22
1o3/'§9A^0˘ u¥˘Œ˘O˘˘ ˙ 2019c426F29F

1o3 '’ 9ÙA^0 âØ - CCNU

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 1o3 '’ 9ÙA^0 âØ - CCNU

1o3/ ©§9ÙA^0ÆâØ

u¥ÆêÆÚOÆÆ

ÉÇ

2019c426F29F

Page 2: 1o3 '’ 9ÙA^0 âØ - CCNU

1o3/ ©§9ÙA^0ÆâØ

Æâ¬:

ÌRµ"±²

Æ⬣6¼©ÑS¤µ

ù¬!z!"ÚR!¸!oó!oññ!

M[!r!¢!îäÜ!Üá+!Á ²

|¬:

ÌRµ$V

|¬£6¼©ÑS¤µ

H§!Û+!R!Ss!

«ü

u¥ÆêÆÚOÆÆ

]Ïü

ÜM#ìè

u¥ÆgÌï8

u¥ÆêÆÚOÆÆ

ÏÕ/

Éǽöì«f´152Òu¥ÆêÆÚOÆÆ

e?: 430079

Page 3: 1o3 '’ 9ÙA^0 âØ - CCNU

ØmSü

ÆâØmµ2019c426F£(ÏÊU)

ÆâØ/:: u¥Æ?U,

Æâwµ2019c427F28F

Æâw/:µêÆÚOÆÆ6401¿

Æâ6µ2019c429F

lµ2019c430F

Òê/:µ?U,

¬ÆéX<µ

oÛµ13872440824§Email: [email protected]

Page 4: 1o3 '’ 9ÙA^0 âØ - CCNU

u¥Æ 11

¬ÆF§Á

427F 428F 429F

M[ ¶ð Æ

þ ,R 4în â

Ì U1 ² 6

ö H_

¥Ì Ìê9Ì>

ol² g Æ

e æFH d â

?

Ì r Ø 6

R

þ ê

Page 5: 1o3 '’ 9ÙA^0 âØ - CCNU

12 u¥Æ

ÆâwSüL

FÏ: 4 27 FþÌ

̱< m w<!K8 /:

$V 8:108:40

m4ª9ì 6401¿

ôt 8:409:20

M[§e|æIáÆRegularity for convex envelope and degenerateMonge-Ampere equations

6401¿

z 9:2010:00

,R§uÀÆLattice structure of 3D surface superconductivityand magnetic potentials with singularities

6401¿

10:00-10:20

4° 10:2011:00

U1§®ÆExterior problem for parabolic Monge-Ampere e-quations

6401¿

¸øõ 11:0011:40

ö§®ÆA variational approach for self-similar solutions ofthe generalized curve-shortening problem

6401¿

Ìê

Page 6: 1o3 '’ 9ÙA^0 âØ - CCNU

u¥Æ 13

ÆâwSüL

FÏ: 4 27 FeÌ

̱< m w<!K8 /:

ù¬ 14:3015:10

ol²§þ°ÏÆ&ICU BoulderÆSome preliminary study of non-negative solutionsto fractional Laplace equations

6401¿

èÅ 15:1015:50

æFH§uÀÆ&¥IÆEâÆäkNeumann>5Ô ©§²£)

6401¿

15:50-16:10

±t 16:1016:50

r§4ïÆ&IUtah²áÆCoupled nonlinear Schrodinger equations withmixed coupling

6401¿

/® 16:5017:30

R§u¥ÆMultiple solutions for logarithmic Schrodinger e-quations

6401¿

ê

Page 7: 1o3 '’ 9ÙA^0 âØ - CCNU

14 u¥Æ

ÆâwSüL

FÏ: 4 28 FþÌ

̱< m w<!K8 /:

Á ² 8:409:20

¶ð§¥IÆêÆXÚÆïÄ5Dirac§±ÏÅ

6401¿

±º 9:2010:00

4în§ÄÑÆNew existence results for a Schrodinger systemwith non-constant coefficients

6401¿

10:00-10:20

Hm² 10:2011:00

²§H®ÆVariational PDE based segmentation and registra-tion

6401¿

"±² 11:0011:40

H_§uÆSolutions for fractional operator problem via localPohozaev identities

6401¿

Ìê

Page 8: 1o3 '’ 9ÙA^0 âØ - CCNU

u¥Æ 15

Exterior problem for parabolic Monge-Ampere equations

U1§®Æ

We use Perron method to prove the existence of exterior problem for

a kind of parabolic Monge-Ampere equation −ut detD2u = f(x, t) with

prescribed asymptotic behavior at infinity outside a bowl area in Rn+1− ,

where f is a perturbation of 1 at infinity. This report is based on the joint

work with Shuyu Gong and Ziwei Zhou.

5Dirac§±ÏÅ

¶ð§¥IÆêÆXÚÆïÄ

0ïÄþfnØ¥Ñy5Dirac§,#?Ð.AO´

?ØäkìC½g5!9]à5XÚ±ÏÅ35!

õ­5.

Solutions for fractional operator problem via local Pohozaev

identities

H_§uÆ

We consider the following fractional Schrodinger equation involving

critical exponent:(−∆)su+ V (|y′|, y′′)u = u2∗s−1 in RN ,u > 0, y ∈ RN ,

(P )

where s ∈ (12, 1), (y′, y′′) ∈ R2 ×RN−2, V (|y′|, y′′) is a bounded nonnega-

tive function with a weaker symmetry condition. We prove the existence

Page 9: 1o3 '’ 9ÙA^0 âØ - CCNU

16 u¥Æ

of infinitely many solutions for the above problem by a finite dimensional

reduction method combining various Pohazaev identies.

A variational approach for self-similar solutions of the generalized

curve-shortening problem

ö§®Æ

Consider the generalized curve shortening problem:

∂γ

∂t= Φ(θ)|k|σ−1kN, σ > 0, θ ∈ S1,

where γ(·, t) is a planar curve, k(·, t) is its curvature with respect to the

unit normal N = −(cos θ, sin θ), and Φ is a positive function depending on

θ. Assuming that γ(·, t) is convex, then in terms of the support function

w(t, θ), the equation becomes

∂w

∂t=

−Φ(θ)

(wθθ + w)σ, θ ∈ S1. (1)

A self-similar solution of (1) is of the form w(θ, t) = ξ(t)u(θ), and u is a

solution of

uθθ + u =a(θ)

up+1, θ ∈ S1 (2)

with a(θ) = Φ1σ (θ), p + 1 = 1

σ . In this talk we will present a variational

approach for the π-periodic solutions of equation (2) with p > 2.

Some preliminary study of non-negative solutions to fractional

Laplace equations

ol²§þ°ÏÆ&ICU BoulderÆ

In this talk, we present some recent work on solutions to fractional

Laplace equations with singularities. First, we establish Bocher type the-

Page 10: 1o3 '’ 9ÙA^0 âØ - CCNU

u¥Æ 17

orems on a punctured ball via distributional approach. Then, we develop

a few interesting maximum principles on a punctured ball. Our distribu-

tional approach only requires the basic L1loc-integrability. Furthermore,

several basic lemmas are introduced to unify the treatments of Laplacian

and fractional Laplacian. This is a joint work with C. Liu, Z. Wu and H.

Xu.

New existence results for a Schrodinger system with non-constant

coefficients

4în§ÄÑÆ

Assume Vj, µj, β ∈ C(Rn), n = 1, 2, 3. For the Schrodinger system

of two equations with non-constant coefficients−∆u+ V1(x)u = µ1(x)u3 + β(x)v2u, in Rn,

−∆v + V2(x)v = µ2(x)v3 + β(x)u2v, in Rn,

u(x)→ 0, v(x)→ 0, as |x| → ∞,

we present some new results on the existence of a positive solution and the

existence of multiple positive solutions. This is joint work with Haidong

Liu.

äkNeumann>5Ô ©§²£)

æFH§uÀÆ&¥IÆEâÆ

·ïÄà«þäkNeumann>Ôk-Hessian§)

35Âñ5, ·ïIJþ­Ç§äý½Y½Neumann>

Âñ5¯K. ·´kO,'´FÝOê

O.

Page 11: 1o3 '’ 9ÙA^0 âØ - CCNU

18 u¥Æ

Lattice structure of 3D surface superconductivity and magnetic

potentials with singularities

,R§uÀÆ

In this talk we discuss lattice structure of the solutions of 3D mag-

netic Schrodinger equation, which could start the second step towards

understanding the surface superconducting states of 3D type 2 supercon-

ductors in an applied magnetic field. We shall also examine the effects of

magnetic potentials with singularities on superconductivity, which exhibit

analogy with the magnetic Aharonov-Bohm effect. The first part is joint

work with Soren Fournais and Jean-Philippe Miqueu, and the second part

is joint work with Ayman Kachmar.

Multiple solutions for logarithmic Schrodinger equations

R§u¥Æ

We discuss the following logarithmic Schrodinger equation

−∆u+ V (x)u = u log u2, x ∈ RN .

The classical variational methods cannot be applied directly, because the

corresponding energy functional is not well defined in H1(RN ). By using

direction derivative and constrained minimization method, we prove the

existence of positive and sign-changing solutions in H1(RN ) under differ-

ent types of potential. Moreover, if the potential is radially symmetric,

we also construct infinitely many nodal solutions in H1r (RN ).

Regularity for convex envelope and degenerate Monge-Ampere

equations

M[§e|æIáÆ

Page 12: 1o3 '’ 9ÙA^0 âØ - CCNU

u¥Æ 19

In this talk, we discuss the regularity for convex envelope and degen-

erate Monge-Ampere equations. Given a function v in a domain Ω, the

convex envelope is defined by u(x) = supL(x) : L ≤ v in Ω. For given

α ∈ (0, 1], we prove that u ∈ C1,α(Ω) if ∂Ω ∈ C2+2α, v ∈ C2+2α(Ω),

and Ω is uniformly convex. By example we show that these conditions

are optimal. We also prove the global C1,α regularity for the Dirichlet

problem of the degenerate Monge-Ampere equation detD2u = f(x) in Ω,

u = φ on , assuming that φ, ∂Ω ∈ C2,β(Ω) and Ω is uniformly convex, for

some β > 0. Again all these conditions are sharp. We will also make a

brief survey on the regularity for the Monge-Ampere equations.

Coupled nonlinear Schrodinger equations with mixed coupling

r§4ïÆ&IUtah²áÆ

We discuss work on existence and qualitative property of positive so-

lutions for coupled nonlinear Schrodinger equations. Depending upon the

system being attractive or repulsive, solutions may tend to be component-

wisely synchronized or segregated. We report recent work on the effect of

mixed coupling for which coexistence of synchronization and segregation

may occur. These are joint work with J. Byeon and Y. Sato, S. Peng and

Y. Wang, respectively.

Variational PDE based segmentation and registration

²§H®Æ

Image segmentation and registration are always challenging tasks in

image processing. In this talk, we will discuss two variational PDE mod-

els. One is concerned a region inhomogeneity active contour which is to

quantify intensity inhomogeneity and convert it to be a useful feature to

Page 13: 1o3 '’ 9ÙA^0 âØ - CCNU

110 u¥Æ

improve the segmentation results. Another one is a BD based registration

algorithm which is formulated in a variational framework by supposing

the displacement field to be a function of bounded deformation. The nu-

merical experiments indicate that the proposed models perform well than

some of the state-of-art models.

Page 14: 1o3 '’ 9ÙA^0 âØ - CCNU

u¥Æ 111

ÏÕ¹S

Ò6¶ ü

¡

ÖE Mail

1 U1 ®Æ Ç [email protected]

2 ù¬ ¥IÆêÆXÚÆïÄ ïÄ [email protected]

3 z ÉÇÆ Ç [email protected]

4 §âl =²Æ Ç [email protected]

5 ¦· HÆ Ç [email protected]

6 "ÚR u¥Æ Ç [email protected]

7 ¶ð ¥IÆêÆXÚÆïÄ ïÄ [email protected]

8 HÔ u¥àÆ Æ¬ [email protected]

9 H§ u¥Æ Ç [email protected]

10 H_ uÆ Ç [email protected]

11 Hm² àHÆ Ç [email protected]

12 ¸øõ ¥IÆêÆXÚÆïÄ ïÄ [email protected]

13 ÛÙº 2ÜÆ Æ¬ [email protected]

14 ö ®Æ Ç [email protected]

15 ôt ®A^ÔnOêÆïĤ ïÄ [email protected]

16 ùoz SÆ BÇ [email protected]

17 ol² þ°ÏÆ&ICU Boulder

Æ

Ç [email protected]

18 oó u¥Æ Ç [email protected]

19 o°f ®Æ BÇ [email protected]

20 oR u¥àÆ Æ¬

21 oI eÆ BÇ

22 4în ÄÑÆ Ç [email protected]

23 4° 2ܬxÆ Ç [email protected]

24 Ü) S Æ BÇ [email protected]

25 Ûm úôÆ ù

26 Û+ u¥Æ BÇ [email protected]

27 æFH uÀÆ&¥IÆEâÆ Ç [email protected]

28 ,R uÀÆ Ç [email protected]

29 $< eÆØ(½XÚïĤ Ç [email protected]

30 $V u¥Æ Ç [email protected]

31 ¦J 2ÜÆ BÇ [email protected]

Page 15: 1o3 '’ 9ÙA^0 âØ - CCNU

112 u¥Æ

S

Ò6¶ ü

¡

ÖE Mail

32 R u¥Æ ù [email protected]

33 /¯ u¥Æ BÇ [email protected]

34 /® ®Æ Ç [email protected]

35 Ss u¥Æ BÇ [email protected]

36 ´^ úôÆ ù [email protected]

37 M[ e|æIáÆ Ç [email protected]

38 À úôÆ ù

39 r 4ïÆ&IUtah²áÆ Ç [email protected]

40 Çû HÆ ù [email protected]

41 "±² l¥©Æ Ç [email protected]

42 îäÜ u¥Æ Ç [email protected]

43 èÅ ôÜÆ Ç jfyang [email protected]

44 u¥Æ Ç [email protected]

45 ² H®Æ Ç [email protected]

46 Üá+ ¥IÆêÆXÚÆïÄ ïÄ [email protected]

47 xp¸ u¥Æ Ç [email protected]

48 ±t ÉÇnóÆ Ç [email protected]

49 ±º uÀÆ Ç [email protected]

50 Á ² ¥ìÆ Ç [email protected]

51 Á#â &Æ Æ¬

52 w =²Æ Æ) [email protected]

53 ɲ =²Æ Æ) [email protected]

54 ] =²Æ Æ) [email protected]

55 o =²Æ Æ) [email protected]

56 ê[ =²Æ Æ) [email protected]

57 ãïï =²Æ Æ) [email protected]

58 m =²Æ Æ) [email protected]

59 äT =²Æ Æ) [email protected]

60 4T ¥H¬xÆ Æ) [email protected]

61 Xûû ¥H¬xÆ Æ) [email protected]

62 Û] ¥ÉÇÔnêÆïĤ Æ)

63 S² u¥Æ Æ) [email protected]

64 °_ u¥Æ Æ) [email protected]

65 u¥Æ Æ) [email protected]

Page 16: 1o3 '’ 9ÙA^0 âØ - CCNU

u¥Æ 113

S

Ò6¶ ü

¡

ÖE Mail

66 wü¥ u¥Æ Æ) [email protected]

67 Ú u¥Æ Æ)

68 ãr+ u¥Æ Æ) [email protected]

69 u u¥Æ Æ) [email protected]

70 HZ( u¥Æ Æ)

71 _¦ u¥Æ Æ) [email protected]

72 7 u¥Æ Æ) [email protected]

73 oÛ u¥Æ Æ) [email protected]

74 Úæ¦ u¥Æ Æ) [email protected]

75 ~è u¥Æ Æ) [email protected]

76 x u¥Æ Æ) [email protected]

77 Ç u¥Æ Æ) [email protected]

78 Mû^ u¥Æ Æ) [email protected]

79 =¦ u¥Æ Æ) [email protected]

80 ïá u¥Æ Æ) [email protected]

81 7 u¥Æ Æ) [email protected]

82 9 u¥Æ Æ) [email protected]

83 ± u¥Æ Æ) [email protected]

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Page 17: 1o3 '’ 9ÙA^0 âØ - CCNU

114 u¥Æ

S

Ò6¶ ü

¡

ÖE Mail

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

Page 18: 1o3 '’ 9ÙA^0 âØ - CCNU

u¥Æ 11

ë¬<\¶ü

S

Ò6¶ ü ¡Ö \¶

1 U1 ®Æ Ç

2 ù¬ ¥IÆêÆXÚÆïÄ ïÄ

3 z ÉÇÆ Ç

4 §âl =²Æ Ç

5 ¦· HÆ Ç

6 "ÚR u¥Æ Ç

7 ¶ð ¥IÆêÆXÚÆïÄ ïÄ

8 HÔ u¥àÆ Æ¬

9 H§ u¥Æ Ç

10 H_ uÆ Ç

11 Hm² àHÆ Ç

12 ¸øõ ¥IÆêÆXÚÆïÄ ïÄ

13 ÛÙº 2ÜÆ Æ¬

14 ö ®Æ Ç

15 ôt ®A^ÔnOêÆïĤ ïÄ

16 ùoz SÆ BÇ

17 ol² þ°ÏÆ&ICU Boulder

Æ

Ç

18 oó u¥Æ Ç

19 o°f ®Æ BÇ

20 oR u¥àÆ Æ¬

21 oI eÆ BÇ

22 4în ÄÑÆ Ç

23 4° 2ܬxÆ Ç

24 Ü) S Æ BÇ

25 Ûm úôÆ ù

26 Û+ u¥Æ BÇ

Page 19: 1o3 '’ 9ÙA^0 âØ - CCNU

12 u¥Æ

S

Ò6¶ ü ¡Ö \¶

27 æFH uÀÆ&¥IÆEâÆ Ç

28 ,R uÀÆ Ç

29 $< eÆØ(½XÚïĤ Ç

30 $V u¥Æ Ç

31 ¦J 2ÜÆ BÇ

32 R u¥Æ ù

33 /¯ u¥Æ BÇ

34 /® ®Æ Ç

35 Ss u¥Æ BÇ

36 ´^ úôÆ ù

37 M[ e|æIáÆ Ç

38 À úôÆ ù

39 r 4ïÆ&IUtah²áÆ Ç

40 Çû HÆ ù

41 "±² l¥©Æ Ç

42 îäÜ u¥Æ Ç

43 èÅ ôÜÆ Ç

44 u¥Æ Ç

45 ² H®Æ Ç

46 Üá+ ¥IÆêÆXÚÆïÄ ïÄ

47 xp¸ u¥Æ Ç

48 ±t ÉÇnóÆ Ç

49 ±º uÀÆ Ç

50 Á ² ¥ìÆ Ç

51 Á#â &Æ Æ¬

52 w =²Æ Æ)

53 ɲ =²Æ Æ)

54 ] =²Æ Æ)

55 o =²Æ Æ)

Page 20: 1o3 '’ 9ÙA^0 âØ - CCNU

u¥Æ 13

S

Ò6¶ ü ¡Ö \¶

56 ê[ =²Æ Æ)

57 ãïï =²Æ Æ)

58 m =²Æ Æ)

59 äT =²Æ Æ)

60 4T ¥H¬xÆ Æ)

61 Xûû ¥H¬xÆ Æ)

62 Û] ¥ÉÇÔnêÆïĤ Æ)

63 S² u¥Æ Æ)

64 °_ u¥Æ Æ)

65 u¥Æ Æ)

66 wü¥ u¥Æ Æ)

67 Ú u¥Æ Æ)

68 ãr+ u¥Æ Æ)

69 u u¥Æ Æ)

70 HZ( u¥Æ Æ)

71 _¦ u¥Æ Æ)

72 7 u¥Æ Æ)

73 oÛ u¥Æ Æ)

74 Úæ¦ u¥Æ Æ)

75 ~è u¥Æ Æ)

76 x u¥Æ Æ)

77 Ç u¥Æ Æ)

78 Mû^ u¥Æ Æ)

79 =¦ u¥Æ Æ)

80 ïá u¥Æ Æ)

81 7 u¥Æ Æ)

82 9 u¥Æ Æ)

83 ± u¥Æ Æ)

84

Page 21: 1o3 '’ 9ÙA^0 âØ - CCNU

14 u¥Æ

S

Ò6¶ ü ¡Ö \¶

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

Page 22: 1o3 '’ 9ÙA^0 âØ - CCNU

u¥Æ 15

S

Ò6¶ ü ¡Ö \¶

114

115

116

117

118

119

120

121

122

123

124

125