2 Fluid Mechanics Review

Embed Size (px)

Citation preview

  • 8/9/2019 2 Fluid Mechanics Review

    1/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics 1

    Fluid Mechanics Review

  • 8/9/2019 2 Fluid Mechanics Review

    2/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Fundamental Concepts

    Physic Properties: , , , , , ,

    Forces on Fluid:

    Internal Forces

    External ForcesSurface

    Volume

    Ideal Fluid/Real Fluid

  • 8/9/2019 2 Fluid Mechanics Review

    3/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Fluid Statics

    Basic Differential Equation:

    ),,(

    0

    zyxpp

    pgradF

    =

    =

    Potential Force:

    0:. =+

    =

    pgradgradEqDiff

    gradF

  • 8/9/2019 2 Fluid Mechanics Review

    4/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Fluid Statics

    Gravity Force:

    gzgF ==

    constzp =+

    Hydrostatics:

    =2

    1

    12

    z

    z

    gdzpp Aerostatics:

  • 8/9/2019 2 Fluid Mechanics Review

    5/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Fluid Statics

    Archimedes Buoyancy:

    WgPz =

  • 8/9/2019 2 Fluid Mechanics Review

    6/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Fluid Kinematics

    Motion classification:

    Viscous Friction Ideal Fluid

    Viscous Fluid Laminar

    Turbulence Time Stable

    Unstable

    Dimension 1D, 2D, 3D

    Steady/Unsteady

    Incompressible/Compressible

  • 8/9/2019 2 Fluid Mechanics Review

    7/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Fluid Kinematics

    Two methods for the description of fluid motion

    Lagrangian Method

  • 8/9/2019 2 Fluid Mechanics Review

    8/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Eulerian Method

    Fluid Kinematics

  • 8/9/2019 2 Fluid Mechanics Review

    9/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Fluid Kinematics

    )( ugradut

    u

    dt

    uda

    +

    ==

    Acceleration of a Fluid Element

    z

    z

    y

    z

    x

    zzz

    z

    z

    y

    y

    y

    x

    yyy

    y

    zx

    yx

    xxxx

    x

    uz

    u

    uy

    u

    ux

    u

    t

    u

    dt

    du

    a

    uz

    uu

    y

    uu

    x

    u

    t

    u

    dt

    dua

    uz

    uu

    y

    uu

    x

    u

    t

    u

    dt

    dua

    +

    +

    +

    ==

    +

    +

    +

    ==

    +

    +

    +

    ==

  • 8/9/2019 2 Fluid Mechanics Review

    10/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Fluid Kinematics

    Relation of System Derivatives to theControl Volume Formulation

    +

    =SCVsystem

    dAnut

    X

    dt

    dX

  • 8/9/2019 2 Fluid Mechanics Review

    11/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Fluid Kinematics

    0)( =+

    udiv

    t

    01

    )(1

    0

    =

    +

    +

    =

    +

    +

    z

    uu

    rru

    rr

    z

    u

    y

    u

    x

    u

    zr

    zyx

    Continuity Equation

    Incompressible ( = const):

    Irrotational/Rotational Flow urot

    2

    1=

    1D, steady flow: Q1 = Q2

  • 8/9/2019 2 Fluid Mechanics Review

    12/20

  • 8/9/2019 2 Fluid Mechanics Review

    13/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Fluid Dynamics

    Cu

    t

    gradu

    =+++

    =

    2

    2

    Cu

    =++2

    2

    Irrotational, potential flow

    Steady flow (integration along a streamline )

    Steady flow (integration along a vortex)

    Cu

    =++2

    2

    Steady flow (integration along a normal to the streamline)

    ( )R

    u

    n

    2

    =+

  • 8/9/2019 2 Fluid Mechanics Review

    14/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Fluid Dynamics

    Cup

    gzt

    =+++

    2

    2

    Cup

    gz =++2

    2

    Irrotational, potential flow

    Steady flow (integration along a streamline )

    Steady flow (integration along a vortex)

    Steady flow (integration along a normal to the streamline)

    R

    upgz

    n

    2

    =

    +

    Cup

    gz =++2

    2

    (Bernoulli Equation)

    Gravity, ideal, incompressible fluid:

  • 8/9/2019 2 Fluid Mechanics Review

    15/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Fluid Dynamics

    dtududivgradupgradF

    =++

    )(3

    1 2

    0=udiv

    Equations of Motion for Viscous Fluid(Navier-Stokes Equations)

    Incompressible Flows:

    2

    2

    2

    2

    2

    22

    zyx

    +

    +

    =

  • 8/9/2019 2 Fluid Mechanics Review

    16/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Fluid Dynamics

    dt

    QdPP

    dt

    dE

    sm

    ~

    ++=

    Energy Equation

    Int. Formulation

    Diff. Formulation

    +=

    + dAnqdAndwuFdwu

    edt

    d

    WW

    2

    2

    Gravity, incompressible, steady flow:

    fhg

    Vpz

    g

    Vpz +++=++

    22

    2

    22

    22

    2

    11

    11

  • 8/9/2019 2 Fluid Mechanics Review

    17/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Fluid Dynamics

    Momentum Equation

    ( )

    [ ] =

    +

    =

    outoutoutoutoutout

    W

    VQVQF

    dAnuudwt

    u

    F

    )(

  • 8/9/2019 2 Fluid Mechanics Review

    18/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Dimensional Analysis

    [ ] tml

    TMLa =

    )...,,,(121

    =

    n

    aaafa

    ( ) 1,...,,, 121 == nsf s

    Dimensional/Non-dimensional Quantities

    Fundamental Dimensions/ Derivative Dimensions

    Buckingham Theorem

    k fundamental dimensions

    Dimensionless Parameterk

    k

    iki

    aaa

    a

    ...21 21

    +=

  • 8/9/2019 2 Fluid Mechanics Review

    19/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Dimensional Analysis

    VLVL

    ForceViscous

    ForceInertia===Re

    2

    2

    1V

    ppCa v

    =

    gL

    V

    ForceGravity

    ForceInertiaFr ==

    Significant Dimensionless Group in Fluid Dynamics

    Reynolds number:

    Cavitation number:

    Froude number:

    Weber number:

    LV

    ForceTensionSurface

    ForceInertiaWe

    2

    ==

    Mach number:c

    V

    ilityCompressibtodueForce

    ForceInertiaM ==

  • 8/9/2019 2 Fluid Mechanics Review

    20/20

    HCMC University of Technology,

    15/09/200957:020 Fluid Mechanics

    Similarity

    Geometric Similarity

    Kinematically Similarity

    Dynamically Similarity

    Each dimensionless group has the same value

    in the model and in the prototype