62
© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e  Slide 1 of 62 Chapter 7 Functions of Several Variables

1c. Functions of Several Variables_ppt_07

Embed Size (px)

Citation preview

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 1/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 1 of 62

Chapter 7 

Functions of Several Variables

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 2/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 2 of 62

Examples of Functions of Several Variables

Partial Derivatives

Maxima and Minima of Functions of Several Variables

Lagrange Multipliers and Constrained Optimization

The Method of Least Squares

Double Integrals

Chapter Outline

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 3/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 3 of 62

§ 7.1

Examples of Functions of Several Variables

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 4/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 4 of 62

Functions of More Than One Variable

Cost of Material

Tax and Homeowner Exemption

Level Curves

Section Outline

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 5/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 5 of 62

Functions of More Than One Variable

Definition Example

 Function of Several 

Variables: A function

that has more than one

independent variable

w z 

 xyw z  y x f  

5

,,,2

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 6/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 6 of 62

Functions of More Than One Variable

EXAMPLE

SOLUTION

Let . Compute g (1, 1) and g (0, -1). 22 2, y x y x g 

31211211,1 22  g 

21201201,022  g 

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 7/62© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 7 of 62

Cost of Material

EXAMPLE

SOLUTION

(Cost ) Find a formula C ( x, y, z ) that gives the cost of material for the

rectangular enclose in the figure, with dimensions in feet, assuming that the

material for the top costs $3 per square foot and the material for the back and

two sides costs $5 per square foot.

TOP LEFT SIDE RIGHT SIDE BACK 

3 5 5 5

 xy yz yz xz Area (sq ft)

Cost (per sq ft)

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 8/62© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 8 of 62

Cost of Material

The total cost is the sum of the amount of cost for each side of the enclosure,

CONTINUED

.5feetsquareinside back of area back of footsquare per cost  xz 

Similarly, the cost of the top is 3 xy. Continuing in this way, we see that the

total cost is

.51035553,, xz  yz  xy xz  yz  yz  xy z  y xC 

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 9/62© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 9 of 62

Tax & Homeowner Exemption

EXAMPLE

(Tax and Homeowner Exemption) The value of residential property for tax

 purposes is usually much lower than its actual market value. If v is the market

value, then the assessed value for real estate taxes might be only 40% of v.

Suppose the property tax, T , in a community is given by the function

where v is the estimated market value of a property (in dollars), x is a

homeowner’s exemption (a number of dollars depending on the type of 

 property), and r is the tax rate (stated in dollars per hundred dollars) of net

assessed value.

Determine the real estate tax on a property valued at $200,000 with a

homeowner‟s exemption of $5000, assuming a tax rate of $2.50 per hundred

dollars of net assessed value.

,4.0100,, xv

 xvr  f  T 

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 10/62© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 10 of 62

Tax & Homeowner Exemption

SOLUTION

We are looking for T . We know that v = 200,000, x = 5000 and r = 2.50.

Therefore, we get

.18755000000,2004.0100

5.25000,000,200,5.2 f  T 

CONTINUED

So, the real estate tax on the property with the given characteristics is $1875.

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 11/62© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 11 of 62

Level Curves

Definition Example

 Level Curves: For a

function f  ( x, y), a

family of curves with

equations  f  ( x, y) = c 

where c is any constant

An example

immediately follows.

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 12/62© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 12 of 62

Level Curves

EXAMPLE

SOLUTION

Find a function  f  ( x, y) that has the curve y = 2/ x2 as a level curve.

2/2 x y

Since level curves occur where  f  ( x, y) = c, then we must rewrite y = 2/ x2 in that

form.

This is the given equation of 

the level curve.

0/2 2 x y Subtract 2/ x2 from both sides

so that the left side resembles

a function of the form  f  ( x, y).

Therefore, we can say that y  – 2/ x2 = 0 is of the form  f  ( x, y) = c, where c = 0.

So,  f  ( x, y) = y  – 2/ x2.

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 13/62© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 13 of 62

§ 7.2

Partial Derivatives

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 14/62© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 14 of 62

Partial Derivatives

Computing Partial Derivatives

Evaluating Partial Derivatives at a Point

Local Approximation of  f  ( x, y)

Demand Equations

Second Partial Derivative

Section Outline

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 15/62© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 15 of 62

Partial Derivatives

Definition Example

 Partial Derivative of f  ( x, y)

with respect to x: Written ,

the derivative of  f  ( x, y),

where y is treated as a

constant and  f  ( x, y) is

considered as a function of  x 

alone

If , then

 x

 f  

432, y x y x f  

.8

and 6

33

42

 y x y

 f  

 y x x f  

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 16/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 16 of 62

Computing Partial Derivatives

EXAMPLE

SOLUTION

Compute for 

To compute , we only differentiate factors (or terms) that contain x and

we interpret y to be a constant.

This is the given function.

.ln, 32  ye x y x f   x

 x

 f  

ye x y x f   x ln, 32

Use the product rule where

 f  ( x) = x2 and g ( x) = e3 x. 233 32ln xee x y

 x

 f   x x

 y f  

 x f  

 and 

To compute , we only differentiate factors (or terms) that contain y and

we interpret x to be a constant. y

 f  

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 17/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 17 of 62

Computing Partial Derivatives

This is the given function. ye x y x f   x ln, 32

Differentiate ln y.

CONTINUED

 

  

 

 ye x

 y

 f   x 132

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 18/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 18 of 62

Computing Partial Derivatives

EXAMPLE

SOLUTION

Compute for 

To compute , we treat every variable other than L as a constant. Therefore

This is the given function.

.3, LK  K  L f  

 L

 f  

 L f  

LK  K  L f   3,

Rewrite as an exponent. 213, LK  K  L f  

Bring exponent inside

 parentheses.

21213, K  L K  L f  

 Note that K is a constant. 21213, L K  K  L f  

Differentiate.  L

 K  L K 

 L

 f  

2

33

2

1 2121

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 19/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 19 of 62

Evaluating Partial Derivatives at a Point

EXAMPLE

SOLUTION

Let Evaluate at ( x, y, z ) = (2, -1, 3). .5,, 2 z  xy z  y x f  

 y f  

.1231223,1,2,2

 y

 f   xyz 

 y

 f  

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 20/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 20 of 62

Local Approximation of  f  (x , y )

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 21/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 21 of 62

Local Approximation of  f  (x , y )

EXAMPLE

SOLUTION

Let Interpret the result .5,, 2 z  xy z  y x f   .123,1,2

 y f  

We showed in the last example that .123,1,2

 y

 f  

This means that if  x and z are kept constant and y is allowed to vary near -1,

then  f  ( x, y, z ) changes at a rate 12 times the change in y (but in a negative

direction). That is, if  y increases by one small unit, then  f  ( x, y, z ) decreases by

approximately 12 units. If  y increases by h units (where h is small), then  f  ( x, y,

 z ) decreases by approximately 12h. That is,

.123,1,23,1,2 h f  h f  

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 22/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 22 of 62

Demand Equations

EXAMPLE

SOLUTION

The demand for a certain gas-guzzling car is given by  f ( p1, p2), where p1 is

the price of the car and p2 is the price of gasoline. Explain why and 0

1

 p

 f  

is the rate at which demand for the car changes as the price of the car 

changes. This partial derivative is always less than zero since, as the price of 

the car increases, the demand for the car will decrease (and visa versa).

.02

 p

 f  

1 p

 f  

is the rate at which demand for the car changes as the price of gasoline

changes. This partial derivative is always less than zero since, as the price of 

gasoline increases, the demand for the car will decrease (and visa versa).

2 p

 f  

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 23/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 23 of 62

Second Partial Derivative

EXAMPLE

SOLUTION

Let . Find .

2

 y x f  

We first note that This means that to compute , we

must take the partial derivative of with respect to x.

34, y y x xe y x f   y

.2

 

  

 

 y

 f  

 x y x

 f  

 y x

 f  

2

 y

 f  

3242

43 xe y x xe

 x y

 f  

 x y x

 f   y y

 

 

 

 

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 24/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 24 of 62

§ 7.3

Maxima and Minima of Functions of Several

Variables

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 25/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 25 of 62

Relative Maxima and Minima

First Derivative Test for Functions of Two Variables

Second Derivative Test for Functions of Two Variables

Finding Relative Maxima and Minima

Section Outline

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 26/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 26 of 62

Relative Maxima & Minima

Definition Example

 Relative Maximum of f  ( x, y):

 f  ( x, y) has a relative

maximum when x = a, y = b 

if  f  ( x, y) is at most equal to

 f  (a, b) whenever  x is near a 

and y is is near b.

Examples are forthcoming.

Definition Example

 Relative Minimum of f  ( x, y):

 f  ( x, y) has a relativeminimum when x = a, y = b if 

 f  ( x, y) is at least equal to

 f  (a, b) whenever  x is near a 

and y is is near b.

Examples are forthcoming.

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 27/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 27 of 62

First-Derivative Test

 If one or both of the partial derivatives does not exist, then there is no

relative maximum or relative minimum.

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 28/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 28 of 62

Second-Derivative Test

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 29/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 29 of 62

Finding Relative Maxima & Minima

EXAMPLE

SOLUTION

Find all points ( x, y) where  f  ( x, y) has a possible relative maximum or minimum. Then use the second-derivative test to determine, if possible, the

nature of  f  ( x, y) at each of these points. If the second-derivative test is

inconclusive, so state.

2216432, 22 y x y xy x y x f  

We first use the first-derivative test.

422

 y x x

 f  

1662

 y x

 y

 f  

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 30/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 30 of 62

Finding Relative Maxima & Minima

 Now we set both partial derivatives equal to 0 and then solve each for  y.

0422 y x 01662 y x

CONTINUED

2 x y

3

8

3

1 x y

 Now we may set the equations equal to each other and solve for  x.

3

8

3

12 x x

863 x x

862  x

22  x

1 x

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 31/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 31 of 62

Finding Relative Maxima & Minima

We now determine the corresponding value of  y by replacing x with 1 in the

equation y = x + 2.

CONTINUED

321  y

So we now know that if  there is a relative maximum or minimum for thefunction, it occurs at (1, 3). To determine more about this point, we employ the

second-derivative test. To do so, we must first calculate

.,

22

2

2

2

2

 

 

 

 

 y x

 f  

 y

 f  

 x

 f   y x D

d l

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 32/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 32 of 62

Finding Relative Maxima & Minima

Since , we know, by the second-derivative test,

that  f  ( x, y) has a relative maximum at (1, 3).

CONTINUED

0 and 0,2

 y x

 f   y x D

24222

2

 

  

 

 y x

 x x

 f  

 x x

 f  

616622

2

 

  

 

 y x

 y y

 f  

 y y

 f  

216622

 

  

 

 y x

 x y

 f  

 x y x

 f  

8262,2

22

2

2

2

2

 

  

 

 y x

 f  

 y

 f  

 x

 f   y x D

i di l i i i i

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 33/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 33 of 62

Finding Relative Maxima & Minima

EXAMPLE

SOLUTION

A monopolist manufactures and sells two competing products, call them I andII, that cost $30 and $20 per unit, respectively, to produce. The revenue from

marketing x units of product I and y units of product II is

Find the values of  x and y that maximize the monopolist‟s profits.

.2.01.004.011298, 22  y x xy y x y x R

We first use the first-derivative test.

 x y x

 R2.004.098

 y x y

 R4.004.0112

Fi di R l i M i & Mi i

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 34/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 34 of 62

Finding Relative Maxima & Minima

 Now we set both partial derivatives equal to 0 and then solve each for  y.

CONTINUED

 Now we may set the equations equal to each other and solve for  x.

02.004.098 x y 04.004.0112 y x

24505 x y 2801.0 x y

2801.024505 x x

28024509.4 x

21709.4 x

443 x

Fi di R l i M i & Mi i

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 35/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 35 of 62

Finding Relative Maxima & Minima

We now determine the corresponding value of  y by replacing x with 443 in the

equation y = -0.1 x + 280.

CONTINUED

2362804431.0  y

So we now know that revenue is maximized at the point (443, 236). Let‟sverify this using the second-derivative test. To do so, we must first calculate

.,

22

2

2

2

2

 

  

 

 y x

 R

 y

 R

 x

 R y x D

Fi di R l i M i & Mi i

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 36/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 36 of 62

Finding Relative Maxima & Minima

Since , we know, by the second-derivative test,

that  R( x, y) has a relative maximum at (443, 236).

CONTINUED

0 and 0,2

 y x

 R y x D

2.02.004.0982

2

 

  

 

 x y x x

 R

 x x

 R

4.04.004.01122

2

 

  

 

 y x

 y y

 R

 y y

 R

04.04.004.01122

 

  

 

 y x

 x y

 R

 x y x

 R

0784.004.04.02.0,2

22

2

2

2

2

 

  

 

 y x

 R

 y

 R

 x

 R y x D

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 37/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 37 of 62

§ 7.4

Lagrange Multipliers and Constrained

Optimization

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 38/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 38 of 62

Background and Steps for Lagrange Multipliers

Using Lagrange Multipliers

Lagrange Multipliers in Application

Section Outline

O ti i ti

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 39/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 39 of 62

Optimization

In this section, we will optimize an objective equation  f  ( x, y) given a constraint

equation g ( x, y). However, the methods of chapter 2 will not work, so we must

do something different. Therefore we must use the following equation and

theorem.

 y x g  y x f   y x F  ,,,,   

St F L M lti li

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 40/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 40 of 62

Steps For Lagrange Multipliers

L-1

L-2

L-3

U i L M lti li

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 41/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 41 of 62

Using Lagrange Multipliers

EXAMPLE

SOLUTION

Maximize the function , subject to the constraint22  y x

We have and

.32,,22

y x y x y x F    

022

  x

 x

 F 

.032 y x

32, ,, 22 y x y x g  y x y x f  

The equations L-1 to L-3, in this case, are

02

  y y

 F 

.032

 y x

 F 

 

U i L M lti li

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 42/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 42 of 62

Using Lagrange Multipliers

From the first two equations we see that

CONTINUED

.2 y x  

Therefore,

.2 y x

Substituting this expression for  x into the third equation, we derive

032 y x

0322 y y

035  y

5

3 y

U i L M lti li

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 43/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 43 of 62

Using Lagrange Multipliers

Using y = 3/5, we find that

CONTINUED

 

  

 

 

  

 

.

5

6

5

32

5

6

5

32

 

 x

So the maximum value of  x2 + y2 with x and y subject to the constraint occurs

when x = 6/5, y = 3/5, and That maximum value is.5/6 

.8.125

45

25

9

25

36

5

3

5

622

 

  

  

  

 

L M lti li i A li ti

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 44/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 44 of 62

Lagrange Multipliers in Application

EXAMPLE

SOLUTION

Four hundred eighty dollars are available to fence in a rectangular garden. Thefencing for the north and south sides of the garden costs $10 per foot and the

fencing for the east and west sides costs $15 per foot. Find the dimensions of 

the largest possible garden.

Let x represent the length of the garden on the north and south sides and y 

represent the east and west sides. Since we want to use all $480, we know that

.48015151010 y y x x

We can simplify this constraint equation as follows. 04803020, y x y x g 

We must now determine the objective function. Since we wish to maximize

area, our objective function should be about the quantity „area‟. 

Lagrange Multipliers in Application

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 45/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 45 of 62

Lagrange Multipliers in Application

The area of the rectangular garden is xy. Therefore, our objective equation is

., xy y x f   A

Therefore,

CONTINUED

.4803020,,,, y x xy y x g  y x f   y x F     

 Now we calculate L-1, L-2, and L-3.

020

  y

 x

 F 

030

  x y

 F 

04803020

 y x

 F 

 

Lagrange Multipliers in Application

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 46/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 46 of 62

Lagrange Multipliers in Application

From the first two equations we see that

CONTINUED

.3020

 x y 

Therefore,

.

3

2 x y

Substituting this expression for  y into the third equation, we derive

04803020 y x

0480323020      x x

04802020 x x

12 x

Lagrange Multipliers in Application

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 47/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 47 of 62

Lagrange Multipliers in Application

Using  x = 12, we find that

CONTINUED

.

5

2

30

12

8123

2

 

 y

So the maximum value of  xy with x and y subject to the constraint occurs when

 x = 12, y = 8, and That maximum value is.5/2 

.feetsquare 96812

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 48/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 48 of 62

§ 7.5

The Method of Least Squares

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 49/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 49 of 62

Least Squares Error 

Least Squares Line (Regression Line)

Determining a Least Squares Line

Section Outline

Least Squares Error

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 50/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 50 of 62

Least Squares Error

Definition Example

 Least Squares Error : The total error in

approximating the data points ( x1, y1),....,

( x N , y N ) by a line y = Ax + B, measured by

the sum E of the squares of the vertical

distances from the points to the line,

Example is

forthcoming.

22

2

2

1 N  E  E  E  E 

Least Squares Line (Regression Line)

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 51/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 51 of 62

Least Squares Line (Regression Line)

Definition Example

 Least Squares Line 

( Regression Line): A

straight line y = Ax + B for which the error  E is

as small as possible.

Example isforthcoming.

Determining a Least Squares Line

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 52/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 52 of 62

Determining a Least Squares Line

EXAMPLE

Table 5 shows the 1994 price of a gallon (in U.S. dollars) of fuel and the averagemiles driven per automobile for several countries.

(a) Find the straight line that provides the best least-squares fit to these data.

(b) In 1994, the price of gas in Japan was $4.14 per gallon. Use the straight

line of part (a) to estimate the average number of miles automobiles weredriven in Japan.

Determining a Least Squares Line

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 53/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 53 of 62

Determining a Least Squares Line

(a) The points are plotted in the figure below. The sums are calculated in

the table below and then used to determine the values of  A and B.

CONTINUED

SOLUTION

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4

Price per Gallon

   A  v  e  r  a  g  e   M   i   l  e  s  p  e  r   A  u   t  o

Determining a Least Squares Line

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 54/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 54 of 62

Determining a Least Squares Line

CONTINUED

x y xy x 2

1.57 10,371 16,282.47 2.4649

2.86 10,186 29,131.96 8.17963.31 8740 28,929.4 10.9561

3.34 7674 25,631.16 11.1556

3.44 7456 25,648.64 11.8336

1.24 11,099 13,762.76 1.5376∑ x = 15.76 ∑ y = 55,526 ∑ xy = 139,386.4 ∑ x2 = 46.1274

Determining a Least Squares Line

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 55/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 55 of 62

Determining a Least Squares Line

CONTINUED

824.1365

76.151274.466

526,5576.154.386,13962

 A

898.841,12

6

76.15824.1365526,55

 B

Therefore, the equation of the least-squares line is y = -1365.824 x + 12,841.898.

(b) We use the straight line to estimate the average number of miles

automobiles were driven in Japan in 1994 by setting x = 4.14. Then we get

 y = -1365.824(4.14) + 12,841.898 ≈ 7187.

Therefore, we estimate the average number of miles per auto in Japan in

1994 to be 7187.

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 56/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 56 of 62

§ 7.6

Double Integrals

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 57/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 57 of 62

Double Integral of  f  ( x, y) over a Region R

Evaluating Double Integrals

Double Integrals in “Application” 

Section Outline

Double Integral of f (x y) over a Region R

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 58/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 58 of 62

Double Integral of  f  (x , y ) over a Region R 

Definition Example

 Double Integral of f  ( x, y) over a Region

 R: For a given function  f  ( x, y) and aregion R in the xy-plane, the volume of 

the solid above the region (given by the

graph of  f  ( x, y)) minus the volume of 

the solid below the region (given by the

graph of  f  ( x, y))

Example is

forthcoming.

The Double Integral

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 59/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 59 of 62

The Double Integral 

Evaluating Double Integrals

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 60/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 60 of 62

Evaluating Double Integrals

EXAMPLE

SOLUTION

Calculate the iterated integral.

Here g ( x) = x and h( x) = 2 x. We evaluate the inner integral first. The variablein this integral is y (because of the dy).

  

  3

0

2

dx ydy x

 x

2

2222

2

2

3

22

2

2 x

 x x y ydy

 x

 x

 x

 x

 Now we carry out the integration with respect to x.

2

270

2

13

2

1

2

1

2

3 33

3

0

33

0

2 xdx x

So the value of the iterated integral is 27/2.

Double Integrals in “Application”

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 61/62

© 2010 Pearson Education Inc. Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS , 12e – Slide 61 of 62

Double Integrals in Application  

EXAMPLE

SOLUTION

Calculate the volume over the following region R bounded above by the graphof  f  ( x, y) = x2 + y2.

 R is the rectangle bounded by the lines x = 1, x = 3, y = 0, and  y = 1.

The desired volume is given by the double integral . By the

result just cited, this double integral is equal to the iterated integral

 R

dxdy y x 22

  

  

1

0

3

1

22 .dydx y x

We first evaluate the inner integral.

22223

23

3

1

23

3

1

22 23

26

3

1391

3

13

3

3

3 y y y y y xy

 xdx y x

 

  

 

 

  

 

 

  

 

Double Integrals in “Application”

7/27/2019 1c. Functions of Several Variables_ppt_07

http://slidepdf.com/reader/full/1c-functions-of-several-variablesppt07 62/62

Double Integrals in Application  

 Now we carry out the integration with respect to y.

3

2800

3

2

3

260

3

20

3

261

3

21

3

26

3

2

3

262

3

26 33

1

0

31

0

2  

  

 

 

  

 

 

  

 

 

  

  y ydy y

CONTINUED

So the value of the iterated integral is 28/3.

 Notice that we could have set up the initial double integral as follows.

This would have given us the same answer.

  

  

3

1

1

0

22 dxdy y x