20101021_1102_1991287664245826

Embed Size (px)

Citation preview

  • 8/8/2019 20101021_1102_1991287664245826

    1/34

    2.The Theory of the Firm

    What to produce?

    How to produce?

    How much to produce?

    To whom to produce?

    Varian, chap 18

    Frank, chap 9

    1

  • 8/8/2019 20101021_1102_1991287664245826

    2/34

  • 8/8/2019 20101021_1102_1991287664245826

    3/34

    2.1.Technology Sets

    Q = f(x) is the

    production

    function.

    L LInput Level

    Output Level

    Q

    Q

    Q = f(L) is the maximal outputlevel obtainable from x inputunits.

    One input, one output

    Q = f(L) is an output level that is

    feasible from x input units.

    3

  • 8/8/2019 20101021_1102_1991287664245826

    4/34

    2.1. Production Function

    Production Function: maximum quantity of output that

    can be produced for given quantities of the inputs

    Example: Q = f(K,L) = 2KL

    5

    1 2 3 4 5

    1 2 4 6 8 10

    2 4 8 12 16 20

    3 6 12 18 24 30

    4 8 16 24 32 40

    5 10 20 30 40 50

    K

    L

    4

  • 8/8/2019 20101021_1102_1991287664245826

    5/34

    2.1.The Long-Run and the Short-

    Runs Fixed and Variable inputs

    A short-run is a circumstance in which a firm is restricted

    in some way in its choice ofat least one input level. There are many possible short-runs

    The long-run is the circumstance in which a firm is

    unrestricted in its choice ofall input levels.

    5

  • 8/8/2019 20101021_1102_1991287664245826

    6/34

    2.1. The Long-Run and the Short-

    Runs Examples of restrictions that place a firm into a short-

    run:

    temporarily being unable to install, or remove,

    machinery

    being required by law to meet affirmative action

    quotas

    having to meet domestic content regulations.

    6

  • 8/8/2019 20101021_1102_1991287664245826

    7/34

    2.1. Production in the Short-Run

    Example : Q = f(K,L) = 2KL

    where K = K0 = 2 K = K0 =1

    Q=2KL=4L Q=2KL=2LQ

    Q

    LL1 2

    4

    8

    1 2

    7

  • 8/8/2019 20101021_1102_1991287664245826

    8/34

    2.1. Production in the Short-Run

    Total Product Curve:

    Q = f(L)

    Average Product

    Curve:

    APL = Q/L

    4 6 8

    Q

    L

    6 L

    Q/L

    APL

    Q(4)

    Q(4)/4

    8

  • 8/8/2019 20101021_1102_1991287664245826

    9/34

    2.1. Production in the Short-Run

    Marginal Product Curve:

    MPL = (Q/(L

    L(person-hr/week)

    L(person-hr/week)

    Q

    dQ/dL 8

    8

    4

    4

    Increasing

    marginal

    returns

    Decreasing

    marginal

    returns

    6

    MPL

    For L=6, MPL=APL

    9

  • 8/8/2019 20101021_1102_1991287664245826

    10/34

    2.1. Average and Marginal

    Product CurvesIf (Q/(L>Q/L, Q/L is increasingIf (Q/(L

  • 8/8/2019 20101021_1102_1991287664245826

    11/34

    2.1. Production in the Short-Run

    Effect of technological progress

    L

    Q

    11

  • 8/8/2019 20101021_1102_1991287664245826

    12/34

    2.1.Long-run: Technologies with

    Multiple Variable Inputs What does a technology look like when there is more

    than one input?

    The two input case: Input levels are x1 and x2. Output

    level is y.

    Suppose the production function is

    .),( 3/13/1 LKLKfQ !!

    12

  • 8/8/2019 20101021_1102_1991287664245826

    13/34

    2.1. Long-run: Technologies with

    Multiple Inputs

    Output, Q

    L

    K(8,1)

    (8,8)

    13

  • 8/8/2019 20101021_1102_1991287664245826

    14/34

    2.1. Long-run: Technologies with

    Multiple Inputs

    Output, Q

    L

    K

    Q |

    Q |

    14

  • 8/8/2019 20101021_1102_1991287664245826

    15/34

    2.1. Long-run: Isoquants with Two

    Variable Inputs

    Output, Q

    L

    K

    Q |

    Q |

    Q |

    Q |

    15

  • 8/8/2019 20101021_1102_1991287664245826

    16/34

    2.1.Technologies with Multiple

    Inputs: isoquant map

    x1y

    16

  • 8/8/2019 20101021_1102_1991287664245826

    17/34

    2.1.Technologies with Multiple

    Inputs

    L1

    Q

    17

  • 8/8/2019 20101021_1102_1991287664245826

    18/34

    Q=f(K,L) Isoquant : (Q=0

    Ex: Q=2K0,7L0,3 Q=5 = > K=2,51/0,7.L0,3/0,7

    K

    L

    (K

    (L

    Marginal Rate of Technical Substitution, MRTS =-(K/(L

    2.1. Production in the Long-Run:

    example

    Q=5

    18

  • 8/8/2019 20101021_1102_1991287664245826

    19/34

    2.1. Marginal Product and MRTS

    Q=F(K,L)

    when L changes, by how much should K vary so that Qdoes not change, ie, dQ=0?

    dQ = 0 = (HF/HK).dK + (HF/HL).dL

    -dK/dL = MRTS = MPL/MPK

    Law of diminishing returns: HMPK/HK

  • 8/8/2019 20101021_1102_1991287664245826

    20/34

    Monotonicity: More ofany input generates

    more output.

    Q

    L

    Q

    L

    monotonicnot

    monotonic

    2.1. Production Function: well-

    behaved technologies

    20

  • 8/8/2019 20101021_1102_1991287664245826

    21/34

    K

    L

    '')1(','')1(' KttKLttL

    Q|

    2.1. Production Function: well-

    behaved technologies

    L L

    K

    K

    Convexity

    21

  • 8/8/2019 20101021_1102_1991287664245826

    22/34

    K

    L

    Convexity implies that the MRTS

    decreases as L increases.

    2.1. Production Function: well-

    behaved technologies

    K

    K

    L L

    22

  • 8/8/2019 20101021_1102_1991287664245826

    23/34

    K

    L

    Q|Q|

    Q|

    higher output

    2.1. Production Function: well-

    behaved technologies

    23

  • 8/8/2019 20101021_1102_1991287664245826

    24/34

    K

    L

    min{L,2K} = 14

    4 8 14

    24

    7

    min{L,2K} = 8min{L,2K} = 4

    L = 2K

    }2,min{ KLQ !

    2.1. Production Function: ParticularCases

    24

  • 8/8/2019 20101021_1102_1991287664245826

    25/34

    9

    3

    18

    6

    24

    8

    L

    K L+ 3K= 18

    L+ 3K = 36L + 3K = 48

    All are linear and parallel

    y x x!

    1 2

    3

    2.1. Production Function: ParticularCases

    25

  • 8/8/2019 20101021_1102_1991287664245826

    26/34

    Cobb-Douglas Production Function

    2.1. Production Function: ParticularCases

    26

  • 8/8/2019 20101021_1102_1991287664245826

    27/34

  • 8/8/2019 20101021_1102_1991287664245826

    28/34

    The Long-Run and the Short-Runs

    x2

    x1

    y

  • 8/8/2019 20101021_1102_1991287664245826

    29/34

    The Long-Run and the Short-Runs

    x1

    y

  • 8/8/2019 20101021_1102_1991287664245826

    30/34

    The Long-Run and the Short-Runs

    x1

    y

  • 8/8/2019 20101021_1102_1991287664245826

    31/34

    The Long-Run and the Short-Runs

    x1

    y

    Four short-run production functions.

  • 8/8/2019 20101021_1102_1991287664245826

    32/34

    2.1. Returns to Scale

    Returns to scale (or (dis)economies of scale) : are only

    defined in the long-run, when the quantity ofany input

    can vary.

    This is in contrast to the case ofmarginal returns

    (increasing or decreasing) which measure the change

    in output when one input varies and the other (s) is

    (are) kept constant.

    32

  • 8/8/2019 20101021_1102_1991287664245826

    33/34

    2.1. Returns to Scale

    F(tK,tL) = t F(K,L) Constant returns to scale

    t>1 (CRS)

    F(tK,tL) = ta F(K,L) Increasing returns to scale

    t >1, a>1 or economies of scale

    Ex: F(K,L)= AKcLd

    F(tK,tL)=A (tcKc)(tdLd)=tc+d(AKcLd)

    => if c+d>( increasing (decreasing) returns

    F(tK,tL) = ta F(K,L) Decreasing returns to scale

    t>1, a

  • 8/8/2019 20101021_1102_1991287664245826

    34/34

    Can a technology exhibit increasing returns-to-scale

    even if all of its marginal products are diminishing?

    A: Yes.

    E.g. QK2/3L2/3

    Q(tK,tL)=t2/3L2/3t2/3K2/3 =t4/3Q(K,L): increasing returns to

    scale

    Yet, MPL=2/3K2/3

    .L-1/3

    HMPL/HL=-1/3.2/3.K2/3.L-4/3