41
2. fejezet Kinematika 2.1. Az anyagi pont kinematikája Az anyagi pont helyzetét valamely O kezd ˝ opontú vonatkoztatási rendszer- ben a t id˝ o függvényeként rt helyzetvektorával adhatjuk meg. Az anyagi pont pillanatnyi sebessége az rt — feltétel szerint kétszer differenciálható — függvény id˝ o szerinti els ˝ orend˝ u deriváltja v ˙ r dr dt míg gyorsulása az a ¨ r d 2 r dt 2 másodrend˝ u derivált. A mozgó pont felületi sebessége dA dt 1 2 r v A mozgáshoz tartozó sebesség-, illetve gyorsuláshodográf az origóba ek- vipolensen eltolt sebesség-, illetve gyorsulásvektorok végpontjának mértani helye. Ha egy Descartes-féle vonatkoztatási rendszerben a pont helyzetét az id ˝ o függvényeként r xt yt zt derékszög˝ u koordinátáival adjuk meg, akkor a sebesség koordinátái: v x ˙ xv y ˙ yv z ˙ z KORREKTÚRA 2006. március 2.

2. fejezet - Babeș-Bolyai Universityfszenko/em1/Feladatok/kinematika.pdf · 2013. 9. 24. · 2. fejezet Kinematika 2.1. Az anyagi pont kinematikája Az anyagi pont helyzetét valamely

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • 2. fejezet

    Kinematika

    2.1. Az anyagi pont kinematikája

    Az anyagi pont helyzetét valamely O kezdőpontú vonatkoztatási rendszer-ben a t idő függvényeként

    �r�t � helyzetvektorával adhatjuk meg. Az anyagi

    pont pillanatnyi sebessége az�r�t � — feltétel szerint kétszer differenciálható

    — függvény idő szerinti elsőrendű deriváltja

    �v � ˙�r � d

    �r

    dt �míg gyorsulása az

    �a � ¨�r � d

    2 �rdt2

    másodrendű derivált. A mozgó pont felületi sebessége

    d�A

    dt� 1

    2

    �r � �v �

    A mozgáshoz tartozó sebesség-, illetve gyorsuláshodográf az origóba ek-vipolensen eltolt sebesség-, illetve gyorsulásvektorok végpontjának mértanihelye.

    Ha egy Descartes-féle vonatkoztatási rendszerben a pont helyzetét az időfüggvényeként

    �r � � x � t � � y

    �t � � z

    �t ��� derékszögű koordinátáival adjuk meg,

    akkor a sebesség koordinátái:

    vx � ẋ � vy � ẏ � vz � ż �

    K O R R E K T Ú R A 2006. március 2.

  • 28 2. Kinematika

    a sebesség v ��� �v � nagyságára pedigv2 � ẋ2 � ẏ2 � ż2 �

    A gyorsulás skaláris összetevői és a ��� �a � nagyságáraax � ẍ � ay � ÿ � az � z̈ � a

    2 � ẍ2 � ÿ2 � z̈2 �Ha a mozgó pont pályájához kapcsolt, a ponttal együtt mozgó � �t � �n � �b �

    Frenet-féle kísérőtriéder tengelyeire vetítjük a sebességet és a gyorsulást,akor az érintő menti, főnormális és binormális irányú komponensek:

    vt � v � dsdt � vn � 0 � vb � 0

    és

    at � v̇ � dvdt � an �v2

    R � ab � 0 �ahol s az ívhossz (a megtett út egy kiindulási ponttól), R pedig a görbületisugár.

    Ha�r � �r � q1 � q2 � q3 � görbevonalú koordinátákat használjuk, akkor a Hi ���� ∂ �r∂ai ��� Lamé-féle együtthatók, valamint az �ei � 1Hi ∂ �r∂ai , i � 1 � 2 � 3 segítségé-

    vel a sebességvektor�v � ∑3i � 1 Hiq̇i �ei alakban írható. Ha görbevonalú koor-

    dináták rendszere ortogonális, azaz az�ei egységvektorok páronként merőle-

    gesek egymásra, akkor a gyorsulás görbevonalú komponensei

    ai � 12Hi

    ddt ∂v2∂q̇i �� ∂v2∂qi � � i � 1 � 2 � 3 �

    Sajátosan, az�r� θ � síkbeli polárkoordináták esetében

    vr � ṙ � vθ � rθ̇ �ar � r̈ � rθ̇2 � aθ � 1r ddt � r2θ̇ � �

    A mozgás síkjára merőleges felületi sebességvektor előjeles hosza r2θ̇.

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 29

    Megoldott gyakorlatok és feladatok

    M 2.1. Igazoljuk, hogy egy anyagi pont sebessége nem függ a helyzetvektorkezdőpontjának a megválasztásától.

    Megoldás. Legyen O és O � két, egymáshoz viszonyítva nyugalombanlevő pont (2.1. ábra). A P mozgó pont helyzetvektora a két vonatkoztatási

    pontra nézve�r � � �OP és �r � � � � �O � P, amely vektorokra �r � � � �OO � � �r � , ahol az� � �OO � vektor állandó. Így d �rdt � d �r �dt .

    O

    O �

    P

    � � �� � �

    � � ���� � �OO ������ � � �

    r �

    ��r � � � � � � � ��

    �v

    2.1. ábra. Az M 2.1. feladathoz

    M 2.2. Egy egyenes mentén mozgó pont helyzetét az x � t 3 � 3t2 � 9t � 30összefüggés értelmezi, ahol x méterben, a t � 0 idő pedig másodper-cben van kifejezve. Határozzuk meg:(a) azt az időpontot, amikor a sebesség nulla lesz;(b) a pont pozícióját ebben a pillanatban és az addig megtett út hoss-zát;(c) a pont gyorsulását ebben a pillanatban;(d) a pont által t � 2 s-tól t � 5 s-ig megtett távolságot.

    Megoldás. A pont mozgásegyenlete, sebessége és gyorsulása

    x � t3 � 3t2 � 9t � 30 � (2.1)v � dx

    dt� 3t2 � 6t � 9 � (2.2)

    a � dvdt

    � 6t � 6 � (2.3)

    K O R R E K T Ú R A 2006. március 2.

  • 30 2. Kinematika

    (a) Azon időpont, amikor v � 0. A (2.2) egyenletbe v � 0 helyettesítéssel

    3t2 � 6t � 9 � 0 � t � � � 1 � 3 � �A mozgás t � 0 kezdete utáni megfelelő megoldás t � 3 s. Ha t ��� 0 � 3 � ,akkor v � 0 és a pont a tengelyen negatív irányba mozog, ha t � 3, akkorv � 0 és a pont pozitív irányba mozog.

    (b) A pont helyzete v � 0-kor és az addig megtett út. A t � 3 s-ot (2.1)-behelyettesítve

    x�3 � � 3 m,

    míg induláskorx�0 � � 40 m.

    Mivel a�0 � 3 � időintervallumban a sebesség sehol sem nulla, mindvégig ne-gatív, így x mindvégig csökken és az indulástól megtett út hossza

    �∆x� � � x � 3 � � x � 0 � � � 37 m.

    (c) A gyorsulás, amikor v � 0. A t � 3 s-ot (2.3)-be helyettesítve

    a�3 � � 12 m/s2.

    (d) A t � 2 s-tól t � 5 s-ig megtett út hossza. Mivel a pont negatív iránybamozog, amíg t �� 2 � 3 � , majd pozitív irányba t �

    �3 � 5 esetén, a megtett utakhosszát külön-külön kiszámoljuk és összegezzük:

    �x�3 � � x � 2 � � � � x � 5 � � x � 3 � � � � 3 � 8 � � � 35 � 3 � � 37 m.

    M 2.3. Egy labdát 9 m/s-os kezdősebességgel feldobnak a talajtól 18 m ma-gasban levő ablakból. Tudva azt, hogy a labda 9,81 m/s2-es állandónagyságú gyorsulása mindvégig lefelé mutat, határozzuk meg:(a) a labda v sebességét és talaj fölötti y magasságát minden t időpil-lanatra;(b) a labda által elért maximális magasságot és a megfelelő időpontot;(c) azt az időpontot, amikor a labda földet ér és a sebességét, amellyelleesik.

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 31

    Megoldás. (a) Sebesség és magasság. A labda helykoordinátáját (ma-gasságát) adó y koordináta tengely O kezdőpontját a talaj szintjénél választ-juk, pozitív irányát pedig függőlegesen felfelé. A pont gyorsulása ezekszerint a � � 9 � 81 m/s2, kezdeti helyzete és sebessége pedig a t � 0 kez-deti időpontban: y0 � 18 m, v0 � 9 m/s. A dv � dt � a egyenletet integrálva

    � vv0 � 9 dv � � � t0 9 � 81dt

    v � 9 � 9 � 81t � (2.4)A dy � dt � v egyenletet integrálva

    � yy0 � 18 dy � � t0 � 9 � 9 � 81t � dt �

    y � 18 � 9t � 4 � 905t2 � (2.5)(b) A legnagyobb magasság. A legnagyobb magasságot a labda akkor

    éri el, amikor a (2.5) trinomnak maximuma van. Ez a tmax � � 92 � � � 4 � 905 � �99 � 91 � 0 � 917 s-kor lesz. A megfelelő maximális érték ymax � 22 � 89 m. (Amegfelelő időpont azonnal adódik abból a feltételből, hogy ekkor a sebességnulla.)

    (c) A labda földetér. A labda leesésekor y � 0. Ezt behelyettesítve a (2.5)összefüggésbe a

    18 � 9t � 4 � 905t2 � 0másodfokú egyenletet kapjuk amelynek gyökei t1 � � 1 � 206 s és t2 � 3 � 041s. A t � 3 � 041 s időpont felel meg a mozgás kezdete utáni földetérésnek.Ekkor a sebesség

    v � 9 � 9 � 81 � 3 � 041 � � 20 � 83 m/s.Tehát a lefelé eső (v � 0) labda 20,83 m/s sebességgel ér földet.M 2.4. Határozzuk meg az ágyúcsőnek a vízszintessel bezárt α szögét ah-

    hoz, hogy a v0 kezdeti sebességű lövedék eltalálja a d távolságnál hmagasságban levő célpontot. (Ismert, hogy a lövedék gyorsulása afüggőlegesen lefelé mutató g állandó nagyságú nehézségi gyorsulás

    K O R R E K T Ú R A 2006. március 2.

  • 32 2. Kinematika

    és a mozgás síkmozgás. A légellenállást elhanyagoljuk.) Mekkoralesz a keresett szög v0 � 240 m/s, d � 3600 m, h � 600 m esetében?

    Megoldás. A mozgás függőleges síkjában vezessük be a vízszintes irányúOx és függőlegesen felfelé irányított Oy tengelyeket, az O kezdőpontot a ki-indulási pontba választva. A feladat adatai alapján a következő matematikaimodell (peremérték-feladat) írható fel:���� ��� ẍ � 0 � ÿ � � g �x � 0 � � 0 � y � 0 � � 0 �x � t � � � d � y � t � � � h �ẋ � 0 � � v0 cosα � ẏ � 0 � � v0 sin α �ahol α és t � (a célbaérés pillanata) ismeretlenek. Az x � y koordinátákat adódifferenciálegyenleteket integrálva a megadott kezdeti feltételek figyelembe-vételével

    x�t � � v0 cosα t �

    y�t � � � g2 t2 � v0 sin α t

    összefüggéseket kapjuk. A célbatalálás feltételei a t � pillanatbanv0 cosα t � � d �� g2 � t � � 2 � v0 sinα t � � h �

    Az első egyenletből kifejezve t � -ot és a másodikba helyettesítve, a� g2 dv0 cosα � 2 � v0 sin α dv0 cosα � h

    egyenlethez jutunk, amelyből az 1 � cos2 α � 1 � tan2 α összefüggés alapjána

    gd2 tan2 α � 2dv20 tanα � gd2 � 2hv20 � 0egyenletet kapjuk. A v40 � g2d2 � 2ghv20 � 0 feltétel teljesülése esetén a ke-resett α szög egy vagy két megoldása a

    �tanα � 1 � 2 �

    v20 ��� v40 � g2d2 � 2ghv20gd

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 33

    egyenletek alapján határozható meg.A megadott számértékekre

    �tanα � 1 � 2 � 6876 és

    �tan α � 2 � 0 � 57436, ahon-nan a két lehetséges megoldás

    α1 � 69 � 58oés α2 � 29 � 87

    o �M 2.5. Ha egy adott pillanatban ismert az M anyagi pont sebesség- és gyor-

    sulásvektora, szerkeszzük meg a pálya görbületi középpontját.

    �M ��t

    � � � � ��� �n

    ��b

    �M ��v

    M1��� ����a

    M2M3

    an

    M4

    �O

    2.2. ábra. Az M 2.5. feladathoz

    Megoldás. A � �t � �n � �b � kísérőtriéderhez viszonyított Frenet-féle koordiná-ta-rendszerben (2.2. első ábra) alkalmazva a Frenet-féle d �tds � 1R �n összefüg-gést, meghatározzuk a sebesség-, illetve gyorsulásvektortok komponenseit:

    �v � d

    �r

    dt� d

    �r

    ds� dsdt

    � ṡ � �t, ṡ � v

    �a � d

    �v

    dt� d

    dt � ṡ�t � � s̈�t � ṡd �tdt � s̈�t � ṡ d �tds � dsdt� s̈�t � ṡ2 d �t

    ds� s̈�t � ṡ2

    R

    �n, at � v̇, an � v2R �

    K O R R E K T Ú R A 2006. március 2.

  • 34 2. Kinematika

    ahonnan

    R � v2

    an� (2.6)

    A szerkesztés alapötletét a gyorsulás normális vetületére vonatkozó (2.6)összefüggés adja, ahol R a görbületi sugár. A sebesség- és gyorsulásvek-torok által meghatározott simulósíkban a következő szerkesztéseket végez-zük: Bevezetjük az � � � �MM1 � �v; � � � �MM2 � �a jelöléseket (2.2. második ábra).AzMM1 érintő egyenesre az M-ben merőlegest állítunk és jelöljük M3-mal agyorsulásvektor M2 végpontjának a vetületét erre az egyenesre. Legyentovábbá M4 az M3-nak M-re vonatkozó szimetrikusa. Meghúzzuk az M1-ből az M4M1-re merőleges egyenest, amely az MM3 félegyenest O -banmetszi. Igazoljuk, hogy az így megszerkesztett O pont a keresett görbületiközéppont. Alkalmazzuk az M4OM1 derékszögű háromszögben a magasságtételét: MM21 � MM4 � MO. Tehát v2 � MO � an mivel az MM4 � MM3 � an.Innen következik, hogy az MO � v2an � ami valóban azt mutatja, hogy MOegyenlő a görbületi sugárral.M 2.6. Egy anyagi pont az y � px2 � p � 0 � egyenletű parabolán v állandó

    nagyságú sebességgel mozog. Határozzuk meg a pont gyorsulásátamikor az a parabola csúcsában található.

    Megoldás. A gyorsulás érintő menti komponense egyenlő nullával, mivela sebesség nagysága állandó. Tehát az a � an � v2R . Ahhoz, hogy a gyorsulástmeghatározzuk, ki kell számítsuk a parbola csúcsához, az O

    �0 � 0 � ponthoztartozó R görbületi sugarat. Ezt az

    R � � 1 � y � 2 � 32y � �

    ������x � 0

    ismert összefüggésből határozhatjuk meg, ahol y ��x � 0 � dydx ��� x � 0 � 2px � x � 0 �

    0 és y � ��x � 0 � d2yd2x ��� x � 0 � 2p. Innen R � 12p . Tehát a gyorsulás nagysága

    a � an � 2pv2.M 2.7. Határozzuk meg a sebességvektor és gyorsulásvektor komponenseit

    gömbi koordinátákban.

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 35

    O��

    ��� �

    x

    �y

    �z

    ��

    ��

    � � P

    r

    x

    y

    z

    θ

    ϕ

    2.3. ábra. M 2.7. Gömbkoordináták

    Megoldás. A helyzetvektor derékszögű komponenseinek kifejezése göm-bi koordinátákkal az

    �r � � r sin θcos ϕ � y � r sinθsin ϕ � z � r cosθ � �

    képlettel adható meg (lásd . ábra). Ennek alapján a Lamé-féle együtthatók

    Hr ����� ∂ �r∂r ���� � � � sinθcos ϕ � 2 � � sin θsinϕ � 2 � � cosθ � 2 � 1 �

    Hθ ����� ∂ �r∂θ ���� � � � r cos θcosϕ � 2 � � r cos θsin ϕ � 2 � � � r sin θ � 2 � r�

    Hϕ ����� ∂ �r∂ϕ ���� � � � � r sin θsinϕ � 2 � � r sin θcosϕ � 2 � r sin θ �

    A sebesség megfelelő komponensei:

    vr � Hrṙ � ṙ, vθ � Hθθ̇ � rθ̇, vϕ � Hϕϕ̇ � r sin θϕ̇ �nagysága pedig

    v2 � ṙ2 � r2θ̇2 � r2 sin2 θϕ̇2 �K O R R E K T Ú R A 2006. március 2.

  • 36 2. Kinematika

    A gyorsulás komponensei (mivel a rendszer ortogonális):

    ar � 12Hr

    ddt ∂v2∂ṙ � � ∂v2∂r � � r̈ � rθ̇2 � r sin2 θϕ̇2 �

    aθ � 12Hθ

    ddt ∂v2∂θ̇ � � ∂v2∂θ � � 1r ddt � r2θ̇ � � r sinθcos θϕ̇2 �

    aϕ � 12Hϕ

    ddt ∂v2∂ϕ̇ � � ∂v2∂ϕ � � 1r sin θ ddt � r2 sin2 θϕ̇ � �

    M 2.8. Egy M anyagi pont az y2 � 2px � 0 egyenletű parabolán mozog olymódon, hogy az origóra vonatkoztatott sebesség-hodográf megegye-zik az adott parabolával. Határozzuk meg:(a) a mozgásegyenleteket, a sebesség és gyorsulás nagyságát, ha tud-juk, hogy a t � 0 időpontban az M pont az M0 � p2 � p � pozícióban van;(b) a sebesség- és gyorsulásvektorok végpontjának mértani helyét!

    Megoldás. (a) A feltételeket matematikai formulákba öntve az alábbiCauchy-feladathoz jutunk: ���� ��� y

    2 � 2px � 0 �ẏ2 � 2pẋ � 0 �x � 0 � � p2 �y � 0 � � p �Az első egyenletet deriválva kapjuk: 2yẏ � 2p � 0 � yẏ � pẋ � Ezt a máso-dik egyenletbe helyettesítve ẏ2 � 2yẏ � 0, ahonnan ẏ � ẏ � 2y � � 0. Két esetlehetséges:

    I. ha ẏ � 0, akkor a kezdeti feltételeket használva az y � p � x �p2 moz-

    gásegyenleteket kapjuk. Ebben az esetben az anyagi pont az M0 pontbanáll, vagyis a megadott koordináta-rendszerhez képest a pont nem mozog,nyugalomban van.

    II. ha ẏ � 2y, akkor 1y dy � 2dt � lny � ln p � 2t � y � pe2t � ẏ � 2pe2t �Az y kifejezését az első egyenletbe helyettesítve meghatározzuk az x-et: x �p2 e

    4t . Ebben az esetben tehát az anyagi pont mozgásegyenletei x�t � � p2 e4t ;

    y�t � � pe2t . A sebességvektor komponensei: ẋ � 2pe4t ; ẏ � 2pe2t , és a

    sebesség nagysága v � 2pe2t � 1 � e4t . A gyorsulásvektor komponensei: ẍ �8pe4t , ÿ � 4pe2t és a gyorsulás nagysága a � 4pe2t � 1 � e4t .K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 37

    (b) A sebességvektor végpontjának helyzetvektora az�r � �v vektor, amely-

    nek koordinátái �x1 � x � ẋ � � p2 � 2p � e4t � 5p2 e4t �y1 � y � ẏ � � p � 2p � e2t � 3pe2t �

    A végpont pályaegyenletét megkapjuk, ha az egyenletrendszerből kiküszö-böljük az időt:

    x1y21

    �5p2�

    3p � 2 �tehát a mértani hely az 5y21 � 18px1 � 0 egyenletű parabola. Hasonlóanjárunk el a gyorsulásvektor esesetén is. A gyorsulásvektor végpontjának he-lyzetvektora az

    �r � �a vektor, az�

    x2 � x � ẍ � � p2 � 8p � e4t � 17p2 e4t �y2 � y � ÿ � � p � 4p � e2t � 5pe2t �koordinátákkal. A gyorsulásvektor végpontjának implicit pályaegyenlete

    x2y22

    �17p

    2�5p � 2 �

    tehát a keresett mértani hely a 17y22 � 50px2 � 0 egyenletű parabola.M 2.9. Határozzuk meg egy nyújthatatlan fonál végéhez rögzített P anyagi

    pont pályáját, ha a fonál másik végét a vízszintes síkon egy egyenesmentén adott irányba mozgatjuk. Az így keletkezett görbe neve trak-trix.

    Megoldás. A P pont pályájának tetszőleges pontjában a sebesség általmeghatározott érintő egybeesik a PT fonállal. A mozgás síkjában megadottegyenest válasszuk Ox tengelynek. A fonál hossza legyen a és a P pontkezdetben legyen az Oy tengelyen a

    �0 � a � pontban (2.1. ábra). A görbeértelmezése szerint PT � a (állandó). Legyen N a P pont vetülete az Ox

    tengelyre. A PNT háromszögben felírható a traktrixot leíró

    yy � � 2 � y2 � a2 (2.7)

    K O R R E K T Ú R A 2006. március 2.

  • 38 2. Kinematika

    O�x

    �y

    � � � � � � �

    a

    a

    � P�x � y �

    N T

    2.4. ábra. M 2.9. feladat: a traktrix

    egyenlet, ahol y � � dy � dx. A kapott differenciálegyenletet integrálva adódika traktrix egyenlete:

    x � a ln a � � a2 � y2y � � a2 � y2 �ahol a négy lehetséges előjelkombináció a görbe különböző negyedekbe esőíveit adja.

    M 2.10. Egy anyagi pont az R sugarú gömbfelületen mozog úgy, hogy asebességvektor és a gömb hosszúsági körei mindig állandó mértékű αszöget zárnak be. Határozzuk meg az anyagi pont pályáját.

    Megoldás. Egy adott pillanatban a sebességvektort vetítjük a ponton át-menő szélességi illetve hosszúsági körök érintőire. Bevezetve a 2.5. ábránlátható jelöléseket, könnyen belátható, hogy u1 � R dθdt ; u2 � Rcosθ dϕdt � Más-felől viszont a feltétel alapján u1 � vcos α; u2 � vsinα � A felírt összefüggé-sek alapján az alábbi egyenletrendszert kapjuk:�

    R dθdt � vcos α �Rcosθ dϕdt � vsinα �

    A két egyenlet megfelelő oldalait elosztva egymással, a

    dθcos θ

    � cotαdϕ

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 39

    2.5. ábra. Az M 2.10. feladathoz

    differenciálegyenlethez jutunk. Ez utóbbi egyenletet az

    �dθ

    cosθ�

    �1

    cos2 θ2� 11 � tan2 θ2 dθ � ln

    �����

    1 � tan θ21 � tan θ2

    �����

    � C� ln

    ����tan π4 � θ2 � ���� � C

    alapján integrálva

    ln

    ����tan π4 � θ2 � ���� � ϕcotα � C �

    Ha feltételezzük, hogy kezdetben θ � 0 és ϕ � 0, akkor a pont pályája aln

    �� tan � π4 � θ2 � �� � � cotα � ϕ, vagy tan � π4 � θ2 � � e � cotα � ϕ egyenletű görbe.

    M 2.11. Egy vonat v � 72 km/h sebességgel közeledik az állomáshoz. Eköz-ben ∆t � 5 s ideig tartó hangjelet bocsát ki. Mennyi ideig hallja ahangot az állomás előtt álló vasutas? A hang sebessége c � 320 m/s.

    Megoldás.Amikor a vonat a V pontban van megkezdi a hangjel kibocsátását (2.6.

    ábra).Ezt a jelt az állomás előtt álló vasutas t1 � x0c idő múlva hallja. Amikor

    a vonat a P-be érkezik befejezi a hangjel küldését, amit a vasutas a hangjel

    K O R R E K T Ú R A 2006. március 2.

  • 40 2. Kinematika

    2.6. ábra. Az M 2.11. feladathoz

    kibocsátása után a t2 � ∆t � x1c időpontban érzékel. Következésképpen avasutas ∆t � � t2 � t1 � ∆t � x1c � x0c � ∆t � sc � ∆t � 1 � vc � időintervallumbanhallja a hangjelt. A megadott számértékek alapján ∆t � � 5 � 1 � 723 � 6 � 320 � �4 � 687 s.

    M 2.12. Egy fecske valamilyen különleges szembetegség folytán minden tár-gyat a helyes iránytól jobbra lát 30o -kal. Most a fecske fészektől100 méterre van és 10 m/s-os állandó nagyságú sebességgel repül.Odatalál-e a fecske a fészkéhez? Ha igen, akkor mennyi idő alatt ésmennyi utat tesz meg a fészekig?

    2.7. ábra. Az M 2.12. feladathoz

    Megoldás. Észrevehető, hogy a fecske helyzetvektor irányába eső se-bessége állandó (2.7. ábra) vr � vcos 300 � v

    �3

    2 . A sebességvektor polárko-

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 41

    ordinátákban az alábbi alakban írható:

    �v � ṙ �er � rθ̇ �eθ �

    Következésképpen

    ṙ � � v � 32 � r � r0 � � v � 32 t � r � r0 � v � 32 t �Kezdetben r0 � 100 m és amikor a fecske a fészkéhez ér, akkor r � 0. Teháta t � 2r0

    v�

    3� 200

    10�

    3� 11 � 34 s. Mivel a fecske sebessége állandó következik,

    hogy a megtett út: s � vt � 10 � 20�3

    � 115 � 4 m.A sebesség vetülete a helyzetvektorra merőleges irányba is állandó vθ �

    vsin 300 � v2 . Következésképpen

    rθ̇ � v2�

    �r0 � v � 32 t � θ̇ � v2 �

    θ̇ � v2r0 � v � 3t � dθ � v2r0 � v � 3t dt �

    θ � � 1� 3 ln � 2r0 � v � 3t � � 1� 3 ln � 2r0 � � θ � � 1� 3 ln�

    1 � v � 32r0 t � �A fecske mozgásegyenletei:�

    θ � � 1� 3 ln � 1 � v � 32r0 t � �r � r0 � v � 32 t �

    A fecske pályájának egyenlete:

    θ � � 1� 3 ln rr0 � r � r0e � θ � 3 �M 2.13. Egy repülő egyenes vonalú, egyenletes mozgását az xB � ut � x0,

    yB � y0 egyenletek írják le. A t � 0 időpontban az O�0 � 0 � pontból egyhőrakétát indítnak, hogy kilőjjék a repülőt. Tudva azt, hogy a rakéta

    állandó v sebességgel mindig a célpont felé tart, határozzuk meg arakéta mozgásegyenleteit és a pályaegyenletet.

    K O R R E K T Ú R A 2006. március 2.

  • 42 2. Kinematika

    O�x

    �y

    yB � y0 ��

    x0

    célpont

    �A

    ����

    xA

    yA

    �B elfogás

    xB

    �vA

    ��u

    2.8. ábra. Az M 2.13. feladathoz

    Megoldás. A követési feladatoknál általában az�rA helyzetvektorú A ül-

    döző ismeri a B célpont�rB helyzetét és ˙

    �rB sebességét egy kezdeti időponttól

    az aktuális t időpontig és célja utolérni a célpontot. A legjobb stratégia az, haaz üldöző minden pillanatban a célpont irányában repül, azaz ˙

    �rA � � �rB � �rA �(2.8. ábra). Az üldöző sebességének nagyságát is ismertnek tekinthetjük,

    legyen ez vA�t � . Az

    �R � �rB � �rA relatív helyzetvektor segítségével a követésifeladat az

    ˙�R � t � � ˙�rB�t � � vA � t �

    �R

    �t �

    R�t � (2.8)

    egyenlettel modellezhető.A repülő és rakéta síkjában bevezetve az

    �R � � X � Y � �

    �xB � xA � xB � xA �koordinátákat, a (2.8) egyenlet vetülete a tengelyekre

    Ẋ � ẋB � vA � t � X� X2 � Y 2 �Ẏ � ẏB � vA � t � Y� X2 � Y 2 �

    A fenti egyenletekbe behelyettesítve a megadott

    ẋB � u � ẏB � 0és vA�t � � v

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 43

    mennyiségeket, az

    Ẋ � u � vX� X2 � Y 2 � Ẏ � � vY� X2 � Y 2 (2.9)egyenleteket kapjuk. Célszerű a R � θ polárkoordináták bevezetése, amelye-kre X � Rcosθ és Y � Rsinθ. Ezekre a változókra az

    Ṙcosθ � Rsinθ θ̇ � u � vcosθ � (2.10)Ṙsinθ � Rcosθ θ̇ � � vsinθ �

    Az (2.10) egyenletrendszert megoldva az Ṙ � θ̇ ismeretlenekreṘ � ucos θ � v� Rθ̇ � � usin θ �

    Ezek alapján az üldöző pályaegyenlete meghatározható a

    dRdθ

    � Ṙθ̇

    ��ucosθ � v � R� usinθ

    hányados integrálásával. Az�

    dRR

    �� � � cotθ � vusinθ � dθ

    összefüggésből� � � cotθ � vusinθ � dθ � � ln � sinθ � � vu ln � cscθ � cotθ �lnR � � ln � sinθ � � vu ln ���� tan θ2 ���� � C �

    ahonnan, az A � eC jelöléssel

    R � A�� tan θ2

    ��

    vu

    �sinθ

    � � (2.11)

    Az A � eC integrálási állandó a t � 0 időpontra felírható

    R0 � � x20 � y20 � cos θ0 � x0� x20 � y20 � sinθ0 � y0� x20 � y20K O R R E K T Ú R A 2006. március 2.

  • 44 2. Kinematika

    kezdeti feltételek alapján számolható ki:

    A �

    ��� x0� � x20 � y20 ��� vu�y0� v � u

    u, ha y0

    �� 0 �Ha y0 � 0, akkor θ � 0 vagy θ � π, és az üldöző pályája a célponttal együttaz Ox tengelyen van.

    Az elfogás akkor következik be, amikor (2.11)-ban R � 0. Ha v � u, akkorez soha sem következhet be, amint azt el is várhattuk, mivel ekkor az üldözősebessége kisebb, mint a célpont sebessége.

    2.2. A merev test kinematikája

    Az S merev anyagi rendszer olyan diszkrét vagy folytonos (merev test)pontrendszer, amelyben tetszőleges két pont távolsága állandó, azaz

    ��� � �PQ ��� �konst � , bármely P� Q � S esetén. Egy merev test (általában merev pont-rendszer) helyzete valamely � �i1 � �j1 � �k1 � egységvektor-rendszerrel megadottO1x1y1z1 rendszerhez viszonyítva hat független paraméter segítségével ad-ható meg, amelyek lehetnek például:

    a rendszer tetszőlegesen választott O pontjának helyzetvektorának há-rom koordinátája �

    x01 � y01 � z01 � ��r01;

    és a�ϕ � θ � ψ � Euler-szögek (2.9. ábra), amelyek megadják a testhezkapcsolt Oxyz derékszögű koordináta-rendszer tengelyeinek helyzetét

    az O1x1y1z1 rendszer tengelyeihez viszonyítva.

    Ha�x � y � z � , illetve

    �x1 � y1 � z1 � a merev test valamely pontjának koordi-nátái a testhez kapcsolt Oxyz, illettve a „rögzített” O1x1y1z1 rendszerben,

    akkor: �� x1y1

    z1

    ���

    �� cosϕ � sinϕ 0sinϕ cosϕ 0

    0 0 1

    ���

    �� 1 0 00 cosθ � sinθ0 sinθ cosθ

    ���

    �� cosψ � sinψ 0sinψ cosψ 0

    0 0 1

    ���

    �� xy

    z

    �� ��� x10y10

    z10

    ���

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 45

    O1�

    �� �x1

    �y1

    � z1

    �� ��i1

    � �j1

    ��k1

    � ��� �i

    � ����j

    ��� �k

    �O

    ���

    r10�

    ��

    �� �x1

    x2

    � � � ���x

    � y1

    � � � ��� y2

    �� y3

    �z1

    ��������� �

    z � ��� y

    ����

    �� � �r

    ����������� � �

    �r1

    �M

    ϕ

    ϕθ

    θ

    ψ

    ψ

    2.9. ábra. Az Euler-féle szögek

    A merev testhez kapcsolt és azzal együtt mozgó Oxyz rendszer tengelyeit

    kijelölő � �i � �j � �k � változó egységvektorok idő szerinti deriváltjaid�i

    dt� ��ω � �i � d �jdt � ��ω � �j � d �kdt � ��ω � �k �

    alakban fejezhetők ki (Poisson-képletek), ahol az ��ω szögsebességvektor atest forgását jellemzi. A szögsebességvektor Oxyz-ben, illetve O1x1y1z1-benvett

    �p � q � r � , illetve

    �p1 � q1 � r1 � komponensei kefejezhetők az Euler-szögeksegítségével:�� � p � ϕ̇sin θsinψ � θ̇cosψ �q � ϕ̇sinθcos ψ � θ̇sinψ �r � ϕ̇cosθ � ψ̇ �

    �� � p1 � ψ̇ sinθsinϕ � θ̇cosϕ �q1 � � ψ̇sin θcosϕ � θ̇sin ϕ �r1 � ψ̇cosθ � ϕ̇ �A merev test (pontrendszer) mozgásegyenletei:

    x10 � x10�t � � y10 � y10

    �t � � z10 � z10

    �t � �ϕ � ϕ � t � � θ � θ

    �t � � ψ � ψ

    �t � �

    t � I � � t0 � tv �

    K O R R E K T Ú R A 2006. március 2.

  • 46 2. Kinematika

    A merev test P � S pontjának sebessége, illetve gyorsulása:�v � �v0 � ��ω � �r � �a � �a0 � ˙��ω � �r � ��ω � � ��ω � �r � � �a0 � ˙��ω � �r � ω2 �d �

    ahol�d az O-n áthaladó, ��ω irányú tengelytől mutat a P pont felé.

    A merev test azon Q pontjainak mértani helye, amely pontok sebességepárhuzamos ��ω -val egy egyenes, a pillanatnyi csavartengely. Egyenletei:

    �rQ � �rQ0 � λ ��ω , ahol �rQ0 � 1ω2 � ��ω � �v0 � � λ ��� �

    illetve, az Oxyz rendszerben:

    v0x� qz � ryp � v0y � rx � pzq � v0z � py � qxp � (2.12)

    ahol v0x � v0y � v0z az O pont sebességének komponensei a testtel mozgó rend-szerben.A pillanatnyi forgástengely által a térben leírt vonalfelület neve herpol-

    hodia kúp, a testhez kapcsolt rendszerben leírt vonalfelület neve polhodiakúp. A pillanatnyi csavarmozgás jellemezhető az

    �ω szögsebességvektorból

    és a pillanatnyi csavartengely mentén elhelyezkedő pontok�vtr transzlációs

    sebességéből álló vektorkettőssel.Ha a merev test O pontjának

    �v0 transzlációs sebessége, illetve a forgást jel-

    lemző ��ω szögsebességvektor bizonyos feltételeknek engedelmeskedik, ak-kor a merev test sajátos mozgásairól beszélünk. A fontosabb sajátos moz-gások:

    Transzlációs mozgás: ��ω � t � � �0, �v0 � t � tetszőleges;Rögzített tengely körüli forgás:

    �v0

    �t � �

    �0, ��ω � t � � ω � t � �u, �u adott

    egységvektor;

    Gömbi mozgás (rögzített pont körüli mozgás)̇:�v0

    �t � �

    �0, ��ω � t � tet-

    szőleges;

    Síkmozgás: ��ω � t � � ω � t � �u, �v0 � t � � ��ω � t � � �0, �u állandó egységvektor.Síkmozgás esetén minden pillanatban létezik olyan I pont, amelyre

    �vI �

    �0,

    ez a pillanatnyi forgáscentrum (pólus), amelynek mértani helye az O1x1y1

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 47

    rendszerben az

    x1 � x10 � dy10dϕ �y1 � y10 � dx10dϕ

    egyenletekkel leírható álló pólusgörbe, míg I mértani helye az Oxy testtelmozgó rendszerben az

    x � dx10dϕ

    sinϕ � dy10dϕ cosϕ �y � dx10

    dϕcosϕ � dy10

    dϕsinϕ

    egyenletekkel meghatározott mozgó pólusgörbe. Az egyenletekben használtϕ paraméter az O1x1, illetve Ox tengelyek szögének mértéke, x10 � y10 pedigaz O pont koordinátái az O1x1y1 rendszerben (2.10. ábra).

    O1�x1

    �y1

    � � �� � �

    � � �� � �

    � � �� � ��� x

    �O

    ��

    ��

    ��

    ��

    ��

    ��

    � � y

    �Iy1

    x1

    x

    y

    ϕ

    2.10. ábra. A síkmozgás koordináta-rendszerei

    Megoldott gyakorlatok és feladatok

    M 2.14. Ismerve a csavarmozgás�vtr � �ω vektorkettősét, határozzuk meg

    azon pontok mértani helyét, amelyek sebességének hossza a vtr tran-szlációs sebesség n-szerese.

    K O R R E K T Ú R A 2006. március 2.

  • 48 2. Kinematika

    Megoldás. A merev test elemi mozgását pillanatnyi csavarmozgáskéntfogva fel, tetszőleges pontjának

    �v sebessége felbontható a pillanatnyi csa-

    vartengely irányába eső�vtr transzlációs és az erre merőleges

    �vrot �

    �ω �

    �R

    forgási sebességkomponensekre, ahol�R a forgástengelytől a pontig mutató

    vektor (2.11. ábra): �v � �vtr � �ω � �R �

    Ezek szerint a sebesség nagysága, figyelembe véve a�vtr � �vrot és �ω �

    �R

    C

    � �ω

    ��vtr

    �vtr

    ���vrot

    � � �� �

    � �� �

    ����v

    � � � � ����d

    2.11. ábra. M 2.14. feladat: pillanatnyi csavarmozgás

    összefüggéseket

    v � � v2tr � ω2R2 �A feladat feltétele szerint v � nvtr, azaz

    �v2tr� ω2R2 � nvtr, ahonnan

    R � vtrω

    �n2 � 1

    állandó. Így a keresett mértani hely az R � vtrω � n2 � 1 sugarú körhenger,amelynek forgástengelye az �ω irányú csavartengely.M 2.15. Egy merev test M1

    �1 � 0 � 0 � , M2

    �0 � 1 � 0 � � M3

    �0 � 0 � 1 � pontjainak se-bessége egy adott pillanatban �v1 �

    �1 � 2 � � 1 � , �v2 � � 2 � 0 � 1 � , �v3 � � 1 � 1 � � 2 � ,

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 49

    a komponensek a testhez kapcsolt Oxyz koordináta-rendszerben adot-tak. Írjuk fel a pillanatnyi csavartengely egyenletét, valamint határoz-zuk meg a transzlációs sebesség és szögsebesség nagyságát!

    Megoldás. A pillanatnyi csavartengely egyenletei az Oxyz rendszerben a(2.12) képlet szerint

    v0x� qz � ryp � v0y � rx � pzq � v0z � py � qxp �

    amelyhez szükségesek az O pont sebességének vox, voy, voz, valamint a szög-sebesség p � q � r komponensei. Ezek a sebesség-komponenseket adó

    vx � v0x � qz � ry � vy � v0y � rx � pz � vz � v0z � py � qxösszefüggésekből határozhatók meg, alkalmazva azokat rendre a megadotthárom pontra. A megfelelő rendszerek:�� � 2 � v0x �� 2 � v0y � r�� 2 � v0z � q �

    �� � 3 � v0x � r�� 1 � v0y �� 1 � v0z � p ��� � 4 � v0x � q �� 2 � v0y � p �0 � v0z �

    ahonnan�v0 �

    �v0x � v0y � v0z � �

    �2 � � 1 � 0 � , �ω � � p � q � r � � � 1 � 2 � � 1 � . Ezekalapján a pillanatnyi csavartengely egyenletei

    2 � 2z � y1

    � � 1 � x � z2 � 0 � y � 2x� 1 �vagy az Oxy síkkal való metszéspontnak megfelelő kanonikus alakban

    x � 11

    � y� 22

    � z� 1.Az

    �ω � � 1 � 2 � � 1 � szögsebesség nagysága ω � � 6. A csavartengely mentitranszlációs sebesség

    vtr � pr �ω � �v0 � � �ω � �v0ω � 0� 6 � 0.Az utólsó eredmény azt mutatja, hogy a merev test megfelelő elemi moz-

    gása tiszta forgás, mivel a transzláció sebessége nulla.

    K O R R E K T Ú R A 2006. március 2.

  • 50 2. Kinematika

    M 2.16. Igazoljuk, hogy a pályája mentén v sebességgel mozgó ponthoz

    rendelt � �t � �n � �b � kísérőtriéder mozgása csavarmozgás, amelynek pa-raméterei

    vtr � vR� R2 � T 2 � ��ω � v� �

    tT� �b

    R� �

    és a csavartengely áthalad a� �PH � R1 � R2 � T 2 �nhelyzetvektorú H ponton, ahol R illetve T a görbület, illetve a torzióreciproka.

    �P

    � �v� � � � � � � � � ��� �

    ω

    � � � � � � � ����vtr

    � H� � � � � � � � � ��� �ω

    � � � � � � � ����vtr

    � �t

    � �n

    ��� ��

    b

    2.12. ábra. M 2.16. feladat: a kísérőtriéder csavarmozgása

    Megoldás. A kísérő triéder egységvektoraira vonatkozó

    d�t

    ds�

    �nR �

    d�n

    ds� � �tR �

    �bT �

    d�b

    ds� � �nT

    Frenet-féle összefüggések a ds � vdt változócserével, valamint ad�t

    dt� �ω � �t, d

    �n

    dt� �ω � �n, d

    �b

    dt� �ω �

    �b,

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 51

    Poisson-féle formulák segítségével a

    d�t

    dt� v

    R

    �n � ωb �n � ωn �b �

    d�n

    dt� v

    �� �tR �

    �bT

    � � � ωb �t � ωt �b �d�b

    dt� � v �nT � ωn �t � ωt �n

    alakra hozhatók, ahonnan

    ωt � vt , ωn � 0, ωb �vR �

    azaz �ω � ωt

    �t � ωn �n � ωb �b � v 1T �t � 1R �b � �

    A csavartengely menti transzlációs sebesség a�v � v�t sebességvektor ve-

    tülete az�ω irányú forgástengelyre:

    vtr � �v � �ω � ω � v�t � 1T �t � 1R �b � RT� R2 � T 2 � vR� R2 � T 2 �A csavartengely egy H pontjára

    � �PH � 1ω2 �ω � �v � vω2 1T �t � 1R �b � � � v�t � � v2ω2 �nR � �nR1 � R2 � T 2 �M 2.17. Egy falhoz támasztott l hosszúságú létra elcsúszik a padló és fal

    mentén a falra és padlóra merőleges síkban mozogva. Ha tudjuk,hogy valamely helyzetben a létra talppontjának sebessége v, határoz-zuk meg:

    (a) a pillanatnyi forgáscentrumot;(b) a mozgáshoz tartozó álló és mozgó pólusgörbéket!

    Megoldás. Vizsgáljuk a létra mozgását a függőleges falhoz és vízszintespadlóhoz kapcsolt Oxy koordináta-rendszerben (2.13. ábra). A testtel együttmozgó rendszer kezdőpontja legyen A, Ax tengelye pedig erre merőleges. AzAx tengelynek az O1x1 tengellyel bezárt szöge legyen ϕ.

    K O R R E K T Ú R A 2006. március 2.

  • 52 2. Kinematika

    O1

    �x1

    � y1

    �A

    �x

    �B

    ��

    ��

    ��

    ��

    ��

    ��

    �� �y

    � I

    ϕ��

    ��

    ��

    ��

    ��

    ��

    l

    � �vA

    ��vB

    2.13. ábra. M 2.17. feladat: síkmozgás

    (a) Mivel a létra végpontjai egyenes vonalú mozgást végeznek a padlónés a falon, így sebességvektoruk iránya is állandó és az I pólus az A és Bvégpontokban a tengelyekre emelt merőlegesek végpontja lesz.

    (b) Az A pont koordinátái a rögzített rendszerben kifejezhetők az

    x1A � l sinϕ, y1A � 0összefüggésekkel, ahonnan

    dx1Adϕ

    � l cosϕ, dy1Adϕ

    � 0.

    Az álló pólusgörbe egyenletei:�x1 � x1A � dy1Adϕ �y1 � y1A � dx1Adϕ � �

    �x1 � l sinϕ �y1 � l cosϕ �

    � x21� x22 � l2 �

    vagyis az álló pólusgörbe az O középpontú, l sugarú kör.A mozgó pólusgörbe egyenletei:�

    x � dx1Adϕ sin ϕ � dy1Adϕ cosϕ �y � dx1Adϕ cos ϕ � dy1Adϕ sinϕ � �

    �x � l2 sin2ϕ �y � l2

    �1 � cos2ϕ � �

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 53

    ahonnan

    x2 � y � l2 � 2 � l2 � 2ami azt mutatja, hogy a mozgó pólusgörbe a létrára mint átmérőre szerkeszt-hető kör.

    2.3. Az összetett mozgás kinematikája

    Az anyagi pont mozgását az O1x1y1z1 és Oxyz, egymáshoz viszonyítvaismert módon mozgó rendszerekben vizsgáljuk (2.14. ábra). Az egyik rend-szerhez – legyen ez O1x1y1z1 – viszonyított mozgást hagyományosan ab-szolút mozgásnak, míg az Oxyz-hez viszonyított mozgást relatív mozgásnaknevezzük. A megfelelő

    �r1,

    �va,

    �aa illetve

    �r,

    �vr

    �ar mennyiségeket abszolút,

    illetve relatív helyzetvektornak, sebességnek és gyorsulásnak nevezzük.

    O1�

    �� �x1

    �y1

    � z1

    �� ��i1

    � �j1

    ��k1

    � ��� �i

    � ��� �j��� �k �

    ��

    ��

    ��

    � ���ω

    �O

    ���

    ro� � � ���

    x

    ��������� �

    z

    ��

    ��

    � ���y

    ����

    �� � �r

    ����������� � �

    �r1

    �M

    2.14. ábra. Az összetett mozgás koordináta-rendszerei

    Az abszolút és relatív sebességek és gyorsulások kapcsolata a

    �va � �vv � �vr, (2.13)

    K O R R E K T Ú R A 2006. március 2.

  • 54 2. Kinematika

    ahol�vv � �v0 � �ω � �r – a vezetési sebesség; (2.14)

    illetve�aa � �av � �ar � �ac (2.15)

    ahol

    �av � �a0 � ˙��ω � �r � �ω � � �ω � �r ��ac � 2

    �ω � �vr

    – a vezetési gyorsulás;– a Coriolis gyorsulás.

    (2.16)

    A fenti összefüggésekben�v0, illetve

    �a0 az O pont abszolút sebessége és

    gyorsulása,�ω pedig az Oxyz rendszernek, mint merev tesnek az O1x1y1z1-

    hez viszonyított szögsebessége.

    Megoldott gyakorlatok és feladatok

    M 2.18. Az O1x1y1z1rendszerhez viszonyítva az Oxyz rendszer az ω̃ � 2�i ��j � �k szögsebességgel mozog. Számítsuk ki a mozgó rendszerben me-

    gadott�r � et

    �i � sin t �j � ln t �k vektor(a) idő szerinti deriváltját a mozgó és rögzített rendszerekben;

    (b) idő szerinti másodrendű deriváltját a mozgó és rögzített rendsze-rekben.

    Megoldás. Az Oxyz rendszerből szemlélve az�i ��j ��k egységvektorok iránya

    is állandó, így az�r relatív deriváltja, azaz az Oxyz-ben számolt deriváltja:

    ∂�r

    ∂t� d

    �r

    dt

    ���� � �i � �j � �k � állandó � et �i � cos t �j � 1t �k �

    Az O1x1y1z1rendszerhez viszonyítva az�i �

    �j ��k egységvektorok iránya válto-

    zik. Ezek változását a Poisson-féle összefüggések írják le, amelyek alapjánaz O1x1y1z1-hez viszonyított abszolút derivált és az Oxyz-beli relatív deriváltkapcsolata

    d�r

    dt� ∂

    �r

    ∂t� �ω � �r �

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 55

    A megadott konkrét esetben:

    d�r

    dt� ∂

    �r

    ∂t� �ω � �r

    � et�i � cos t �j � 1t �k �

    ������

    �i

    �j

    �k

    2 � 1 1et sin t � ln t������

    � � et � ln t � sin t � �i � � et � 2ln t � cos t � �j � et � 1t � 2sin t � �k �A másodrendű relatív derivált:

    ∂2�r

    ∂2t� d

    2 �rd2t

    ���� � �i � �j � �k � állandó � ddt et �i � cos t �j � 1t �k �

    � et�i � sin t �j � 1t2 �k �

    A másodrendű abszolút derivált:

    d2�r

    d2t� d

    dt d �rdt � � ∂∂t d �rdt � � �ω � d �rdta mi esetünkben:

    d2�r

    d2t� et � 1t � cos t � �i � et � 2t � sin t � �j � et � 1t2 � 2cos t � �k� ����

    ��

    �i

    �j

    �k

    2 � 1 1et � ln t � sin t et � 2ln t � cos t et � 1t � 2sin t������

    � � et � 2t � 2cos t � 2sin t � 2ln t � �i � 4t � 6sin t � ln t � �j� 4et � 1t2 � 4cos t � 5ln t � sin t � �k �M 2.19. Igazoljuk, hogy az Oz tengelye körül ω állandó szögsebességgel

    forgó rendszerben mozgó anyagi pont abszolút sebességére érvényesa következő összefüggés:

    v2a � ẋ2 � ẏ2 � ż2 � ω2 � x2 � y2 � � 2ω � ẋy � ẏx � �K O R R E K T Ú R A 2006. március 2.

  • 56 2. Kinematika

    ahol�r � � x � y � z � a forgó rendszerben felvett helyzetvektor.

    Megoldás. Az összetett mozgás esetén érvényes (2.13, 2.14) összefüggé-seket használjuk az

    �ω � � 0 � 0 � ω � szögsebességvektorral és az O pont

    �vo �

    �0

    sebességével. Ha a pont relatív helyzetvektora és sebessége�r � � x � y � x � ,�vr �

    �ẋ � ẏ � ż � , akkor�

    va � �vo � �ω � �r � �vr � � ẋ � ωy � ẏ � ωx � ż � �Innen azonnali a

    v2a � ẋ2 � ẏ2 � ż2 � ω2 � x2 � y2 � � 2ω � ẋy � ẏx �összefüggés.

    M 2.20. Az R sugarú korong állandó ω szögsebességgel forog az O közép-pontja körül. Az M anyagi pont a korong egyik átmérője mentén mo-zog, az O középpontból kiindulva, az s � Rsin � ωt � törvény szerint,ahol s a kiindulási ponttól mért távolság. Határozzuk meg az M pontabszolút pályáját, sebességét és gyorsulását.

    Megoldás. A koronggal együtt forgó rendszer Ox tengelye essen egybe a

    �0

    � z1 � z

    �y1

    ��

    ��

    �� �x1

    � � � � � ���x

    �M

    ����� � � y

    ϕ

    2.15. ábra. Az M 2.20. feladathoz

    mozgó M pont irányával, és ezen legyen x � s. Az Oz tengely egybeesik a

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 57

    rögzített rendszer Oz1 tengelyével és Oxyz jobbrendszer. Az Ox1y1 és Oxykoordináta síkok egybeesnek a korong síkjával (2.15. ábra). Legyen ϕ �m ���Ox � Ox1 � a korong elfordulási szöge, ϕ � ωt.

    Az x1 � xcos ϕ � scos ϕ és y1 � xsin ϕ � ssin ϕ összefüggések alapján�x1 � Rsin

    �ωt � cos � ωt � �

    y1 � Rsin2�ωt � �

    �x1 � R2 sin 2ϕ �y1 � R2

    �1 � cos2ϕ � �

    ahonnan

    x21� y21 � R2 � 2 � R2 � 2 �

    vagyis az abszolút pálya a C � 0 � R2 � középpontú R2 sugarú kör az Ox1y1 sík-ban.Az abszolút sebesség a

    �va � �vv � �vr � �vo � �ω � �r � �vr összefüggés szerint,

    a�vo �

    �0,

    �r � � Rsin � ωt � � 0 � 0 � ,

    �ω � � 0 � 0 � ω � és

    �vr � ẋ

    �i � ωRcos � ωt �

    �i alapján

    �va � ωR

    �cos

    �ωt �

    �i � sin � ωt � �j � �

    ahonnan

    va ��� �va � � ωR �A Coriolis tétel szerint

    �aa � �av � �ar � �ac, ahol

    �av � �ao � ˙�ω � �r � �ω � � �ω � �r � � � ω2Rsin � ωt � �i ��ar � � ω2Rsin � ωt � �i ��ac � 2 �ω � �vr � 2ω2Rcos � ωt � �j �

    Így�aa � � 2ω2R � sin � ωt � �i � cos � ωt � �j �

    és

    aa ��� �aa � � 2ω2R �

    K O R R E K T Ú R A 2006. március 2.

  • 58 2. Kinematika

    2.4. Kitűzött gyakorlatok és feladatok

    2.4.1. Az anyagi pont kinematikája

    K 2.1. Ha egy P anyagi pont egyenes vonalú mozgását az x � 12 � t 2 � 2t �egyenlet írja le (x a megtett út hossza méterben, t pedig az indulástóleltelt idő másodpercben), határozzuk meg a pont sebességét és gyor-sulását az indulás utáni harmadik másodpercben.

    K 2.2. Egy anyagi pont egyenes vonalú mozgást végez. Tudva azt, hogy agyorsulás arányos a sebességgel, határozzuk meg a pont sebességét ésmozgásegyenletét, ha kezdetben t � 0, x0 � 0 és v0 � 0.

    K 2.3. Egy anyagi pont egyenes vonalú mozgást végez. Tudva azt, hogya gyorsulás arányos a sebesség négyzetével, határozzuk meg a pontsebességét és mozgásegyenletét, ha kezdetben t � 0, x0 � 0 és v0 � 0.

    K 2.4. Egy anyagi pont egyenes vonalú mozgást végez. Tudva azt, hogy agyorsulás fordítottan arányos a sebességgel, határozzuk meg a pontsebességét és mozgásegyenletét, ha kezdetben t � 0, x0 � 0 és v0 � 0.

    K 2.5. Egy repülőgép gyorsulása 2 � 5m/s2. Milyen hosszú kifutópálya szü-

    kséges ahhoz, hogy egyenletesen felgyorsuljon a felszáláshoz szüksé-ges 200 km/h sebességre?

    K 2.6. Egy ember az AB lejtőn C kocsit húz fel kötél segítségével. A kötélát van vetve a lejtő tetejére felerősített kis B csigán, egyik vége a koc-sihoz van erősítve, másik végét az ember fogja. Jelöljük az ember-nek a lejtő B alatti D talppontjától való távolságát x-szel, a BD szint-különbséget pedig h-val. Ha az ember a vízszintes síkban egyenletesu sebességgel halad, mekkora a kocsi v sebessége mint x függvénye?

    K 2.7. A körmozgást egyenesvonalú mozgássá alakító csuklós szerkezet arögzített O körül forgó OA és a hozzá csatlakozó AB hajtókarokbóláll. A második rúd B végpontja egy, az O-n áthaladó egyenesenmozog. A két kar hossza: OA � R � l � AB. Határozzuk meg aB pont sebességét az ω szögsebességgel egyenletesen forgó OA rúdϕ � m ���AOB � elfordulási szöge függvényeként!

    K 2.8. Egy anyagi pont az xOy síkban mozog, az�1 � 2 � koordinátájú pontbólindulva. Tudva azt, hogy a sebességvetor összetevői vx � 4t3 � 4t és

    vy � 4t, határozzuk meg a pálya Descartes-féle egyenletét.

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 59

    K 2.9. Egy anyagi pont az Oxy koordináta-rendszer síkjában mozog az Okezdőpontból kiindulva. Tudva azt, hogy az Ox tengellyel θ � λt öss-zefüggés szerint változó szöget bezáró sebesség nagysága v állandó,határozzuk meg:(a) a pont mozgástörvényeit;(b) a pont pályáját;(c) azokat az időpillanatokat, amikor a pont áthalad az Oy tengelyen;(d) a pont gyorsulásának nagyságát!

    K 2.10. Mutassuk meg, hogy az

    �r � acos � ωt �

    �i � asin � ωt � �j � a � ωállandó �

    helyzetvektorú anyagi pont pályája egy kör. Határozzuk meg a pontsebességét és gyorsulását és igazoljuk, hogy

    �v � �a � 0.

    K 2.11. Mozgó pont gyorsulásvektorának nagysága állandó, egyenlő a-val ésez a gyorsulásvektor állandó ω szögsebességgel forog. Milyen görbelesz a sebességhodográf és hogyan helyezkedik el a térben?

    K 2.12. Igazoljuk, hogy a repülőtér felett h magasságban, a sugarú körpályán,v állandó nagyságú sebességgel mozgó helikopter

    �r helyzetvektora a

    t idő függvényében kifejezhető a következő formában:

    �r � a � cos vt

    a

    �i � sin vt

    a

    �j � � h�k �

    Határozzuk meg a helikopter sebességvektorát illetve gyorsulásvek-torát.

    K 2.13. Egy anyagi pont helyzetvektora

    �r � a � cos � ωt �

    �i � sin � ωt � �j � bt �k �

    ahol a, b és ω állandók. Rajzoljuk meg a pont pályáját és határozzukmeg a pont sebesség- és gyorsulásvektorát.

    K 2.14. Egy anyagi pont helyzetvektora

    �r � a � cos � ωt � sin � Ωt �

    �i � sin � ωt � sin � Ωt � �j � cos � Ωt � �k �

    K O R R E K T Ú R A 2006. március 2.

  • 60 2. Kinematika

    ahol a, ω, Ω valós állandók. Igazoljuk, hogy a pont egy a sugarúgömb felszínén mozog, és számítsuk ki sebességének nagyságát. Mu-tassuk meg, hogy a sebesség mértéke a legkisebb a gömb legalsó il-letve legfelső pontjaiban (a pólusokban) és legnagyobb az egyenlítőn(a pólusokat összekötő tengelyre merőleges főkörön).

    K 2.15. Egy mozgó anyagi pont helyzetvektora�r � acos � ωt �

    �i � bsin � ωt � �j �

    ahol a, b és ω valós állandók. Mutassuk meg, hogy:(a) a pont pályájának egyenlete x

    2

    a2� y2

    b2 � 1;(b) a gyorsulásvektor mindig az origó felé mutat;(c)

    � t � τt

    �r � d �r � ωabτ

    �k. Mit jelent ez az egyenlőség kinematikai

    szempontból?K 2.16. Ismerve egy anyagi pont sebességét és gyorsulását, igazoljuk, hogy a

    pálya görbületi sugara kiszámítható az R � v3� ṽ � ã � képlettel.K 2.17. Egy síkmozgást végző pont sebességének Ox tengelyre eső vetülete

    állandó�vx � c � . Igazoljuk, hogy ebben az esetben a pont gyorsulásának

    nagysága kifejezhető az a � v3cR alakban, ahol v a sebesség hossza, Rpedig a görbületi sugár!

    K 2.18. Az R sugarú körön mozgó pont kezdeti sebessége zérus, gyorsulásánakérintő menti komponense at � a állandó. Mennyi időnek kell eltelni amozgás kezdetétől addig, amíg az érintő menti és normális gyorsuláskomponensek nagysága egyenlő lesz?

    K 2.19. Határozzuk meg a sebesség- és gyorsulásvektorok vetületeit a követ-kező görbevonalú koordináta-rendszerekben:(a) hengerkoordinátákban;(b) polárkoordinátákban.

    K 2.20. Egy részecske pályája egy archimedesi spirális. A részecske mozgásátaz r � 10t, θ � 2πt egyenletek értelmezik, ahol r milliméterben, t má-sodpercben és θ radiánban van kifejezve. Határozzuk meg a részecskesebességét és gyorsulását amikor (a) t � 0 s, (b) t � 0 � 3 s.

    K 2.21. Egy anyagi pont polárkoordinátáit az idő függvényében az r � et ésθ � t összefüggések adják. Határozzuk meg a sebesség- és gyorsulás-vektor radiális és tranzverzális komponenseit.

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 61

    K 2.22. Az M anyagi pont az x � R � θ � sinθ � � y � R � 1 � cosθ � egyenletűcikloison mozog oly módon, hogy a gyorsulás normális komponensé-nek végpontja mindvégig az Ox tengelyen van. A kezdeti időpontbanaz M pont az origóban van.(a) Fejezzük ki θ-t az idő függvényében és szerkesszük meg geome-triai úton az érintőleges és normális gyorsulásvektorokat!(b) Legyen Oz az Oxy síkra merőleges tengely. Az M ponton átmenő,Oz-vel párhuzamos egyenesen felvesszük a z pozitív szintű P pon-tot. Határozzuk meg z-t az idő függvényében oly módon, hogy a Ppont 2 � 2R állandó sebességű egyenletes mozgást végezzen. A kez-deti időpontban a P pont az Oxy síkban van. A P pont gyorsulásvek-tora az Oxy síkot egy H pontban metszi. Határozzuk meg a H pontmértani helyét!

    K 2.23. Egy M anyagi pont úgy mozog a síkban, hogy sebességének hosszaa helyzetvektor hosszának

    �n � 1 � -edik hatványával arányos, (az ará-nyossági tényező k) és felületi sebessége állandó. Fejezzük ki a pont

    gyorsulásának nagyságát a helyzetvektor hosszának függvényében éshatározzuk meg a pályáját!

    K 2.24. Az M anyagi pont egy olyan körkúpon mozog, amelynek tengelyeaz Oz egyenes, az origóban elhelyezkedő csúcsánál lévő szög mér-téke 2α. Határozzuk meg a pont mozgásegyenleteit és a sebesség-hodográfot tudva azt, hogy a pont v sebessége valamint az Oxy síkraeső vetületének felületi sebessége C állandó!

    K 2.25. Az R sugarú körön mozgó pont gyorsulásának nagysága a állandó.Határozzuk meg a sebesség-hodográfot és vizsgáljuk meg, hogy apont bejárja-e az egész kört.

    K 2.26. Egy anyagi pont állandó v sebességgel mozog az r � a � 1 � cosθ �egyenletű kardioidon. Igazoljuk, hogy a pont szögsebessége v2a sec

    θ2 ,

    és határozzuk meg a gyorsulásvektor radiális és normálisra vetületét.K 2.27. Egy hajó állandó 12 km/h sebességgel észak felé halad és pontosan

    12:00 órakor halad el egy világítótorony mellett. Egy másik hajóállandó 16 km/h sebességgel kelet felé halad és pontosan 12:50-korhalad el ugyanazon világítótorony mellett. Melyik időpontban a leg-kisebb a távolság a két hajó között? Határozzuk meg ennek a távolsá-gnak a nagyságát.

    K O R R E K T Ú R A 2006. március 2.

  • 62 2. Kinematika

    K 2.28. Egy hajó az A kikötőből indul és állandó 32 km/h sebességgel nyu-gat felé halad. Egy órára rá az A kikötőtől 160 km távolságra, délrefekvő B repülőtérről egy repülő indul egyenes vonalú pélyán úgy,hogy utolérje a hajót. Tudva azt, hogy a repülő sebessége 360 km/h,határozzuk meg a repülési irányt és hajó helyzetét amikor repülő beéria hajót.

    K 2.29. Igazoljuk, hogy egy pont síkmozgásánál a pályasebesség kifejezhető

    a v � R���dψdt

    ��� alakban, ahol R a pálya görbületi sugara, ψ pedig az a

    szög, amelyet a sebességvektor egy olyan mozdulatlan egyenessel zárbe, amely ugyanabban a síkban fekszik, amelyben a pont mozog!

    K 2.30. Egy anyagi pont az R sugarú körön mozog oly módon, hogy sebességeés gyorsulása állandó α szöget zár be. Határozzuk meg a sebességnagyságát az idő függvényében, v

    �t � 0 � � v0!

    2.4.2. A merev test kinematikája

    K 2.31. Igazoljuk, hogy egy merev test valamely egyenese mentén elhelyez-kedő pontjai sebességének vetületei az illető egyenesre egyenlők.

    K 2.32. A csavartengelytől R távolságra levő pont v nagyságú sebessége a ten-gellyel α szöget zár be. Határozzuk meg a transzlációs sebesség és aszögsebesség nagyságát.

    K 2.33. Egy merev test M1�0 � 0 � 0 � , M2

    �1 � 1 � 0 � � M3

    �1 � 1 � 1 � pontjainak sebességeegy adott pillanatban �v1 �

    �2 � 1 � � 3 � , �v2 � � 0 � 3 � � 1 � , �v3 � � � 1 � 2 � � 1 �a komponensek a testhez kapcsolt Oxyz koordináta-rendszerben adot-

    tak. Írjuk fel a pillanatnyi csavartengely egyenletét, valamint határoz-zuk meg a transzlációs sebesség és szögsebesség nagyságát!

    K 2.34. Ismerve egy adott pillanatban egy merev test három pontjának sebes-ségét, határozzuk meg a pillanatnyi forgástengely irányát és a forgás-tengely menti transzlációs sebességet.

    K 2.35. Egy merev test az Oy és Oz tengelyek körüli ω1 és ω2 szögsebességűforgó mozgást, valamint Oy menti v sebességű transzlációs mozgástvégez. Határozzuk meg a pillanatnyi csavarmozgás tengelyét, a csa-vartengely menti transzlációs sebességet és a szögsebességét!

    K 2.36. Egy merev test másodpercenként 50 fordulatot tesz meg az x � y � zegyenletű egyenes körül. Határozzuk meg a test P

    �1 � 1 � 0 � pontjánaksebességét és gyorsulását!

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 63

    K 2.37. Egy R sugarú vízszintes tengelyű kerékre csavart fonal szabad végénegy nehezék csüng. Egy adott pillanatban szabadon engedve a nehe-zék egyenletesen gyorsulva kezd ereszkedni, forgásba hozva a kere-ket. Határozzuk meg a kerék kerületén lévő valamely M pont gyor-sulását a nehezék által t idő alatt megtett h szintkülönbség függvényé-ben, ha a nehezék gyorsulása c � 0.

    K 2.38. Az r sugarú vízszintes tengelyre csavart fonálon csüngő nehezék kez-deti sebesség nélkül szabadon engedve állandó gyorsulással mozoglefelé a függőleges mentén. Határozzuk meg a tengely szöggyor-sulását, ha a nehezék az indulástól mért t idő alatt h szintkülönbségettesz meg.

    K 2.39. Határozzuk meg a rögzített O pont körül mozgó merev test pillanatnyiforgástengelyét és szögsebességének nagyságát egy t időpontban, hatudjuk, hogy a testtel mozgó Oxyz rendszerben megadott M1

    �0 � 0 � 2 �pont sebessége �v1

    �1 � 2 � 0 � , és az M2

    �0 � 1 � 2 � pont sebességének irány-koszinuszai ugyanabban a koordináta-rendszerben � � 23 � 23 � � 13 � .K 2.40. Egy egyenes mentén csúszás nélkül guruló, R sugarú korong közép-

    pontjának sebessége u. Határozzuk meg: a korong pillanatnyi forgás-centrumát, az álló és mozgó pólusgörbéket; valamint a szögsebességetés a szöggyorsulást.

    K 2.41. Egy rúd az Ox1y1 síkban mozog oly módon, hogy érinti az O közép-pontú r sugarú kört és A végpontja az Ox1 tengelyen csúszik. Hatudjuk, hogy az A pont sebessége v, határozzuk meg a rúd pillanatnyiszögsebességét, valamint a mozgáshoz tartozó álló és mozgó pólus-görbéket!

    K 2.42. Az Oxy koordináta-renszerhez viszonyított mozgó�Q � sík és az O1x1y1

    rendszerhez viszonyított rögzített�P � sík Ox illetve O1x1 tengelyeinek

    hajlásszöge ϕ. Legyen A� � a � 0 � és B � a � 0 � a mozgó sík két pontja,a � 0. � Q � -nak � P � -hez viszonyított mozgását a következő feltételek

    határozzák meg: a) az A pont a nagyságú állandó sebességgel egyen-letesen mozog az O1y1 tengelyen; b) az A és B pontok sebességénekhossza egyenlő; c) a t � 0 kezdeti időpontban ϕ � 0. Határozzuk mega mozgáshoz tartozó álló és mozgó pólusgörbéket!

    K 2.43. A 2R hosszúságú AB rúd A végpontja a C középpontú, R sugarú körönegyenletesen mozog ω szögsebességgel. A rúd mozgása során mind-

    K O R R E K T Ú R A 2006. március 2.

  • 64 2. Kinematika

    végig áthalad a kör rögzített O pontján. Határozzuk meg a rúd B vég-pontjának sebességét, a rúdnak a kör O pontjához tartozó átmérőjévelbezárt ϕ szögének függvényében, majd határozzuk meg az álló és mo-zgó pólusgörbéket.

    K 2.44. Adottak a C1 és C2 középpontú, azonos a sugarú metsző körök. AC1C2 hosszúságú AB rúd végpontjaival a körökre támaszkodva mozogoly módon, hogy mozgása nem egyszerű transzláció. Határozzuk megaz álló és mozgó pólusgörbéket.

    K 2.45. A 2α nyílásszögű, h magasságú egyenes körkúp csúszás nélkül gurulegy vízszintes síkon, rögzített csúcsa körül Ω szögsebességgel járvabe a síkot. Határozzuk meg a kúp tengelye körüli forgásának ω0 szög-sebességét és ω abszolút szögsebességét.

    K 2.46. Egy h magasságú, 2α nyílásszög, O csúcsú egyenes körkúp csúszásnélkül gurul egy olyan síkon, amely a rá merőleges Oz1 tengely körülω1 állandó szögsebességgel forog. Határozzuk meg a kúp alapköré-nek a síkkal való érintkezési pontjával átmérősen ellentett pontjánakcentripetális és érintőleges gyorsulását!

    2.4.3. Az összetett mozgás kinematikája

    K 2.47. Az O1x1y1z1 inerciarendszerhez viszonyítva az Oxyz rendszer az ω ��i � �j � 2�k szögsebességgel mozog. Számítsuk ki a mozgó rendszerbenmegadott �r � sin t �i � cos t �j � e � t �k vektor(a) idő szerinti deriváltját a mozgó és rögzített rendszerekben;(b) idő szerinti másodrendű deriváltját a mozgó és rögzített rendsze-rekben.

    K 2.48. Egy Oz cső O pontja körül állandó ω szögsebességgel forog vízszin-tes síkban. A csőben az A golyó gurul állandó v0 sebsséggel. Milyenpályát ír le a golyó a csövön kívül álló megfigyelőhöz képest, és mek-kora a golyó sebessége mint az idő függvénye?

    K 2.49. Az OA félegyenes egy vízszíntes síkban állandó ω szögsebességgelforog O kezdőpontja körül. Egy adott kezdeti időpntban egy M pontelindul az O pontból a félegyenes mentén. Határozzuk meg az M pontabszolút pályáját és gyorsulását oly módon, hogy abszolút sebességé-nek hossza v-vel egyenlő álladó legyen!

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 65

    K 2.50. Egy egyenes cső a vízszintes síkban állandó ω szögsebességgel fo-rog egy függőleges tengely körül. A cső belsejében egy golyó azx�t � � a � eωt � e � ωt � törvény szerint mozog, ahol x a golyó forgásten-

    gelytől mért távolsága. Határozzuk meg a golyó abszolút sebességétés gyorsulását x függvényében!

    K 2.51. Az O-ban derékszögű OAB egyenlő szárú háromszög állandó ω szög-sebességgel forog saját síkjában O csúcsa körül. Egy M pont egyenle-tesen mozog a c hosszúságú AB oldal mentén a B pontból indulva, ezta távot pontosan egy fordulat alatt téve meg. Határozzuk meg az Mpont abszolút sebességét és gyorsulását abban a pillanatban, amikoraz az A ponttal esik egybe!

    K 2.52. Egy M anyagi pont v állandó nagyságú sebességgel mozog egy kúp al-kotóján, az O csúcspontból kiindulva. A kúp ω állandó szögsebesség-gel egyenletesen forog tengelye körül. Határozzuk meg az M pontabszolút gyorsulását!

    K 2.53. Egy parabola, síkjára az F fókuszban merőlegesen emelt tengely körülforog. Határozzuk meg egy M pont relatív mozgását a parabolánúgy, hogy abszolút sebessége a mozgás ideje alatt végig párhuzamoslegyen a parabola szimmetriatengelyével!

    K 2.54. Az R sugarú gömb O középpontja egybeesik az Oxyz abszolút vonat-koztatási rendszer origójával. Legyenek E , M0, N a gömb metszés-pontjai az Ox, Oy és Oz tengelyekkel. A kezdetben M0-ban tartózkodóM pont egyenletesen mozog az M0N főkörön az N pont felé, ω állandószögsebességgel. Ugyanazon időben a kezdetben OM0N helyzetű síkis elfordul ON körül, szintén ω szögsebességgel az OEN sík irányába.(a) Határozzuk meg az M pont abszolút mozgásegyenleteit, abszolútsebességét és gyorsulását, valamint a tangenciális és normális sebessé-geket.(b) Határozzuk meg az M pont pályájának vetületét a három koordináta-síkra.(c ) Ha az abszolút gyorsulásvektor tartóegyenese az Oxy síkot a Ppontban metszi, határozzuk meg a P pont mozgását.(d) Igazoljuk, hogy találkozik egy rögzített egyenessel.

    K 2.55. Az M pont egyenletesen mozog v sebességgel egy R sugarú gömbmeridiánja mentén, míg a gömb függőleges átmérője körül állandó ω

    K O R R E K T Ú R A 2006. március 2.

  • 66 2. Kinematika

    szögsebességgel forog. Határozzuk meg a pont abszolút gyorsulásánaknagyságát az egyenlítőtől mért ϕ szögtávolságának függvényében.

    K 2.56. Egy folyóban, amely vizének sebessége v2 állandó nagyságú a fo-lyó teljes d szélességében, egy csónak halad v1 állandó nagyságú se-bességgel. Számítsuk ki:(a) a csónak abszolút sebességét, ha relatív sebessége a folyó se-bességével α szöget zár be;(b) milyen irányban kell haladjon a csónak ahhoz, hogy az indulásipontban a partra emelt merőleges mentén érjen a túlsó partra?(c) milyen irányban kell haladjon a csónak ahhoz, hogy az átkelésiidő a lehető legrövidebb legyen?

    K 2.57. Egy csónak 2l szélességű folyót keresztez. A csónak sebessége azáramló vízhez képest állandó, nagysága u és iránya merőleges a vízáramlásának irányára. A víz sebessége változó. Iránya ugyan min-denhol ugyanaz, de nagysága a középtől számított y távolságban

    v � v0 1 � y2l2 � �(a) Határozzuk meg a csónak pályáját olyan koordináta-rendszerre vo-natkozólag, amelynek kezdőpontja a csónak kiinduláspontjával egy-magasságban felkvő pont a folyó közepén, x tengelye párhuzamos afolyó partjával, y tengelye pedig rá merőleges!(b) Mennyivel viszi le a víz a csónakot, míg az egyik partról a túlsópartra ér?

    K 2.58. Egy anyagi pont egy földi meridián mentén délről észak felé mozog10 m/s sebességgel a 60 � -os északi szélességen. Határozzuk meg apont abszolút sebességét és gyorsulását, ha tudjuk, hogy a Föld forog.Oldjuk meg a feladatot amikor a pont a 60-os szélességen nyugat-kelet irányban mozog. A Föld sugarát állandónak tekintjük (R � 6375km).

    K 2.59. Egy A anyagi pont állandó v sebességgel mozog egyenesvonalú pá-lyán olyan S síkban, amely az O ponton átmenő, S-re merőleges ten-gely körül állandó ω szögsebességgel forog. Mi lesz a pont pályájánakegyenlete olyan r� θ polár-koordinátarendszerre vonatkozólag, amely

    K O R R E K T Ú R A 2006. március 2.

  • 2. Kinematika 67

    a térben rögzített, pólusa O, polárisa pedig a térben úgy van irányítva,hogy abban a pillanatban, amikor a mozgó pont O-hoz legközelebbvan, θ � 0?

    K O R R E K T Ú R A 2006. március 2.