2010+Experifest Physics

Embed Size (px)

Citation preview

  • 8/3/2019 2010+Experifest Physics

    1/29

    HANDBOOK

    Physics

    2010

    EXPERIMENTFEST

    www.newcastle.edu.au

  • 8/3/2019 2010+Experifest Physics

    2/29

  • 8/3/2019 2010+Experifest Physics

    3/29

    INTRODUCTION

    ExperimentFestisanexperimentprogramdesignedtoprovideenrichingeducationalexperiencesforseniorhighschoolstudentswhoarestudyingPhysics,ChemistryandBiology.ExperimentFestissupportedbytheUniversityofNewcastlesFacultyofScienceandInformationTechnologyandtakesplaceatboththeCallaghanandOurimbah(CentralCoast)campusesoftheUniversityofNewcastle.ItisrunoverfourdaysattheCallaghanCampus

    (21-25June2010-PhysicsandChemistry;18-25June2010-Biology)andfourdaysattheOurimbahCampus(28June1July2010).Studentsmayattendeithermorningsessions(9am-12pm)orafternoonsessions(12:45pm-3:45pm).PhysicsExperimentfestisalsorunningatTuncurry(June262010).

    Theactivitiesallowstudentstoengageinarangeofhands-onexperimentsthataredifficulttoorganisewithinaschoolsetting,allunderthesupervisionofUniversityStaffandPostgraduatestudents.EachexperimentischosentocomplementtheNSWHSCsyllabusforPhysics,cementingclassroomtheoryandprovidingagoodbasisforexaminationpreparation.

    Experimentsinclude: WilsonCloudChamber Michelson-MorleyExperiment ThePhotoelectricEffect Electric&MagneticFields WorldinMotion Superconductivity FramesofReference

    Allexperimentsarecomplementedbynotes,follow-updiscussionsand

    questionstoenhanceyourlearningexperience.

    Forbookinginformationcontact:Larry Miltonon49469159or0404460470;orDavid Rushtonon43336965or0414238464

    ExperimentFest2010Page3

  • 8/3/2019 2010+Experifest Physics

    4/29

    ExperimentFest2010Page4

    WELCOME

    WelcometotheFacultyofScienceandInformationTechnologyattheUniver-sityofNewcastle.ExperimentFestisawonderfulchancetogiveyoupracticalexperiencewhichcomplementsyourclassroomlearningwhilegivingyouafirsthandlookatUniversitylifeandfacilities.Scienceisanexcitingfieldofstudy,allowingyoutomovewiththetimesandcontributeactivelyandrespon-siblytosociety.Therearemanyeducationopportunitiesinscienceafterhigh

    school.HereintheFacultyweprovidestudyandresearchprogramsinfast-movingmodernfieldsthatmakeourworldwork.

    TheFacultystaffandstudentswhowillbetakingyouthroughtheexperimentstodayareinvolvedincontemporaryscienceresearch.Pleaseaskquestionsandutiliseyourtimewiththem.

    Takethisdaytoenjoybeingoutoftheclassroom,exploringsciencewithfel-lowstudentsandparticipatinginvaluableexperimentsanddiscussionswhichwillhelpyouinyourHSCandbeyond.

    Iwishyouwellinyourstudies.IhopeyouapplyyourselvestothelearningprocesswithenthusiasmandyouenjoyyourtimeattheUniversity.Wehopetoseeyoustudyingwithusinthefuture!

    Bestwishes,

    Prof.BillHogarthProVice-ChancellorFacultyofScienceandInformationTechnologyUniversityofNewcastle

  • 8/3/2019 2010+Experifest Physics

    5/29

    PHYSICS

  • 8/3/2019 2010+Experifest Physics

    6/29

    ExperimentFest2010Page6

    ExperimentFest2010Page6

    STUDYING PHYSICS

    Why study physics?Physicsiscrucialtounderstandingtheworldaroundus,theworldinsideus,andtheworldbeyondus.Itisthemostbasicandfundamentalscience.Physicschallengesourimaginationswithconceptslikerelativityandstringtheory,anditleadstogreatdiscoveries,likecomputersandlasers,thatchangeourlives.Physicsencompassesthestudyoftheuniversefromthelargestgalaxiestothesmallestsubatomicparticles.

    Moreover,itsthebasisofmanyothersciences,includingchemistry,oceanography,seismology,andastronomy.Allareeasilyaccessiblewithabachelorsdegreeinphysics.

    Theimportanceofphysicsisntlimitedtothehardsciences.Increasingly,physicistsareturningtheirtalentstomolecularbiology,biochemistry,andbiologyitself.Evenmedicinehasanicheforphysicists,andsincemedicalphysicistsarehardtocomeby,theyaremuchindemand.

    Physicsalsosupportsmanynewtechnologies.Cellphones,theInternet,andMRIsareonlyafewexamplesofthephysics-basedtechnologicaldevelopmentsthathaverevolutionizedourworld.Aphysicseducationequipsapersontoworkinmanydifferentandinterestingplacesin

    industrialandgovernmentlabs,oncollegecampuses,andintheastronautcorps.Manytheoreticalandexperimentalphysicistsworkasengineers,andmanyengineershavephysicsdegrees.Inaddition,manyphysicsgradsleavethelabbehindandworkatnewspapersandmagazines,ingovernmentaldepartmentsplaceswheretheirproblem-solvingabilitiesandanalyticalskillsaregreatassets.

    Physicsisinteresting,relevant,anditcanprepareyouforgreatjobsinawidevarietyofplaces.

    Opportunities for further studies in Physics:TheBachelorofSciencedegreeprogramattheUniversityofNewcastleprovidesafoundationofknowledge,skillsand

    attributesthatallowsgraduatestobeemployablenotjusttodaybutintothefutureandtocontributeactivelyandresponsiblytosociety.MajoringinPhysics,youhavetheopportunitytosampleand/orspecialiseinanyoneofthefollowing: Biophysics(doublemajor) ComputationalPhysics(doublemajor) Geophysics(doublemajor) MedicalPhysics Nanotechnology OpticalPhysics(doublemajor) ResearchPhysics SpacePhysics/Radar/Surveillance

    MajoringinPhotonicsyoucanstudy: OpticalPhysics(doublemajor) OpticalPhysics/LaserEngineering/PhotonicsEngineering

    Equipped with his five senses,

    man explores the universe

    around him and calls the

    adventure science

    E.PHubble.

  • 8/3/2019 2010+Experifest Physics

    7/29

    ExperimentFest2010Page7

    Research in Physics at the University of Newcastle:TherearevariousgroupshereattheUniversitywhicharecommittedtoresearchinphysics.Groupsinclude:

    CentreforSpacePhysics MedicalPhysicsGroup SurfaceandNanoscienceGroup ResearchCentreforOrganicElectronics

    Careers in Physics:

    TheFacultyofScienceandITcareaboutourstudentsandareinterestedingivingasmuchdirectionaspossibletothosemakingcareerchoicesandbeyond.Thepossiblecareerpathslistedbelowincludearangeofopportunitiesforgraduatesatdegree,honours,andpostgraduatestudylevels.

    AcousticalPhysicist Astronomer/Astrophysicist Biophysicist Cosmologist FluidDynamicsAnalyst Geophysicist GraduateTrainee(GraduateProgram) HealthPhysicist LaboratoryAnalyst Laboratory/ResearchAssistant Nanotechnologist NuclearPhysicist

    OpticalPhysicist

    PlasmaPhysicist ResearchScientist RiskAnalyst ScienceInformation/EducationOfficer Science/PhysicsTeacher SciencesTechnician ScientificPatentAttorney/TechnicalAdvisor ScientificPolicyOfficer ScientificWriter SoftwareEngineer/Tester UniversityLecturer/Academic

    Possible careers in Photonics:

    GraduateTrainee(GraduatePrograms) LaserEngineer ManufacturingEngineer Nanotechnologist NetworkCablingTechnician

    NetworkSupportEngineer OpticalResearchScientist PhotonicsEngineer ProjectManager ResearchScientist

    SciencesTechnician ScientificPatentAttorney ScientificPolicyOfficer ScientificWriter SystemsEngineer TechnicalSalesRepresentative TechnologyInfrastructureManager TelecommunicationsServiceDelivery TestEngineer UniversityLecturer/Academic

    Formoreinformationonthesecareerpaths,pleasevisittheUniversityscareerswebsite:www.newcastle.edu.au/service/careers/majors/

    FormoreinformationontheFacultyofScienceandITcheckoutourwebsite:http://www.newcastle.edu.au/faculty/science-it/

  • 8/3/2019 2010+Experifest Physics

    8/29

    ExperimentFest2010Page8

    ExperimentFest2010Page8

    CHARGED PARTICLES INELECTRIC AND MAGNETIC FIELDS

    Extract from HSC Syllabus 9.4.1describe quantitatively the force acting on a charge moving through a

    magnetic field; F=qvBsin

    Solve problems and analyse information using F=qvBsin , F=qE, E=V/d.

    Outline Thomsons experiment to measure the charge/mass ratio of an electron

    Key WordsMagneticandelectriceldsHelmholtzcoilsElectrongunDeectionplatesCircularMotion

    Electriccharge

    IntroductionDuringthe1800sitwasbelievedthattheatom(Greekwordmeaningindivisible)wasthefundamentalparticleofallmatter.Inthemid1800sW.Crookes(UK,1832-1919)inventedtheequipmentthatallowedscientiststoinvestigatecathoderays.TheCrookestubeordischargetubeconsistsofaglasstubecontainingapairofseparatedmetalplatesorelectrodes.Theelectrodeswerenamedtheanodeandthecathode.Theexperimentsinvolvedapplyingalargevoltagetotheplatesandinvestigatingthepropertiesoftheraysinthetubeasafunctionofgaspressureetc.

    What are Cathode rays ?ThisquestionwasinvestigatedbyJ.JThomson(UK,1856-1940)in1897.Thereare3famousphysicistsnamedThomson.1.WilliamThomson(1824-1907);AlsoknownasLordKelvin,knownfortheabsolutetemperaturescale.2.JosephJ.Thomson(1856-1940);ourguy,discoveryoftheelectron,proposedaplumpuddingatomicmodel3.GeorgeP.Thomson(1892-1975);SonofJ.JThomson,diffractionofelectronstoprovewavenature

    Usingtheobservedeffectsofelectricandmagneticeldsonthecathoderays,J.J.Thomsonestimatedthecharge/massratio.FromtheresultsofFaradays(UK,1791-1867)LawofElectrolysis,Thomsonwasabletoestimatethatcathoderaysconsistedofnegativelychargedparticlesthatwereabout1800timeslighterthanhydrogen.Robert

    Millikanmorepreciselymeasuredtheelectronchargein1909.

  • 8/3/2019 2010+Experifest Physics

    9/29

    ExperimentFest2010Page9

    Effect of the Electric FieldAvoltageisappliedacrossthedeflectionplatesinthetube.Iftheelectricfieldisassumedtobeuniform,thentheexpressionfortheelectricfield,Eis

    E =

    andtheelectronsexperienceaforcegivenby

    F =

    Theelectronbeamismadevisiblebycollisionsofgasatomsinthetubeandwiththemicascreen.

    a) Draw a diagram showing the expected path of an electron after it enters

    the electric field.

    b) How can you tell if the charge on the particles is +ve or -ve?

    Assumeanelectrontravelswithaninitialvelocity,v0inthehorizontal(x)directionandencountersauniformelectricfieldintheydirection.

    c) In which direction is the force on the electron?

    d) What is the shape of the curve traced out by the path of the electron?

    electrongun

    V

  • 8/3/2019 2010+Experifest Physics

    10/29

    ExperimentFest2010Page10

    Effect of the Magnetic FieldThemagneticfieldisgeneratedbyaHelmholtzcoilarrangement.

    e) In what direction is the magnetic field when it intersects the electron beam?

    Inthemagneticfield,theelectronsexperienceaforcegivenby

    F =

    f) In what direction is this magnetic force?

    g) What is the shape of the curve traced out by the electron due to the force caused by the magnetic field?

    Thismeansthatthemagneticforce(Bqvsin)actsasacentripetalforce:Fc=mv2

    r

    so,Bqvsin=mv2,andifis900thenBqv=mv2

    rr

    Byrearrangingtheaboveequationthecharge/massratio:q/m=

    Theradiusofcurvature,risgivenbyr=(x2+y2)/(2y).Thiscanbemeasuredfromthegridscaleonthetube.Thevalueofris=............................

    Charge to Mass Ratio1.EnsurethecurrentintheHelmholtzcoilsiszero(nomagneticeld).2.Switchontheelectriceld.3.IncreasethecurrenttotheHelmholtzcoilsuntilthecathoderaybeamattensout.Atthispointtheforcesfromthe

    twoelds,actingonthecathoderaybeam,areequal.

    ie,Felectriceld=Fmagneticeldor, Eq=Bqvsimplifyingthiswillgive E=Bvandrearrangingforv: v=E (Equation2) B

    Adjustthecurrenttothecoilsuntilthetraceintersectsthecoordinate(10,0)onthegrid.Usethevalueofthecurrent,I,tocalculatethemagneticeld,B,by: B=0.00423Ih) Calculate the value of B from the given value of I.

    i) Estimate the deflection plate separation from the grid scale. This is the value for d.

    d=...................m.

    Thepotentialdifferencebetweenthechargedplates,V,hasavalueof...........................V

    j) Calculate the value of the electric field E using: E = V E = ............................Vm-1

    d

    k) Combine equations 1 and 2 by substituting for v in equation 1 and find the charge/mass ratio, q/m for a cathode

    ray particle.

    q/m =

    l) What is the accepted value for q/m ?

    (Equation1)

  • 8/3/2019 2010+Experifest Physics

    11/29

    ExperimentFest2010Page11

    MICHELSON-MORLEY EXPERIMENT

    HSC Syllabus 9.2.4Describe and evaluate the Michelson-Morley attempt to measure the

    relative velocity of the Earth through the aether

    Gather and process information to interpret the results of the Michelson-

    Morley experiment

    What is the nature of Light?Around1800itwasthoughtthatlightwasawavebecauseitproducedinterferenceanddiffractionpatterns.Michelsons(in1879)calculatedthespeedoflight,usinganarclampandrotatingmirrors,tobe186,350milespersecond.

    Like waves travelling through water it was thought that light must be similarly travelling in some mysterious material,

    which was called the aether, surrounding and permeating everything even space. Since light travels so fast, the aether

    must be very light and very hard to compress. It must also allow solid bodies to pass through it freely, without ether

    resistance, or the planets would be slowing down.

    How could the Aether be detected?Michelsonexplainedthepuzzletohischildrenasfollows:Suppose we have a river of width w (say, 100 units), and two swimmers who both swim at the same speed,(say, 5

    units per second). The river is flowing at a steady rate, say 3 units per second. The swimmers race in the following

    way: they both start at the same point on one bank. One (Joe) swims directly across the river to the closest point

    on the opposite bank, then turns around and swims back. The other (Bob) stays on one side of the river, swimming

    upstream a distance (measured along the bank) exactly equal to the width of the river, then swims back to the start.

    Who wins?

    Lets consider Bob who goes upstream and back. Going 100 units

    upstream, the speed relative to the bank is only 2 units per second,

    so that takes 50 seconds. Coming back, the speed is 8 feet per

    second, so it takes 12.5 seconds, for a total time of 62.5 seconds.

    Now Joe goes across the flow which is little trickier. To succeed in

    going directly across, Joe must actually aim upstream at the correct

    angle. If the angle is correctly chosen so that the net movement

    is directly across, in one second Joe must have moved four units

    across (see diagram). So, at a crossing rate of 4 units per second,

    Joe gets across in 25 seconds, and back in the same time, for a total

    time of 50 seconds so Joe wins. This turns out to true whatever theirswimming speed. (Of course, the race is only possible if they can

    swim faster than the current!)A

    CB

    flow

    vt

    ct

    Bank

    river

    Bank

  • 8/3/2019 2010+Experifest Physics

    12/29

    ExperimentFest2010Page12

    Michelsonthoughtthat just as the speed of sound is relative to the air, so the speed of light mustbe relative to the ether. So if you could measure the speed of light then you could measure the

    speed of light travelling upwind, and compare it with the speed of light travelling downwind, and

    the difference of the two measurements should be twice the windspeed.

    The ExperimentLightisdirectedatanangleof45degreesatahalf-silvered,halftransparentmirror,sothathalfthelightgoesonthroughtheglass,halfisreected.Theybothgoontodistantmirrorswhichreectbacktothehalf-silveredmirror.Atthispoint,thelightisagainhalfreectedandhalftransmitted,butatelescopeisplacedbehindthehalf-silveredmirrorasshownintheguresothatthecombinedlightwillarriveinthistelescope.Now, if there is an ether wind blowing, someonelooking through the telescope should see the effect of a slightly longer time for the 2 light beams

    to arrive, since one would have gone more upstream and back, one more across stream in

    general.

    Takingthespeedoflighttobecrelativetotheaether,andtheethertobeowingatv:

    togoadistancelupstreamwilltake l/(c-v)secondsandldownstreamwilltake l/(c+v)seconds,thereforethetotalroundtriptakes2 l / (c (1- v2/c2))seconds.

    We can safely assume the speed of the aether is much less than the speed of light,

    otherwise it would have been noticed long ago, for example in timing of eclipses of

    Jupiters satellites.

    Thismeansv2/c2isasmallnumbersoweapproximatetheroundtriptimetogoupstreamanddownstreamtobe(2l/c)(1+v2/c2).FromPythagorastheorem,thecross-streamspeedis(c2-v2).Theroundtripcrossstreamtimewillbe2l/(c2-v2).Thiscanbeapproximatedas(2l/c)(1+v2/2c2).

    Thetworoundtriptimesdifferbyanamount(l)(v2/c3).Now,2l/cisjustthetimethelightwouldtakeiftherewerenoaetherwindatall,say,afewmillionthsofasecond.Ifwetaketheetherwindspeedtobeequaltotheearthsspeedinorbit,thenv2/c2isabout1/100,000,000.Thismeansthetimedelaybetweenthepulsesreectedfromthedifferentmirrorsreachingthetelescopeisaboutone-hundred-millionthofafewmillionthsofasecond.Itseemscompletelyhopelessthatsuchashorttimedelaycouldbedetected.

  • 8/3/2019 2010+Experifest Physics

    13/29

    ExperimentFest2010Page13

    Michelsonwasthefirsttofigureouthowtodoitusingtheinterferencepropertiesofthelightwaves.Onesetofwavesgoesupstreamanddownstream,theothergoesacrossstreamandback.Finally,theycometogetherintothetelescopeandtheeye.Iftheonethattooklongerishalfawavelengthbehind,itstroughswillbeontopofthecrestsofthefirstwave,theywillcancel,

    andnothingwillbeseen.Ifthedelayislessthanthat,therewillstillbesomedimming.However,slighterrorsintheplacementofthemirrorswouldhavethesameeffect.Tomaximizetheeffect,thewholeapparatus,includingthedistantmirrors,wasplacedonalargeturntablesoitcouldbeswungaround.

    Observe how the interference pattern changes as the turntable is rotated through 90

    degrees. What happens?

    How does this change compare to that expected if there is an aether?

    Why was the null result difcult to accept?

  • 8/3/2019 2010+Experifest Physics

    14/29

    ExperimentFest2010Page14

    ExperimentFest2010Page14

    WILSON CLOUD CHAMBERExtract from HSC Syllabus 9.8.3Perform a rst-hand investigation or gather secondary information to observe radiation emitted from a nucleus using Wilson

    Cloud Chamber or similar detection device

    Thecloudchamber,alsoknownastheWilsonchamber,isusedfordetectingparticlesofionisingradiation.Initsmostbasicform,acloudchamberisasealedenvironmentcontainingasupercooled,supersaturatedalcoholvapour.Whenanalphaparticleorbetaparticleinteractswiththemixture,itionizesit.Theresultingionsactascondensationnuclei,aroundwhichamistwillform(becausethemixtureisonthepointofcondensation).Thehighenergiesofalphaandbetaparticlesmean

    thatatrailisleft,duetomanyionsbeingproducedalongthepathofthechargedparticle.Thesetrackshavedistinctiveshapes(forexample,analphaparticlestrackisbroadandstraight,whileanelectronsisthinnerandshowsmoreevidenceofdeectionbycollisions).Whenanyuniformmagneticeldisappliedacrossthecloudchamber,positivelyandnegativelychargedparticleswillcurveinoppositedirections,accordingtotheLorentzforcelawwithtwoparticlesofoppositecharge

    (http://en.wikipedia.org/wiki/Cloud_chamber)

    InthisdemonstrationwewilluseaDiffusionCloudChamber600(AndrewsUniversity,MI,USA)toobserveionizingradiationfromcosmicraysandalsofromaPb210source.

    Pb210hastwodecaypaths.

    (i) ItdecaystoHg206byemissionofa3.72MeValphaparticle.Hg206thendecaystoTl206bybetaparticleemission.

    (ii) Pb210alsodecaystoBi210bybetaparticleemission.

    Inbothdecaypathsgammaraysarealsoemitted.

    Observe the tracks from the Pb210 source. Can alpha particle and beta particle tracks be identied?

    Observe tracks when the source is removed. Where do those tracks come from?

    Observe what happens to the tracks when a magnet is placed in the cloud chamber.

  • 8/3/2019 2010+Experifest Physics

    15/29

    ExperimentFest2010Page15

    THE PHOTOELECTRIC EFFECTExtract from HSC Syllabus: 9.4.2Explain the particle model of light in terms of photons with particular energy and

    frequency.

    Solve problems, analyse information and identify the relationship between photon

    energy, frequency, speed of light and wavelength

    Whenlightshinesonametalsurfaceelectronsareejected.Theenergycarriedawaybyeachelectrondependsonthefrequencybutnotontheintensityoflight.Therefore,lightcanbeconsideredtobeastreamofparticles(photons)ratherthanawave.

    Theemittedelectronshavearangeofkineticenergies.Theelectronswithmaximumkineticenergyareemittedfromrightatthesurfaceafterhavingreceivedalltheenergy,E,fromthephoton.However,inleavingthesurfacetheelectronsloseanamountofenergy (calledtheworkfunctionofthesurface).

    Read the above section and write down an expression for the maximum

    kinetic energy of the electrons in terms of the photon energy E and workfunction .

    Max kinetic energy = (1)

    TheenergyofaphotonisgivenbyE=hf,wherePlancksconstanthis6.63x10-34JsandfisthefrequencyofthephotoninHzandc=f wherethespeedoflightcis3.00x108ms-1andthewavelengthofthephotonis .

    Write down an expression for E in terms of . E = (2)

    Combine (1) and (2) to write down a relation between maximum kinetic energy and

    Maximum kinetic energy = (3)

  • 8/3/2019 2010+Experifest Physics

    16/29

    ExperimentFest2010Page16

    The Experiment Todeterminemaximumkineticenergyofemittedelectrons.

    Thephototube(Fig2)istheessentialpartoftheinstrumentyouwilluse.Itisanevacuatedglasstubecontainingacoatedelectrode(cathode)shapedlikehalfofacylinder.Anotherelectrode(anode)intheformofastraightrodispo-sitionedatapproximatelythefocalpointofthecurvedsurface.Whenlightstrikesthecathodesurface,electronsareejectedandcollectedbytheanode.Thecolouredlters,placedintothelightpath,cutoffallwavelengthsaboveaparticularvalue,thereforetheminimumwavelengthoflightreachingthetubeisknown.Eqn3canthenbeusedtodeterminethemaximumkineticenergyoftheemittedelectrons.Tomeasurethehighestelectronenergyweapplyasmallreversevoltagecalledthebacking

    voltage(iewithanodenegativeandcathodepositive)thatisjusthighenoughtocompletelystoptheowofelectronsreachingtheanode(absolutelyzerocurrent).

    Note:Ifthebackingvoltageiscontinuedtobeincreased,thecurrentwillbegintoowbackwardsbecauseelectronsbegintoowfromtheanodetothecathode.

    The Experimental Method

    1. Havethedemonstratorchecktheequipment.Turnonthelight sourcelightsourcetoilluminatethephototubethroughthe

    apertureintherearfaceoftheinstrument.Notethatthelight sourcewillbecomewarm. 2. Insertoneoftheltersintothewiderpairoftheslidegrooves providedinfrontofthelightsource. 3. Selecttube current onthemeter switchtomonitorthecurrent throughthephototube.Select the 0-20A range.

    4. Usingthe backing voltagecontrol,adjustthevoltagefromzerovoltsuntilthecurrentthroughthetube reducesbelow 0.1 microamp.

    5. Nowselectthesensitive 0-200nA range andincreasethebacking volts untiltheelectronowthroughthe tubeisreducedto0.0 nanoamps.Ifthecurrentgoesnegativereducethebacking volts until0.0 nanoamps isachieved.Atthispointthemostenergeticelectronsarepreventedfromreachingtheanode.

    Fig 3

  • 8/3/2019 2010+Experifest Physics

    17/29

    ExperimentFest2010Page17

    6. Withoutdisturbinganything,selectbacking voltsonthemeter switchandobservetheexactvoltagethat isbeingappliedtothephototubeinreversetostopallelectronsfromreachingtheanode.Recordthis backingvoltageintable1.

    7. Removethecolourlterandrepeattheexperimentfromsteps3to7fortheremainingcolourlters.

    8. Usingthewavelengthvaluemarkedonthebluelter,calculatethefrequency(inHertz)ofthelighttransmitted bythislterandenteritintotable1.Recordyourmeasurementsofbackingvoltageintable1.

    9. PlotagraphofthefrequencyinHz(Xaxis)againstthebackingvoltsinVolts(Yaxis)usingthesupplied graphpaper.

    Table1

    Filter Wavelength

    (nm)

    Frequency

    f=c/ (Hz)

    BackingVolts

    (V)blue 450

    yellow 480 6.25x1014

    orange 545 5.50x1014

    red 590 5.08x1014

    Discussion

    Thestoppingvoltageisrelatedtothemaximumkineticenergyoftheelectronssinceiftheelectronshavemoreen-ergyitwillrequirealargervoltagetostopthem.

    So which colour light generates electrons with the highest kinetic energy?

    Which colour light generates electrons with the lowest kinetic energy?

    Is this expected from equation 3?

    What can we say about the slope of the line in this graph?

  • 8/3/2019 2010+Experifest Physics

    18/29

    ExperimentFest2010Page18

    The intercept on the Y axis is related to the workfunction of the cathode. Using eqn 1, determine the work-

    function of the cathode in eV.

    What is the metal cathode surface most likely made from? Use the list workfunctions on the graph paper to

    determine your answer.

    Extension

    Withtheredlterselected,placeanapertureinthelightpathtoreducetheintensityoflight.

    Does this markedly change the backing volts? Is this result expected?

  • 8/3/2019 2010+Experifest Physics

    19/29

    ExperimentFest2010Page19

    REFERENCE FRAMES

    Extract from HSC Syllabus 9.2.4Students perform an investigation to help distinguish between inertial and noninertial

    frames of reference

    Areferenceframewhichmovesatconstantvelocitywithrespecttoanotheriscalledaninertialreferenceframe.Forcesactthesamewayinthisframeasintheoriginalframe.Intheexperimentbelow,acartcarryingapendulumsitsonaninclinedplane.

    Intheframeofthecartthependulumhangsdirectlydown,ifthecartisstationary.Predicthowthependulumhangsifthecartismovingdownthetrackatconstantvelocity.

    Is this what happens experimentally?

    Ifthecartismovingatconstantvelocitywehaveaninertialframeofreference.ThebehaviourofinertialframeswasdescribedinEinsteins

    specialtheoryofrelativity.

    Butwhathappensiftheframeisacceleratingi.e.ifwehaveanon-inertialframeofreference?So how should the pendulum hang if the cart is accelerating down the

    track? Should it

    (i) hang straight down

    (ii) hang perpendicular to the incline or

    (iii) in some other direction?

    Is this what happens experimentally?

    Wecanexplainthisbehaviourbysayingthat (i)Newtonslawsdontworkinanacceleratingframeofreferenceor (ii)thatweneedextractitiousforcestomakeNewtonslawswork.

    Newtonsprincipleofequivalencesaysthatphysicscanbeexplainedinacceleratingframesbytheuseofgravitationalforces. In what direction shouldgravity point in the carts frame of reference to explain the position of the

    pendulum?

  • 8/3/2019 2010+Experifest Physics

    20/29

    ExperimentFest2010Page20

    ExperimentFest2010Page20

    SUPERCONDUCTIVITY

    Extract from HSC Syllabus 9.4.4Process information to identify some of the metals, metal alloys and compounds that have been identified as exhibiting

    the property of superconductivity and their critical temperatures

    Process information to discuss possible applications of superconductivity and the effects of those applications on

    computers, generators and motors and transmission of electricity through power grids

    Discuss the advantages of using superconductors and identify limitations to their use

    Gather and process information to describe how superconductors and the effects of magnetic fields have been

    applied to develop a maglev train

    Process information to discuss possible applications of superconductivity and the effects of those applications oncomputers, generators and motors and transmission of electricity through power grids

    Earlyinthe20thcentury,DutchphysicistHeikeKamerlinghOnnesobservedthatmercurydisplayednoelectricalresistancewhencooledtoverylowtemperatures.Superconductivitybecameascienticcuriositywithfewpracticalapplications.Theninthe1960sapracticalsuperconductingmetalwiremadeofniobiumandtinwasdeveloped.Theniobiumandtitaniumalloy,stillinusetoday,isamongthematerialscalledlow-temperaturesuperconductors.

    Low-temperaturesuperconductorsmustbecooledtobelow20Kelvin(-253oCelsius)inordertobecomesuperconducting.Theyarenowwidelyusedinmagneticresonanceimaging,orMRI,machines,andintheeldsof

    high-energyphysicsandnuclearfusion.Additionalcommercialusehasbeenlimitedlargelybythehighrefrigerationcostsassociatedwithliquidhelium,whichisneededtocoolthematerialstosuchlowtemperatures.

    Thehopeforlow-costsuperconductivitywasignitedbytwosignicantdiscoveriesinthe1980s.In1986,twoIBMscientistsinZurich,AlexMullerandGeorgBednorz,discoveredanewclassofsuperconductors.Unlikethelow-temperaturesuperconductors,whichweremetallicorsemimetallic,thesenewcompoundswereceramicandweresuperconductingupto35K(-238oC).MullerandBednorzwonaNobelPrizefortheirdiscovery.Thenin1987,PaulChuattheUniversityofHoustontookthediscoveryonestepfurtherandannouncedacompoundthatbecamesuperconductingat94K(-179 oC).Thisdiscoverywasparticularlysignicantbecausethiscompoundcouldbecooledwithcheapandreadilyavailableliquidnitrogen.Thesenewmaterialswerecalledhigh-temperaturesuperconductors.

    Bismuth-basedcompoundsarebeingfashionedintosuperconductingwiresandcoils,whicharebecomingessentialtoelectricpoweruses.Thallium-andyttriumbasedcompoundsarebeingformedintothethinlmsusedinelectronicdevices.Identify metals, alloys and compounds used as superconductors and their critical temperatures.

    metals, metal alloys and compounds critical temperatures

  • 8/3/2019 2010+Experifest Physics

    21/29

    ExperimentFest2010Page21

    Some current uses of Superconductors1. Powertransmissioncablesthatcarrycurrentwithoutenergylosseswillincreasethecapacity

    ofthetransmissionsystem,savingmoney,space,andenergy.PrototypepowertransmissioncableshavebeendevelopedandarebeingtestedbyteamsledbyPirelliCableCompanyand

    SouthwireCompany.2. Motorsmadewithsuperconductingwirewillbesmallerandmoreefficient.A1,000-horsepowermotorhasbeenconstructedandisundergoingtestingbyanSPIteamledbyRockwellAutomation/RelianceElectricCompany.

    3. Generatorswillusesuperconductingwireinplaceofironmagnets,makingthemsmallerandlighter.Newgeneratorsalsomaygetmorepowerfromlessfuel.AnSPIteamledbyGeneralElectrichasdevelopedadesignfora100-megavoltamperegenerator.

    4. Currentcontrollers(i.e.,fault-currentlimiters)helputilitiesdeliverreliablepowertotheircustomers.HTSfault-currentlimitersdetectabnormallyhighcurrentintheutilitygrid(causedbylightningstrikesordownedutilitypoles,forexample).Theythenreducethefaultcurrentsothesystemequipmentcanhandleit.AnSPIteamledbyGeneralAtomicsrecentlyproducedasuccessfulHTSfault-currentlimiterthatwillsoonbereadytomarket.

    5. Energystorageinflywheelsystemswillensurethequalityandreliabilityofthepowertransmittedtoutilitycustomers.Inaddition,energystorageprovidesutilitieswithcostsavingsbyallowingthemtostoreenergywhenthedemandforelectricityislowandgeneratingthepowerischeap.Thisstoredenergyisthendispensedwhendemandishighandpowerproductionismoreexpensive.

    6. Magneticresonanceimaging(MRI)machinesenhancemedicaldiagnosticsbyimaginginternalorgansofteneliminatingtheneedforinvasivesurgeries.MRIs,whichcurrentlyaremadewithlow-temperaturesuperconductors,willbesmallerandlessexpensivewhenmadewithHTS.

    7. Maglevtrainsseemtofloatonairasaresultofusingsuperconductingmagnets.ThesetrainshavebeenunderdevelopmentinJapanfortwodecades;thenewestprototypemayexceed

    547kilometersperhour.

    Discuss possible applications of superconductors and the effect of those applications as

    well as advantages or limitations of superconductors

    applications of

    superconductivityeffects advantages or limitations

  • 8/3/2019 2010+Experifest Physics

    22/29

    ExperimentFest2010Page22

    ExperimentPerformaninvestigationtodemonstratemagneticlevitationAnalyseinformationtoexplainwhyamagnetisabletohoveraboveasuperconductingmaterial

    thathasreachedthetemperatureatwhichitissuperconducting

    Observe the demonstrator fill the foam container with liquid nitrogen to slightly cover the

    superconductor and let the liquid nitrogen boil off until the surface is uncovered the

    Yttrium Barium Copper Oxide (YBCO) sample will be near 77K and superconducting. Place

    the magnet on the superconductor and observe that it is levitating. Observe what happens

    when the nitrogen all boils off and the sample warms up.

    What happens?

    ExplanationSuperconductorsexcludemagneticelds,apropertycalledtheMeissnereffect.Thiseffectcausesasmallmagnettolevitateabovethesuperconductorsurface.Asthemagnetisbroughttowardsthesuperconductor,currentloopsaresetupinthesuperconductorwhichgeneratemagneticeldstoopposethemagneticeldcreatedbythemagnet.Theeldsetupbythesuperconductorwillpropagateoutsidethesuperconductorandcausethemagnettolevitateeventhoughthemagnethascometoastopabovethesuperconductorsurface.Thisisbecausethesuperconductorhaszeroresistanceandsothecurrentswillcontinuetoowafterthemagnethas

    stopped.

    Thelevitatingmagnetdoesnotslideoffthesuperconductor.ThisisamanifestationofFluxPinning,aphenomenaassociatedwithTypeIIsuperconductors,suchashightemperatureceramicsuperconductors.Herelinesofmagneticuxassociatedwithamagnetcanpenetratethebulkofthesuperconductorintheformofmagneticuxtubes.Theseuxtubesarethenpinnedtoimperfectionsorimpuritiesinthecrystallinematrixofthesuperconductortherebypinningthemagnet.

    RareearthmagnetSuperconductorYBa2Cu3O7

    Inducedcurrents

  • 8/3/2019 2010+Experifest Physics

    23/29

    ExperimentFest2010Page23

    PROJECTILE MOTION UNIFORMLYACCELERATED MOTION IN TWOSPATIAL DIMENSIONSExtract from HSC Syllabus: 9.2.2Describe the trajectory of an object undergoing projectile motion within the Earths gravitational field

    Perform a first hand investigation, gather information and analyse data to calculate the initial and final velocity,

    maximum height reached, range and time of flight of a projectile for a range of situations by using simulations,

    dataloggers and computer analysis

    Inphysicsweclassifydifferenttypesofmotionsothatwecanpredictwherethingswillendup.Usually,studyofmotioninphysicsbeginsbyconsideringdistanceandspeedwhere

    Distance = speed x time (1)

    Thiswillpredictacarsdistancetravelledprovidedthecarneitherspeedsupnorslowsdown,i.e.foraconstantspeed.Speedisascalarquantity(itonlyhasasizeormagnitude).Ifwegivethespeedadirectionaswellasamagnitudethenwemakeavectorquantitycalledvelocity.Distanceisalsoascalarquantitywhiledisplacementisavectorquantity.

    Ifthecaracceleratesuniformlywithacceleration,a,thenthedistancetravelledinatime,t,is

    Distance = ut + at2 (2)

    Equation(2)alsoallowsforthecasewherethecarhasaninitialconstantspeed,u,andthenaccelerates.Wenowhavethemainingredientsforexaminingmotionontwodimensions.Accelerationandforcearerelatedtothemassoftheobject,i.e.itismoredifculttomoveaheavyobject.Gravityprovidesaforceintheverticaldirectionandwellcalltheverticaldirection,y.Projectilemotionisviewedintwodimensionsasthecombinationoftwocomponentmotions,oneinthehorizontal,thexdirection,andtheotherintheverticalortheydirection.

    Equations1and2arethebasis(inphysics)ofprojectilemotion.Equation(1)describesmotionalongthehorizontalwhiletheainequation(2)istheaccelerationduetogravity.

    Thefollowingtableshowsthequantitiesusedinthehorizontalandverticalcomponentsofprojectilemotion,asvectorsorscalars.

    Vectors Scalars

    DisplacementxandyInitialvelocityu

    xandu

    y

    Finalvelocityvxandv

    y

    Accelerationax

    anday

    Time

  • 8/3/2019 2010+Experifest Physics

    24/29

    ExperimentFest2010Page24

    Thevectorcomponentsrequiretheuseofpositive(+)andnegative(-)signstoshowthedirectionoftravel.Arbitrarilywechoseapositive(+)signformotioninanupwardorverticaldirectionandaminus(-)signformotioninthedownwardsorhorizontaldirection.

    Usingthesymbolsfromthetableequations1and2become:

    x=uxt (3)

    y=uyt+a

    yt2 (4)

    Typicallyforprojectilemotionay=-gwhereg=9.8ms-2.Thenequations(3)and(4)canbesolvedtodeterminethe

    maximumheight,H,reachedandthemaximumhorizontaldistance,R,travelledbeforetheobjectreturnstoitsoriginalheight. H=u

    y2/2g (5)

    R=2uxuy/g (6)

    Inthisexerciseyouwillbeabletoexamineavideoofprojectilemotion.Thecomputersoftwareallowsyoutoobtainthex,ycoordinatesofasoftballatvarioustimesduringthemotion.Fromthesedata,variousphysicalquantitiescanbestudiedastheballtracesoutprojectilemotion.Bynow,youwouldhavecompletedaunitonprojectilemotionatschool.

  • 8/3/2019 2010+Experifest Physics

    25/29

    ExperimentFest2010Page25

    Section AByaskingmembersinyourgroup,writeshortanswerstothefollowing:Asoftballisthrownfromoneplayertoanother.

    What shape does the ball trace out in space? Can you show (mathematically) why?

    Does the energy of the ball change during the motion? How does the friction from the air affect the energy of

    the ball?

    What is the relationship between the potential and kinetic energies of the ball?

    Does the momentum of the ball change? In what way?

    Does the acceleration of the ball change?

    Would there be any difference in plots of the balls position compared with its displacement?

  • 8/3/2019 2010+Experifest Physics

    26/29

    ExperimentFest2010Page26

    Section BThevideosoftwareiscalledWorldinMotionandyoushouldseeashortcuttowimonthecomputerscreen.Thissoftwareisgreatforanalysingvideofootagebutratherpoorinpresentingthevariousoptions,navigationandinformation.Itiseasytogetlost!

    Herearethestepsyouneedtogettoplayandanalysethevideo:1.Afterstartingthesoftware,thecomputerscreenshouldlooksomethinglikethis;

    2.YoucanusethesymbolseithersideofHistorytonavigate

    3.ClickontheProjectileMotionoptionintheleftmenu

    4.ChooseVideoExperimentsSet1

    5.Clickinthee1710.htmtext

    6.Bynow,youshouldseethefirstframeofthevideowithoptionsontheright

    7.ClickonMarkingtheVideofollowedbyClickHeretoopenthevideo

    8.Youhavearrivedatthevideomarkingenvironment.ClickonPlaytoseethefootage.YoucannowuseSteptosee

    theimagesoneframeatatime.

    9.Movingthemouseovertheimagechangesthecursortoanarrow.Leftmouseclickandyoucandigitisethe

    positionoftheball

    10.Whenyouhavedigitisedthroughthewholemotion,clickonGraph>>,followedbyNext

    11.ChooseObjectmovinginXandYdirections,andYisVertical,Next

    12.Selectalltheplotsavailable,Next

    13.Thescreenshouldnowlooklikethis:

  • 8/3/2019 2010+Experifest Physics

    27/29

    ExperimentFest2010Page27

    Onthisscreen,clickonGraph>>

    Thefirstgraphispositionversustimeintermsofxandycomponentsandthevectorresultant.In the space below draw the graphs you see on the screen and explain the brown (X) and green (Y) curves.

  • 8/3/2019 2010+Experifest Physics

    28/29

    ExperimentFest2010Page28

    Thenextgraphisdisplacementwithtime.On the following axis draw the graphs shown on the screen.

    What are the differences between this and the position versus time graph?

    The gradient of this graph will allow you to nd what property of the motion?

    Thenextgraphisvelocity.Draw the velocity/time graphs on the following axis.Notethestraightatlineforthexcomponent.

    Why is the y component a straight line? Isnt the ball accelerating in this direction?

    What is the numerical value of the slope of the green (vy) line?

  • 8/3/2019 2010+Experifest Physics

    29/29

    Thenextgraphisthemomentum.Draw the graph on the following axis. Which other graph does it look likeand why?

    Finally,theaccelerationisshown. Draw the acceleration/time graph on the following axis.Notethatthexcomponentisclosetozerowhiletheycomponentisnear9.8m/s2.

    Calculate values for the maximum height, H, reached (above the original starting height) and the

    range, R, and compare your values to the results from equations 5 and 6.