‐term  growth  of  the  industry.  Political  support  levels  and  returns  available  to  investors  in  the  major  markets  are  adequate  to  strong,  with  slightly  higher  political  risk  in  the  UK  than  Germany  offset  by  higher  returns.  In  other  markets,  political  risk  varies  considerably  from  high  in  Netherlands  to  low  in  Denmark  –  where  high  will  result  in  lower  volumes  of  construction.

installations  to  2020:  the  UK  and  Germany.  Cost  changes  are  likely  to  include  step  changes  

project  locations.  In  the  UK  we  expect  the  LCOE  to  fall  22%  from  EUR  165  to  EUR  128/MWh  between  2011  and  2020  driven  by  a  doubling  in  size  of  the  turbines  (3.6MW  to  

Page 11: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

11

7MW),  the  mass  production  of  standardised  jacket  foundations  suitable  for  45m  water  

and  maintenance.  On  a  per  MW  basis  we  expect  capital  costs  to  drop  3%  from  2012-­‐20.  In  Germany  we  expect  the  LCOE  to  fall  25%  from  EUR  179-­‐133/MWh  by  2020  and  capital  costs  to  decrease  by  17%  from  EUR  4.3m/MW  to  EUR  3.5m/MW.  Although  our  calculations  indicate  a  lower  learning  curve  for  offshore  wind  than  for  onshore  wind,  it  is  possible  that  costs  may  reduce  more  –  or  less  –  quickly  than  we  foresee  today.  

economics,  supply  chain  availability  and  political  risk.    In  our  Central  scenario  government  support  for  offshore  wind  remains  stable  and  there  is  no  reduction  in  tariff  levels.  In  this  environment  we  project  offshore  wind  installations  to  grow  at  a  compound  annual  growth  rate  (CAGR)  of  22.4%  in  2011-­‐20  and  EU  countries  to  commission  35.5GW  of  offshore  wind  by  2020,  generating  115.6TWh  of  electricity,  contributing  3.2%  of  the  EU’s  gross  electricity  demand  and  reaching  77%  of  the  announced  NREAP  offshore  wind  generation  targets.  We  believe  the  NREAP  targets  are  ambitious  

wind  and  associated  grid  connections  is  required  to  build  capacity  between  2012  and  2020.  This  ranges  from  EUR  114bn  in  our  Low  scenario  to  EUR  152bn  in  our  High  scenario.

producers,  private  equity,  project  developers,  turbine  manufacturers,  and  institutional  investors),  a  growing  number  of  commercial  banks  as  debt  providers  and  three  to  four  

wind  assets  through  existing  and  new  deal  structures.  The  primary  investors  will  continue  

opportunity  without  spending  beyond  their  means,  they  will  need  to  bring  on  additional  investors.    Based  on  recent  investment  trends  we  expect  two  groups  to  be  a  key  part  of  this:  institutional  investors  and  secondary  utilities,  which  though  not  primary  investors  are  keen  to  invest  in  offshore  wind  assets  investing  EUR  3.9bn  and  EUR  14.2bn  each  respectively.

From  this  analysis  we  expect  LCOE  to  be  reduced  20-­‐30%,  investment  returns  to  be  adequate  for  investment  volumes  to  drive  installations  of  35.5GW  by  2020  and  establish  offshore  wind  on  a  robust  path  to  further  industrialisation  and  roll  out.

Notes:

returns.

Page 12: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

12

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

Page 13: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

13

Section  2Support mechanisms& political risk

In 2007 all EU countries agreed to the 20-20-20 targets, which aim to decarbonise their economies and improve energy security. One such goal is for 20% of energy consumption to come from renewable sources by 2020, putting them squarely at the core of the EU’s energy and climate strategy. In 2008 renewables accounted for just 10% of energy consumption across the EU-27, according to the European Commission.

Page 14: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

14

Each  EU  country  has  developed  a  National  Renewable  Energy  Action  Plan  (NREAP),  indica-­‐ting  how  they  intend  to  reach  their  renewables  target.  Offshore  wind  is  expected  to  reach  an  installed  capacity  of  46.4GW  contributing  4.1%  of  gross  electricity  generation  in  2020.  In  Janu-­‐ary  2011,  the  European  Commission  (EC)  said  that  the  EU  should  meet  its  renewables  target,  

Offshore  wind  remains  a  new  and  comparatively  costly  form  of  electricity  generation,  making  government  support  critical  to  attracting  the  investment  necessary  to  meet  NREAP  targets.  The  

targets  –  rather  than  reductions  in  these  commitments.  In  the  Netherlands  this  cost  focus  has  had  a  negative  impact  on  support  for  offshore  wind.  In  Germany,  the  UK  and  France  the  lure  of  job  creation,  the  momentum  of  the  industry  and  –  in  Germany’s  case  –  public  opposition  to  nuclear  power  have  instead  bolstered  political  support  for  offshore  wind.

This  section  gives  an  overview  of  the  legislative  framework  and  underlying  goals  which  sup-­‐port  the  build-­‐out  of  offshore  wind  in  the  EU  and  then  examine  the  political  risk,  policy  mecha-­‐nisms,  grid  infrastructure  and  returns  investors  can  expect  across  the  six  countries  in  which  88%  of  offshore  wind  installations  in  the  EU  are  expected  to  be  built  in  2011-­‐20.

2.1 EU policy

2.1.1 EU 20-20-20In  January  2008  the  EC  proposed  the  Energy  and  Climate  Package  which  set  the  legislative  

least  a  10%  share  of  energy  used  for  transport

Focusing  on  renewables,  in  June  2009,  Directive  2009/28/EC  on  the  Promotion  of  the  Use  of  Energy  from  Renewable  Sources  came  into  force.  This  piece  of  legislation  outlined  the  binding  renewables  targets  for  each  member  state,  together  with  reporting  requirements.  Every  coun-­‐try  must  boost  its  share  of  renewables  by  5.5%  on  2005  levels,  with  the  remaining  increase  calculated  on  the  basis  of  per  capita  GDP.  It  may  choose  its  own  ‘mix’  of  renewables  in  order  to  achieve  its  objective.The  targets  apply  to  three  sectors  –  power,  heating  and  cooling,  and  transport.  To  meet  the  overall  20%  outcome  therefore,  there  should  be  20%  renewable  energy,  34%  of  gross  electric-­‐ity  generation,  21.5%  of  heating  and  cooling,  and  11%  of  transport.  

2.1.2. National Renewable Energy Action Plans (NREAP)Directive  2009/28/EC  required  each  member  state  to  submit  an  NREAP,  indicating  how  it  intends  to  achieve  its  individual  target  by  technology  across  the  three  relevant  sectors.  In  this  way,  the  European  Commission  can  assess  the  country’s  progress  against  its  overall  target  and  member  states  may  adjust  their  choice  of  technologies  according  to  their  circumstances.The  EC  must  approve  all  revisions  to  the  initial  NREAP  submissions  by  31  December  2011,  at  which  point  each  country  will  commence  bi-­‐annual  reports  to  update  the  EC  on  progress  towards  the  2020  targets.  

S E C T I O N 2 S U P P O R T M E C H A N I S M S & P O L I T I C A L R I S K

Page 15: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

15

 2.2 Role of o!shore wind according to NREAPs

Under  the  submitted  NREAPs,  the  EU  would  have  46.4GW  of  offshore  wind  operating  in  2020,  which  would  constitute  9.6%  of  renewable  energy  capacity  and  meet  4.1%  of  the  EU’s  gross  electricity  generation.  This  entails  new  installations  of  43.4GW  of  capacity  between  2011  and  end-­‐2020  (Table  1).Offshore  wind  could,  therefore,  play  an  important  role  in  meeting  the  EU’s  2020  renewable  energy  targets.  However,  it  is  a  new  and  relatively  costly  form  of  electricity  generation  com-­‐pared  with  alternatives,  such  as  onshore  wind  and  biomass.  Furthermore  its  levelised  cost  of  energy  (LCOE)  is  approximately  three  times  higher  than  the  current  baseload  power  price  (Fig-­ure  2).  Therefore,  government  support  remains  critical  to  attract  the  investment  necessary  to  industrialise  the  sector,  lower  its  costs  and  implement  the  NREAPs.  This  should  then  enable  the  

LCOE

BNEF 2011 EU-ETS EUA Forecast

Central scenario

53.64

43.03

54.94

54.68

79.63

106.80

143.45

159.82

184.18

0 50 100 150 200 250

Electricity Prices

Natural Gas CCGT

Coal Fired

Wind - Onshore

Biomass - Incineration

Biomass - Anaerobic Digestion

PV - c-Si

Wind - O!shore

STEG  -­  Tower & Heliostat

Figure 2: LCOE of o!shore wind and selected technologies (EUR/MWh)

2020

2010

0 100 200 300 400

Other

PV

O!shore wind

Biomass

Onshore wind

Hydropower 370

357

232

150

83

31

Figure 1: Electricity generation from renewable sources according to NREAPs, 2010 and 2020 (TWh)

Source: NREAPs, Bloomberg New Energy Finance, Bloomberg Notes: “Other” includes geothermal and solar thermal electricity generation (STEG).”Electricity prices” uses the average day ahead baseload spot prices in Germany, France and Belgium in the past year.

Page 16: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

16

Some  countries  –  e.g.  the  UK  and  Germany  –  are  actively  supporting  offshore  wind  with  the  expectation  that  their  upfront  investment  to  support  the  technology’s  industrialisation  will  be  

while  we  expect  the  LCOE  to  decrease  over  the  decade  (Section  3),  some  countries  may  defer  

cost  renewable  alternatives  until  then.  In  early  2011,  the  Netherlands  set  the  tariffs  for  its  subsidy  programme  (SDE+)  too  low  to  be  attractive  for  offshore  wind,  despite  an  aim  of  5.2GW  according  to  its  the  NREAP.

2.3 National policy

Offshore  wind  installations  are  dominated  by  two  major  markets  –  the  UK  and  Germany  –  and  four  secondary  markets  –  the  Netherlands,  Belgium,  France  and  Denmark.  Each  has  tariff  sys-­‐tems  for  offshore  wind  and  varying  degrees  of  political  support  behind  the  long-­‐term  growth  of  the  industry.  Political  support  and  returns  available  to  investors  in  the  major  markets  are  adequate  to  strong,  with  slightly  higher  political  risk  in  the  UK  than  Germany  offset  by  higher  potential  returns.  In  other  markets  political  risk  varies  considerably  from  high  in  the  Nether-­‐lands  to  low  in  a  mature  market  such  as  Denmark.

2010 2020 NREAP

Capacity 2010YE (MW)

% of RE capacity

% of RE generation

% of gross electricity

generationNREAP capacity

2020YE (MW)% of RE

capacity% of RE

generation

% of gross electricity

generationCapacity additions

2011-20 (MW)

UK 1,340 14.7 14.6 1.3 12,990 35.2 39.0 12.1 11,650

Denmark 869 18.8 20.0 6.8 1,339 19.8 25.8 13.4 470

Netherlands 247 6.5 7.5 0.7 5,178 36.3 38.3 14.2 4,931

Belgium 195 9.7 11.3 0.7 2,000 24.2 28.5 6.0 1,805

Germany 72 0.1 0.3 0.0 10,000 9.0 14.6 5.7 9,928

France 0 0.0 0.0 0.0 6,000 10.9 11.7 3.2 6,000

Others 219 0.2 0.1 0.0 8,870 3.5 3.8 1.3 8,651

Total (EU) 2,942 1.2 1.4 0.3 46,377 9.6 12.3 4.1 43,435

Source: Bloomberg New Energy Finance, National NREAPs, Eurostat. Notes: ‘Others’ refers to all other EU member states.

Table 1: Role of o!shore wind in the EU according to the NREAPs

S U P P O R T M E C H A N I S M S & P O L I T I C A L R I S KS E C T I O N 2

Page 17: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

17

2.3.1 United KingdomPolitical  support,  political  risk:  We  consider  political  support  in  the  UK  to  be  adequate.  The  Conservative-­‐Liberal  Democrat  coalition  government  has  emphasised  a  desire  to  be  “the  green-­‐est  government  ever”  and  there  is  widespread  political  consensus  on  the  existing  targets.  The  

2020s.  (The  CCC  is  an  independent  body  set  up  under  the  Climate  Change  Act  2008  to  advise  the  government  on  setting  and  meeting  carbon  budgets.)  

To  encourage  new  capacity  installations  to  attain  the  EU  20-­‐20-­‐20  Directive  at  the  same  time  as  supporting  renewable  energy  cost  reductions,  the  government  is  planning  to  reform  the  electricity  market.  On  12  July  2011  the  Department  of  Energy  and  Climate  Change  (DECC)  

(EMR)  and  its  legislative  proposals.  The  reform  package  is  to  secure  the  transition  to  a  low  car-­‐bon  economy  in  a  cost-­‐effective  manner.  It  calls  for  an  increase  in  the  existing  2020  NREAP  tar-­‐get  for  offshore  wind  from  13GW  to  18GW,  but  concedes  this  aim  is  only  achievable  if  the  LCOE  for  offshore  is  reduced  to  GBP  100/MWh.  The  EMR  announced  multiple  initiatives  to  tackle  this  challenge,  including  the  creation  of  an  industry-­‐led  task  force  to  coordinate  an  action  plan  to  aid  this  cost  reduction.  This  18GW  proposal  contradicts  the  advice  of  the  CCC,  which  notes  that  if  renewable  energy  targets  can  be  met  in  other  ways  then  the  existing  “offshore  wind  ambition  should  be  moderated  to  reduce  the  costs  of  decarbonisation”.1    The  government  views  the  off-­‐shore  wind  industry  as  an  opportunity  to  attract  investment  and  create  jobs  in  manufacturing,  

aging  infrastructure.

The  proposed  reforms  also  include  the  overhaul  of  the  Renewables  Obligation  (RO)  Scheme    

-­‐

for  offshore  wind  is  not  under  threat.

The  implied  scale  of  investment  will  require  the  government  to  not  just  guarantee  adequate  

backing  of  port  upgrades  and  funding  the  Green  Investment  Bank.

Policy  mechanism:  The  FiT  CfD  mechanism  would  act  as  a  two-­‐way  contract  in  which  renew-­‐able  energy  generators  receive  a  premium  on  top  of  the  baseload  electricity  price  to  reach  a  

developers  must  repay  the  difference.  The  strike  price,  payment  period  and  structure  have  yet  to  be  determined.  

-­‐quently,  participants  will  remain  eligible  for  ROCs  for  20  years  of  operation  under  a  ‘grandfa-­‐thering’  regime’.  Under  the  Banding  Review  (announced  on  20  October  2011),  projects  fully  permitted  between  1  April  2010  and  31  March  2015  will  receive  two  ROCs  per  MWh.  Projects  permitted  in  the  2015/16  and  2016/17  tax  years  will  receive  1.9  ROCs  per  MWh  and  1.8  ROCs  per  MWh  respectively.  Projects  under  the  RO  scheme  are  also  exempt  from  paying  the  climate  change  levy  (CCL),  a  GBP  4.7/MWh  tax  on  energy  delivered  to  non-­‐domestic  users  that  is  

Some  countries  –  e.g.  the  UK  and  Germany  –  are  actively  supporting  offshore  wind  with  the  expectation  that  their  upfront  investment  to  support  the  technology’s  industrialisation  will  be  

while  we  expect  the  LCOE  to  decrease  over  the  decade  (Section  3),  some  countries  may  defer  

cost  renewable  alternatives  until  then.  In  early  2011,  the  Netherlands  set  the  tariffs  for  its  subsidy  programme  (SDE+)  too  low  to  be  attractive  for  offshore  wind,  despite  an  aim  of  5.2GW  according  to  its  the  NREAP.

2.3 National policy

Offshore  wind  installations  are  dominated  by  two  major  markets  –  the  UK  and  Germany  –  and  four  secondary  markets  –  the  Netherlands,  Belgium,  France  and  Denmark.  Each  has  tariff  sys-­‐tems  for  offshore  wind  and  varying  degrees  of  political  support  behind  the  long-­‐term  growth  of  the  industry.  Political  support  and  returns  available  to  investors  in  the  major  markets  are  adequate  to  strong,  with  slightly  higher  political  risk  in  the  UK  than  Germany  offset  by  higher  potential  returns.  In  other  markets  political  risk  varies  considerably  from  high  in  the  Nether-­‐lands  to  low  in  a  mature  market  such  as  Denmark.

2010 2020 NREAP

Capacity 2010YE (MW)

% of RE capacity

% of RE generation

% of gross electricity

generationNREAP capacity

2020YE (MW)% of RE

capacity% of RE

generation

% of gross electricity

generationCapacity additions

2011-20 (MW)

UK 1,340 14.7 14.6 1.3 12,990 35.2 39.0 12.1 11,650

Denmark 869 18.8 20.0 6.8 1,339 19.8 25.8 13.4 470

Netherlands 247 6.5 7.5 0.7 5,178 36.3 38.3 14.2 4,931

Belgium 195 9.7 11.3 0.7 2,000 24.2 28.5 6.0 1,805

Germany 72 0.1 0.3 0.0 10,000 9.0 14.6 5.7 9,928

France 0 0.0 0.0 0.0 6,000 10.9 11.7 3.2 6,000

Others 219 0.2 0.1 0.0 8,870 3.5 3.8 1.3 8,651

Total (EU) 2,942 1.2 1.4 0.3 46,377 9.6 12.3 4.1 43,435

Source: Bloomberg New Energy Finance, National NREAPs, Eurostat. Notes: ‘Others’ refers to all other EU member states.

Table 1: Role of o!shore wind in the EU according to the NREAPs

1    Committee  on  Climate  Change,:    The  Renewable  Energy  Review,    May  2011    www.theccc.org.uk/reports/  renewable-­‐energy-­‐review

Page 18: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

18

The  FiT  CfD  mechanism  could  provide  a  lower  but  predictable  and  stable  revenue  stream,  offering  certainty  and  transparency  to  potential  investors  by  removing  the  price  risk  and  in  turn  lowering  the  future  cost  of  capital.  However,  some  industry  players  have  criticised  the  transition  away  from  the  ROC  scheme  as  it  was  an  established,  well  understood  mechanism  in  which  there  was  potential  upside  in  ROC  sales.

Grid:  

under  the  Transitional  Scheme  –  an  initiative  created  before  the  EMR  –  whereby  developers  

winners  of  the  offshore  transmission  operator  tenders,  which  will  own  the  transmission  assets  for  20  years.  This  method  of  constructing  grid  connections  will  evolve  from  the  Transitional  Scheme  into  the  Enduring  Scheme  (also  created  before  the  EMR)  whereby  offshore  transmis-­‐

removing  the  burdens  of  time  and  cost  from  the  developer.

2.3.2 GermanyPolitical  support,  political  risk:  We  consider  political  support  in  Germany  to  be  strong  and  risk  to  be  low.  Support  for  offshore  wind  has  been  reasonably  stable  under  the  chancellorship  of  Angela  Merkel,  a  former  environment  minister  who  leads  a  coalition  of  the  Christian      Demo-­‐cratic  Union,  Christian  Social  Union  and  Free  Democratic  Party.  Furthermore,  support  for  the  main  opposition,  the  Social  Democratic  Party  and  its  traditional  allies,  the  Greens,  has  risen  to  

coalition  has  historically  supported  offshore  wind,  having  introduced  the  priority  purchase  obligation  for  grid  connections  whilst  in  power  between  1998  and  2002.  This  obligation  facili-­‐tated  a  boom  in  renewable  energy  installations.

The  rise  of  the  opposition  and  the  Fukushima  incident  led  to  a  government  review  of  the  nuclear  phase-­‐out  programme  as  well  as  renewable  energy  policies  in  summer  2011.  This  

renewable  sources  by  2050.  The  results  of  the  review  are  being  translated  into  law  and  will  take  effect  from  1  January  2012.  In  conjunction,  the  German  government  is  taking  a  proactive  

amongst  others,  introducing  a  national  grid  regulator.  

Min Max

ROC x2 45 53

Electricity 30 52

CCL 4.7 4.8

Total 124.7 162.8

Source: BloombergNotes: Average of monthly prices 1 Jan 2009 to present

Table 2: RO remuneration to 2017 (GBP/MWh)

S U P P O R T M E C H A N I S M S & P O L I T I C A L R I S KS E C T I O N 2

Page 19: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

19

12 years Extension Remaining

Sprinter 20/MWh

Extension150/MWh

Initial130/MWh

Basic 35/MWh

Electricity priceforecast

Electricity price curve

Sprinter 40/MWh

Extension150/MWh

Initial150/MWh

Basic 35/MWh

Electricity priceforecast

Electricity price curve

8 years Extension Remaining

Figure 3: Classic EEG 2009 tari! (EUR/MWh)

Figure 4: Compression EEG 2012 tari! (EUR/MWh)

Source: Bloomberg New Energy Finance. Notes: Projects are likely to choose pool electricity prices (red dotted line) after the initial tari! expires as they are forecasted to be far greater than the basic tari! (EUR 35/MWh). The Bloomberg New Energy Finance electricity price forecast assumes continuous annual increase of 1.8% on current electricity prices.

Water depth Distance to shore

For every m the project is in water greater than 20m depth the initial tari! is extended by 1.7 months.

For every nautical mile (nm) the project is in further than 12nm from shore the initial tari! is extended by 0.5 months.

Source: BNEF

Table 3: Details of extension period

Policy  mechanism:  On  12  August  2011,  the  German  cabinet  passed  legislation  amending  the  Erneuerbare  Energien  Gesetz  (EEG),  updating  the  laws  supporting  the  country’s  plan  to  accel-­‐erate  the  expansion  of  renewable  energy.  Offshore  wind  developers  now  may  choose  between  two  feed-­‐in  tariffs,  the  classic  and  compression  models:

 (Figure  3)  resembles  the  current  EEG  2009  tariff,  whereby  projects  receive  an  initial  tariff  of  EUR  130/MWh  for  12  years.  Projects  commissioned  before  1  Janu-­‐ary  2016  are  also  eligible  for  an  additional  sprinter  bonus  of  EUR  20/MWh.  This  initial  level  of  support  is  continued  through  the  eligible  extension  period  depending  on  the  project  environment  (Table  3).  A  basic  tariff  (EUR  35/MWh)  is  available  for  the  remaining  period  –  up  to  the  20th  operating  year  –  but  instead,  developers  will  likely  choose  to  receive  the  grey  electricity  price  which  we  expect  will  exceed  the  basic  tariff  due  to  increased  costs  of  fossil  

Page 20: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

20

prices  to  be  EUR  79/MWh  by  2020(Figure  4)  is  only  available  for  projects  commissioned  before  

1  January  2018.  It  awards  an  initial  tariff  (EUR  150/MWh)  for  eight  years,  plus  the  eligible  extension  period  (Table  3)  before  resorting  to  the  basic  tariff.  A  sprinter  bonus  of    

-­‐der  of  the  project  lifetime.  

Grid:  The  Infrastructure  Planning  Acceleration  Act  (2006)  stipulates  that  the  national  trans-­‐mission  service  operators  (TSOs)  are  responsible  for  the  design  and  cost  of  connecting  German  offshore  wind  farms  –  built  before  31  December  2015  –  to  the  grid.  The  associated  costs  are  shared  among  the  four  regional  TSOs.  

2.3.3 DenmarkPolitical  support,  political  risk:  We  consider  political  support  in  the  Denmark  to  be  strong  and  risk  to  be  low.  The  government  has  previously  planned  for  1,339MW  of  offshore  wind  in  its  NREAP,  which  only  requires  470MW  to  be  built  this  decade.  DONG’s  400MW  Anholt  project  (to  be  commissioned  in  2013)  will  cover  85%  of  this.  Despite  a  modest  NREAP  target  com-­‐pared  to  the  UK  and  Germany,  in  2007  the  government  proposed  plans  to  commission  over  4.5GW  of  offshore  wind  by  2025.  Had  this  got  beyond  the  proposal  stage  this  would  have  been  

elected  in  September  2011,  has  not  yet  pushed  forward  any  plans  regarding  offshore  wind.  His-­‐torically,  however  it  has  strongly  supported  offshore  wind  projects,  having  contributed  to  the  conclusion  of  the  Anholt  and  Rødsand  2  agreements.  Government  support  for  renewable  tech-­‐nology  research  and  development  totalled  DKK  1.0bn  (EUR  134m)  in  2010,  with  former  Prime  Minister  Lars  Løkke  Rasmussen  revealing,  at  the  opening  ceremony  of  Horns  Rev  2  offshore  wind  farm,  the  government’s  ambition  to  see  Denmark  become  a  ‘green  growth  laboratory’.  

Furthermore,  the  former  government  was  keen  to  distribute  renewable  power  sources  more  evenly  across  the  country  in  order  to  charge  electric  vehicles  at  the  20  proposed  Battery  Switch  Stations  and  adhere  to  the  EU’s  binding  target  of  10%  renewable  energy  in  the  transport  sec-­‐tor  by  2020.  Denmark  is  currently  testing  electric  vehicle  to  grid  technologies,  in  the  hope  of  

greenhouse  gas  emissions.  The  Danish  Energy  Agency  Energistyrelsen  (ENS)  has  increased  the  number  of  permit  applications  by  establishing  clearer  guidelines  for  ‘open-­‐door’  submissions,  whereby  developers  can  propose  their  own  site.  

Policy  mechanism:  No  direct  policy  mechanism  for  offshore  wind  exists  in  Denmark.  Instead,  developers  compete  for  reverse  auction  tenders,  managed  by  ENS,  to  receive  construction  permits  and  a  20-­‐year  power-­‐purchase  agreement  (PPA).  However,  these  PPAs  are  limited  by  

own  site  –  with  permission  from  ENS  (mentioned  above)  –  to  receive  a  premium  of  DKK  100/MWh  (EUR  13.5/MWh)  for  20  years  on  top  of  the  baseload  electricity  price  rather  than  an  auc-­‐tioned  PPA.  No  developer  has  exercised  this  option  to  date.

Grid:  

S U P P O R T M E C H A N I S M S & P O L I T I C A L R I S KS E C T I O N 2

Page 21: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

21

2.3.4 NetherlandsPolitical  support,  political  risk:  We  consider  political  support  in  the  Netherlands  to  be  poor  and  risk  to  be  high.  According  to  its  NREAP,  the  Netherlands  aims  to  commission  5,178MW  of  offshore  wind  by  2020  –  49%  of  its  intended  renewable  energy  installations  this  decade.  How-­‐ever  since  the  appointment  of  a  new  coalition  government  comprising  the  Liberal  Party  and  the  Christian-­‐Democrats  in  October  2010,  these  plans  have  been  shelved.  The  Cabinet  led  by  Prime  Minister  Mark  Rutte  has  proposed  price  competition  under  the  Promotion  of  Renewable  Energy  Scheme  (Stimulering  Duurzame  Energieproductie  +  or  SDE+  Scheme),  whereby  the  

1.5bn.  This  favours  onshore  wind  and  biomass  over  offshore  wind.  This  situation  replicates  the  previous  abandonment  of  a  Dutch  subsidy  scheme  –  MEP  programme  in  2008  –  which  resulted  in  the  current  hiatus  in  offshore  wind  installations.  

Policy  mechanism:  The  Netherlands  has  previously  awarded  subsidies  to  renewable  energy  

budget,  from  which  the  project  may  draw  a  premium  to  supplement  the  baseload  electricity  price  up  to  a  base  price  –  set  each  year  by  ECN  (Energy  Research  Centre  of  the  Netherlands)  according  the  LCOE  of  that  technology  –  for  15  years.  The  last  tender,  held  in  January  2010,  awarded  EUR  5.3bn  to  offshore  wind  projects  –  EUR  4.4bn  to  the  600MW  Bard/Typhoon/HVC  Nederland  project  and  the  remaining  EUR  0.9bn  is  yet  to  be  allocated  implying  a  very  modest  room  for  growth.  If  a  42%  capacity  factor  is  applied  to  the  Bard  Nederland  project,  it  will  receive  a  premium  of  EUR  133/MWh  over  15  years  (Table  4).  There  is  therefore  no  cur-­‐rent  access  to  government  subsidies,  excluding  the  600MW  BARD  Nederland  project  (now  owned  by  Typhoon  and  HVC),  which  is  to  receive  EUR  4.4bn  under  the  former  SDE  scheme.  We  therefore  expect  no  further  project  developments  this  decade  unless  there  is  a  change  in  government.  Even  if  the  prices  in  the  tender  were  more  attractive  for  offshore  wind  in  an  SDE+  scheme  by  a  new  government,  eligible  projects  are  highly  unlikely  to  be  commissioned  until  after  2020  due  to  the  long  lead  times.

Min Max

Premium 133 133

Electricity 32 60

Total 165 193

Source: BNEF Notes: Monthly averages between 1 January 2010 and 31 December 2010, assuming a 42% capacity factor.

Table 4: SDE premium for 600MW Bard Nederland (EUR/MWh)

Grid:  the  TSO  TenneT  is  responsible  for  grid  connection,  but  the  project  developer  must  

2.3.5 BelgiumPolitical  support,  political  risk:  We  consider  political  support  in  Belgium  to  be  good  but  there  is  some  risk  primarily  related  to  political  instability.    Belgium  is  aiming  to  commission  2GW  of  offshore  wind  by  2020  under  its  submitted  NREAP  target,  a  ten-­‐fold  increase  from  the  current  195MW.  However,  the  ongoing  2007-­‐2011  political  impasse  –  in  which  no  government  has  formed  in  over  a  year  –  could  undermine  these  targets  as  the  political  instability  places  uncertainty  on  the  commitments  made  by  previous  governments  to  offshore  wind.  The  posi-­‐tion  of  the  main  parties  –  Wallonian  majority  Socialists  and  the  Flemish  Christian  Democrats  

Page 22: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

22

–  towards  offshore  wind  remains  unclear.  The  recent  resignation  of  the  caretaker  government  

risk.

Capacity EUR/MWh

Up to 216MW 107

Every extra MW 90

Electricity 49

Source: BNEF Notes: Monthly averages between 1 Jan 2009 and present

Table 5: Belgian o!shore wind subsidy (EUR/MWh)

Policy  mechanism:  Offshore  wind  operates  under  a  federal  scheme  managed  by  the  Commis-­‐sion  de  Régulation  de  l’Electricité  et  du  Gaz  (CREG)  –  which  awards  permits  for  construction  

107/MWh  for  projects  up  to  216MW,  and  EUR  90/MWh  for  capacity  above  216MW  (Table  5).  There  is  no  maximum  GC  price.

Grid:  

connection,  but  the  Belgian  transmission  operator,  Elia,  is  obliged  to  absorb  33%  of  the  costs  –  up  to  a  cap  of  EUR  25m  per  project.

2.3.6 FrancePolitical  support,  political  risk:  We  consider  political  support  in  France  to  be  adequate.  President  Nicholas  Sarkozy  is  aware  that  France  has  the  second-­‐largest  offshore  wind  potential  in  the  EU  and  is  keen  to  see  the  growth  of  this  sector.  A  boost  in  domestic  employment  is  also  a  

6,000MW  of  offshore  wind  capacity  by  2020  in  two  tender  rounds.  The  leading  opposition  Socialist  party  –  despite  its  former  pro-­‐nuclear  stance  –  is  seeking  to  phase  out  nuclear  power  and  boost  renewable  energy  generation  within  a  Red-­‐Green  alliance  should  they  win  the  next  election  in  2012.  This  dramatic  turnaround  in  opinion  is  supported  by  all  Socialist  presidential  candidates  following  the  2011  Fukushima  nuclear  incident.  Renewable  energy  generation  build-­‐out  is  supported  by  the  renewable  energy  law  Grenelle  2,  which  sets  a  target  of  23%  of  national  energy  use  from  renewable  sources  by  2020.  

S E C T I O N 2 S U P P O R T M E C H A N I S M S & P O L I T I C A L R I S K

Page 23: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

23

Policy  mechanism:  

on  11  January  2012,  with  submissions  to  the  Commission  de  Régulation  de  l’Energie  (CRE)  being  scored  on  three  categories:    

 Priceranges  in  Table  6  –  required  to  subsidise  the  project  with  no  limits  on  load  hours.Industrial  component:  use  or  creation  of  a  domestic  supply  chain  (through  job  creation),  risk  management  and  developer  experience,  industrial  partnerships,  ability  of  access    capital  etc.Existing  activities  and  the  environment:  limiting  the  environmental  impact  of  the  project  –  eg,  reducing  the  number  of  turbines  by  using  larger  models.

in  the  tender  bid.  The  advent  of  the  industrial  and  environmental  components  to  the  scoring  scheme  means  that  the  tenders  will  not  simply  be  awarded  to  the  bid  with  the  lowest  PPA.  Instead  it  will  favour  bids  from  consortia  offering  larger  5MW+  turbines  and  the  creation  of  French  manufacturing  jobs.

Zone EUR/MWh

Le Treport 115-175

Fecamp 115-175

Courseulles-sur-Mer 115-175

Saint-Brieuc 140-200

Saint-Nazaire 140-200

Source: BNEF

Table 6: French tender tari!s (EUR/MWh)

Page 24: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

24

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

Page 25: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

25

Section  3Costs & equipment supply

Our cost analysis is focused on two markets which we expect to constitute 61% of installations to 2020: the UK and Germany. Cost changes are likely to be a consequence of step changes in technology, improved equipment supply, improved financing terms and a change in project locations. In the UK we expect the LCOE to fall 22% from EUR 165 to EUR 128/MWh between 2011 and 2020 driven by a doubling in size of the turbines (3.6MW to 7MW), the mass production of standardised jacket foundations suitable for 45m water depths and 5MW+ turbines, and significant improvements in installa-tion and operations and maintenance. On a per MW basis we expect capital costs to drop 3% from 2012-20 from EUR 3.8m/MW to EUR 3.7m/MW. In Germany we expect the LCOE to fall 25% from EUR 179-133/MWh by 2020 and capital costs to decrease by 17% from EUR 4.3m/MW to EUR 3.5m/MW.

Page 26: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

26

The  cost  improvements  between  to  2020  for  any  project  can  be  broken  down  into:A  step  change  in  turbine  size,  increased  scale,  standardisation  and  experience  across  

the  value  chain:  the  increase  in  standard  turbine  sizes  from  3.6MW  to  6-­‐7MW  could  

capacity  and  resulting  economies  of  scale  in  cabling  and  transformers  as  well  as  improved  installation  rates.  Gains  made  elsewhere  in  the  value  chain  could  amount  to  EUR  20.11/MWh  or  12.2%  of  current  costs.  In  this  study  we  applied  a  learning  curve  to  each  of  the  major  components  (see  appendix).Improved  equipment  supply: -­‐ity  in  all  major  areas  of  the  physical  supply  chain.  Combined  with  expected  installation  rates  to  2020  we  believe  investment  in  the  last  three  years  has  cut  the  danger  of  supply  

informs  our  equipment  cost  estimates.      the  introduction  of  debt  capital  to  UK  projects  will  increase  

post-­‐tax  equity  returns  and  lower  LCOE,  but  the  increased  risks  due  to  leveraging  the  assets  

the  net  LCOE  reduction  to  be  EUR  6.46/MWh  (3.9%).Change  in  water  depth  and  distance  from  shore:  UK  Round  3  sites  are  in  deeper  water  and  further  offshore.  Despite  improved  wind  resources,  these  more  challenging  sites  will  incur  cost  increases  across  the  value  chain  –  causing  a  net  increase  in  the  LCOE  by  EUR  8.36/MWh  (5.1%).  

S E C T I O N 3

164.5

128.0

38.4

6.5 8.4

2012 LCOE

Experience & large turbines

Improved!nancing

Depth &distance

2020LCOE

-36.5

Figure 5: UK o!shore wind project LCOE in Central Scenario, 2012-20 (EUR/MWh)

Source: Bloomberg New Energy Finance Notes: ‘Experience & large turbines’ includes a step change in turbine size, increased scale, standardisation and experience across the value chain. ‘Improved "nancing’ will arise from the industry mitigating construction risks to reduce debt margins and leveraging assets to make interest tax deductible. ‘Depth & distance’ represents the increase in costs across the value chain due to the more challenging locations of future sites.

CO S T S & E Q U I P M E N T S U P P LY

>  

Page 27: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

27

3.1. Levelised cost of energy (LCOE)

The  previous  section  explicates  our  projection  that  the  LCOE  for  UK  offshore  wind  projects  may  fall  22%  from  EUR  165  to  EUR  128/MWh  between  2011  and  2020  (Figure  5).  Since  2009,  the  migration  of  projects  further  offshore  with  little  competition  in  the  supply  chain  has  increased  capex  and  LCOE.  Therefore  our  forecast  represents  a  reversal  of  this  trend.  The  scale  of  installations  expected  over  the  next  eight  years  and  the  size  of  contracts  placed  indicate  that  the  offshore  wind  industry  is  now  entering  a  phase  of  rapid  industrialisation.  Our  projected  cost  reductions  in  2012-­‐20  translate  to  a  learning  rate  of  8.8%  (Figure  6)  –  meaning  costs  will  reduce  by  8.8%  for  every  doubling  of  installed  capacity.  This  is  lower  than  the  historical  learn-­‐ing  rate  of  13.7%  for  onshore  wind  –  driven  by  the  more  limited  room  for  learning  in  founda-­‐tions,  substations  and  export  cables.  Balance  of  plant  still  make  up  60%  of  offshore  wind  costs  compared  to  25%  in  onshore  wind.

When  comparing  offshore  and  onshore  LCOE  as  functions  of  time,  we  see  that  offshore  wind  is  approximately  26  years  behind  the  onshore  wind  industry.  Onshore  wind  experienced  a  fall  in  LCOE  over  1986-­‐94  from  EUR  175/MWh  to  EUR112/MWh.  If  cost  reductions  in  offshore  wind  follow  a  similar  path  to  onshore  wind  with  a  26  year  lag,  its  LCOE  will  be  approximately  EUR  112/MWh  by  2020,  EUR  65/MWh  by  2030  and  less  than  EUR  50/MWh  by  2040.  The  period  of  greatest  cost  reductions  in  the  onshore  experience  cost  curve  occurred  in  1991-­‐96.  This  would  transpose  to  2017-­‐22  for  offshore  wind  –  the  period  when  we  expect  a  high  capacity  installa-­‐

seen.  Although  our  calculations  indicate  a  lower  8.8%  learning  curve  for  offshore  wind  than  for  onshore  wind,  it  is  possible  that  costs  may  reduce  more  –  or  less  –  quickly  than  we  foresee  today.    

10

1.001984

19902000

20042011

2009 2012 2020

Industralisationphase

8,8%

13,7%

1.000

100 1.000 10.000 100.000 1.000.000

Onshore experience curveOnshore LCOE O!shore LCOE

10

100

150

200

50

250

1983 1987 1991 1995 1999 2003 2007 2011

20372033202920252021201720132009Log LCOE (EUR/MWh) Log cumulative capacity (MW) Bottom x-axis (Onshore wind) Top x-axis (O!shore wind)

Onshore LCOE O!shore LCOE

Source: Bloomberg New Energy Finance Notes: Onshore wind LCOE based on BNEF Wind Experience Curves. O!shore wind LCOE for 2011 and 2020 are EUR 165/MWh and EUR 128/MWh (Figure 5).

Figure 6: Experience curves for o!shore and onshore LCOE as a function of cumulative capacity installations

Figure 7: Experience curves for o!shore and onshore LCOE over time (EUR/MWh)

Page 28: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

28 S E C T I O N 3 CO S T S & E Q U I P M E N T S U P P LY

3.2. Capital cost projections

Declared  capital  costs  for  UK  projects  to  be  commissioned  in  2011  currently  stand  at  around  GBP  3.3m/MW  (EUR  3.8m/MW)  (Figure  8).  We  expect  these  to  increase  to  GBP  3.5m/MW  (EUR  4.0m/MW)  in  the  next  three  years  as  projects  are  located  in  deeper  waters  and  further  offshore.  The  introduction  of  turbine  models  in  2015-­‐16  will  bring  a  step  change  in  costs  and,  coupled  with  learning  rates  in  other  areas  of  the  supply  chain,  should  bring  costs  back  down  to  EUR  3.7m/MW  by  2020  (Figure  8).  The  story  is  more  extreme  in  Germany  as  capex  is  expected  to  fall  by  17%  in  2012-­‐20  –  since  its  projects  will  not  incur  further  capex  increases  with  instal-­‐lations  migrating  further  offshore  (Figure  9).  

3.0

3.8 3.6 4.0 4.0 3.9 3.8 3.8 3.7 3.7

2010 2012 2014 2016 2018 2020

4.2 4.3 4.4 4.33.7 3.7 3.6 3.6 3.5

2010 2012 2014 2016 2018 2020

Figure 8: Actual and modelled UK project costs, 2010-20 (EURm/MW)

Figure 9: Actual and modelled German project costs, 2010-20 (EURm/MW)

Source: Bloomberg New Energy Finance Notes: Capex for projects commissioned in 2010-15 (blue) are disclosed capex of "nanced and permitted projects in the short term demand forecast. Capex for projects commissioned in 2016-20 (orange) represent the outputs of our Cost Model, with the expected speci"cations for projects to be commissioned after 2015. The project modelled for Figure 8 is the expected typical project in the UK in 2020 ("nal project in Fig 5).Grid connection and transmission costs are included in UK project costs but excluded for Ger-many - "nanced separately by the four regional TSOs.

Page 29: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

29

3.3 Supply chain

Underlying  our  project  cost  forecasts  are  individual  cost  forecasts  for  different  elements  of  the  project.  Costs  depend  on  technology  and  the  supply  and  demand  balance.  We  believe  that  sup-­‐ply  is  improving  across  all  segments  of  the  value  chain  –  in  particular  the  potential  for  36  new  turbine  models  from  11  EU-­‐located  companies  and  8  companies  from  outside  the  EU  to  come  to  market  by  2017.  We  expect  foundation  demand  to  shift  dramatically  towards  jacket  designs  after  2015  with  multiple  suppliers,  some  with  extensive  oil  and  gas  experience  available.  Tur-­‐bine  installation  vessels  (TIVs)  were  once  in  short  supply.  However,  in  the  last  two  years  there  has  been  extensive  investment  in  new  vessels  by  independent  operators,  turbine  manufactur-­‐ers  and  utilities,  such  that  by  2013  50  TIVs  should  be  operating  –  up  from  29  in  2010.  The  sup-­‐ply  of  high  voltage  export  cables  remains  tight,  since  lead  times  on  costly  new  extrusion  lines  

and  competitive  situation  for  each  of  these  sections  of  the  supply  chain.  

62% 64% 69%

41%

18%

22% 13%

16%

10%

6%

20%

11%

13%

16%

13%

6%

9%

21%

7%

5%

59%

2011 2012 2013 2014 2015

916

Market share (%) Annual installations (MW)

3,316 3,147 2,444 1,522

Non-contracted

Vestas

Areva Multibird

REpower

BARD

Siemens

Figure 10: Annual o!shore wind turbine installations by manufacturer, 2011-15

Source: Bloomberg New Energy Finance Notes: Market shares are based upon con"rmed contracts with projects in our short term demand forecast (see Section 4).

3.3.1 TurbinesWe  do  not  expect  the  supply  of  turbines  to  be  a  bottleneck.  Two  turbine  manufacturers  –  Sie-­‐mens  and  Vestas  –  have  dominated  the  offshore  wind  market  since  its  inception.  We  expect  

-­‐petition  should  grow  (Figure  10)  as  a  number  of  major  onshore  wind  turbine  manufacturers  (Alstom,  Gamesa)  is  expected  to  start  commercial  production  of  new  turbine  models  (Figure  11)  or  build  on  existing  market  share  (AREVA).  New  entrants  will  compete  with  existing    players  for  1.9GW  of  so  far  non-­‐contracted  capacity  (59%  of  expected  installations)  in  2015.  While  numerous  manufacturers  are  aiming  to  penetrate  this  market,  many  are  likely  to  fail  

banks.  Manufacturers  are  currently  scouting  ports  to  locate  manufacturing  facilities,  to  facili-­‐tate  transportation  of  turbines  which  will  be  double  the  size  of  existing  onshore  turbines.

Page 30: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

30 S E C T I O N 3 CO S T S & E Q U I P M E N T S U P P LY

Forthcoming  next-­‐generation  offshore  wind  turbine  models  will  feature  larger  nameplate  

more  reliable  technology  that  requires  less  maintenance.  A  key  differential  between  the  emerg-­‐ing  models  is  drive  train  technology:  namely  direct  drive  (DD)  vs.  medium  speed  hybrid  (MSH).  It  is  still  uncertain  whether  one  technology  will  prevail  and  proponents  of  each  design  argue  about  their  relative  merits.  MSH  requires  no  substantial  alterations  to  the  design  of  a  high-­‐speed  gearbox,  only  reducing  the  number  of  gears  and  thus,  the  frequency  of  failures  in  an  already  proven  technology.  By  keeping  a  gearbox,  the  generator  can  be  substantially  smaller  and  require  fewer  permanent  magnets  and  rare-­‐earth  element  components,  of  which  future  supplies  from  China  may  be  constrained.  The  main  advantage  of  DD  is  the  complete  absence  of  a  gearbox.  This  should  eliminate  the  lengthy  downtime  associated  with  gearbox  failures  and  reduce  the  top  head  mass  of  the  nacelle,  allowing  for  taller  towers  and  access  to  stronger  winds.  

R&D - but not turbine specific

R&D - turbine specific

Commercial launch

2009 2010 2011 2012 2013 2014 2015 2016 2017

AMSC 10MWMitsubishi 6MW

Sway 10MWGamesa G14-X

Alstom 6MWVestas V164-7.0

Nordex N150Acciona 3MW

BARD 7+XSiemens 6MW

Gamesa G11X-5MWShanghai Electric 2MW

BARD 6.5Dongfang 5MW

GE 4MW-DDAreva Multibrid M6000

REpower 6MSiemens SWT-3.0-DD

XEMC Darwind 5MW-DDDongfang 2.5MWGoldwind 3.0MWGoldwind 2.5MW

REpower 6MShanghai Electric 3.6MW

Sinovel 5MWVestas V112-3.0 MW

BARD 5Sinovel 3MW

Areva Multibrid M5000Nordex N90 2500

REpower 5MSiemens SWT-2.3-93

Siemens SWT-3.6-107Vestas V90-3.0MW

Winwind WWD-3

Figure 11: Expected commercial launches for o!shore wind turbine models

Source: Bloomberg New Energy Finance, companies

The  move  to  larger  turbine  models  should  improve  project  economics.  While  5MW+  turbines  will  be  more  expensive  per  unit  than  current  models,  installation  and  maintenance  costs  will  be  lower:  the  reduced  number  of  units  will  lower  overall  capex  per  MW  (fewer  foundations  and  array  cables);  taller  towers  will  gain  access  to  stronger  winds;  and  improved  production  

prices  and  spur  technological  innovation  in  design  and  reliability  –  which  manufacturers  claim  

Page 31: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

31

Forthcoming  next-­‐generation  offshore  wind  turbine  models  will  feature  larger  nameplate  

more  reliable  technology  that  requires  less  maintenance.  A  key  differential  between  the  emerg-­‐ing  models  is  drive  train  technology:  namely  direct  drive  (DD)  vs.  medium  speed  hybrid  (MSH).  It  is  still  uncertain  whether  one  technology  will  prevail  and  proponents  of  each  design  argue  about  their  relative  merits.  MSH  requires  no  substantial  alterations  to  the  design  of  a  high-­‐speed  gearbox,  only  reducing  the  number  of  gears  and  thus,  the  frequency  of  failures  in  an  already  proven  technology.  By  keeping  a  gearbox,  the  generator  can  be  substantially  smaller  and  require  fewer  permanent  magnets  and  rare-­‐earth  element  components,  of  which  future  supplies  from  China  may  be  constrained.  The  main  advantage  of  DD  is  the  complete  absence  of  a  gearbox.  This  should  eliminate  the  lengthy  downtime  associated  with  gearbox  failures  and  reduce  the  top  head  mass  of  the  nacelle,  allowing  for  taller  towers  and  access  to  stronger  winds.  

R&D - but not turbine specific

R&D - turbine specific

Commercial launch

2009 2010 2011 2012 2013 2014 2015 2016 2017

AMSC 10MWMitsubishi 6MW

Sway 10MWGamesa G14-X

Alstom 6MWVestas V164-7.0

Nordex N150Acciona 3MW

BARD 7+XSiemens 6MW

Gamesa G11X-5MWShanghai Electric 2MW

BARD 6.5Dongfang 5MW

GE 4MW-DDAreva Multibrid M6000

REpower 6MSiemens SWT-3.0-DD

XEMC Darwind 5MW-DDDongfang 2.5MWGoldwind 3.0MWGoldwind 2.5MW

REpower 6MShanghai Electric 3.6MW

Sinovel 5MWVestas V112-3.0 MW

BARD 5Sinovel 3MW

Areva Multibrid M5000Nordex N90 2500

REpower 5MSiemens SWT-2.3-93

Siemens SWT-3.6-107Vestas V90-3.0MW

Winwind WWD-3

Figure 11: Expected commercial launches for o!shore wind turbine models

Source: Bloomberg New Energy Finance, companies

The  move  to  larger  turbine  models  should  improve  project  economics.  While  5MW+  turbines  will  be  more  expensive  per  unit  than  current  models,  installation  and  maintenance  costs  will  be  lower:  the  reduced  number  of  units  will  lower  overall  capex  per  MW  (fewer  foundations  and  array  cables);  taller  towers  will  gain  access  to  stronger  winds;  and  improved  production  

prices  and  spur  technological  innovation  in  design  and  reliability  –  which  manufacturers  claim  

The  speed  of  the  transition  to  new  turbines  will  be  limited  by  operating  experience  but  this  can  –  and  is  –  being  partly  offset  by  guarantees  from  the  manufacturers.  Auxiliary  technology  required  to  support  larger  turbines  such  as  installation  vessels  (3.3.3)  and  foundations  (3.3.2)  

support  this  in  the  last  three  years  and  banks  will  require  guarantees  from  the  turbine  manu-­‐

Currently  the  market  is  dominated  by  European  suppliers  but  US  and  Asian  manufacturers  are  also  preparing  for  market  entry,  which  will  further  increase  competition  in  the  short  to  medium  term.  To  win  sales,  new  suppliers  could:

3.3.2 FoundationsBased  on  our  Central  scenario  (see  Section  4)  we  expect  foundation  requirements  to  increase  to  over  1,000  units  per  year  by  2020  (Figure  12).  While  the  market  today  is  served  by  relatively  few  players,  the  short  lead  times  required  to  ramp  up  supply  makes  undersupply  less  likely.  Suppliers  are  mainly  construction  and  steel  manufacturing  conglomerates  with  coastal  manu-­‐facturing  yards  able  to  serve  multiple  industries.  As  such,  they  will  be  able  to  increase  supply  within  1-­‐2  years  to  meet  demand  spikes.  There  are,  however,  concerns  that  suppliers  and  con-­‐

of  over  EUR  100m.  This  may  require  larger  projects  to  split  foundation  contracts  between  two  or  more  players.

We  expect  monopiles  to  be  partly  replaced  by  jacket  structures  between  2015  and  2020  as  they  are  more  cost  effective  for  5MW+  turbines  in  deeper  waters.  Monopiles  are  likely  to  dominate  through  2014  as  projects  are  mostly  limited  to  water  less  than  35m  deep  with  turbines  less  than  5MW.  However,  based  on  known  project  examples  and  steel  prices,  we  estimate  if  heavier  (5MW+)  turbines  are  deployed,  the  cost  of  a  monopile  in  25m  of  water  increases  from  EUR  2.7m  to  EUR  4.0m  (Figure  13  and  Figure  14).  We  estimate  the  cost  for  jacket  structures  would  go  from  EUR  2.7m  to  EUR  3.1m.  In  the  long  term,  we  expect  lower  learning  rates  and  cost  reductions  than  other  parts  of  the  value  chain  since  there  are  fewer  technological  and  process  improvements  to  be  found.  Foundation  costs  are  highly  sensitive  to  steel  prices.  In  this  esti-­‐mate  we  assume  EUR  400/metric  ton.Jackets  will  initially  suffer  from  slower  installation  times  as  more  deck  space  is  required  on  

Column

Monopile SIF/SmuldersBladt/EEW

Aarsle! BilfingerTAG

Jacket Burntisland Fabrications

SIF/SmuldersTata Steel

Tripods BARD

Tripiles Cuxhaven Steel

Source: BNEF

Table 7: Notable foundation manufacturers

Page 32: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

32 S E C T I O N 3 CO S T S & E Q U I P M E N T S U P P LY

installation  vessels.  But  this  should  be  more  than  compensated  for  by  lower  unit  costs.  A  resur-­‐gence  of  demand  for  monopiles  is  expected  in  2017  due  to  installations  in  new  markets  where  shallow  water  sites  have  not  yet  been  developed,  e.g.  France.

We  believe  concrete  (gravity)  foundations  will  struggle  to  gain  market  share  due  to  a  lack  of  cost-­‐effective  designs  for  deep  water  and  a  more  labour-­‐intensive  manufacturing  process.  Floating  turbines  such  as  the  Siemens/Statoil  Hywind  project  –  capable  of  operating  in  waters  400m  deep  –  are  still  in  the  experimental  stage,  but  we  expect  them  to  be  used  for  deeper  water  sites  and  onsite  power  generation  to  isolated  oil  and  gas  platforms  not  included  in  this  forecast.

Tripod

Jacket

Gravity

Monopile

73%85%

72%

95% 92%

59%

36%43%

35% 32% 31%

25%

2%

5%

7%4% 4%

15%

10%

5% 8%

34%

54%46%

52%58% 59%

2%18%

7% 8% 6% 6% 6% 6%

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

428 195 249 667 816 729 689 796 917 1,063 1,178

Market share (%) Annual installations (units)

Figure 12: Annual o!shore wind foundation installations by type, 2010-20

Source: Bloomberg New Energy Finance

Figure 13: Estimated cost of foundations for 3MW turbines by water depth, 2011 (EUR/unit & metres)

Source: Bloomberg New Energy Finance

Figure 14: Estimated cost of foundations for 5MW+ turbines by water depth, 2011 (EUR/unit & metres)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5 25 45

Tripod

Jacket

Gravity

Monopile

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5 25 45

Tripod

Jacket

Gravity

Monopile

Page 33: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

33

3.3.3. Installation vesselsBy  end-­‐2010,  29  turbine  installation  vessels  (TIV)  were  available  to  install  turbines  and/or  foundations.  Based  on  our  analysis  of  vessels  in  the  pipeline  we  expect  a  further  21  vessels  to  be  operational  by  end-­‐2013  (Figure  15).  All  of  the  new  vessels  will  be  jack-­‐ups  with  crane  lift-­‐ing  capacities  of  over  500  tonnes  –  the  required  strength  to  install  5MW+  turbines.  Two  years  ago  vessel  supply  was  earmarked  as  a  potential  bottleneck  to  the  industry,  but  this  strong  pipe-­‐line  demonstrates  that  investors  have  reacted  quickly  to  the  anticipated  undersupply.  This  has  been  facilitated  by  a  reduction  in  lead  times  from  36  to  24  months.  As  next-­‐generation  turbines  become  operational  in  2014,  many  of  the  18  vessels  with  crane  lifting  capacities  of  less  than  

existing  projects.  

There  are  24  vessel  owners  in  the  TIV  market,  offering  heightened  competition  in  terms  of  day  rate  charges  and  vessel  designs.  From  the  pipeline  of  vessels:

these  will  use  conventional  ship  hulls  (GustoMSC  design)  rather  than  barge  hulls.

demand  for  turbine  installations  weakens.  

vessels  need  to  be  able  to  operate  in  water  depths  of  over  40m,  but  recent  vessel  orders  have  substantially  raised  this  level:  Inwind  (65m),  Seafox  (70m)  and  Swire  Blue  Ocean  (75m).  Cranes  will  be  able  to  lift  over  500t,  allowing  them  to  install  5M+  turbines  and  deep  water  foundations.

2011,  can  transport  four  6MW  turbines  at  one  time.  In  February  Gaoh  placed  an  order  with  South  Korea’s  STX  to  build  the  Deepwater  Installer,  a  Goliath  in  comparison,  which  will  be  able  to  transport  16  3.6MW  turbines  with  the  aid  of  under-­‐deck  storage  and  incorporat-­‐

extreme  project  locations.

opted  for  six,  and  Inwind  has  chosen  three.

> 1000 tonnes

500 - 1000 tonnes

< 500 tonnes

18 18 18 18

49

1519

7

8

1213

2010 2011 2012 2013

29

50

45

35

Figure 15: Estimated number of operating TIVs by crane capacity, 2010-13

Source: Bloomberg New Energy Finance

installation  vessels.  But  this  should  be  more  than  compensated  for  by  lower  unit  costs.  A  resur-­‐gence  of  demand  for  monopiles  is  expected  in  2017  due  to  installations  in  new  markets  where  shallow  water  sites  have  not  yet  been  developed,  e.g.  France.

We  believe  concrete  (gravity)  foundations  will  struggle  to  gain  market  share  due  to  a  lack  of  cost-­‐effective  designs  for  deep  water  and  a  more  labour-­‐intensive  manufacturing  process.  Floating  turbines  such  as  the  Siemens/Statoil  Hywind  project  –  capable  of  operating  in  waters  400m  deep  –  are  still  in  the  experimental  stage,  but  we  expect  them  to  be  used  for  deeper  water  sites  and  onsite  power  generation  to  isolated  oil  and  gas  platforms  not  included  in  this  forecast.

Tripod

Jacket

Gravity

Monopile

73%85%

72%

95% 92%

59%

36%43%

35% 32% 31%

25%

2%

5%

7%4% 4%

15%

10%

5% 8%

34%

54%46%

52%58% 59%

2%18%

7% 8% 6% 6% 6% 6%

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

428 195 249 667 816 729 689 796 917 1,063 1,178

Market share (%) Annual installations (units)

Figure 12: Annual o!shore wind foundation installations by type, 2010-20

Source: Bloomberg New Energy Finance

Page 34: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

34 S E C T I O N 3 CO S T S & E Q U I P M E N T S U P P LY

A2SEA GeoSea Master Marine Smit Marine Projects

Ballast Nedam Gulf Marine Services RWE Stemat

BARD Engineering Inwind Scaldis Swire Blue Ocean

Beluga Hochtief Jack-Up Barge Seacore Van OordOord

Fred Olsen Windcarrier Jumbo SeaJacks Vroon BV / MPI

GAOH KS Energy Services Seaway Heavy Lifting Workfox BV

Source: Bloomberg New Energy Finance

Table 8: TIV owners and operators

3.3.4 High voltage export cables

The  supply  of  high  voltage  export  cables  to  the  offshore  wind  industry  is  likely  to  be  the  tight-­‐

Over  4,000km  of  export  cables  are  required  to  build  out  our  short-­‐term  demand  forecast  for  offshore  wind  projects  in  2011-­‐14,  with  cable  requirements  increasing  each  year  to  connect  more  projects  increasingly  further  from  shore.  A  spike  in  demand  in  2012  is  due  to  the  German  HVDC  clusters  BorWin2  and  DolWin1.  No  other  cable  demand  is  known  for  2012.

Demand - O!shore wind

Demand - Other

Supply

Supply - Extension

405 276

1,015

678

1,016

552

526

415

450

2010 2011 2012 2013 2014

957

1,466

1,093 1,015

802

Figure 16: European high voltage export cable supply/demand balance by year of cable manufacture, 2010-15 (km)

Source: Bloomberg New Energy Finance. Notes: Cable demand has been compiled using commissioning dates from disclosed contracts, and delivery date estimates from our short term demand forecast. Forecast includes demand from o!shore wind projects and ‘other’ – known transnational HVDC contracts for cross border interconnections in north Europe.

Three  established  players  –  ABB,  Prysmian  and  Nexans  –  have  dominated  the  offshore  cable  market.  At  current  capacity  this  trio  can  produce  800km  of  high  voltage  cables  per  year,  but  this  may  rise  to  1,400km  per  year  with  incremental  new  investment  by  installing  new  extru-­‐

Page 35: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

35

sion  lines  at  existing  plants  (represented  by  the  dashed  supply  line  in  Figure  16)  and  further  -­‐  to  1,700km  per  year  -­‐  with  new  entrants.New  entrants  include  NKT,  NSW  (a  subsidiary  of  General  Cable)  and  JDR  Cables,  which  will  

-­‐cient  to  match  the  increasing  demand.  If  this  is  not  addressed  in  advance  then  prices  are  likely  

capital  costs  (EUR  100-­‐200m)  and  lead  times  (3-­‐4  years)  of  a  new  production  facility.Installations  to  date  have  used  less  expensive  HVAC  cables,  but  future  demand  will  migrate  towards  HVDC  technology  as  projects  move  further  from  shore.  HVAC  cables  will  meet  the  demand  outside  of  Germany  up  to  2015  as  installations  remain  closer  than  60km  to  shore.  HVDC  cables  will  take  a  larger  share  of  the  market  from  2013  as  transmission  tenders  for  the  six  German  offshore  wind  clusters  –  all  closed  in  the  past  year  –  are  commissioned.  Other  mar-­‐kets,  including  the  UK  Round  3  and  French  tenders,  can  use  HVAC  but  we  expect  that  they  too  will  increasingly  use  HVDC  technology  where  it  proves  economical.  HVDC  technology  reduces  transmission  losses  over  great  distances  because  it  can  carry  higher  voltages  (500kV)  than  HVAC  (300kv).  Manufacturers  are  working  to  increase  the  voltage  of  cross-­‐linked  polyethylene  (XLPE)  HVAC  cables  to  extend  their  economical  range  against  HVDC  cables,  potentially  reduc-­‐ing  costs  for  future  projects

Non - contracted

Prysmian

NKT

ABB

Nexans

60%

22%

19%

20%

3%18%

22%

20%

14%

11%

32%

53%

14%

6%

30%

57%

2011 2012 2013 2014

1,015 1,093 802 1,466

Market share (%) Cable demand (km)

Figure 17: Annual European high voltage export cable installations by manufacturer, 2011-14

Source: Bloomberg New Energy Finance, companies.

Current  prices  for  HVAC  export  cables  –  including  supply  and  installation  –  are  around    EUR  0.4m/km,  but  the  majority  of  contracts,  range  from  EUR  0.5m/km  to  EUR  0.75m/km.    This  translates  to  6-­‐9%  of  total  capex  for  a  300MW  project.  HVDC  is  more  expensive  than  HVAC,  as  demonstrated  by  Prysmian’s  share  of  its  contracts  with  Siemens  for  the  BorWin  2,  HelWin  1  and  SylWin  1  tenders  ranging  from  EUR  1.0m/km  to  EUR  1.4m/km.  We  expect  the  cost  of    connecting  offshore  projects  to  the  grid  to  increase  slightly  over  the  next  few  years.

A2SEA GeoSea Master Marine Smit Marine Projects

Ballast Nedam Gulf Marine Services RWE Stemat

BARD Engineering Inwind Scaldis Swire Blue Ocean

Beluga Hochtief Jack-Up Barge Seacore Van OordOord

Fred Olsen Windcarrier Jumbo SeaJacks Vroon BV / MPI

GAOH KS Energy Services Seaway Heavy Lifting Workfox BV

Source: Bloomberg New Energy Finance

Table 8: TIV owners and operators

3.3.4 High voltage export cables

The  supply  of  high  voltage  export  cables  to  the  offshore  wind  industry  is  likely  to  be  the  tight-­‐

Over  4,000km  of  export  cables  are  required  to  build  out  our  short-­‐term  demand  forecast  for  offshore  wind  projects  in  2011-­‐14,  with  cable  requirements  increasing  each  year  to  connect  more  projects  increasingly  further  from  shore.  A  spike  in  demand  in  2012  is  due  to  the  German  HVDC  clusters  BorWin2  and  DolWin1.  No  other  cable  demand  is  known  for  2012.

Demand - O!shore wind

Demand - Other

Supply

Supply - Extension

405 276

1,015

678

1,016

552

526

415

450

2010 2011 2012 2013 2014

957

1,466

1,093 1,015

802

Figure 16: European high voltage export cable supply/demand balance by year of cable manufacture, 2010-15 (km)

Source: Bloomberg New Energy Finance. Notes: Cable demand has been compiled using commissioning dates from disclosed contracts, and delivery date estimates from our short term demand forecast. Forecast includes demand from o!shore wind projects and ‘other’ – known transnational HVDC contracts for cross border interconnections in north Europe.

Three  established  players  –  ABB,  Prysmian  and  Nexans  –  have  dominated  the  offshore  cable  market.  At  current  capacity  this  trio  can  produce  800km  of  high  voltage  cables  per  year,  but  this  may  rise  to  1,400km  per  year  with  incremental  new  investment  by  installing  new  extru-­‐

Page 36: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

36

3.4 Improved "nancing terms

The  introduction  of  debt  capital  to  UK  projects  will  increase  post-­‐tax  equity  returns  and  lower  

equity  costs  in  the  form  of  contingency  requirements  or  higher  internal  hurdle  rates.  Lever-­‐

a  longer  track  record  and  better  construction  and  operational  management  should  improve  

 margins  225-­‐250bps  just  before  the  onset  of  the  eurozone  sovereign  debt  crisis  (July  2011),  but  decreased  liquidity  has  increased  current  prices  to  above  300bps  (+50bps).  While  project  spreads  have  increased,  it  is  imperative  to  put  them  into  perspective  with  the  total  cost  of  debt  –  which  has  actually  decreased  as  term  swaps  have  fallen  since  April  2011  (Figure  19).  

solving  the  eurozone  sovereign  debt  crisis.

Balance sheet LCOE 2012

Introduction of debt capital

Improved tax shield

Lower risk profile of projects

Increased risk due to leverage

Leveraged LCOE 2020

(EUR/MWh)

126.1 119.6

9.8

3.6 2.9

9.8 -6.5

Figure 18: UK project change in LCOE due to change in capital structure and risk pro"le 2012-20

Source: Bloomberg New Energy Finance

S E C T I O N 3 CO S T S & E Q U I P M E N T S U P P LY

Page 37: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

37

0%

1%

2%

3%

4%

5%

6%

7%

Jan 05 Jan 06 Jan 07 Jan 08 Jan 09 Jan 10 Jan 11

Project Spread

Credit Insurance

Term Swap

6M Euribor

ECB Rate

40-100bpsO!shore wind additional project spread

Figure 19:Total cost of debt for euro area onshore wind project

Source: Bloomberg, Bloomberg New Energy Finance estimates. Notes: O!shore wind assets will typically see project spreads 40-100bps above onshore wind projects.

3.5 Change in project environment

methods  which  may  include  onsite  accommodation.-­‐

mission  losses.

time  as  prolonging  more  trips  will  be  required  by  installation  vessels  transporting  fewer  turbines.  

Despite  improved  wind  resources  at  these  sites,  the  net  change  to  the  LCOE  is  an  increase  of  EUR  8.4/MWh  (5.1%).  

Page 38: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

38

Announced

Permitted

Financed

Commissioned

0

10

20

30

40

50

60

0 50 100

500 MW

100 MW

Water depth (m) (y-axis) Distance to shore (km) (x-axis)

Figure 20: Project water depth and distance from shore by project status, 1991-2015

Source: Bloomberg New Energy Finance Note: bubble size represents capacity of project, see key on right.

S E C T I O N 3 CO S T S & E Q U I P M E N T S U P P LY

Page 39: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

39

Section  4Market size projections

Our market size projections to 2020 combine the research on costs, tari!s, project economics, supply chain availability and political risk. In our Central scenario government support for o!shore wind remains stable and there is no reduction in tari! levels. In this environment we project o!shore wind installations to grow at a compound annual growth rate (CAGR) of 22.4% in 2011-20 and EU countries to commission 35.5GW of o!shore wind by 2020, generating 115.6TWh of electricity, contributing 3.2% of the EU’s gross electricity demand and reaching 77% of the announced NREAP o!shore wind generation targets.

Page 40: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

40

4.1 Scenarios

Our  forecasts  are  constructed  by  combining  distinct  short  (2011-­‐15)  and  long-­‐term  (2016-­‐20)  forecasts  (see  Appendix  B).  The  former  is  bottom-­‐up,  driven  from  the  known  project  pipeline  

driven  from  a  calculation  of  the  probability  of  each  country  achieving  its  NREAP  target.  The  probability  is  primarily  driven  by  the  returns  with  the  current  policy,  our  assessment  of  politi-­‐cal  support  in  each  market  (Section  2.3)  and  the  associated  risk  of  downgrade  of  the  tariff.

In  our  Central  scenario  government  support  for  offshore  wind  remains  stable  and  there  is  no  reduction  in  tariff  levels.  In  this  environment  we  project  offshore  wind  installations  to  grow  at  a  CAGR  of  22.4%  2011-­‐20  and  EU  countries  to  commission  35.5GW  of  offshore  wind  by  2020.

ongoing  need  to  reduce  sovereign  debt  and  electricity  prices  has  a  negative  impact  on  political  support  for  offshore  wind.  Policy  adjustments  by  governments  favour  other  renewable  energy  technologies,  resulting  in  uncertainty  in  the  offshore  wind  market  that  leads  to  greater  inves-­‐tor  caution.  As  a  result  member  states  fail  to  achieve  their  NREAPs  by  31%  as  only  32.2GW  are  installed  by  2020.

In  our  High  scenario,  political  support  remains  stable  but  risks  decline  more  quickly  due  to  greater  investment,  competition  and  increased  cross  company  partnerships.  This  results  in  higher  investment  levels,  enabling  42.0GW  of  capacity  by  2020.

4.2 Markets

The  BNEF/Rabobank  Central  scenario  (Figure  22)  expects  a  strong  38%  CAGR  in  2011-­‐15  as  German  developers  race  to  complete  projects  in  time  to  qualify  for  the  sprinter  bonus.  Around  2016  the  market  is  likely  to  stabilise  at  3-­‐3.5GW  per  year  as  the  culmination  of  rapid  German  growth  could  coincide  with  a  lull  of  activity  in  the  UK  between  the  end  of  Rounds  1  and  2  and  

S E C T I O N 4

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

BNEF/Rabobank High

BNEF/Rabobank Central

BNEF/Rabobank Low

EWEA High

EWEA Mid

Figure 21: EU o!shore wind installations, 2010-20 (MW)

Source: Bloomberg New Energy Finance, Rabobank, EWEA (Pure Power: Wind energy targets for 2020 and 2030, EWEA, July 2011) Notes: BNEF/Rabobank scenarios all follow the BNEF short-term forecast until 2015.

M A R K E T S I Z E P R O J E C T I O N S

Page 41: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

41

the  beginning  of  Round  3.  Growth  is  expected  to  surge  towards  the  end  of  the  decade  (16.8%  CAGR  in  2016-­‐20)  as  developers  install  projects  in  the  UK  (Round  3)  and  other  European  nations  –  namely  France  and  Sweden.  Annual  installations  by  2020  are  likely  to  be  in  the  order  of  5-­‐6GW  compared  with  to  1GW  today.

United  Kingdom:  We  calculate  that  the  RO  scheme  gives  investors  in  Round  1  and  2  –  with  unleveraged  project  returns  in  the  order  of  10-­‐15%  –  the  highest  returns  in  the  EU.  Currently,  the  scheme  remunerates  UK  projects  at  GBP  163/MWh  (Table  2),  while  the  LCOE  for  current  projects  averages  at  GBP  141/MWh.  Future  returns  will  depend  on  the  FiT  strike  price,  which  should  take  into  account  the  future  cost  situation  for  Round  3  projects  –  a  balance  of  location-­‐driven  cost  increases  and  experience-­‐  and  scale-­‐driven  cost  decreases.

Scenario2020 installed capacity (MW)

Average assumed capacity factor (%)

2020 annual electricity generation (TWh)

% of 2020 NREAPs generation target

% of 2020 EU gross electricity demand

NREAPs 46,387 37 149.8 n/a 4.13

BNEF/ Rabobank Low 32,170 35 99.5 66 2.74

BNEF/ Rabobank Central 35,506 37 115.6 77 3.19

BNEF/ Rabobank High 42,047 39 144.2 96 3.98

EWEA Mid 40,000 40 139.2 93 3.84

EWEA High 55,000 42 203.8 135 5.58

Source: BNEF, EWEA, NREAPs Notes: Percentage comparisons between scenarios are based on generation rather than capacity installations EU gross electricity demand in 2020 is estimated to be 3,625TWh.

Table 9: 2020 forecast scenarios

0

1,000

2,000

3,000

4,000

5,000

6,000

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

1,087

5,642

4,809

4,100

3,641

3,030 3,316 3,147

2,444

1,522

916

Rest of EU

Netherlands

Denmark

Belgium

France

Germany

UK

Figure 22: Annual o!shore wind installations by country, 2010-20, BNEF/Rabobank Central scenario (MW)

Source: Bloomberg New Energy Finance, Rabobank Notes: ‘Other includes the following countries: Spain, Ireland, Finland, Italy, Poland, Greece, Estonia, Sweden, Latvia, Lithuania, Malta, and Portugal.

Page 42: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

42 M A R K E T S I Z E P R O J E C T I O N S

Germany:  German  projects  are  situated  in  more  extreme  environments  than  UK  sites  at  present  –  demanding  higher  capex  and  giving  a  LCOE  of  EUR  175-­‐180/MWh,  translating  to  a  return  on  equity  (ROE)  of  7-­‐10%.  The  new  EEG  2012  tariff  may  provide  leveraged  equity  returns  of  7-­‐10%,  an  increase  from  previous  returns  of  5-­‐7%  under  EEG  2009.  While  these  

into  deeper  waters.  As  a  result  returns  should  improve  and  the  positive  outlook  is  bolstered  by  strong  political  support.

Denmark:  The  LCOE  of  Danish  projects  (currently  around  EUR  158/MWh)  is  one  of  the  lowest  in  Europe  –  thanks  to  superior  wind  resources  close  to  shore  with  an  established  domestic  sup-­‐ply  chain  –  and  strong  political  support  for  wind  energy.  However,  PPAs  under  the  current  ten-­‐dering  scheme  (EUR  141/MWh  for  Anholt)  only  provides  equity  returns  in  the  order  of  5-­‐8%  which  are  some  of  the  lowest  in  Europe,  reducing  the  attractiveness  of  the  market  to  external  investors.  Due  to  the  low  targets  set  by  the  Danish  NREAP  and  the  importance  of  its  domestic  supply  chain,  we  feel  Denmark  may  exceed  its  target.

Belgium:  The  current  GC  scheme  offers  relatively  stable  revenues  and  predictable  returns  in  

France:  Based  on  cost  assumptions  and  commissioning  dates  for  the  tendered  sites  the  LCOE  will  be  around  EUR  163/MWh  in  2015.  If  developers  are  not  required  to  fund  the  grid  con-­‐nection  the  LCOE  will  be  lower  –  EUR  143/MWh.  These  values  fall  within  the  range  of  eligible  PPAs  (Table  6),  indicating  that  returns  of  10%  or  higher  are  possible.  However,  the  scheme  has  attracted  a  wealth  of  interest  already,  and  the  resulting  high  level  of  competition  between  development  consortia  could  lower  the  submitted  PPA  bids  –  potentially  limiting  equity  returns  to  less  than  10%.  This  effect  will  be  compounded  for  bids  that  do  not  create  a  local  sup-­‐ply  chain.  

Project Capacity (MW) Year PPA DKK& (EUR)/MWh Limit

Horns Rev 2 209 2009 518 (69.6) 50,000 load hrs

Rodsand 2 207 2009 629 (84.5) 50,000 load hrs

Anholt 400 2013 1,051(141.1) 20,000 GWh

Source: Bloomberg New Energy Finance Notes: DKK-EUR FX rate 0.1343.

Table 10: Danish tender results

S E C T I O N 4

Page 43: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

43

4.3 Forecast in context

Our  long-­‐term  forecasts  are  more  conservative  than  those  of  the  European  Wind  Energy  Asso-­‐ciation  (EWEA).  EWEA’s  Mid  scenario  estimates  the  EU  will  commission  40GW  of  offshore  wind  capacity  by  2020  –  13%  more  capacity  than  the  BNEF/Rabobank  Central  scenario  of  35.5GW.  In  terms  of  generation,  EWEA  assumes  this  40GW  will  generate  139.2TWh  (40%  capacity  factor)  –  20%  greater  than  the  BNEF/Rabobank  Central  scenario  of  115.6TWh.  The  EWEA  Mid  scenario  foresees  the  EU  achieving  93%  of  its  NREAP  generation  targets  and  meet-­‐ing  3.84%  of  gross  EU  electricity  generation.  

2020 LCOE (EUR/MWh)

Current Project

IRR

Policy in place?

(max 2)Project IRR

(max 4)Political support

(max 4)Total

(max 10)

Required installation 2016-20 to

meet NREAP target (MW)

Probability of meeting

required 2016-20 rate

Resulting 2020 capacity (MW)

% of 2020 NREAP target

UK 128 10-15% Yes (2) Good (4) Adequate (3) 9 7,313 90% 12,193 94%

Germany 133 5-10% Yes (2) Good (3) Strong (4) 9 4,928 90% 9,507 95%

Denmark 127 5-8% Yes (2) Medium (2) Strong (4) 8 70 100% 1,973 147%

Belgium 143 7-12% Yes (2) Good (4) Some risk (2) 8 956 80% 1,809 90%

France 130 5-10% Yes (2) Medium (3) Adequate (3) 8 6,000 80% 4,800 80%

Netherlands 143 N/A No (0) Poor (0) High risk (1) 1 4,172 10% 1,006 19%

Source: Bloomberg New Energy Finance Notes: ‘BNEFBNEF/Rabobank Central 2016-20’ is the capacity our Central scenario requires each country to commission in 2016-20, after the 2015 short-term forecast, to meet our expectations. The probability of meeting 2016-20 targets and 2020 targets are for the BNEF/Rabobank Cen-tral scenario. Is there a subsidy or support mechanism (current or planned) for o!shore wind? (2 = yes, 1 = planned, 0 = no). Given the expected LCOE in 2020 does this subsidy mechanism provide adequate returns to equity investors? (4 = good returns, 3 = adequate returns, 2 = marginal returns, 1 or 0 = inadequate return) How broad is the political consensus behind o!shore wind? What is the risk that support will be downgraded? (4 = strong political support, 3 = adequate, 2 = some risk, 1 or 0 = high risk). The scores translate directly into the estimated probability of each country achieving its NREAP targets from 2016-2020. For further details see Appendix. *Denmark is expected to exceed its NREAP target – explained in Section 4.2.

Table 11: Policy risks in North Sea countries for BNEF/Rabobank Central scenario

Page 44: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

44

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

Page 45: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

45

Section  5Funding requirement & potential investors

In our Central scenario we calculate that investment of EUR 127bn of capital in o!shore wind and associated grid connec-tions is required to build capacity between 2012 and 2020. This ranges from EUR 114bn in our Low scenario to EUR 152bn in our High scenario. Existing and new deal structures have opened the market to seven types of equity investor, around twenty commercial banks and three to four public financing institu-tions, such as EIB and KfW, as well as institutional investors and smaller utilities. The primary investors have been - and will con-tinue to be - large multinational utilities such as RWE, Centrica, and Dong. However the capital spending constraints which they have require them to bring on partner investors. Based on recent investment trends we expect two groups to be a key part of this: institutional investors and secondary utilities with esti-mated investments of EUR 3.9bn and EUR 14.2bn respectively.

Page 46: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

46

5.1 Investment required

The  EUR  127bn  required  includes  grid  connection  costs,  irrespective  of  which  entity  (devel-­‐oper,  utility  or  TSO)  pays  for  them.  This  is  based  on  31.7GW  being  built  (2012-­‐20)  in  our  Central  scenario  and  could  range  from  28.3GW  and  38.2GW,  which  in  investment  terms  is  EUR  114-­‐152bn.

Investment  is  likely  to  be  concentrated  in  the  UK  and  Germany,  which  will  both  require  EUR  39bn,  followed  by  France  with  EUR  19bn  and  then  Belgium  (Figure  23).  Germany’s  invest-­‐

earlier  in  the  decade  –  incurring  higher  capex  per  MW  –  and  additional  grid  transmission  costs  are  included.

39.2  

16.3  

38.6  

18.8  

6.6  

3.9  

3.5  

EURbn

Rest of EU

Netherlands

Denmark

Belgium

France

UK

Germany

Figure 23: Central scenario o!shore wind investment by country 2012-20

Source: Bloomberg New Energy Finance Notes: Investment volumes include grid connection and transmission costs.

5.2. Equity investors

Currently  seven  discrete  investor  types  are  actively  investing  equity  in  offshore  wind  assets  during  construction  or  operation  (six  in  Figure  24and  risk  management  capabilities  which  enable  them  to  invest  in  these  assets.  Some  of  these  investments  also  have  debt-­‐like  characteristics  in  terms  of  risk  and  return,  although  there  are  also  three  other  institutions  that  provide  debt  or  loan  guarantees  which  facilitate  investments.

Utilities:  Utilities  require  returns  of  8-­‐10%,  which  current  policy  mechanisms  in  the  UK,  Denmark  and  Belgium  may  satisfy.  Therefore,  we  expect  utilities  to  continue  to  invest  in  offshore  wind  as  long-­‐term  assets  –  from  conception  through  to  decommissioning  (Figure  24).  This  investment  model  has  nurtured  the  industry  in  its  infancy,  but  continuing  to  exploit  

project  duration/  wind  farm  lifetime  is  unsustainable.  Further  equity  and  debt  sources  are  

S E C T I O N 5 F U N D I N G R E Q U I R E M E T & P OT E N T I A L I N V E S TO R S

Page 47: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

47

utilities  in  projects  which  have  either  been  commissioned  or  will  be  commissioned  in  our  short  term  forecast  2011-­‐2015.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

Announced 2 yearsCommissionedFinancedPermitted Longterm

Private equity

Turbine manufacturers

Project

IPP

developer

Utility

Pension fund

Figure 24: Entry and exit timings for equity investors with target risk adjusted returns (%)

Source: Bloomberg New Energy Finance

Project  developers:  Project  developers  own  assets  from  their  conception,  and  take  them  

-­‐ers  are  investing  in  offshore  wind  to  capitalise  on  their  construction  expertise  and  ownership  of  site  permits,  but  differ  in  that  they  do  not  need  to  hold  onto  assets  long  term  to  serve  a  gen-­‐eration  portfolio.  Developers  will  aim  to  sell  their  equity  stakes  to  utilities  or  pension  funds  on  or  shortly  after  the  project’s  commissioning  date  at  a  premium  –  increasing  their  returns.  An  estimated  EUR  2.9bn  has  been  invested  by  project  developers  in  projects  which  have  either  been  commissioned  or  will  be  commissioned  in  our  short  term  forecast  2011-­‐2015.

Turbine  and  balance  of  plant  (BOP)  manufacturers:  :  Turbine  manufacturers  have  invested  in  project  development  sites  and  operational  offshore  wind  farms.  By  taking  part  ownership  in  offshore  wind  assets,  turbine  manufacturers:

The  latter  is  the  strongest  incentive  as  competition  in  the  turbine  market  increases  with  the  entrance  of  new  players  and  related  expected  oversupply.  For  example  Nordex  acquired  40%  of  the  300MW  Arcadis  Ost  1  project  development  site  in  May  2010.  BOP  manufacturers  such  as  Van  Oord,  Deme  and  Vinci  are  increasingly  involved  in  construction  consortia  –  alongside  tur-­‐bine  manufacturers,  developers  and  utilities  –  that  are  forming  to  coordinate  the  development  of  larger  sites  in  the  3GW  French  tender  and  UK  Round  3.  While  BOP  manufacturers  have  not  invested  equity  into  assets  to  date,  the  aforementioned  incentives  for  turbine  manufacturers  may  still  apply  to  attract  future  investment.

Page 48: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

48 F U N D I N G R E Q U I R E M E T & P OT E N T I A L I N V E S TO R S

Investment  once  equipment  contracts  have  been  secured  is  less  common  as  the  volume  of  capi-­‐

Siemens  have  made  such  investments.  Siemens  Project  Ventures  is  a  part  owner  of  three  pro-­‐jects  under  construction  –  Gwynt  y  Mor  (10%),  Lincs  (25%),  and  Hornsea  (50%).

This  equity  source  is  limited  as  only  a  small  number  of  manufacturers  possess  large  enough  balance  sheets  or  appropriately  skilled  and  mandated  investment  arms.  However  some  turbine  manufacturers  are  investigating  the  possibility  of  raising  funds  from  other  investors  which  they  would  then  put  into  wind  projects.  If  this  strategy  is  successful  this  will  increase  the  vol-­‐ume  of  dedicated  capital  examining  the  space.  An  estimated  EUR  100m  has  been  invested  by  turbine  manufacturers  in  projects  which  have  either  been  commissioned  or  will  be  commis-­‐sioned  in  our  short  term  forecast  2011-­‐2015.

Independent  power  producers:  IPPs  tend  to  focus  on  power  plant  construction  and  opera-­‐tion  with  the  intent  of  producing  a  well  balanced  yield  bearing  portfolio  which  they  can  market  as  an  investment  product  to  institutional  investors.  The  majority  are  better  capitalised  than  project  developers  and  are  therefore  able  to  make  the  investment  required  to  build  a  project  and  manage  the  risks  associated  with  this.  An  estimated  EUR  650m  has  been  invested  by  IPPs  in  projects  which  have  either  been  commissioned  or  will  be  commissioned  in  our  short  term  forecast  2011-­‐2015.  

Private  equity:  

investor  so  far  –  Blackstone’s  80%  share  of  the  400MW  Meerwind  project  in  Germany  and  the  

funds  to  take  minority  stakes  in  future  projects  as  they  are  potentially  willing  to  take  on  devel-­‐opment  and  construction  risks.  However,  the  high  returns  demanded  by  PE  (14-­‐20%)  need  to  be  realised  either  through:

PE  may  therefore  participate  in  offshore  wind  by  acting  as  a  short-­‐term  investor  over  the  con-­‐struction  phase.  A  number  of  more  conservative  PE  houses  are  looking  to  purchase  operational  assets  as  longer-­‐term  investments  –  diversifying  their  portfolios  with  lower  but  stable  returns.  An  estimated  EUR  210m  has  been  invested  in  projects  which  have  either  been  commissioned  or  will  be  commissioned  in  our  short  term  forecast  2011-­‐2015.

Pension  funds/institutional  investors:  

expertise  and  low  management  capability  compared  to  the  volume  of  capital  under  manage-­‐

and  gas  company  DONG  Energy  has  pioneered  this  approach.    It  has  secured  a  50%  investment  from  PensionDanmark  in  the  Danish  Rodsand  1  project  in  2010,  a  25%  investment  from  Dutch  investors  (Stichting  Pensioenfonds  PGGM  and  Triodos  Bank)  in  the  UK  Walney  1  and  2  projects  in  2010,  and  a  50%  investment  (PensionDanmark  and  Pensionskassernes  Administration  A/S)  

to  entice  the  funds  -­‐  guaranteeing  the  pension  fund’s  returns  by  shouldering  the  entire  oper-­‐ating  risk.    If  investments  by  retail  corporations  in  Dutch  and  Belgian  projects  are  included,  EUR  1.3bn  has  been  invested  in  projects  which  have  either  been  commissioned  or  will  be  com-­‐missioned  in  our  short  term  forecast  2011-­‐2015.

S E C T I O N 5

Page 49: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

49

Sovereign  wealth  funds:  Typically  able  to  deploy  EUR  100m  or  more  in  single  investments  sovereign  wealth  funds  are  not  known  to  be  systematically  interested  in  offshore  wind.    How-­‐

well  as  high  level  political  and  corporate  relationships  which  can  facilitate  investments.  They  

capital  maintenance  for  the  parent  country.  

5.3. Debt providers

Commercial  banks:  So  far  26  commercial  banks  have  provided  debt  to  offshore  wind  projects  

might  become  less  active  as  a  result.  However,  many  of  the  banks  which  suffered  during  the  2008  crisis  have  remained  active  in  offshore  wind  and  new  banks  have  entered  the  market  –  closing  deals  in  2010  and  2011.  EUR  1.6bn  has  been  invested  by  these  institutions  in  project  

roles  alongside  the  multilaterals.

Multilateral  banks:  The  primary  government  backed  lending  bank  to  offshore  wind  projects  to  date  has  been  the  European  Investment  Bank  (EIB)  –  lending  more  than  EUR  1.7bn  since  

C-­‐Power  2  and  Borkum  West  2.  However  this  group  of  debt  providers  also  includes  Kreditan-­‐

Meerwind  projects  in  2011  alone.  The  UK’s  proposed  Green  Investment  Bank  will  become  active  with  GBP  3bn  of  equity  in  2012,  with  the  authority  to  borrow  from  2015/16.Export  credit  agencies  (ECAs):  Institutions  that  guarantee  commercial  lending  to  exported  

Windpower  or  Vestas  is  participating.    Euler-­‐Hermes  in  turn  is  geared  to  supporting  German  exports.  Both  EKF  and  Euler-­‐Hermes  are  involved  in  the  C-­‐Power  2  transaction.

InvestorTarget

returns Reason for investmentExample investments

Risk appetite

Utilities 8-10% Renewable energy generation serves to decarbonise its asset portfolio. Rodsand II Variable

Project developers 12-15% Capitalise on ownership of site permits. Sheringham Shoal High

Turbine manufacturers 10-14% Secure turbine sales/demand for turbines. Lincs Medium

Independent power producers 12-15% Focus on building and maintaining a yield bearing power generation portfolio. Variable

Private equity 14-20% Opportunistic. Meerwind High

Pension funds/ institutional investors 6-8% May acquire operational assets providing lower but predictable revenues over a long time period. Note investment can have very similar characteristics to commercial debt or bonds.

Anholt Very low

Sovereign wealth funds 6-12% May acquire assets providing lower but predictable revenues over a long time period and diverse portfolio.

London Array Variable

Source: Interviews, Bloomberg New Energy Finance, Rabobank

Table 12: Equity investor pro"les

Page 50: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

50

KfW Programme “O!shore Windenergie”On 8 June 2011, The Federal Ministry for the Environment and the state-owned development bank KfW o#cially launched the O!shore Wind Power Programme, providing EUR 5bn of debt to 10 German o!shore wind projects on a "rst come "rst serve basis – acting as a catalyst to entice capital from the private sector.

The loans may be provided in the following ways:

may not exceed EUR 700m per project or 70% of the total capital.

The scheme signi"cantly reduces the debt capital requirements from commercial banks and dramatically increases the "nancing options available to early projects by "lling into a gap in commercial lending.

5.3 Capital structures

structure.    In  broad  terms  the  primary  structures  have  either  been  on-­‐balance  sheet  (all  

-­‐tional  investors  –  rather  than  commercial  banks  –  into  projects.  Similarly  utilities  have  also  brought  partners  in  before  construction  or  received  commitments  before  construction  that  investments  will  be  made  after  commissioning.

Beyond  known  expected  investments  to  2015  we  have  forecast  future  investment  volume  by  investor  type,  projecting  from  historic  average  investment  rates  and  assuming  steadily  increas-­‐ing  roles  for  secondary  or  ‘supporting’  utilities  and  institutional  investors.  These  groups  will  invest  through  the  following  capital  structures:

after  commissioning

InvestorTarget

returns Reason for investment Example investmentsRisk appetite

Commercial banks 4-8% Typically the largest provider of debt in a given sector, driven by calculation of risk adjusted return on capital deployed. Cost and willingness to lend can be significantly a!ected by health of wider bank market.

Thornton Bank 1 Low

Public Finance Institutions 4-7% Multinational or national government backed institutions with explicit man-dates to support politically mandated investment goals. In Europe this includes the EIB and Germany's KfW (see box out).

Borkum West II - Phase 1 Low

Export credit agencies n/a National government backed agencies established to support the export of manufactured goods, equipment and services. Able to o!er loan and other guarantees, reducing the risk for other investors and increasing the strength of equipment supplier guarantees.

C-Power I, II & III Medium

Source: Interviews, Bloomberg New Energy Finance, Rabobank

Table 13: Debt investor pro"les

F U N D I N G R E Q U I R E M E T & P OT E N T I A L I N V E S TO R SS E C T I O N 5

Page 51: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

51

We  will  see  many  more  combinations  and  capital  structures  however  these  scenarios  have  traction  and  we  expect  to  be  used  on  an  ongoing  basis.

-­‐

costs  were  expected  to  rise,  EIB  stepped  in  (Figure  25).  Where  commercial  banks  have  pro-­‐vided  the  majority  of  the  capital  this  has  been  facilitated  by  the  provision  of  loan  guarantees  by  Euler-­‐Hermes  and  EKF  covering  all  or  part  of  the  commitments.

Commercial debt

KfW

EIB

Contingency

Equity

Loan guarantees

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Princess Amalia

Thornton Bank I

Belwind Borkum West II - Phase I

Thornton Bank I, II & III

Global Tech 1

Meerwind

2006 2007 2009 2010 2010 2011 2011

Figure 25: Project "nance capital structures and loan guarantee coverage 2006-2011

Source: Bloomberg New Energy Finance

Pre-commissioning Post-commissioning Description and bene"ts Examples

1 Investor equity/balance sheet

Investor equity/balance sheet The investor maintains full equity and operational ownership.

Rodsand II

2 Investor sponsorship of project finance

Investor sponsorship of project finance

Commercial lending brought in during construction. Reduces actual equity commitment by primary sponsor throughout project lifetime.

Borkum West II – Phase IGlobal Tech 1C-Power I, II & III

3 Investor equity/balance sheet

Refinance with debt from commercial or development banks & Sale of equity to 3rd party

Commercial or development bank lending brought in post construction. Refinances the asset and allows the primary sponsor to redeploy capital.

Baltic 1LynnInner DowsingGreater Gabbard

4 Investor equity/balance sheet

Sale of debt like tranche to institutional investor.

Investor maintains operational control and shoulders primary operational risks.

Rodsand IGunfleet SandsWalney 1 and 2 Anholt

Source: Bloomberg New Energy Finance

Table 14: Potential capital structures of o!shore wind farms

Page 52: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

52

5.4 Investment volume by investor type

We  have  forecast  the  potential  sources  of  this  capital  by  categorising  the  current  equity  own-­‐ers  of  the  offshore  wind  projects  in  our  short-­‐term  forecast  to  2015  into  the  seven  types  noted  above.  The  debt  portions  –  whether  commercial  or  public  –  of  projects  that  have  or  are  attain-­‐

and  gearing  ratios  are  projected  onto  our  long  term  investment  forecast  (2016-­‐20).

This  represents  a  shift  to  a  more  sustainable  equilibrium  whereby  the  industry  relies  less  on  the  primary  utilities  to  fund  assets  on  balance  sheet.  Other  equity  sources  are  expected  

as  more  municipal  utilities  (Trianel  GmbH,  Stadtwerke  Muenchen  GmbH  etc.)  and  small  utilities  take  partial  ownership  of  assets  with  equity  injections  of  EUR  100-­‐200m.

in  2016-­‐20.  Developers  currently  own  53%  of  equity  in  projects  forecast  to  be  commis-­‐sioned  in  2015  –  a  statistic  skewed  upwards  since  68%  of  these  assets  are  only  permitted,  

selling  equity  stakes  to  other  investors  during  construction  or  shortly  after  commissioning.

2020.  Pension,  insurance  and  sovereign  wealth  funds  are  increasingly  looking  into  offshore  wind  as  a  stable  and  long  term  investment  opportunity.    

product  demand.

We  foresee  PE  acting  primarily  as  a  short-­‐term  investor  over  the  construction  phase,  but  there  are  a  number  of  more  conservative  PE  houses  looking  to  purchase  operational  assets  as  longer-­‐term  investments  –  diversifying  their  portfolios  with  lower  but  stable  returns.

This  Central  scenario  forecasts  that  the  required  investment  volume  (2012-­‐20)  could  consti-­‐tute  EUR  27.0bn  from  primary  utilities,  EUR  16.8bn  from  project  developers,  EUR  14.2bn  from  secondary  utilities,  EUR  3.1bn  from  independent  power  producers  (IPP),  EUR  0.7bn  from  tur-­‐bine  manufacturers,  EUR  3.9bn  from  institutional  investors  and  EUR  1.9bn  from  private  equity    (Figure  26).

We  are  forecasting  greater  ownership  of  offshore  wind  assets  by  secondary  utilities  and  project  

capital  demands  of  large  future  projects.  Our  analysis  estimates  debt  capital  contributions  will  increase  from  40-­‐60%  in  2016-­‐20,  while  the  contribution  of  commercial  banks  to  this  debt  capital  will  increase  from  45-­‐70%  in  2013-­‐20.  There  is  a  high  volume  of  public  bank  debt  in  

 its  “Offshore  Windenergie”  programme,  but  this  will  subside  once  this  programme  ends.    

F U N D I N G R E Q U I R E M E T & P OT E N T I A L I N V E S TO R SS E C T I O N 5

Page 53: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

53

Debt - Multilateral

Debt - Commercial

Private equity

WTG

Institutional investor

IPP

Developer

Secondary utility

Primary utility

EURbn

1.1

6.3

4.2

2.2

3.3 3.2

2.8 2.4 2.1

1.6

0.9

0.7

1.4

1.4 1.7

1.9 2.2

2.5

0.9

0.4

1.5 4.3

1.9 2.0

2.0 2.0

2.1

0.4 0.3

0.3

0.1 0.4

0.4

0.4

0.4

0.4

0.2 0.4

0.5

0.1 0.3

0.4

0.5

0.6

0.8

0.1 0.1

0.2

0.1

0.1

0.1

0.1

0.1

0.3

0.3

0.3

0.3

0.3

0.3

0.4 1.0

3.5 3.4

2.8 4.0

5.2 6.9

8.6

0.7 1.2

3.8 3.4 2.3 2.7 2.8 3.0 3.7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2012 2013 2014 2015 2016 2017 2018 2019 2020

5.5 20.5 18.0 16.0 14.8 12.9 15.1 15.0 10.6

Figure 26: Annual investment in o!shore wind by year of commissioning and investor type 2007-15 existing commitments 2016-2020 forecast

Source: Bloomberg New Energy Finance Notes: Data in 2012-15 is based on real ownership data of projects in our short term forecast. Data in 2016-20 is forecast using assumptions described in Section 4.

In  our  Central  scenario  government  support  for  offshore  wind  remains  stable  and  there  is  no  reduction  in  tariff  levels.  In  this  environment  we  project  offshore  wind’s  levelised  cost  of  

returns  –  attracting  capital  from  an  increasing  portfolio  of  equity  and  debt  with  diverging  risk  

installations  of  35.5GW  in  the  EU  by  2020.  Although  this  is  less  than  of  the  targeted  46.6GW,    it  entails  a  compound  annual  growth  rate  (CAGR)  of  22.4%  in  2011-­‐20  and  EUR  127bn  invest-­‐ment.  This  scenario  will  establish  offshore  wind  on  a  robust  path  to  further  industrialisation  and  roll  out  across  the  EU  and  the  world.  It  requires  the  right  political  and  regulatory  environ-­‐ment  to  enable  the  innovation  and  dynamism  of  private  enterprise  to  deliver  these  investment  volumes  and  subsequent  cost  reductions  required  by  society.

Page 54: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

54

Page 55: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

55

Appendices

Page 56: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

56

capital  and  operational  costs  assessments,  we  calculate  the  expected  cost  for  offshore  wind  projects  by  country  through  2020:

capacity,  average  wind  speed,  technical  availability,  distance  to  shore,  water  depth.

turbine  model,  foundation  type,  high-­‐voltage  cable  type  and  length,  electrical  substations

the  experience  curve  is  an  empirical  economic  law  govern-­‐ing  most  manufactured  goods:  for  every  doubling  of  cumulative  production  of  a  given  good,  

by  doing:  the  more  you  make  of  something,  the  better  you  become  at  it.unlocking  greater  expected  demand  may  drives  investments  in  larger  

Appendix A

O!shore Wind Cost Model

A P P E N D I X A

Manufacturer Model Capacity (MW) Date online EURm per unit EURm per MW

Vestas V90 3.0 Online 3.97 1.32

Siemens SWT 107/120 3.6 Online 4.83 1.34

Areva Multibrid M5000 5.0 Online 7.47 1.49

Repower 5M 5.0 Online 7.47 1.49

BARD 5.0 5.0 Online 7.47 1.49

Alstom 6MW 6.0 2013 9.05 1.51

Siemens SWT 120 6.0 2014 9.33 1.55

Vestas V164 7.0 2014/15 10.51 1.50

Source: Bloomberg New Energy Finance

Turbine Turbine 3+MW 5+MW

Depth (m) Monopile Gravity Jacket Tripod Monopile Gravity Jacket Tripod

5 1.32 1.37 1.38 1.43 2.73 2.78 1.75 2.31

10 1.43 1.48 1.49 1.54 2.84 2.89 1.86 2.42

15 1.54 1.59 1.60 1.65 2.95 3.00 1.97 2.53

20 1.65 1.70 1.72 1.76 3.06 3.11 2.09 2.64

25 1.75 1.81 1.83 1.87 - 3.22 2.20 2.75

30 1.86 1.91 1.94 1.98 - - 2.31 2.86

35 - - 2.05 2.09 - - 2.42 2.97

40 - - 2.16 2.21 - - 2.53 3.08

45 - - 2.27 2.32 - - 2.64 3.19

Source: Companies, Bloomberg New Energy Finance

Table 15: Project turbine prices by manufacturer and turbine, 2018

Table 16: Foundation costs by type, 2018 (EURm per unit)

Page 57: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

57

TIV Year TIV Year TIV Year

Inwind Installer 2011 Beluga Hochtief 2 2012 Van Oord 1 2012

Jack Up Barge JB 116 2011 Fred Olsen Windcarrier Bold Tern 2012 Workfox Seafox 5 2012

Master Marine Nora 2011 RWE Seabreeze 2 2012 A2Sea Sea Installer 2013

RWE Seabreeze 1 2011 SeaJacks Scirocco 2012 Fred Olsen Windcarrier Brave Tern 2013

MPI  Adventure 2011 SeaJacks Shamal 2012 Jack Up Barge JB 117 2013

MPI  Discovery 2011 SeaJacks Zaratan 2012 Swire Blue Ocean Pacific Osprey 2013

Beluga Hochtief 1 2012 Swire Blue Ocean Pacific Orca 2012 GAOH Deepwater Installer 2013

Source: Comnpanies, Bloomberg New Energy Finance, companies

Table 18: TIVs under construction with estimated delivery date

Type Current Voltage (kV) EURm per km

Export AC 132/150 0.55

AC 400 0.64

DC 400 1.28

DC with VSC 400 1.55

Array AC 33 0.15

Source: Companies, Bloomberg New Energy Finance Notes: Cable costs include installation.

Table 17: High voltage cable costs, 2018

Page 58: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth

58

Our  forecasts  are  constructed  by  combining  distinct  short-­‐  (2011-­‐15)  and  long-­‐term  (2016-­‐20)  forecasts.  The  former  is  based  on  the  known  project  pipeline.  The  latter  is  driven  from  a  calcu-­‐lation  of  the  probability  of  each  country  achieving  its  NREAP.

2015 short-term forecastOur  short-­‐term  forecast  to  2015  adopts  a  bottom-­‐up  approach,  aggregating  our  expected  com-­‐missioning  dates  for  individual  projects.  Initial  forecasts  are  calculated  from  the  current  pro-­‐

achieve  the  remaining  milestones.  These  timeframes  vary  according  to  the  regulatory  regime  and  the  tier  of  the  asset  developer/owner  –  a  function  of  industry  experience  and  ability  to  attract  capital.  Assets  with  lower  tier  developers  and  in  the  early  stages  of  development  are  assigned  probabilities  for  completion,  cutting  their  announced  capacity.  Our  forecast  dates  also  take  into  account  developer’s  timelines  and  analysis  of  bottlenecks  in  the  supply  chain.

2020 long-term forecastThe  2020  forecast  combines  our  2015  forecast  with  modelled  probabilities  of  each  EU  country  

stability  of  the  policy  mechanism.  Using  our  Offshore  Wind  Cost  Model  (Appendix  A)  we  esti-­‐mated  ranges  for  the  LCOE  of  offshore  wind  in  each  member  state  and  combining  this  with  the  political  analysis  –  we  scored  each  country  on  the  following:

 (2  =  yes,  1  =  planned,  0  =  no)

returns  to  equity  investors?  (4  =  good  returns,  3  =  adequate  returns,  2  =  marginal  returns,  1    or  0  =  inadequate  returns)

will  be  downgraded?  (4  =  strong  political  support,  3  =  adequate,  2  =  some  risk,    1  or  0  =  high  risk)

We  translate  the  score  into  an  estimate  of  the  probability  that  each  country  will  install  the  necessary  capacity  2016-­‐20  (without  altering  our  2015  forecast)  required  to  meet  its  NREAP  targets.  Potential  supply  chain  constraints  are  taken  into  account  through  the  LCOE  detailed  in  

to  growth  rates  in  the  2015  forecast  and  deployment  estimates.

A P P E N D I X B

Appendix B

Forecast methodology

Page 59: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

59

Colofon

Contact details

Rabobank  International

P.O. Box 171003500 HG UtrechtThe NetherlandsWebsite: www.rabobank.com

Renewable  Energy  &  Infrastructure  Finance

Marc Schmitz [email protected] +31 (0)30 71 23351Niels de Fijter [email protected] +31 (0)30 71 23347 Food  &  Agribusiness  Research  and  Advisory

Clara van der Elst [email protected] +31 (0)30 71 24507Susan Hansen [email protected] +31 (0)30 71 23815

Bloomberg  New  Energy  Finance

City Gate House39-45 Finsbury SquareEC2A 1PQ LondonUnited KingdomWebsite: www.bloomberg.com

William Young [email protected] +44 20 3216 4354Fraser Johnston "[email protected] +44 20 7392 0450Michael Wilshire [email protected] +44 20 3216 4643

Copyright

© Rabobank. This document may not be reproduced, distributed or published, in whole or in part, for any purpose, except with the prior written consent of RI. All copyrights, including those within the meaning of the Dutch Copyright Act, are reserved. Dutch law shall apply. By accepting this document you agree to be bound by the foregoing restrictions.

© Bloomberg New Energy Finance 2011. This publication is the copyright of Bloomberg New Energy Finance. No portion of this document may be photocopied, reproduced, scanned into an electronic system or transmitted, forwarded or distributed in any way without prior consent of Bloomberg New Energy Finance.

Bloomberg New Energy Finance Disclaimer

The information contained in this publication is derived from carefully selected public sources we believe are reasonable. We do not guarantee its accuracy or completeness and nothing in this document shall be construed to be a representation of such a guarantee. Any opinions expressed reflect the current judgment of the author of the relevant article or features, and does not necessarily reflect the opinion of Bloomberg New Energy Finance. The opinions presented are subject to change without notice. Bloomberg New Energy Finance accepts no responsibility for any liability arising from use of this document or its contents. Bloomberg New Energy Finance does not consider itself to undertake Regulated Activities as defined in Section 22 of the Financial Services and Markets Act 2000 and is not registered with the Financial Services Authority of the UK.

Rabobank Disclaimer

This document is issued by Coöperatieve Centrale Rai!eisen-Boerenleenbank B.A. incorporated in the Netherlands, trading as Rabobank International (“RI”). The information and opinions contained in this document have been compiled or arrived at from sources believed to be reliable, but no representation or warranty, express or implied, is made as to their accuracy, completeness or correctness. This document is for information purposes only and is not, and should not be construed as, an o!er or a commitment by RI or any of its a#liates to enter into a transaction, nor is it professional advice. This information is general in nature only and does not take into account an individual’s personal circum-stances. All opinions expressed in this document are subject to change without notice. Neither RI, nor other legal entities in the group to which it belongs, accept any liability whatsoever for any loss howsoever arising from any use of this document or its contents or otherwise arising in connection therewith.

Page 60: 20111129 KB107-1 Rapport Bloomberg Offshore Wind_binnenwerk-6[4]

60

Rabobank / Bloomberg New Energy Finance O!shore Wind: Foundations for Growth