71
1. Introduction to the Hubbard model Superexchange and antiferromagnetism 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism CFT3: Dirac fermions and the Gross-Neveu model 4. Quantum critical dynamics AdS/CFT and the collisionless-hydrodynamic crossover 5. Hubbard model as a SU(2) gauge theory Spin liquids, valence bond solids: analogies with SQED and SYM Outline Monday, June 14, 2010

2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Embed Size (px)

Citation preview

Page 1: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

1. Introduction to the Hubbard model Superexchange and antiferromagnetism

2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point

3. Honeycomb lattice: semi-metal and antiferromagnetism CFT3: Dirac fermions and the Gross-Neveu model

4. Quantum critical dynamics AdS/CFT and the collisionless-hydrodynamic crossover

5. Hubbard model as a SU(2) gauge theorySpin liquids, valence bond solids: analogies with SQED and SYM

Outline

Monday, June 14, 2010

Page 2: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

6. Square lattice: Fermi surfaces and spin density waves Fermi pockets and Quantum oscillations

7. Instabilities near the SDW critical point d-wave superconductivity and other orders

8. Global phase diagram of the cuprates Competition for the Fermi surface

Outline

Monday, June 14, 2010

Page 3: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

6. Square lattice: Fermi surfaces and spin density waves Fermi pockets and Quantum oscillations

7. Instabilities near the SDW critical point d-wave superconductivity and other orders

8. Global phase diagram of the cuprates Competition for the Fermi surface

Outline

Monday, June 14, 2010

Page 4: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

H = −�

i<j

tijc†iαcjα + U

i

�ni↑ −

1

2

��ni↓ −

1

2

�− µ

i

c†iαciα

tij → “hopping”. U → local repulsion, µ → chemical potential

Spin index α =↑, ↓

niα = c†iαciα

c†iαcjβ + cjβc

†iα = δijδαβ

ciαcjβ + cjβciα = 0

The Hubbard Model

Will study on the honeycomb and square lattices

Monday, June 14, 2010

Page 5: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

H = −�

i<j

tijc†iαcjα + U

i

�ni↑ −

1

2

��ni↓ −

1

2

�− µ

i

c†iαciα

tij → “hopping”. U → local repulsion, µ → chemical potential

Spin index α =↑, ↓

niα = c†iαciα

c†iαcjβ + cjβc

†iα = δijδαβ

ciαcjβ + cjβciα = 0

The Hubbard Model

Will study on the honeycomb and square lattices

Monday, June 14, 2010

Page 6: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Fermi surface+antiferromagnetism

Γ

Hole states

occupied

Electron states

occupied

Γ

The electron spin polarization obeys�

�S(r, τ)�

= �ϕ(r, τ)eiK·r

where K is the ordering wavevector.

+

Monday, June 14, 2010

Page 7: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Γ

Fermi surfaces in electron- and hole-doped cupratesHole states

occupied

Electron states

occupied

ΓEffective Hamiltonian for quasiparticles:

H0 = −�

i<j

tijc†iαciα ≡

k

εkc†kαckα

with tij non-zero for first, second and third neighbor, leads to satisfactory agree-

ment with experiments. The area of the occupied electron states, Ae, from

Luttinger’s theory is

Ae =

�2π

2(1− p) for hole-doping p

2π2(1 + x) for electron-doping x

The area of the occupied hole states, Ah, which form a closed Fermi surface and

so appear in quantum oscillation experiments is Ah = 4π2 −Ae.

Monday, June 14, 2010

Page 8: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Spin density wave theory

In the presence of spin density wave order, �ϕ at wavevector K =(π,π), we have an additional term which mixes electron states withmomentum separated by K

Hsdw = �ϕ ·�

k,α,β

c†k,α�σαβck+K,β

where �σ are the Pauli matrices. The electron dispersions obtainedby diagonalizing H0 +Hsdw for �ϕ ∝ (0, 0, 1) are

Ek± =εk + εk+K

��εk − εk+K

2

�+ ϕ2

This leads to the Fermi surfaces shown in the following slides forelectron and hole doping.

Monday, June 14, 2010

Page 9: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Increasing SDW order

ΓΓΓ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Γ

Hole pockets

Electron pockets

Hole-doped cuprates

Monday, June 14, 2010

Page 10: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Increasing SDW order

ΓΓΓ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Γ

Hole pockets

Electron pockets

Hole-doped cuprates

Monday, June 14, 2010

Page 11: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Increasing SDW order

ΓΓΓ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Γ

Hole pockets

Electron pockets

Hole-doped cuprates

Hot spots

Monday, June 14, 2010

Page 12: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Increasing SDW order

ΓΓΓ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Γ

Hole pockets

Electron pockets

Hole-doped cuprates

Fermi surface breaks up at hot spotsinto electron and hole “pockets”

Hole pockets

Hot spots

Monday, June 14, 2010

Page 13: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Increasing SDW order

ΓΓΓ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Γ

Hole pockets

Electron pockets

Hole-doped cuprates

Fermi surface breaks up at hot spotsinto electron and hole “pockets”

Hot spots

Monday, June 14, 2010

Page 14: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

arXiv:0912.3022

Fermi liquid behaviour in an underdoped high Tc superconductor

Suchitra E. Sebastian, N. Harrison, M. M. Altarawneh, Ruixing Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich

Evidence for small Fermi pockets

Monday, June 14, 2010

Page 15: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Increasing SDW order

ΓΓΓ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Γ

Hole pockets

Electron pockets

Large Fermi surface breaks up intoelectron and hole pockets

Hole-doped cuprates

Monday, June 14, 2010

Page 16: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Increasing SDW order

ΓΓΓ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Γ

Hole pockets

Electron pockets

Hole-doped cuprates

�ϕ

�ϕ fluctuations act on thelarge Fermi surface

Monday, June 14, 2010

Page 17: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Start from the “spin-fermion” model

Z =�DcαD�ϕ exp (−S)

S =�

dτ�

k

c†kα

�∂

∂τ− εk

�ckα

− λ

�dτ

i

c†iα�ϕi · �σαβciβeiK·ri

+�

dτd2r

�12

(∇r �ϕ)2 +�ζ2

(∂τ �ϕ)2 +s

2�ϕ2 +

u

4�ϕ4

Monday, June 14, 2010

Page 18: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

� = 1

� = 2

� = 4

� = 3

Low energy fermionsψ�

1α, ψ�2α

� = 1, . . . , 4

Lf = ψ�†1α

�ζ∂τ − iv�

1 · ∇r

�ψ�

1α + ψ�†2α

�ζ∂τ − iv�

2 · ∇r

�ψ�

v�=11 = (vx, vy), v�=1

2 = (−vx, vy)Monday, June 14, 2010

Page 19: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Lf = ψ�†1α

�ζ∂τ − iv�

1 · ∇r

�ψ�

1α + ψ�†2α

�ζ∂τ − iv�

2 · ∇r

�ψ�

v1 v2

ψ2 fermionsoccupied

ψ1 fermionsoccupied

Monday, June 14, 2010

Page 20: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Lf = ψ�†1α

�ζ∂τ − iv�

1 · ∇r

�ψ�

1α + ψ�†2α

�ζ∂τ − iv�

2 · ∇r

�ψ�

v1 v2

“Hot spot”

“Cold” Fermi surfaces

Monday, June 14, 2010

Page 21: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Order parameter: Lϕ =1

2(∇r �ϕ)

2+

�ζ2

(∂τ �ϕ)2

+s

2�ϕ2

+u

4�ϕ4

Lf = ψ�†1α

�ζ∂τ − iv�

1 · ∇r

�ψ�

1α + ψ�†2α

�ζ∂τ − iv�

2 · ∇r

�ψ�

Monday, June 14, 2010

Page 22: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Lf = ψ�†1α

�ζ∂τ − iv�

1 · ∇r

�ψ�

1α + ψ�†2α

�ζ∂τ − iv�

2 · ∇r

�ψ�

Order parameter: Lϕ =1

2(∇r �ϕ)

2+

�ζ2

(∂τ �ϕ)2

+s

2�ϕ2

+u

4�ϕ4

“Yukawa” coupling: Lc = −λ�ϕ ·�ψ�†

1α�σαβψ�2β + ψ�†

2α�σαβψ�1β

Monday, June 14, 2010

Page 23: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Hertz theoryIntegrate out fermions and obtain non-local corrections to Lϕ

Lϕ =12

�ϕ2�q2 + γ|ω|

�/2 ; γ =

2πvxvy

Exponent z = 2 and mean-field criticality (upto logarithms)

Lf = ψ�†1α

�ζ∂τ − iv�

1 · ∇r

�ψ�

1α + ψ�†2α

�ζ∂τ − iv�

2 · ∇r

�ψ�

Order parameter: Lϕ =1

2(∇r �ϕ)

2+

�ζ2

(∂τ �ϕ)2

+s

2�ϕ2

+u

4�ϕ4

“Yukawa” coupling: Lc = −λ�ϕ ·�ψ�†

1α�σαβψ�2β + ψ�†

2α�σαβψ�1β

Monday, June 14, 2010

Page 24: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, 255702 (2004).

Integrate out fermions and obtain non-local corrections to Lϕ

Lϕ =12

�ϕ2�q2 + γ|ω|

�/2 ; γ =

2πvxvy

Exponent z = 2 and mean-field criticality (upto logarithms)

Lf = ψ�†1α

�ζ∂τ − iv�

1 · ∇r

�ψ�

1α + ψ�†2α

�ζ∂τ − iv�

2 · ∇r

�ψ�

Order parameter: Lϕ =1

2(∇r �ϕ)

2+

�ζ2

(∂τ �ϕ)2

+s

2�ϕ2

+u

4�ϕ4

“Yukawa” coupling: Lc = −λ�ϕ ·�ψ�†

1α�σαβψ�2β + ψ�†

2α�σαβψ�1β

OK in d = 3, but higher order terms contain an

infinite number of marginal couplings in d = 2

Hertz theory

Monday, June 14, 2010

Page 25: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Perform RG on both fermions and �ϕ,using a local field theory.

Lf = ψ�†1α

�ζ∂τ − iv�

1 · ∇r

�ψ�

1α + ψ�†2α

�ζ∂τ − iv�

2 · ∇r

�ψ�

Order parameter: Lϕ =1

2(∇r �ϕ)

2+

�ζ2

(∂τ �ϕ)2

+s

2�ϕ2

+u

4�ϕ4

“Yukawa” coupling: Lc = −λ�ϕ ·�ψ�†

1α�σαβψ�2β + ψ�†

2α�σαβψ�1β

Monday, June 14, 2010

Page 26: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

6. Square lattice: Fermi surfaces and spin density waves Fermi pockets and Quantum oscillations

7. Instabilities near the SDW critical point d-wave superconductivity and other orders

8. Global phase diagram of the cuprates Competition for the Fermi surface

Outline

Monday, June 14, 2010

Page 27: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

6. Square lattice: Fermi surfaces and spin density waves Fermi pockets and Quantum oscillations

7. Instabilities near the SDW critical point d-wave superconductivity and other orders

8. Global phase diagram of the cuprates Competition for the Fermi surface

Outline

Monday, June 14, 2010

Page 28: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Superconductivity by SDW fluctuation

exchange

Monday, June 14, 2010

Page 29: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Physical Review B 34, 8190 (1986)

Monday, June 14, 2010

Page 30: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Increasing SDW order

Spin density wave theory in hole-doped cuprates

ΓΓΓ Γ

Monday, June 14, 2010

Page 31: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Increasing SDW order

ΓΓΓ Γ

Spin-fluctuation exchange theory of d-wave superconductivity in the cuprates

�ϕ

David Pines, Douglas Scalapino

Fermions at the large Fermi surface exchangefluctuations of the SDW order parameter �ϕ.

Monday, June 14, 2010

Page 32: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Pairing by SDW fluctuation exchange

We now allow the SDW field �ϕ to be dynamical, coupling to elec-trons as

Hsdw = −�

k,q,α,β

�ϕq · c†k,α�σαβck+K+q,β .

Exchange of a �ϕ quantum leads to the effective interaction

Hee = −12

q

p,γ,δ

k,α,β

Vαβ,γδ(q)c†k,αck+q,βc†p,γcp−q,δ,

where the pairing interaction is

Vαβ,γδ(q) = �σαβ · �σγδχ0

ξ−2 + (q−K)2,

with χ0ξ2 the SDW susceptibility and ξ the SDW correlation length.

Monday, June 14, 2010

Page 33: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

BCS Gap equation

In BCS theory, this interaction leads to the ‘gapequation’ for the pairing gap ∆k ∝ �ck↑c−k↓�.

∆k = −�

p

�3χ0

ξ−2 + (p− k−K)2

�∆p

2�

ε2p + ∆2

p

Non-zero solutions of this equation require that∆k and ∆p have opposite signs when p− k ≈ K.

Monday, June 14, 2010

Page 34: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Increasing SDW order

++_

_

Γ

d-wave pairing of the large Fermi surface

�ck↑c−k↓� ∝ ∆k = ∆0(cos(kx)− cos(ky))

�ϕ

K

Monday, June 14, 2010

Page 35: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

� = 1

� = 2

� = 4

� = 3

Low energy fermionsψ�

1α, ψ�2α

� = 1, . . . , 4

d-wave pairing in the theory of hotspots

Monday, June 14, 2010

Page 36: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Hot spots have

strong instability to

d-wave pairing near

SDW critical point.

This instability is

stronger than the

BCS instability of a

Fermi liquid.

Pairing order parameter: εαβ�ψ31αψ

11β − ψ3

2αψ12β

d-wave pairing in the theory of hotspots

ψ31

ψ32

Monday, June 14, 2010

Page 37: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

ψ31 ψ3

2 ψ31 ψ3

2 ψ31

d-wave Cooper pairing instability in particle-particle channel

+�ϕ

+- +-

Monday, June 14, 2010

Page 38: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Similar theory applies to the pnictides, and leads to s± pairing.

kx

ky

1

23

4 3̄

Q = ( !, 0)

!

Monday, June 14, 2010

Page 39: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Emergent Pseudospin symmetry

Continuum theory of hotspots in invariant under:

�ψ�↑

ψ�†↓

�→ U �

�ψ�↑

ψ�†↓

where U � are arbitrary SU(2) matrices which can bedifferent on different hotspots �.

Monday, June 14, 2010

Page 40: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

ψ31 ψ3

2 ψ31 ψ3

2 ψ31

d-wave Cooper pairing instability in particle-particle channel

+�ϕ

+- +-

Monday, June 14, 2010

Page 41: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

ψ31 ψ3

2 ψ31 ψ3

2 ψ31

Bond density wave (with local Ising-nematic order) instability in particle-hole channel

+�ϕ

+- +-

Monday, June 14, 2010

Page 42: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

d-wave pairing has apartner instabilityin the particle-hole

channel

Density-wave order parameter:

�ψ3†1αψ

11α − ψ3†

2αψ12α

ψ31

ψ32

Monday, June 14, 2010

Page 43: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

ψ31

ψ32

Monday, June 14, 2010

Page 44: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Single ordering wavevector Q:�c†k−Q/2,αck+Q/2,α

�=

Φ(cos kx − cos ky)

Q

Q

ψ31

ψ32

ψ31

ψ32

Monday, June 14, 2010

Page 45: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

!1

"1

No modulations on sites. Modulated bond-densitywave with local Ising-nematic ordering:�

c†k−Q/2,αck+Q/2,α

�= Φ(cos kx − cos ky)

“Bond density” measures amplitude for electrons to be

in spin-singlet valence bond:

VBS order

Monday, June 14, 2010

Page 46: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

!1

"1

No modulations on sites. Modulated bond-densitywave with local Ising-nematic ordering:�

c†k−Q/2,αck+Q/2,α

�= Φ(cos kx − cos ky)

“Bond density” measures amplitude for electrons to be

in spin-singlet valence bond:

VBS order

Monday, June 14, 2010

Page 47: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

M. J. Lawler, K. Fujita,

Jhinhwan Lee,

A. R. Schmidt,

Y. Kohsaka, Chung Koo

Kim, H. Eisaki,

S. Uchida, J. C. Davis,

J. P. Sethna, and

Eun-Ah Kim, preprint

STM measurements of Z(r), the energy asymmetry

in density of states in Bi2Sr2CaCu2O8+δ.

Monday, June 14, 2010

Page 48: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

B

M. J. Lawler, K. Fujita,

Jhinhwan Lee,

A. R. Schmidt,

Y. Kohsaka, Chung Koo

Kim, H. Eisaki,

S. Uchida, J. C. Davis,

J. P. Sethna, and

Eun-Ah Kim, preprint

AC

D

STM measurements of Z(r), the energy asymmetry

in density of states in Bi2Sr2CaCu2O8+δ.

Monday, June 14, 2010

Page 49: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

B

M. J. Lawler, K. Fujita,

Jhinhwan Lee,

A. R. Schmidt,

Y. Kohsaka, Chung Koo

Kim, H. Eisaki,

S. Uchida, J. C. Davis,

J. P. Sethna, and

Eun-Ah Kim, preprint

AC

D

Strong anisotropy of electronic states between

x and y directions:Electronic

“Ising-nematic” order

STM measurements of Z(r), the energy asymmetry

in density of states in Bi2Sr2CaCu2O8+δ.

Monday, June 14, 2010

Page 50: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

6. Square lattice: Fermi surfaces and spin density waves Fermi pockets and Quantum oscillations

7. Instabilities near the SDW critical point d-wave superconductivity and other orders

8. Global phase diagram of the cuprates Competition for the Fermi surface

Outline

Monday, June 14, 2010

Page 51: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

6. Square lattice: Fermi surfaces and spin density waves Fermi pockets and Quantum oscillations

7. Instabilities near the SDW critical point d-wave superconductivity and other orders

8. Global phase diagram of the cuprates Competition for the Fermi surface

Outline

Monday, June 14, 2010

Page 52: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Antiferro-magnetism

Fermi surface

d-wavesupercon-ductivity

Monday, June 14, 2010

Page 53: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Antiferro-magnetism

Fermi surface

d-wavesupercon-ductivity

Monday, June 14, 2010

Page 54: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

FluctuatingFermi

pocketsLargeFermi

surface

StrangeMetal

Spin density wave (SDW)

Theory of quantum criticality in the cuprates

Underlying SDW ordering quantum critical pointin metal at x = xm

Increasing SDW orderIncreasing SDW order

T*

Monday, June 14, 2010

Page 55: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Antiferro-magnetism

Fermi surface

d-wavesupercon-ductivity

Monday, June 14, 2010

Page 56: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Fermi surface

d-wavesupercon-ductivity

Spin density wave

Monday, June 14, 2010

Page 57: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Fermi surface

d-wavesupercon-ductivity

Spin density wave

Monday, June 14, 2010

Page 58: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

FluctuatingFermi

pocketsLargeFermi

surface

StrangeMetal

Spin density wave (SDW)

Theory of quantum criticality in the cuprates

Underlying SDW ordering quantum critical pointin metal at x = xm

Increasing SDW orderIncreasing SDW order

T*

Monday, June 14, 2010

Page 59: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

LargeFermi

surface

StrangeMetal

Spin density wave (SDW)

d-wavesuperconductor

Small Fermipockets with

pairing fluctuations

Theory of quantum criticality in the cuprates

Onset of d-wave superconductivity

hides the critical point x = xm

Fluctuating, paired Fermi

pockets

T*

Monday, June 14, 2010

Page 60: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

LargeFermi

surface

StrangeMetal

Spin density wave (SDW)

d-wavesuperconductor

Small Fermipockets with

pairing fluctuationsE. Demler, S. Sachdevand Y. Zhang, Phys.Rev. Lett. 87,067202 (2001).

E. G. Moon andS. Sachdev, Phy.Rev. B 80, 035117(2009)

Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivitymoves the actual quantum critical point to x = xs < xm.

Fluctuating, paired Fermi

pockets

T*

Monday, June 14, 2010

Page 61: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

LargeFermi

surface

StrangeMetal

Spin density wave (SDW)

d-wavesuperconductor

Small Fermipockets with

pairing fluctuationsE. Demler, S. Sachdevand Y. Zhang, Phys.Rev. Lett. 87,067202 (2001).

E. G. Moon andS. Sachdev, Phy.Rev. B 80, 035117(2009)

Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivitymoves the actual quantum critical point to x = xs < xm.

Fluctuating, paired Fermi

pockets

T*

Monday, June 14, 2010

Page 62: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin density wave (SDW)

Spin gap

Thermallyfluctuating

SDW

d-wavesuperconductor

Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivitymoves the actual quantum critical point to x = xs < xm.

Fluctuating, paired Fermi

pockets

E. Demler, S. Sachdevand Y. Zhang, Phys.Rev. Lett. 87,067202 (2001).

E. G. Moon andS. Sachdev, Phy.Rev. B 80, 035117(2009)

T*

Monday, June 14, 2010

Page 63: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin density wave (SDW)

Spin gap

Thermallyfluctuating

SDW

d-wavesuperconductor

V. Galitski andS. Sachdev, Phys.Rev. B 79, 134512(2009).

E. G. Moon andS. Sachdev, Phys.Rev. B 80, 035117(2009)

Theory of quantum criticality in the cuprates

Fluctuating, paired Fermi

pockets

Physics of competition: d-wave SC and SDW“eat up” same pieces of the large Fermi surface.

T*

Monday, June 14, 2010

Page 64: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin gapThermallyfluctuating

SDW

d-waveSC

T

Fluctuating, paired Fermi

pockets

T*

Monday, June 14, 2010

Page 65: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

d-waveSC

T

Tsdw

Fluctuating, paired Fermi

pockets

T*

Monday, June 14, 2010

Page 66: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

d-waveSC

T

Tsdw

Fluctuating, paired Fermi

pockets

T*

Quantum oscillations

Monday, June 14, 2010

Page 67: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

d-waveSC

T

Tsdw

Fluctuating, paired Fermi

pockets

T*

Monday, June 14, 2010

Page 68: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

J. Chang, N. B. Christensen, Ch. Niedermayer, K. Lefmann,

H. M. Roennow, D. F. McMorrow, A. Schneidewind, P. Link, A. Hiess,

M. Boehm, R. Mottl, S. Pailhes, N. Momono, M. Oda, M. Ido, and

J. Mesot, Phys. Rev. Lett. 102, 177006

(2009).

J. Chang, Ch. Niedermayer, R. Gilardi, N.B. Christensen, H.M. Ronnow,

D.F. McMorrow, M. Ay, J. Stahn, O. Sobolev, A. Hiess, S. Pailhes, C. Baines, N. Momono,

M. Oda, M. Ido, and J. Mesot, Physical Review B 78, 104525 (2008).

Monday, June 14, 2010

Page 69: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

d-waveSC

T

Tsdw

Fluctuating, paired Fermi

pockets

T*

Monday, June 14, 2010

Page 70: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

G. Knebel, D. Aoki, and J. Flouquet, arXiv:0911.5223

Similar phase diagram for CeRhIn5

Monday, June 14, 2010

Page 71: 2. Coupled dimer antiferromagnet 3. Honeycomb lattice ... · 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism

Similar phase diagram for the pnictides

Ishida, Nakai, and HosonoarXiv:0906.2045v1

0 0.02 0.04 0.06 0.08 0.10 0.12

150

100

50

0

SC

Ort

AFM Ort/

Tet

S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, S. L. Bud'ko, P. C. Canfield, J. Schmalian, R. J. McQueeney, A. I. Goldman, arXiv:0911.3136.

Monday, June 14, 2010