36
2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong Deng, Arava Kallai, Kamrun Nahar Ikechukwu Onyewuenyi, William Ottowitz Mark Wheeler, Instructor, Elisabeth Ploran, TA

2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

Embed Size (px)

Citation preview

Page 1: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

2009 Multimodal Neuroimaging Training Program

fMRI Module: Experimental Design, Image Processing, & Data Analysis

Courtney M. Bell, Gina D’Angelo, Huiqiong Deng, Arava Kallai, Kamrun Nahar

Ikechukwu Onyewuenyi, William Ottowitz

Mark Wheeler, Instructor, Elisabeth Ploran, TA

Page 2: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

OVERVIEW

Introduction Experimental Design Preprocessing Data Analysis

Blocked Design ExampleFinger Tapping

Event Related Design ExampleCategorization

Page 3: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

BLOCKED VS. EVENT RELATED

Blocked Design

Event Related Design

Page 4: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

FMRI: DESIGN CONSIDERATIONS

Blocked Design Event Related Design

• Advantages:• High detection power• Simple analysis• Cost effective

• Disadvantages:• Inability to estimate changes in activation over time •No trial sorting•Possible anticipation effects

•Advantages:• Increased estimation power over time• Enables trial sorting

•Disadvantages:• Lower detection power•Costly (money & time)•Careful planning

Page 5: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

DATA ACQUISITION & PARAMETER SELECTION

Scanner : Siemens 3T Anatomical Scans

T1 (MPRAGE) Slices : 176 Voxel Size: 0.5mm x 0.5mm x 1.0mm Rationale

Functional Scans Finger Tapping Task & Categorization Task

Whole Brain Scan Slices : 38 Voxel Size : 3.2mm x 3.2mm x 3.2mm Interleaved Acquisition TR : 2s T2* Contrast Rationale

N = 7 (Males = 3; Females = 4) 6 R; 1L

Page 6: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

PREPROCESSING STEPS

ReformatTime ShiftMotion CorrectionSmoothingScaling

Page 7: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

DATA TRANSFORMATION

Background Images from scanner collected in DICOM format DICOM format cannot be interpreted by AFNI

AFNI : Analysis software

Purpose: Convert DICOM files to AFNI format

Page 8: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

TIME SHIFTING

Background: Slices acquired in interleaved fashion to prevent

“bleeding” Odd slices collected first; even slices collected

second Data from consecutive slices taken at half TR

May get hemodynamic response that is slightly phase shifted

Purpose: To “guess” (interpolate) what BOLD response

would look like if occurred at the same time across all slices

Page 9: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

MOTION CORRECTION

Background Subjects move during data acquisition

Therefore, voxel timeseries not referring to the same position over time

Creates need to select “base” image for voxel realignment

Purpose Reposition voxels in accordance with the selected

base image Criteria for selecting base image

Point at which have least likelihood of scanner “drift”

Point at which have maximal participant and scanner stability Early vs. middle images

Page 10: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

MOTION CORRECTION – FIRST RUN

Page 11: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

MOTION CORRECTION – LAST RUN

Page 12: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

SMOOTHING Background

fMRI signal is noisy Different subjects can have slightly different

areas of activation Purpose

To improve signal to noise ratio by removing noise

To improve detection power in group analysis Current Project

Tested 0, 4, and 6 mm FWHM Gaussian smoothing kernel

Disadvantages Changes the data Results in correlated voxels

Page 13: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

SMOOTHING

3.2mm - No Smoothing 4mm Smoothing 6mm Smoothing

Page 14: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

SCALING

Background Data represented as BOLD signal intensity Arbitrary raw signal Need relative comparison to make data

meaningful

Purpose Goal is to scale a voxel time series by its mean in

order to do group analysis

Page 15: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

DATA ANALYSIS

Project Specific AnalysesPossible data analysis

Define regressorsAssume shape of BOLD

response (?)Perform statistical analysesGenerate significance maps Use predefined ROIs

Page 16: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

BLOCK DESIGN IMPLEMENTATION

Finger-tapping Task

Localization Task

Page 17: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

DIGIT 1 VS. DIGIT 5: AN FMRI STUDY OF FINGER-TAPPING

TOPOGRAPHY

Page 18: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

MOTOR HOMUNCULUS

Huettel et al. 2009

Page 19: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

FINGER-TAPPING MOTOR TASK

Multi-finger sequential tapping task (3 mins) D1 and D5 responses are evoked in separate

blocks Visual pacing stimulus (externally guided)

20s20s

20s20s

20s

x 2

Page 20: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

DATA ANALYSIS

Conditions Tap vs. Rest D1 vs. Rest D5 vs. Rest D1 vs. D5

Creating regressors for AFNI Rest periods were identified as “0”; tap periods

as “1” D1 is “1” when tapping D1 and “0” otherwise D5 is “1” when tapping D5 and “0” otherwise

Page 21: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

DATA ANALYSIS

General Linear ModelRed - Assumed HRF ModelBlack - Regressor

Page 22: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

TAPPING (D1 + D5) VS. REST

Tap (D1+D5) vs. Rest

Finger-tapping relative to rest produced significant lateralized activation in the left precentral gyrus (BA4; -38, -20, 55).

α = 0.01.

R

Page 23: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

D1 VS. REST – GROUP ANALYSIS

D1 vs. Rest

Left precentral gyrus (-54, -9, 32)

α = 0.01.

R

Page 24: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

D5 VS. REST – GROUP ANALYSIS

D5 vs. Rest

Left precentral gyrus (-60, -5, 32)

α = 0.01.

R

Page 25: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

D1 VS. D5 - INDIVIDUAL ANALYSIS

D1 vs. D5

D1 is anterior to D5 which is consistent with the electrode studies

R

Page 26: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

D1 VS. D5 - GROUP ANALYSIS

Blue regions indicates increased activity to D1 tapping; red is for D5 response.

Activation for D1 was localized in left BA4 (-56, -17, 35); however, a distinct motor area was not identified for D5.

α = 0.05

R

Page 27: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

SUMMARY

Localized finger-tapping region in primary motor cortex

Group analysis only identified distinctive motor cortex areas for D1 - not D5

Efficiency of group analysis for this dataset

Variation in the anatomical location of D1 and D5

Limited significance in group activation

Page 28: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

EVENT RELATED DESIGN IMPLEMENTATION

Categorization Task

Page 29: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

CATEGORIZATION TASK

Hard Face

Easy Object

Hard Object

Easy Face

Event related design used for increased estimation power & trial sorting

3 runs x 213 TRs (80 stimuli, 20 of each type)

+

+

+

+Jitter(2s, 4s, or 6s)

Page 30: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

HYPOTHESES

Face vs. Object activation map Different locations in

Fusiform Gyrus

Hard vs. Easy Frontal activation during decision

making

Page 31: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

INDIVIDUAL CATEGORIZATION DATA (α= 0.01)

Face

Object

Page 32: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

GROUP CATEGORIZATION DATAFACE VS. OBJECT (α= 0.01)

Face

Talairach coordinates:X = 43, Y = -54, z = -7Right Fusiform GyrusBA: 37

Talairach coordinates:X = 16, Y = -23, z = -9Right Parahippocampal GyrusBA: 35

Object

Page 33: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

GROUP CATEGORIZATION DATAEASY VS. HARD (α = 0.01)

Talairach coordinates:X = 4, Y = 23, Z = 10

(4 mm from) Right ACCBA: 24

* Note: On white matter

Easy > Hard

Page 34: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

SUMMARY OF CATEGORIZATION

Group results Faces more prominent than objects

Faces vs. Objects : FFA (BA 37) and PPA

Easy vs. Hard : Anterior Cingulate Cortex (ACC)

Relatively consistent with individual results

Some individual results showed both face vs. object and easy vs. hard activations

Page 35: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong

Overall Summary

Learned basic concepts associated with fMRI Physics Design Data Collection Preprocessing Analysis

Applied basic concepts using small sample Discussed possible limitations and future

directions

Page 36: 2009 Multimodal Neuroimaging Training Program fMRI Module: Experimental Design, Image Processing, & Data Analysis Courtney M. Bell, Gina D’Angelo, Huiqiong