1.Fundamentals Coupling

Embed Size (px)

Citation preview

  • 7/28/2019 1.Fundamentals Coupling

    1/33

    1

    Fundamentals Fluid Coupling

  • 7/28/2019 1.Fundamentals Coupling

    2/33

    2

    Change of speed of the working machine

    Voith VariableSpeed Drive

    Motor

    constant speed

    working

    machine

    Power range up to 50 000 kWSpeed range up to 20 000 rpm

    constant speed variable speed

    What does variable speed mean ?

  • 7/28/2019 1.Fundamentals Coupling

    3/33

    3

    Fttinger Principle

    drive with constant speed

    Driver (electric motor)

    Working

    machine

  • 7/28/2019 1.Fundamentals Coupling

    4/33

    4

    Driver (electric motor)

    Working

    machine

    hydro-dynamic system

    PumpTurbine

    Fttinger Principle

  • 7/28/2019 1.Fundamentals Coupling

    5/33

    5

    Driver (electric motor)

    Working

    machine

    hydro-dynamic system

    Pump Turbine

    Fttinger Principle

  • 7/28/2019 1.Fundamentals Coupling

    6/33

    7

    Primary Wheel Secondary Wheel

    Oil Flow

    The Principle of

    Hydrodynamic Power Transmission

    Fttinger principleMovie

    http://localhost/var/www/apps/conversion/tmp/scratch_5/How_they_work_T_couplings_Ausschnitt.wmvhttp://localhost/var/www/apps/conversion/tmp/scratch_5/How_they_work_T_couplings_Ausschnitt.wmv
  • 7/28/2019 1.Fundamentals Coupling

    7/33

    8

    P = Pump

    T = Turbine

    S = Scoop tube

    Constant Filling Variable Filling

    Basic design of Couplings

    Animation

    http://localhost/var/www/apps/conversion/tmp/scratch_5/svtl.exehttp://localhost/var/www/apps/conversion/tmp/scratch_5/svtl.exe
  • 7/28/2019 1.Fundamentals Coupling

    8/33

    9

  • 7/28/2019 1.Fundamentals Coupling

    9/33

    10

    Scoop tube principle

  • 7/28/2019 1.Fundamentals Coupling

    10/33

    11

    Operating ranges:

    I, IV Starting range

    II Control range

    Typical load curves

    1.Constant torque (e. g. positive

    displacement pumps and

    compressors)

    2.Decreasing torque (e. g. boiler

    feed pumps operating at varying

    pressure)

    3.Parabolic torque (resistance

    parabola, pumps without back

    pressure, fan)

    4.Decreasing torque (e. g. Boiler

    feed pumpsat fixed pressure

    operation)

    III Overload range

    Torque curves

  • 7/28/2019 1.Fundamentals Coupling

    11/33

    12

    Smin= (1 - n2/n1) x 100 % Minimum slip

    n1 = Input speed

    n2 = Output speed

    The operating range is

    limited by :

    Characteristic curve

    100% scoop tube

    position with max.

    output speed

    Characteristic curve 0%

    scoop tube position with

    min. torque required

    Torque curves

  • 7/28/2019 1.Fundamentals Coupling

    12/33

    13

    System curve Coupling curve Drive speed

  • 7/28/2019 1.Fundamentals Coupling

    13/33

    14

    Change in system Speed reduction Scoop tube regulation

    to origin speed

  • 7/28/2019 1.Fundamentals Coupling

    14/33

    15

    Change in flow

    Speed change

    Speed raise Scoop tube regulation

    to higher speed

  • 7/28/2019 1.Fundamentals Coupling

    15/33

    19

    Design and Operation

    Scoop tube

    Scoop tube positions

    3 Scoop tube

    4 Oil ring

    5 Scoop tube position- 0%6 Scoop tube position-100%

    Animation

    http://localhost/var/www/apps/conversion/tmp/scratch_5/svtl.exehttp://localhost/var/www/apps/conversion/tmp/scratch_5/svtl.exe
  • 7/28/2019 1.Fundamentals Coupling

    16/33

    20

    Integration of the Variable-Speed Turbo Coupling

    into a control circuitPosition control circuit

    Components:

    Position controller

    Actuator for continuous

    control

    Position feedback

  • 7/28/2019 1.Fundamentals Coupling

    17/33

    21

    Integration of the Variable-Speed Turbo Coupling

    into a control circuitProcess control circuit

    Components: Position controller

    Process controller

  • 7/28/2019 1.Fundamentals Coupling

    18/33

    22

    Fields of application

    Oil and Gas

    - Crude-oil pumps

    - Injection pumps

    - Compressors

  • 7/28/2019 1.Fundamentals Coupling

    19/33

    23

    Fields of application

    Chemical Industry

    - Compressors

    - Pumps

    - Centrifuges

    - Fans

  • 7/28/2019 1.Fundamentals Coupling

    20/33

    24

    Fields of application

    Steel and iron industry

    - Compressors

    - Fans

    - Pumps

  • 7/28/2019 1.Fundamentals Coupling

    21/33

    25

    Fields of application

    Material Handling

    and Conveying

    - Conveyor drives

    - Pipeline pumps

    - Fan drives

    - Pipeline compressors

  • 7/28/2019 1.Fundamentals Coupling

    22/33

    26

    Fields of application

  • 7/28/2019 1.Fundamentals Coupling

    23/33

    27

    Fields of application Conveyor drives

  • 7/28/2019 1.Fundamentals Coupling

    24/33

    28

    Fields of application Coal Mills

  • 7/28/2019 1.Fundamentals Coupling

    25/33

    29

    Fields of application Fan Drives

  • 7/28/2019 1.Fundamentals Coupling

    26/33

    30

    Fields of application Pump Drives

  • 7/28/2019 1.Fundamentals Coupling

    27/33

    34

    Slip losses within coupling PV

    0

    20

    40

    60

    80

    100

    0 20 40 60 80 100

    n2/n1 * 100%

    Power%

    Power losses for working machines with parabolic torque characteristics

    P2max

    P1max = P2max/ (n2/n1)^3

    P1 = P2/ (1-s)

    Pv

    = P1

    - P2

    P2 = P1max * (n2/n1)^3

    Pvmax

    P1P2

    Pv

    s= 1-n2/n1

    P1max

    s

    66

    P2max

    2/3 * n1

    Pvmax

  • 7/28/2019 1.Fundamentals Coupling

    28/33

    35

    Variable Speed Coupling, Hydraulic losses

    P1

    P2

    Plosses

    n2n1

    100%23

    n1

    Maximum

    Power losses for working machines with parabolic torque characteristics

  • 7/28/2019 1.Fundamentals Coupling

    29/33

    36

    Oil Circuit Power Losses

  • 7/28/2019 1.Fundamentals Coupling

    30/33

    37

    The driven machine describes the characteristic output torque!!

    Motor

    Pump

    P1,M1,n1,w1 P2,M2,n2,w2Pv

    Applies only for

    parabolic output

    torque!Pv

    P=Power [kW], M=Torque [Nm], n=Speed [1/min], w=angular velocity [1/s]

  • 7/28/2019 1.Fundamentals Coupling

    31/33

    38

    Applies only for

    parabolic output

    torque!

    P1 = M1 * p *n1/30

    P1 = M1 * w1

    P2 = M2 * p *n2/30

    P2 = M2 * w2

    M1 = M2 = M

    Pv = P1 P2 = M1 * w1 M2 * w2

    Pv = M * (w1w2)

    Pv

    M2= k * w2^2 = M

    Pv

    = k * w2

    ^2 * (w1

    w2

    ) = k * w1

    * w2

    ^2 k * w2

    ^3

    Pv`= k * w1 * 2 * w2 k * 3 * w2^2 Pvmax`= 0

    k * w1 * 2 * w2 = k * 3 * w2^2

    2 * w1 = 3 * w2

    w2 = 2/3 * w1The maximum slip losses Pv are at 66% output speed

    (approx. 40% scoop tube position)

  • 7/28/2019 1.Fundamentals Coupling

    32/33

    39

    The maximum slip losses Pv are at 66% output speed

    (approx. 40% scoop tube position) at parabolic output torque

  • 7/28/2019 1.Fundamentals Coupling

    33/33

    40