2 d Finite Elements

Embed Size (px)

Citation preview

  • 7/29/2019 2 d Finite Elements

    1/15

    CCOORRNNEELLLLU N I V E R S I T Y 1MAE 4700

    FE Analys is for Mechanical & Aerosp ace Design

    N. Zabaras (10/18/2012)

    Fini te Element Analysis forMechanical and Aerospace Design

    Prof. Nicholas Zabaras

    Materials Process Design and Control LaboratorySibley School of Mechanical and Aerospace Engineering

    101 Frank H. T. Rhodes Hall

    Cornell University

    Ithaca, NY 14853-3801

    Email: [email protected]

    URL: http://mpdc.mae.cornell.edu/

    mailto:[email protected]://mpdc.mae.cornell.edu/http://mpdc.mae.cornell.edu/mailto:[email protected]
  • 7/29/2019 2 d Finite Elements

    2/15

    CCOORRNNEELLLLU N I V E R S I T Y 2MAE 4700

    FE Analys is for Mechanical & Aerosp ace Design

    N. Zabaras (10/18/2012)

    Isoparametr ic f in i te elements

    The basis functions used in the definition of the

    mapping Te, do not have to be the same as those

    used for the approximation of functions.

    Let Mbe the number of basis functions used to define

    Te and let Ne be the number of basis functions

    (nodes) used in the approximation of functions. Polynomials used to define geometry can be of higher

    order (M>Ne), equal (M=Ne) or lower (M

  • 7/29/2019 2 d Finite Elements

    3/15

    CCOORRNNEELLLLU N I V E R S I T Y 3MAE 4700

    FE Analys is for Mechanical & Aerosp ace Design

    N. Zabaras (10/18/2012)

    Sub -, iso - and super-parametr ic f in i te elements

  • 7/29/2019 2 d Finite Elements

    4/15

    CCOORRNNEELLLLU N I V E R S I T Y 4MAE 4700

    FE Analys is for Mechanical & Aerosp ace Design

    N. Zabaras (10/18/2012)

    Quadri lateral elements : B i-l inear

    We use tensor product of

    polynomials as discussed in

    1D (Lagrange family)

    1

    2

    3

    4

    1( , ) (1 )(1 )

    4

    1( , ) (1 )(1 )4

    1( , ) (1 )(1 )

    4

    1( , ) (1 )(1 )

    4

    N

    N

    N

    N

  • 7/29/2019 2 d Finite Elements

    5/15

    CCOORRNNEELLLLU N I V E R S I T Y 5MAE 4700

    FE Analys is for Mechanical & Aerosp ace Design

    N. Zabaras (10/18/2012)

    Quadr i lateral elemen ts: B i-quadrat ic

    We use tensor product of

    polynomials as discussed in

    1D (Lagrange family)

    Note that here we have one

    internal node (9).

    2 2 2 21 5

    2 2 2 22 6

    2 2 2 23 7

    2 2 2 24 8

    2 29

    1 1( , ) ( )( ), ( , ) (1 )( )

    4 2

    1 1( , ) ( )( ), ( , ) ( )(1 )

    4 21 1

    ( , ) ( )( ), ( , ) (1 )( )4 2

    1 1( , ) ( )( ), ( , ) ( )(1 )

    4 2

    ( , ) (1 )(1 )

    N N

    N N

    N N

    N N

    N

  • 7/29/2019 2 d Finite Elements

    6/15

    CCOORRNNEELLLLU N I V E R S I T Y 6MAE 4700

    FE Analys is for Mechanical & Aerosp ace Design

    N. Zabaras (10/18/2012)

    Quadrat ic eigh t node element

    These type of elements

    are not derived from

    tensor product of 1D

    polynomials. They are

    called serendipity

    elements.

    To derive the shape

    function for node 1, we

    need a polynomial that

    vanishes on thefollowing lines:

    1 ,1 ,1

    21 5

    22 6

    23 7

    24 8

    1 1( , ) (1 )(1 )( 1 ), ( , ) (1 )(1 )

    4 2

    1 1( , ) (1 )(1 )( 1 ), ( , ) (1 )(1 )4 2

    1 1( , ) (1 )(1 )( 1 ), ( , ) (1 )(1 )

    4 2

    1 1( , ) (1 )(1 )( 1 ), ( , ) (1 )(1 )

    4 2

    N N

    N N

    N N

    N N

  • 7/29/2019 2 d Finite Elements

    7/15

    CCOORRNNEELLLLU N I V E R S I T Y 7MAE 4700

    FE Analys is for Mechanical & Aerosp ace Design

    N. Zabaras (10/18/2012)

    Quadratu re ru les

    Quadrature rules are defined from the 1D Gauss rules

    presented earlier as follows:

    Here we re-labeled

    (m,n) with a single

    index

    '

    1 11 1

    1 1 1

    ( , ) ( , )

    ( , ) ( , )i i l

    N N N

    n m n m l l l m n l

    G d d G d d

    G w w G w

    1l

  • 7/29/2019 2 d Finite Elements

    8/15

    CCOORRNNEELLLLU N I V E R S I T Y 8MAE 4700

    FE Analys is for Mechanical & Aerosp ace Design

    N. Zabaras (10/18/2012)

    Triangu lar elemen ts

    We first consider triangular with straight sides. We

    consider the mapping from a right-isosceles master

    triangle. By inspection, we can write the basis

    functions as:

    The coordinate mapping is then defined from:

    1

    2

    3

    ( , ) 1

    ( , )

    ( , )

    N

    N

    N

    3

    1

    3

    1

    ( , )

    ( , ) ,

    jjj

    jjj

    x x N

    y y N

  • 7/29/2019 2 d Finite Elements

    9/15

    CCOORRNNEELLLLU N I V E R S I T Y 9MAE 4700

    FE Analys is for Mechanical & Aerosp ace Design

    N. Zabaras (10/18/2012)

    Triangu lar elemen ts

    Inverting this mapping gives:

    Can you recognize these as the linear shape functions of

    the 4 node quadrilateral element? (take nodes )

    1

    2

    3

    ( , ) 1

    ( , )

    ( , )

    N

    N

    N

    3

    1

    3

    1

    ( , )

    ( , ) ,

    jjj

    jjj

    x x N

    y y N

    3 1 1 3 1 1

    2 1 1 2 1 1

    1( )( ) ( )( )2

    1( )( ) ( )( )

    2

    e

    e

    e

    areaof

    y y x x x x y yA

    y y x x x x y yA

    2

    3

    1

    ( , )

    ( , )

    1 ( , )

    e

    e

    e

    N x y

    N x y

    N x y

    Using these, one can now easily compute

    and thus the element stiffness and load

    , , , ,| |Jx y x y

    3 4

  • 7/29/2019 2 d Finite Elements

    10/15

    CCOORRNNEELLLLU N I V E R S I T Y 10MAE 4700

    FE Analys is for Mechanical & Aerosp ace Design

    N. Zabaras (10/18/2012)

    Area coo rdinates

    The expressions for can

    easily be interpreted as ratios of

    areas. We will see this interpretation

    to be useful in deriving higher order

    triangular elements.

    Let us join the points and (x,y)with the vertices of the triangles

    and respectively. We denote

    as the areas of the subtriangles

    opposite node in and We define the area coordinates on

    as: where is the

    area of the master element.

    , ,1

    ( , )

    ,e

    ,i ia a

    ,,e

    , 1,2,3,iia i

    A 1/ 2A

    respectively.

    1

    2

    3

    1

  • 7/29/2019 2 d Finite Elements

    11/15

    CCOORRNNEELLLLU N I V E R S I T Y 11MAE 4700

    FE Analys is for Mechanical & Aerosp ace Design

    N. Zabaras (10/18/2012)

    Area coo rdinates

    Since |J| is constant (the ratio of the

    areas of and ), the map Te

    transforms areas uniformly, thus:

    This is only true for triangles withstraight sides.

    1

    2

    3

    1

    ,e ,

    , 1,2,3,i i

    ie

    aai

    AA

  • 7/29/2019 2 d Finite Elements

    12/15

    CCOORRNNEELLLLU N I V E R S I T Y 12MAE 4700

    FE Analys is for Mechanical & Aerosp ace Design

    N. Zabaras (10/18/2012)

    Area coo rdinates

    tani cons t

    0, 1,2,3.i i

    Several interesting properties

    of area coordinates are

    shown in the figures.

    At a given point, the line

    is parallel to the

    side of the elementopposite node i.

    The boundary segments of

    the element are defined by

    The vertices of the triangle

    are (1,0,0), (0,1,0) and

    (0,0,1).

  • 7/29/2019 2 d Finite Elements

    13/15

    CCOORRNNEELLLLU N I V E R S I T Y 13MAE 4700

    FE Analys is for Mechanical & Aerosp ace DesignN. Zabaras (10/18/2012)

    Higher-degree shape functions

    The area coordinates on can be used to

    determine higher degree shape functionsi ,

    ( ).i

    Quadratic shape

    functions

    Cubic shape

    functions

    1 41 1 1 2

    2 52 2 2 3

    3 63 3 3 1

    12 ( ), 4

    2

    12 ( ), 4

    2

    12 ( ), 4

    2

    N N

    N N

    N N

    1 1 1 1

    4 1 2 1

    5 1 2 2

    10 1 2 3

    9 2 1( )( )

    2 3 3

    27 1( )2 3

    27 1( )

    2 3

    27

    N

    N

    N

    N

  • 7/29/2019 2 d Finite Elements

    14/15

    CCOORRNNEELLLLU N I V E R S I T Y 14MAE 4700

    FE Analys is for Mechanical & Aerosp ace DesignN. Zabaras (10/18/2012)

    Shape func t ions on tr iangles using area coord inates

    The coordinate transformation is now having the form:

    The calculations here defer from those used in

    quadrilaterals because of the redundant areacoordinate

    Calculation of derivatives proceeds as:

    Alternatively, one can use and

    proceed exactly as was done before for quadrilaterals.

    1 2 3 1 2 31

    1 2 3 1 2 31

    ( , ) ( , , ) ( , , )

    ( , ) ( , , ) ( , , ),

    e

    e

    N

    jjj

    N

    jjj

    x x x N

    y y y N

    1 2 31 .

    1 1 1 1 31 2

    1 2 3

    N N N N

    x x x x

    1 2 3 2 31 , , ,

  • 7/29/2019 2 d Finite Elements

    15/15

    CCOORRNNEELLLLU N I V E R S I T Y 15MAE 4700

    FE Analys is for Mechanical & Aerosp ace DesignN. Zabaras (10/18/2012)

    Quadrature integrat ion form ulas for tr iang les

    We use particular quadrature rules appropriate for the

    area coordinates introduced earlier.int

    1 2 3 2 3 1 2 3 1 2 31

    intint s in

    ( , , ) ( 1 ) ( , , )N

    l l l l l

    egrationquadratureweightspo

    G d d note G w

    Linear Quadratic CubicPolynomials

    up to thisdegree are

    integrated

    exactly