1963_A7 R35 S4

Embed Size (px)

Citation preview

  • 8/10/2019 1963_A7 R35 S4

    1/111

    S I M P L I F I E D C A L C U L A T I O N O F C A B L E

    T E N S I O N I N S U S P E N S I O N B R I D G E S

    b y

    K E N N E T H M A R V I N R I C H M O N D

    B.A.Sc. ( C i v i l E n g . )

    T h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1959

    A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T OF

    T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

    M A S T E R O F A P P L I E D S C I E N C E

    i n t h e

    D e p a r t m e n t o f

    . C I V I L E N G I N E E R I N G

    We a c c e p t t h i s t h e s i s a s c o n f o r m i n g t o

    t h e r e q u i r e d s t a n d a r d

    T H E U N I V E R S I T Y O F B R I T I S H C O L U MB I A

    S e p t e m b e r , 1963

  • 8/10/2019 1963_A7 R35 S4

    2/111

    In presenting this thes is in pa rt ia l fulfi lment of

    the requirements for an advanced degree at the University of

    British Columbia, I agree that the Library s ha l l make i t fr eel y

    av ai la bl e for reference and study. I fur ther agree that pe r-

    mission for extensive copying of this thes is for sch ola rl y

    purposes may be granted by the Head of my Department or by

    hi s repres entativeso It i s understood that copying, or p u b l i

    cation of this thes is for financial gain shall not be allowed

    without my wr it ten p ermis sion .

    The University of British Columbia-,

    Vancouver 8 , Canada.

    Department

  • 8/10/2019 1963_A7 R35 S4

    3/111

    i i

    ABSTRACT

    T h i s t h e s i s p r e s e n t s a method w h i c h f a c i l i t a t e s r a p i d

    d e t e r m i n a t i o n o f t he c a b l e t e n s i o n i n s u s p e n s i o n b r i d g e s . A

    set of t a b l e s a n d c u r v e s i s i n c l u d e d f o r u se i n t he a p p l i c a t i o n

    o f th e me tho d. The method i s v a l i d f o r s u s p e n s i o n b r i d g e s

    w i t h s t i f f e n i n g g i r d e r s o r t r u s s e s e i t h e r ' h i n g e d a t t h e s u p p o r t s

    o r c o n t i n u o u s .

    A m o d i f i e d s u p e r p o s i t i o n m et ho d i s d i s c u s s e d a nd t h e

    u se o f i n f l u e n c e l i n e s f o r c a b l e t e n s i o n i n n o n - l i n e a r s u s p e n

    s i o n b r i d g e s i s d e m o n s t r a t e d .

    A d e r i v a t i o n o f t he s u s p e n s i o n b r i d g e e q u a t i o n s i s

    i n c l u d e d a nd v a r i o u s r e f i n e m e n t s i n t h e t h e o r y a r e d i s c u s s e d .

    A c o m p u t e r p r o g r a m t o a n a l y s e s u s p e n s i o n b r i d g e s was

    w r i t t e n as an a i d i n the r e se a r ch and f o r t he purpo se o f t e s t i n g

    t h e m a n u a l m et ho d p r o p o s e d . A d e s c r i p t i o n o f t h e p r o g r a m i s

    i n c l u d e d a l o n g w i t h I t s F o r t r a n l i s t i n g .

  • 8/10/2019 1963_A7 R35 S4

    4/111

    v i i

    .ACKNOWLEDGEMENTS

    The author i si n d e b t e d t o Dr. R. P. Hooley f o rthe

    a s s i s t a n c e , guidance andencouragement g i v e n d u r i n g the r e s e a r c h

    and i n thep r e p a r a t i o n of t h i s t h e s i s . A l s o , theauthori s

    g r a t e f u l t o theN a t i o n a l Research C o u n c i l ofCanada f o rmakin g

    money a v a i l a b l e f o ra r e se a rc h a s s i s t a n t s h i p ,and t o th e B r i t i s h

    Columbia E l e c t r i c Company f o rthedonation of$500i n thefo rm

    of a s c h o l a r s h i p .

    K. M. R.

    September 1 6 , 9&3

    Vancouver, B r i t i s h Columbia

  • 8/10/2019 1963_A7 R35 S4

    5/111

    i i i

    TABLE OF CONTENTS

    Page

    CHAPTER 1. INTRODUCTION 1

    CHAPTER 2. THEORY AND REFINEMENTS 5

    G e n e r a l 5C a b l e E q u a t i o n 8G i r d e r E q u a t i o n 12

    S o l u t i o n o f E q u a t i o n s ( l l ) and (35) 19E f f e c t o f R e f i n e m e n t s i n Theory on Ac cu ra cy 21

    CHAPTER 3. COMPUTER PROGRAM . 25

    S o l u t i o n of t he G i r d e r E q u a t i o n 27I n t e g r a t i o n o f t he Cable Eq ua t i on 32Program Linkage 33I n p u t Data f o r the Program 3^F i n a l N o t e s on the Computer P rogram 36

    CHAPTER 4. DETERMINATION OF H 37

    G e n e r a l 37S u p e r p o s i t i o n o f P a r t i a l L o a d in g Cases 38S i n g l e S p a n 39T h r e e - S p a n B r i d g e w i t h H i n g e d S u p p o r t s 44T h r e e - S p a n B r i d g e w i t h C o n t i n u o u s G i r d e r 45V a r i a b l e E I 50

    CHAPTER 5. CONCLUSIONS 52

    APPENDIX 1 . BLOCK DIAGRAM AND FORTRAN LI ST IN G FOR

    COMPUTER PROGRAM 55

    APPENDIX 2 . TABLES OF CONSTANTS 60

    APPENDIX 3. NUMERICAL EXAMPLES OF CALCULATION OF H 68

    BIBLIOGRAPHY 8 l

  • 8/10/2019 1963_A7 R35 S4

    6/111

    i v

    TABLE OF SYMBOLS

    Geometry

    L = Le ng th of spa n

    B = D i f f e r e n c e i n e l e v a t i o n o f c a b l e s u p p o r t s

    x = A b s c i s s a o f u n d e f l e c t e d c a b l e

    y = O r d i n a t e o f u n d e f l e c t e d c a b l e m e a su r ed f r o m c h o r d j o i n

    i n g u n d e f l e c t e d c a b l e s u p p o r t s

    dx = Incr em en t i n x

    dy = Increm ent i n y

    d s = . I n c r e m e n t a l l e n g t h o f c a b l e c o r r e s p o n d i n g t o d x a n d d y

    LT = I f 1 -1 d x f o r a l l spans

    J oWj

    L e = I J L ^ | j3 d x f o r a l l spans

    D e f l e c t i o n sv = V e r t i c a l d e f l e c t i o n o f c a b l e a nd g i r d e r

    h = H o r i z o n t a l d e f l e c t i o n o f c a b l e

    h& - H o r i z o n t a l d e f l e c t i o n o f l e f t c a b l e s u p p o r t

    .hg =' H o r i z o n t a l d e f l e c t i o n o f r i g h t c a b l e s u p p o rt

    A = E q u i v a l e n t s u p p o r t d i s p l a c e m e n t f o r i n e x t e n s i b l e c a b l e

    ( i n c l u d es e f f e c t . o f t empera tu re and s t r e s s e l o n g a t i o n o f

    c a b l e )

  • 8/10/2019 1963_A7 R35 S4

    7/111

    V

    F o r c e s

    w = U n i f o r m l y d i s t r i b u t e d d ea d l o a d o f b r i d g e

    p = D i s t r i b u t e d l i v e l o a d o n b r i d g e

    q = D i s t r i b u t e d l o a d e q u i v a l e n t t o s u s pe n d er f o r c e s

    = G i r d e r s u p p o r t r e a c t i o n a t l e f t e nd o f s p an

    Rj3 = G i r d e r s u p p o r t r e a c t i o n a t r i g h t e nd o f s p a n

    H = T o t a l h o r i z o n t a l c om po ne nt o f c a b l e t e n s i o n

    Hp = H o r i z o n t a l c om p on en t o f d e ad l o a d c a b l e t e n s i o n

    H-^ = H o r i z o n t a l c om po ne nt o f c a b l e t e n s i o n d ue t o l i v e l o a d ,

    t empera tu re change and su pp or t d i sp la ce me nt

    H L ' = H o r i z o n t a l c om p on en t o f c a b l e t e n s i o n d ue t o l i w e l o a d

    on e q u i v a l e n t b r id g e w i t h i n e x t e n s i b l e c a b l e a n d i m m o v a b l e

    s u p p o r t s

    8H = C o r r e c t i o n t o H -^ ' t o a c c o u n t f o r e x t e n s i o n o f c a b l e a n d

    support movement

    B e n d i n g Moments

    M'i = Be nd ing moment i n g i r d e r

    = B e n d i n g moment i n g i r d e r a t l e f t s u p p o r t

    Mg = B end in g moment i n g i r d e r a t r i g h t s up po r t

    M' = B e n d i n g moment i n e q u i v a l e n t g i r d e r w i t h no ca bl e

    E l a s t i c a n d T h e r m a l P r o p e r t i e s

    6 = C o e f f i c i e n t o f t h e r m a l e x p a n s i o n f o r c a b l e

    t = Tempera tu re r i s e

    A. = C r o s s - s e c t i o n a l a r e a o f c a b l e

    E = Yo un g ' s Modulus

    I = Moment o f i n e r t i a o f g i r d e r

    m = C o e f f i c i e n t o f shea r d i s t o r t i o n f o r g i r d e r o r t ru s s

  • 8/10/2019 1963_A7 R35 S4

    8/111

    v i

    A = C r o s s - s e c t i o n a l a r e a o f g i r d e r webw

    G = Sh ea r modulu s

    A ^ = C r o s s - s e c t i o n a l a r e a o f t r u s s d i a g o n a l ( s )

    0 = A n g l e measured f rom t r u s s v e r t i c a l t o d i a g o n a l ( s )

    Computer Program

    a -A = C o e f f i c i e n t s o f d i f f e r e n c e e q u a t i o n s a p p r o x i m a t i n g g i r d e r

    e q u a t i o n

    D = 1 f o r D e f l e c t i o n T h eo ry s o l u t i o n

    = 0 f o r E l a s t i c T he or y s o l u t i o n

    F h = 1 t o i n c l u d e e f f e c t o f h o r i z o n t a l d e f l e c t i o n

    = 0 t o d e l e t e e f f e c t o f h o r i z o n t a l d e f l e c t i o n

    P s = "1 t o i n c l u d e c h an g e i n c a b l e s l o p e i n c a b l e e q u a t i o n

    = 0. t o de l e t e e f f e c t o f ca b l e s l op e change

    M i s c e l l a n e o u s

    V E IE_E I

    a = R a t i o o f s i de span l e ng th ' L g to main span l e n g t h L

    b = fL sf E I7 E I

  • 8/10/2019 1963_A7 R35 S4

    9/111

    S I M P L I F I E D CALCULATION OF CABLE

    TENSION I N SUSPENSION BRIDGES

    . CHAPTER1

    INTRODUCTION

    T h i s t h e s i s adds a few new words, and pe rhaps a few

    new tho ug hts to an ar ea of s t ud y w h i c h has a l r e a d y been the

    s u b j e c t o f a c o n s i d e r a b l e a mo un t o f s t u d y a nd l i t e r a t u r e . The

    a n a l y s i s of s u s p e n s i o n b r i d g e s i s a p r o b l e m so mew hat d i f f e r e n t

    f r o m th e u s u a l ' p r o b l e m s e n c o u nt e r e d b y t he s t r u c t u r a l e n g i n e e r

    and somewhat more d i f f i c u l t t o s o l v e . I t i s because of th e

    d i f f e r e n c e s and the d i f f i c u l t i e s t h a t so much wo rk has be en done

    b o t h t o e x p l o r e e x t e n s i v e l y the p r o b l e m s i n v o l v e d and to ov e r

    come t he d i f f i c u l t i e s i n a n a l y s i n g a nd d e s i g n i n g s u s p e n s i o n

    b r i d g e s .

    T he p r o b l e m i n a n a l y s i s o f s u s p e n s i o n b r i d g e s I s a

    r e s u l t o f t h e i r r e l a t i v e f l e x i b i l i t y a nd t h e i r d e s i r a b l e a b i l i t y

    t o d e f l e c t i n such a manner a s to mi n i mi ze the bend ing s t r e s s e s

    i n t he s t i f f e n i n g g i r d e r . D o u b l i n g t h e l o a d a p p l i e d t o a s u s

    p e n s i o n b r i d g e does n o t n e c e s s a r i l y d o u b l e t h e b e n d i n g m o m en ts .

    T h e r e f o r e , s u s p e n s i o n b r i d g e s a r e s a i d t o be n o n - l i n e a r s t r u c

    t u r e s . T h at i s , , t h e r e i s a n o n - l i n e a r r e l a t i o n s h i p b et we en l o a d

    1

  • 8/10/2019 1963_A7 R35 S4

    10/111

    2

    a n d r e s u l t a n t s t r e s s e s . A d i r e c t r e s u l t o f t h i s n o n - l i n e a r i t y

    i s t h a t s u p e r p o s i t i o n o f r e s u l t s o f p a r t i a l l o a d i n g s , and

    m et ho ds o f a n a l y s i s dependent on s u p e r p o s i t i o n a re n o t a p p l i c

    a b l e i n t he a n a l y s i s o f s u s p e n s i o n b r i d g e s . I t w i l l be shown

    h e r e t h a t a m od i f i e d s u p e r p o s i t i o n me thod can be adap t ed to the

    s o l u t i o n o f s u s p e n s i o n b r i d g e p r o b l e m s .

    I n v e s t i g a t i o n o f s u s p e n s i o n b r i d g e s h as b ee n i n s p i r e d

    by t w o . o b j e c t i v e s a n d a t l e a s t tw o m a i n t h e o r i e s h a v e b e e n

    d e v e l o p e d . One g o a l o f i n v e s t i g a t o r s h as b e en t h e d e v e l o p m e n t

    o f a n e x a c t t h e o r y o f a n a l y s i s . A s i n m os t e n g i n e e r i n g p r o b

    l e m s , s o i n t h e a n a l y s i s o f s u s p e n s i o n b r i d g e s , a c o m p l e t e l y

    e x a c t t h e o r y i s v i r t u a l l y i m p o s s i b l e t o d e v e l o p a nd would be

    ex t r em e l y cumbersome to u se f o r de s i gn pu rp os es . Howeve r ,

    r e a s o n a b l y a c c u r a t e s o l u t i o n s c a n be o b t a i n e d b y t h e u s e o f t h e

    D e f l e c t i o n T h e o r y , w h i c h t akes a c c o u n t o f t h e n o n - l i n e a r b e h a

    v i o r o f s u s p e n s i o n b r i d g e s . A n o t h e r g o a l o f i n v e s t i g a t o r s h as

    been the s i m p l i f i c a t i o n o f s u s p e n s i o n b r i d g e t h e o r y i n o r d e r t o

    r e d u ce t he l a b o r r e q u i r e d f o r a n a l y s i s a nd d e s i g n . A r e s u l t

    h as be en th e E l a s t i c T h e o r y , w h i c h ig no re s the changes i n ge o- '

    m e t r y r e s u l t i n g f r o m d e f l e c t i o n , o f a s u s p e n s i o n b r i d g e u n d er

    l i v e l oa d and t empera tu re c h a n g e s . T hu s' , t h e E l a s t i c T h e o r y

    i s a l i n e a r r e l a t i o n s h i p b et we en l o a d a nd s t r e s s and the u s u a l

    me thods o f s u p e r p o s i t i o n can be us ed . As migh t be ex pe c t ed ,

    t he two t h e o r i e s g i v e d i f f e r e n t r e s u l t s w h i c h c an va ry w i d e l y

    de pen di ng on the f l e x i b i l i t y o f t h e b r i d g e .

    . Ch ap te r 2 i s devo te d to a deve lopm ent of the D e f l e c - .

    t i o n The ory or forms of i t . There seems t o be no u n i v e r s a l l y

    a c c e p t e d s t a n d a r d D e f l e c t i o n T h e o r y . E a c h of the many experts

    i n t h e f i e l d f a v o r s a s l i g h t l y d i f f e r e n t v e r s i o n . V a r i o u s

  • 8/10/2019 1963_A7 R35 S4

    11/111

    3

    r e f i ne me n t s i n the the o r y may be i n c l u d e d to improve the a cc u

    r a c y o f t he c a l c u l a t e d r e s u l t s an d thus t he D e f l e c t i o n Theory

    eq ua t i on s may take d i f f e r e n t f orms depen d ing on the a cc u r ac y

    d e s i r e d . Some o f t hese r e f i n e m e n t s a r e d i s c u s s e d a nd t h e

    e f f e c t on the eq ua t i on s i s shown . The E l a s t i c T he or y i s shown

    as a s i m p l i f i e d v e r s i o n o f t he D e f l e c t i o n Theory..., A l s o i n

    c l u d e d i s a q u a n t i t a t i v e i n d i c a t i o n o f t he e f f e c t s on a c c u r a c y

    w h i c h migh t be ex pec ted as a r e s u l t o f i n c l u s i o n o r n eg l e c t o f

    some of the r e f i n e m e n t s . . No new t he or y i s to be fou nd i n

    C h a p t e r 2 bu t the deve lopm en t ha s been i n c l u d e d he re t o p r o v i d e

    a fr amework o f r e f e r e nc e f o r the f o l l o w i n g c h a p t e r s .

    I t s ho u l d be no t ed t h a t t h r o u g h o u t t h i s w or k c o n s i d e r a

    t i o n i s c o n f i n e d t o s t a t i c c o n d i t i o n s a nd s t a t i c l o a d i n g s . No

    a t t e n t i o n i s g i v e n here t o the more complex c o n s i d e r a t i o n s o f

    dynamic l o a d i n g s on s u s p e n s i o n b r i d g e s .

    I t w i l l be seen i n deve lopm ent of the th eo ry tha t

    s o l u t i o n o f a s u s p e n s i o n b r i d g e p r o b l e m i n v o l v e s t h e s i m u l t a n e o u s

    s o l u t i o n o f a d i f f e r e n t i a l e q u a t i o n and a n i n t e g r a l e q u a t i o n .

    I n t he m ore g e n e r a l a nd m ore e x a c t s o l u t i o n s , i t i s n e c e s s a r y

    t o r e s o r t t o n u m e r i c a l m et ho ds f o r t h e s o l u t i o n o f e a c h o f these

    e q u a t i o n s . T he s i m u l t a n e o u s s o l u t i o n i s f o u n d b y a c u t a n d

    t r y me thod . Hence , s o l u t i o n o f a n u m er i ca l example can become

    a n e x t r e m e l y l e n g t h y a nd t e d i o u s p r o c e d u r e b y h an d c a l c u l a t i o n s .

    F o r t u n a t e l y , because o f the ex i s t en ce o f compu te r s i t

    i s no l o n g e r n e c e s s a r y t o p e r f o r m a l l c a l c u l a t i o n s b y h a n d.

    The p r o b l e m o f s u s p e n s i o n b r i d g e a n a l y s i s i s w e l l s u i t e d f o r

    s o l u t i o n on a comp u te r . Ch ap t e r 3 d e s c r i b e s a p r o g r a m which

    was w r i t t e n f o r t h e I B M1620 d i g i t a l com puter In or de r to

    i n v e s t i g a t e s u s p en s i o n b r i d g e a n a l y s i s . I t i s b e l i e v e d tha t

  • 8/10/2019 1963_A7 R35 S4

    12/111

    4

    t he methods employed In the program are w e l l s u i t e d f o r c o m p u t er

    a n a l y s i s . F o r t h a t r e a s o n , a l i s t i n g o f the F o r t r a n p rog ram

    has been i n c l u d e d i n the hopes t h a t i t may se rv e as a gu id e i n

    t h e p r e p a r a t i o n o f s u s p e n s i o n b r i d g e p r o g r a m s .

    The key to a s i m p l i f i e d s o l u t i o n t o s u s p e n s i o n b r i d g e

    p r o b l e m s i s a r a p i d d e t e r m i n a t i o n o f the v a l u e o f the c a b l e

    t e n s i o n . I n the more ex ac t me thods , c a b l e t e n s i o n i s f ound by

    a cu t and t r y method. Ch ap te r 4 d e s c r i b e s a m e th o d, b e l i e v e d

    to be new, whe reby H, the h o r i z o n t a l componen t o f ca b l e t e n s i o n

    can b e f o u n d e x t r e m e l y q u i c k l y . The p r i n c i p l e s u po n w h i c h the

    method depends are shown and the method i s d ev el o pe d. Use of

    the method r e q u i r e s the use of t a b l e s o r c u rv e s r e l a t i n g c e r t a i n

    d i m e n s i o n l e s s r a t i o s . T he se a r e i n c l u d e d , a l o n g w i t h n u m e r i c a l

    e xa m pl e s i l l u s t r a t i n g t h e a p p l i c a t i o n o f t h e m e th o d. The m et ho d

    e m pl o ys a f o r m o f s u p e r p o s i t i o n , w h i c h i s shown t o be v a l i d ,

    p r o v i d i n g the t o t a l va lu e of H i s known. S i nc e H i s the va lu e

    to be de te rm in ed and i s t he re fo re unknown, an e s t i m a t e i s . r e

    q u i r e d t o i n i t i a t e c a l c u l a t i o n s . The i n i t i a l e s t i m a t e of H i s

    i m p r o v e d by a r a p i d l y c o n v e r g i n g i t e r a t i v e p r o c e d u r e t o g i v e a n

    a c c u r a t e va l ue of H . The method may be a p p l i e d to su sp en s i on

    b r i d g e s e i t h e r w i t h c o n t i nu o u s s t i f f e n i n g g i r d e r s o r w i t h g i r d e r s

    h i n g e d a t the su pp or t s .

  • 8/10/2019 1963_A7 R35 S4

    13/111

    5

    CHAPTER2

    THEORY ANDREFINEMENTS

    G e n e r a l

    The f o l l o w i n g d e r i v a t i o n i s c o nc e rn e d w i t h t he case

    of a l o a d e d g i r d e r , o r e q u i v a l e n t p l a n e t r u s s , o f k no wn r i g i d i t y ,

    s us pe nd ed b y v e r t i c a l suspenders f r om a p e r f e c t l y c a b l e , which

    i s anch ored a t tower tops o r a n c h o r a g e s . I n t h e a n a l y s i s , t h e

    f o l l o w i n g s i m p l i f y i n g assumptions are made:

    1. The suspenders a re I n e x t e n s i b l e .

    2. The suspenders a r e so c l o se t o g e t h e r t h a t they

    may be r e p l a c e d by a c o n t i n u o u s f a s t e n i n g .

    3. T he d ea d l o a d o f t h e b r i d g e i s d i s t r i b u t e d a l o n g

    t h e g i r d e r s .

    4 . Th e g i r d e r i s i n i t i a l l y s t r a i g h t un d er t he a c t i o n

    of dead l o ad a l o n e , and c a r r i e s no be nd in g moment.

    5. The dead l o a d i s co ns ta n t f o r eac h sp an , and hence

    the cab le i s i n i t i a l l y p a r a b o l i c .

    The above a s su mpt ions a r e u s u a l f o r the so - c a l l e d

    " D e f l e c t i o n Th eor y" o r more exa c t th eo ry o f su sp en s i on b r id ge

    a n a l y s i s . Les s ex ac t forms of the D e f l e c t i o n The ory i n common

    use usua l ly make the f o l l o w i n g a d d i t i o n a l a s s um p t i o n s:

    6. The h o r i z o n t a l d e f l e c t i o n s o f t h e c a b l e a r e v e r y

    s m a l l compared w i t h t he v e r t i c a l d e f l e c t i o n s , and

    can b e n e g l e c t e d .

  • 8/10/2019 1963_A7 R35 S4

    14/111

    6

    7 . Deflections of the cable are very smallcompared

    with cable ordinates, and theireffecton cable

    slope can be neglected incalculationof cable

    extension.8. Sheardeflections in the girders are very small

    comparedwithbendingdeflectionand can be neglec

    ted.

    Assumptions 6, 1and 8may be excluded with little

    difficultyin the derivation, and may evenbe excluded in an

    analysisbydigitalcomputer. Therefore, theeffectsofhorizontaldeflections,cable slopechange,and shear deflectionare

    includedhereand discussedbriefly. Itis'notto bethought

    thattheirinclusion resultsin acompletetheory, butperhaps

    these aresomeof themoreimportant refinements whichcan be

    made. Others*havediscussed theeffectof theaboverefine

    ments,-and in additionhaveintroduced, or atleastmentioned,other refinements suchastowerhorizontal force,towershorten

    ingcable lock atmidspan,effectof loadsbetweenhangers,

    temperaturedifferentialsbetweengirder flanges,finitehanger

    spacing,weightof cable andhangers,variationof horizontal

    componentof cable tension withhangerinclination,and soforth.

    The DeflectionTheoryof suspension bridge analysisresultsin a non-linearrelationshipbetweenforces and deflec

    tionsandhencetheprincipleof superposition andmethods

    dependenton superposition are not applicable in the usual

    manner. In order tosimplifytheforce-deflection relationship

    "Into alinearone, it is necessary:tomakea furthersimplifying

    * Reference (12)

  • 8/10/2019 1963_A7 R35 S4

    15/111

    7

    a s s u m p t i o n . I t i s t h i s f u r t h e r a s s u m p t i o n w h i c h i s t h e b a s i s

    f o r t h e " E l a s t i c T h e o r y " . I t m a y b e s t a t e d a s f o l l o w s :

    9. T h e d e f l e c t i o n s o f t h e c a b l e a n d g i r d e r a r e s o

    s m a l l a s t o h a v e a n e g l i g i b l e e f f e c t o n t h e g e o

    m e t r y o f t h e c a b l e a n d h e n c e o n t h e m o m e n t a r m o f

    t h e c a b l e f o r c e .

    I t i s w e l l k n o w n t h a t t h e E l a s t i c T h e o r y r e s u l t s i n

    e r r o r s w h i c h a r e t o o l a r g e t o s a t i s f y e c o n o m y o f d e s i g n . W e r e

    i t n o t f o r t h e l e n g t h i n e s s o f D e f l e c t i o n T h e o r y c a l c u l a t i o n s ,

    t h e E l a s t i c T h e o r y w o u l d h a v e l o n g s i n c e p a s s e d o u t o f u s e f u l

    n e s s . M u c h e n e r g y h a s b e e n e x p e n d e d i n a t t e m p t s t o s i m p l i f y

    t h e D e f l e c t i o n T h e o r y t o y i e l d r e s u l t s o f h i g h a c c u r a c y w i t h a n

    e a s e a p p r o a c h i n g t h a t o f t h e E l a s t i c T h e o r y ; a n d i t i s t o t h a t

    e n d t h a t t h i s t h e s i s i s d e v o t e d .

    S o l u t i o n b y t h e D e f l e c t i o n T h e o r y c o n s i s t s o f t h e

    s i m u l t a n e o u s s o l u t i o n o f t w o e q u a t i o n s . T h e f i r s t I s r e f e r r e d

    t o h e r e a s t h e c a b l e e q u a t i o n , a n d r e l a t e s c a b l e d e f l e c t i o n s t o

    c a b l e l o a d s . T h e s e c o n d e q u a t i o n i s t h e d i f f e r e n t i a l e q u a t i o n

    r e l a t i n g g i r d e r d e f l e c t i o n t o g i r d e r l o a d s a n d c a b l e t e n s i o n .

    T h i s s e c o n d e q u a t i o n i s r e f e r r e d t o h e r e a s t h e g i r d e r e q u a t i o n .

    F i g u r e 1 s h o w s a s i n g l e s p a n s u s p e n s i o n b r i d g e w i t h

    a p p l i e d l o a d s . A l l d i s t a n c e s , f o r c e s a n d d e f l e c t i o n s a r e p o s i

    t i v e a s s h o w n . B o t h c a b l e a n d g i r d e r a r e i n i t i a l l y s u p p o r t e d

    a t A a n d B s e p a r a t e d b y a d i s t a n c e e q u a l t o t h e s p a n l e n g t h L .

    T h e g i r d e r i s l o a d e d w i t h a c o n s t a n t d e a d l o a d w , a l i v e l o a d p ,

    e n d r e a c t i o n s a n d R g , a n d e n d m o m e n t s M ^ a n d M g , w h i c h m a y b e

    e n d m o m e n t s a p p l i e d t o a h i n g e d g i r d e r o r t h e r e s u l t o f c o n t i n u i t y

    a t t h e s u p p o r t . I n a d d i t i o n , t h e g i r d e r i s s u b j e c t t o t h e

    d i s t r i b u t e d l o a d q e q u i v a l e n t t o t h e s u s p e n d e r f o r c e s . T h e

  • 8/10/2019 1963_A7 R35 S4

    16/111

    TO FOLLOW PAGE

    Figure 2.

  • 8/10/2019 1963_A7 R35 S4

    17/111

    cableisconnectedto thegirderbyverticalsuspendersand

    carriesthedistributed loadq. Thecableis intension,the

    horizontalcomponent ofwhichis constantand isequalto H.

    Atthesupports,theverticalcomponentsof thecable tensionareyA' andVg'. Undertheactionofliveloadandtemperature

    changes,thecableandgirderdeflectfromthepositionsshown

    in solid linesto thepositions indicatedbydashed lines. The

    cable supports deflecthorizontallythedistancesh^ and hg.

    The original cable position is givenbyco-ordinatesx and y

    measuredhorizontallyfromA andverticallyfromthechord joiningtheundeflected cable supportsat A and B. ApointP on

    the cable deflectsfromitsinitialpositionto apointP'

    horizontallyadistanceh andverticallyadistancev. Apoint

    Q,on thegirder deflectsfromItsinitialpositionvertically

    belowP to aposition Q,'verticallyadistancev.

    CableEquation

    Figure 2shows anelemental lengthof thecableat

    pointP. Its undeflected position isshown as asolid line,

    while its deflected position isshown as adashed line. The

    lengthof theelementin theundeflected position is givenby

    (ds)2

    (dx)2

    (dy Bdx\2

    ~ + \ -I J - ( 1 >

    Undertheactionofliveloadsthecable deflectsas shown and

    the lengthof thesameelementofcablein thedeflected posi

    tion is givenby

    (ds+Sds)2 (dx + dh)2 /dy Bdx dv\2

    + + . . . (2)

  • 8/10/2019 1963_A7 R35 S4

    18/111

    ds S'dsfl 1 6ds- + -

    dx dx \ 2dx

    1 1dh\ dv /dy

    2dx/ dx Vdx

    B 1dv- + ] . . . ( 3 )

    L 2dx.

    Subtracting (l)from (2)andrearrangingterms, it is foundthat

    dh

    dx

    Since ds and ha r e

    both extremelysmallcomparedwithunity,dx dxtheymay bedropped from the terms 1+ i ^ s and 1 + 1 ^ 1 .

    2 dx 2dxThe termi isgenerallysmallcomparedwith - over

    2dx dxlimostof thespan,but may besignificant,especiallyinvery

    flat cables. Expression ( 3 )then reducesto

    ds6ds dh dv /dy B 1dv'

    dx dx dx dx \dx L 2dx>Theextensionof thecable8ds ascausedbytemperature

    expansionandstressisgivenby

    8ds 6 t d s ds

    dx dx AE dx

    1

    2

    (5)

    where: 6 = coefficientofthermal expansion

    t = temperaturerise

    .H- = changeinhorizontalcomponentofcabletension

    duetoapplicationoflive load,temperature

    changes, supportmovement, etc.

    A = cross-sectionalareaofcableE = Young'sModulusforcablematerial

    Again,sincefUlis extremelysmallcomparedwithunity,i tmayd X / \2

    bedeletedfrom- the term ( 1+

  • 8/10/2019 1963_A7 R35 S4

    19/111

    10

    or,since'

    ds 1 1/dy B>

    dx 2\dx L,

    2

    (7)

    then6ds etds

    +HLds ds dv/dy B 1dv>

    dx dxVdx L 2dxy.(8)

    dx dx AE dx

    A combination of equation (4)representing cablegeometryand

    equation (8)representingHooke'sLawgives the cable equation

    as*~ 2

    dh et /ds\ 2

    HT fas\ 3

    +

    dx dxy AEVdxJ

    H Lds)AE Vdxi

    dv/dy B 1dvA

    dx Idx L 2dx,

    (9)

    Theabovecable equationmay besimplified significantlyif it

    isobserved that theterm [OS-- + In expression (5)is\dx L dx/

    normally lessthan .2,and LY_is generally smallcomparedwith

    dxdy-IL Hence,dv_--j_-sn o ^ v e r y significantin the totalexpres-dx L dxsionand can reasonablybeneglected. Since has already

    dx

    beenneglectedcomparedwith unity in thesameexpression,this

    amounts,to neglect of theeffectofdeflectionsoncable slope

    and expression (5)becomes6ds etds HT 'dsV

    dx- + - Hdx AE \dx/

    (5a)

    When(5a)iscombinedwith ( 4 ) , thesimplifiedcable equation

    is

    dh et /ds\2 HL /ds\ 3 dv(dy B I d+

    dx idxy AE\dx> dx\dx

    v'

    L 2dx,(9a)

    Itcanbeseenthat neglectofthechangeof cable slope is

    reflectedin expression (9)byneglect of theterm (4JAE \dxI

  • 8/10/2019 1963_A7 R35 S4

    20/111

    11

    comparedwithunity. _Jis usuallyof theorder.001 and AE d x

    Isnormallynotmuchlargerthan1, so atermoforder.001 has

    beenneglected comparedwith1. Onthis basis,Timoshenko

    arguesthatit is

    negligible. However,it is notdifficultto

    see thatagivenpercentageerrorin onetermofexpression(9)

    couldbemagnifiedbysubtracting thatterm fromanotherof

    similarmagnitude togivealargerpercentageerrorin^Jl.

    Expression (9)can befurther simplified if is2.Mx

    neglected comparedwith -5.inexpression (4). Then thedx L

    cableequationbecomes

    dh et /ds\2 HT Ids\ 3 dv /dy B\ = + - - ( 9 b )dx \dx/ AE \dx/ dx \dx L /

    This final expression givesalinear relationshipbetweenhori

    zontalandverticaldeflections.

    Itshouldbenotedthatthe abovelinear relationship

    betweenhorizontalandverticaldeflectionsdoes notimplythatthe structureislinear. Thecableequationhas beenreduced

    toalinearequation,but anon-linear relationshipcan and does

    s t i l l existbetweenstressesandapplied loads.

    Ifthecableequationisintegratedoverthe span

    lengthand thehorizontaldisplacementsof thesupportsare in

    sertedasconstantsofintegration,thefollowing expressionresults:

    h B - hAr LGt /ds\2dx

    Jo

    r L

    o

    H L ds

    AE Vdx,

    dx(10)

  • 8/10/2019 1963_A7 R35 S4

    21/111

    12

    or,ifL|ds_^2dx i s denotedby L, and L fd_^ .^ 3

    d x isdenoted

    by L.Q, then

    hB "hA = t L t + %

    Le

    AE

    _ o \ y

    CL HL /dsv 2

    AE \dx',

    dv /dy B 1dv

    dx \dx L 2 dx

    dx( l i ) }

    Ifthechangein cable slope can be neglected, then

    - hn GtL

  • 8/10/2019 1963_A7 R35 S4

    22/111

    TO FOLLOW PAGE

    Figure 4.

  • 8/10/2019 1963_A7 R35 S4

    23/111

    13

    the cableand thegirder. Figure3 shows afree-bodydiagram

    ofthegirderundertheactionofapplied loads. Thereaction

    RAcan befoundfrom

    RA MB- MA+

    (p+ w -q) (L- a) da... (12)

    Then,thebendingmomentin thegirderat x,denotedby M Is

    givenby

    L(p+w-q)(L-a)da fx(p+w-q)(x-a)da... (13)M MA (MB-MA)x x+ +

    Lo

    For simplicitydefineaquantityM'equalto thebendingmomentproducedbya l l loadsexcept thoseappliedby thecable. This

    isgivenby

    rL(p+w)(L-a)da r x

    o

    (p+w)(x-a)da... (14)

    ... (15)

    M' MA (MB-MA)x x= + +

    L

    Then

    M M

    1

    x ^

    L

    q(L-a)da T

    x

    q(x-a)da-Jo L Jo

    Now,i t isnecessarytoconsiderthestaticequilibrium

    ofthecableundertheapplied loads. Figure4 shows the

    forces actingon thedeflected cable, indicatedby adashed line.

    The cable tensionsat thesupportsareresolved intocomponents

    inthedirectionof thechordjoiningthedeflected pointsofsupportof thecable,andverticalcomponentsV^ andVg. The

    verticalcomponentV is givenby

    VA rL q( L + h B-(a+h))da

    L+ h B- hA.(16)

    It willbenotedthattheforcesin thedirectionof the closing

    chordhavehorizontalcomponentsequalto H, thehorizontalcomponentofcable tension.' Then,fortheequilibriumof the

  • 8/10/2019 1963_A7 R35 S4

    24/111

    14

    cable

    H(y-8]_+52)=VA(x-hA)-xq(x -(a+h))da ..(17)

    .(18)

    wherey- S]_ +S 2istheverticaldistancefrom thedeflected

    positionof theclosingchordto thedeflectedcable. Itisclearfrom geometry that

    8 1 B|hA (hB-hA)x>

    LV L VReferencetoFigure2willshowthat

    82 v h /dy B'

    Idx LThe termVA(x-hA)inequation(17).now becomes

    ..(19)

    VA(x-hfl) xA'Lq(L-a)da r L

    o hB" hA+

    q(hg-h)da

    o hA

    VA.hAA (20)

    Whenit is observedthatthehorizontal deflectionsarevery

    smallcomparedwiththedimensionsL, a and x,itcan beseen

    thatthetermsx f (hB~h)daa n ( ^ v flhaareverysmallcomparedJo L+ho-hfl R R

    withx I^ QA-k-a)da.and can beapproximated withnegligiblej o L+hB^A

    errorin thetotalterm VA(x-hA)asfollows:

    x ^Lq(hB-h) da x

    o^ B ^ A

    VAhA=hAH dy>

    VdXy

    Lq(hB-h)da

    A

    Then,thetermx. fLq(L~a) d aofequation (20)Jo L+hB'hA

    neglecting a l lbut thefirsttwotermstogive

    ...(21)

    ...(22)

    canbeexpanded,

    x ^ q(L-a)da x

    oL + hB" hA

    Lq(L-a)da x(hA-hfi) fL q(L-a)da

    + ...(23)L L

    Notethatthesecond termon therighthandsideofexpression

    (23)ismuchsmallerthanthefirst term. Itisthereforeper-

  • 8/10/2019 1963_A7 R35 S4

    25/111

    15

    mlssibletoapproximateitasfollows

    x(hA-h B)rL q(L-a)da x(hA-h B)H/dyi

    dx i...(24)

    o ~ \ ~ vA

    Ifsubstitutionsfromexpressions ( 2 1 ) , ( 2 2 ) , (23)and(24)aremadein expression ( 2 0 ) , it isfoundthat

    VA(x~hA) xfLq(L-a)da x(hffi-hB)H/dy

    L \dx, A

    xrL

    +

    q(hB-h)da hAH /dy^. . (25)

    L \dxJA

    If substitutionsfromexpressions ( l 8 ) , (19)and(25)aremade

    inexpression (17)andtheresult iscombinedwith expression

    (15) j the following expression results:

    M W H y v rx+ hqda

    hAH/dy) x+ H /dy\ hAr h B r

    L

    + q(hB-h)da ...(26)

    .dxj A \dx/AL Jo L

    Sincetermsinvolving the horizontal deflections are small, it

    ispermissibleto make someapproximationsintheseterms.

    Specifically, it is permissibletoapproximatethesuspender

    forcesq by

    -H-dydx'

    ...(27)

    Iftheaboveis substituted in(26)the expression for

    bendingmomentin the girderbecomes

    M M-< H y v+

    B

    L

    hA+

    (hB-hA)x h/dy B\ rxhd y da

    dx L o dx2

    h+A x

    L

    'dy\ (hA-h B)

    \dx/A

    d^y(hB-h)da

    odx2~

    .(28)

  • 8/10/2019 1963_A7 R35 S4

    26/111

    16

    Itcanbeshownthat,Ifallhorizontal displacements

    are increasedby aconstantamounth*,thebendingmomentinthe

    girderata llpointswillbeunchanged. Hence,ifh 0is set

    equalto-h ,h may bereplacedbyzeroinexpression ( 2 8 ) ,hgmay bereplacedby hg - hA, and h may bereplacedby h - hA.

    Expression (28)may bedifferentiatedtwicetogive

    d2M -p -w - H

    dx'

    d2y d2v d2h /dy B\ dh d2y

    dx2 dx2 dx2\dx Lj dx dx2...(29)

    Ifhorizontaldeflectionsareneglectedin thegirder

    equation, expressions (28)and(29)reducetoM-M-'- H(y +v) ... (28a)

    d2M -p -w -H /d2y d2v\

    T = \~?+ ~?~\ " ( 2 9 a )

    dx2 \dx2 dx2/

    If verticaldeflectionsareneglectedin thegirder

    equation, expressions (28)

    and(29)

    reducetotheElasticTheoryexpressions

    M= M"'1- Hy ... (28b)

    d2M -p -w-Hd2y ~ = ... (29b)dx dx'-

    Expression (13)canbedifferentiatedtwicetogive

    q- p - w...(30)

    d2M

    dx'Thenequations (29b)and(30)canbecombinedtogive expression

    ( 2 7 ) ,anapproximaterelationshipwhichwasusedearlier.

    Fromelementary strengthofmaterials,thebasic

    differentialequationrelating deflectiontobendingmoment and

    shear inagirderis

    EId2v -M + EImd2M...(31)

    dx' dx

  • 8/10/2019 1963_A7 R35 S4

    27/111

    17

    where: E

    I

    m

    Young'sModulus forthegirder material

    moment ofinertiaofthegirder

    coefficientofshear distortion

    m =m =

    ,.1 foragirder

    ADEsin0cos 0foraplane truss

    Aw =

    G=

    AT, =D

    cross-sectionalareaofgirderweb

    shearmodulus

    cross-sectionalareaofthediagonalmember (s)

    anglemeasuredfromverticaltodiagonalmember(s)

    Thedeflectionsdue tosheararesmallcomparedwiththedeflectionsduetobending. Therefore,negligibleerror

    2

    resultsif%^isrepresentedbytheapproximateexpression (29a),dx^

    Ifexpressions (28)and(29a)aresubstitutedinexpression (30),

    'andtheresultingequationisdifferentiatedtwice,thefollowing

    fourth-orderdifferentialequationisfound:

    (1+ Hm) Eld^v 2d(El)d 3 v d2

    (El)d2

    vdx4

    + +dx dx3 dx^ dx...(88)

    dx

    where

    dv

    E I \ d x

    1

    dx / o

    4 4 .+ e C L ( C L - 2 ) e " C L ( C L + 2 )

    ( C L)3

    E q u a t i o n (86)c an be s o l v e d to g i v e

    o

    v 2 M 2Ir V 2

    E I

    where

    CL - C Le - e

    (89)

    .(90)

  • 8/10/2019 1963_A7 R35 S4

    62/111

    47

    Vr x eC x

    - e_ C x

    L " e C L - e ~ C L( C L )2

    Then the end s lo p es can be fo un d fr om

    ...(91)

    dVg Mg L dVg

    dx E I dx.(92)

    where

    / d V 2 \ 1 1

    o CL CL

    / d v ^ 1 1

    \ d x j L CL CL

    OL - C Le - e

    e C L + e - C L

    ~ C L ^CL

    e - e

    From s ym m et ry o f t he g i r d e r , i t i s c l e a r tha t

    ( v q ) x = ( v 2 ) L_x

    .(93)

    ...(94)

    .(95)

    (96)

    ...(97)

    I n the case o f a s y m m e t r i c a l t h r e e - s p a n b r i d g e , w i t h n o a p p l i e d

    l o a d moment, the b e n d in g moments a t the tow er s ar e e q u a l . The

    unknown moment M can be fou nd by e q u a l i z i n g end s l op es a t the

    towe rs and i s g i v e n by

    ab / dv-

    M H l f ,dx / Ls

    dv^

    dx+

    b / dv...(98)

    2

    a VdxjLs

    I t ca n be shown t h a t i n t he case o f a n e x t r e m e l y s t i f f g i r d e r

    w h e r e t h e e l a s t i c t h e o r y i s v a l i d , e q u a t i o n (98) ca n be re du ce d

    t o

  • 8/10/2019 1963_A7 R35 S4

    63/111

    48

    H

    lf 1 + ab:

    3 b +

    2 a

    ... (99)

    I n t h e i t e r a t i v e p r o c e d u r e r e q u i r e d t o c om pu te H , i t

    w i l l be n e ce s sa ry to compute M a number of t i m e s , and i t w i l l be

    shown t h a t i t i s adv ant age ous to compute M e w h i c h i s i n de pe nde n t

    of H and c o r r e c t by means of a m u l t i p l i e r K w h i c h must be d e t e r

    mined for each new t r i a l v a l ue o f H . V a l u e s o f K a r e t a b u l a t e d

    i n A p p e n d i x 2 f o r s e l e c t e d va lu es o f a , b and (CL) . K i s a l s o

    p l o t t e d a g a i n s t t he se p a r a m e t e r s i n F i g u r e 16. When M g i s com

    p u t e d and K i s f o u n d f rom t h e t a b l e s o r c u r v e s , M i s - f o u n d from

    M = KJVL ...(100)

    From t h e s o l u t i o n s t o e q u a t i o n s (86) and (87), i t i s f o u n d that

    A 2 Mg f ILX 2

    E I

    A3 M3

    . .f L X 3

    E I

    where

    X 2 ~A~3 4

    ...(101)

    ...(102)

    (CL)"3

    4 + e C L ( C L - 2) - e " C L ( C L+2)

    ,CLe

    -CL(103)

    The t o t a l va l u e o f t he s u pp o r t m ove men t c o r r e s po nd i n g

    t o t h e s o l u t i o n o f e q u a t i o n s (85) t o (87) f o r a l l t h r e e span s i s

    g i v e n by

    A t H-^f L T A2.

    E I. . . (10-4)

    where

    T 1 2 a3b ( A 1 ) , M

    +

    A

    2 A 2 2 a b ( A 2 ) .

    + :A1

    ...(105)

    t

  • 8/10/2019 1963_A7 R35 S4

    64/111

    49

    where

    M K 1 + ab

    3 b +

    2 a

    ...(106)

    V a l u e s o f b ( ^ l ^ s a r e t he same as t hose use d f o r the case of a

    t h r e e - s p a n b r i d g e w i t h h i ng ed su pp or t s and a re found i n A p p e n

    d i x 2 a nd F i g u r e 14 ( a ) . V a l u e s , o f A2 and b ^ A2^ s a r e p l o t t e d

    ,2A A l

    a g a i n s t (C L) i n F i g u r e 15 f o r s e l e c t e d va l u e s o f b a nd a r e

    a l s o i n c l u d e d i n A p p e n d i x2.

    I n f l u e n c e l i n e s f o r H ' i n a c o n t i n u o u s s u s p e n s i o n

    li

    b r i d g e must be f ou nd by s u p e r i m p o s i n g two i n f l u e n c e l i n e s . The

    f i r s t i s t he same i n f l u e n c e l i n e u s ed f o r h i n g e d g i r d e r s . The

    s ec o nd i s a c o r r e c t i o n f o r c o n t i n u i t y . I n t he case o f t he

    main s pa n t he I n f l ue nc e l i n e , i s g i v e n byL

    f

    X v1 + Y v

    2+ v

    3

    A i A2 +A3(107)

    where

    X 1

    T

    Y M 2 X 2

    ...(108)

    (109)

    T

    C u r v e s o f v 2 + v 3 a r e sh ow n p l o t t e d i n F i g u r e 12 a nd t a b u l a t e d

    A ~ 2 + A ~ 3

    va l ue s a r e f ound i n A pp e nd i x2.

    F o r t h e l e f t s i d e s p a n , th e i n f l u e n c e l i n e f o r H- i s

    g i v e n by

    L X s / V l+

    Y

    s f ^2 \

    A ii A 2/

    ...(110)

  • 8/10/2019 1963_A7 R35 S4

    65/111

    50

    where

    . . . ( i l l )T

    Y Mab(A o ) s ,S = ^ ... (112)

    F i g u r e 11 shows cur ve s of v 2 and A p p e n d i x 2 h as t a b u l a t e d v a l u e s

    f o r s e l e c t e d v a l u e s o f ( C L ) 2 . The i n f l u e n c e l i n e f o r t h e r i g h t

    s ide span i s o f cour se s i m i l a r t o t h a t f o r t he l e f t s i de s pa n

    b u t o p p o s i t e h a n d .

    The nu m e r i c a l e xa m pl e i n A p p e n d i x 3 shows t h a t the

    i t e r a t i o n p r o c e d u r e f o r d e t e r m i n a t i o n o f H c o n v e r g e s r a p i d l y a nd

    us e o f t he t a b l e s o r c u r ve s m akes t he c a l c u l a t i o n s s i m p l e .

    V a r i a b l e EI . . .

    I t c an be se en t h a t t h e s o l u t i o n s t o e q u a t i o n s (58),

    (86) and (87) a r e g i v e n f o r t h e s p e c i a l c a se i n w h i c h t h e g i r d e r

    r i g i d i t y E I w i t h i n t h e s pa n i s c o ns t a n t . T h e r e f o r e , u s e o f t he

    c o n s t a n t s t a b u l a t e d i n A p p e n d i x 2 depends on the a ss um pt io n of

    c o n s t a n t E I w i t h i n each sp an .

    I t i s p o s s i b l e t o s o l v e t h e e q u a t i o n s , a t l e a s t

    n u m e r i c a l l y , f o r o t he r p a r t i c u l a r v a r i a t i o n s i n g i r d e r r i g i d i t y

    a n d t a b u l a t e s i m i l a r d a t a f o r u se i n a n a l y s i s . A s u i t a b l e

    a pp r oa c h . m i gh t be t o de t e r m i ne a t y p i c a l m ode o f v a r i a t i o n o f

    g i r d e r s t i f f n e s s s uc h t h a t m os t o r a l l s u s p e n s i o n b r i d g e g i r d e r s

    ha ve ,a s t i f f n e s s v a r i a t i o n w h i c h l i e s w i t h i n a r ange d e f i n e d by

    two s e t s o f t a b u l a t e d d a t a . A n a l y s i s co ns t a n t s mig h t t he n be

    d e t e r m i n ed b y i n t e r p o l a t i o n b et we en th e t a b u l a t e d v a l u e s .

    However , i t I s s u g g e s t e d t h a t t h e a s s um pt i on o f c o ns t a n t

  • 8/10/2019 1963_A7 R35 S4

    66/111

    51

    g i r d e r r i g i d i t y i s a r e as on ab le and d e s i r a b l e one f o r hand c a l

    c u l a t i o n s . Some n um er i c a l examples were s o lv e d u s in g the

    c om put e r p r og r a m de s c r i be d i n t he p r e c e d i n g c h a p t e r . A t h r e e -

    span b r i d g e was an a l ys ed as a co n t in uo us g i r d e r and w i t h h i nge s

    a t t h e s u p p o r t s . The m a in e p a n g i r d e r s t i f f n e s s v a r i e d f rom a

    minimum o f .5 t im es the mids pan s t i f f n e s s a t the towers to a

    maximum o f 1.5 t i m e s t h e . m i d - s p a n s t i f f n e s s a t . t he q u a r t e r p o i n t s .

    The same b r i d ge was a n a l y s e d a s s um i ng a c on s t a n t g i r d e r r i g i d i t y

    e q ua l t o t he a ve r a ge va l u e . The r e s u l t s o f t he s t u dy i n d i c a t e d

    t h a t a r e as on ab ly ac cu ra t e va lu e o f H can be de t e rm ine d by

    a s s u m i ng a n a v e r a g e v a l u e f o r t h e g i r d e r s t i f f n e s s . E r r o r s i n

    H-^ enc oun te r ed were l e s s t han 2 p e r c e n t . T h e r e f o r e , i t i s

    recommended t h a t f o r a l l h an d c a l c u l a t i o n s , a c o n s t a n t g i r d e r

    r i g i d i t y E I e q u a l to the av er ag e v al u e be assumed f o r each span

    i n o rd e r t o de t e rmi ne the va lu e f o r H .

  • 8/10/2019 1963_A7 R35 S4

    67/111

  • 8/10/2019 1963_A7 R35 S4

    68/111

  • 8/10/2019 1963_A7 R35 S4

    69/111

    TO FOLLOW PAGE 51

  • 8/10/2019 1963_A7 R35 S4

    70/111

    Figure 13

  • 8/10/2019 1963_A7 R35 S4

    71/111

  • 8/10/2019 1963_A7 R35 S4

    72/111

  • 8/10/2019 1963_A7 R35 S4

    73/111

  • 8/10/2019 1963_A7 R35 S4

    74/111

  • 8/10/2019 1963_A7 R35 S4

    75/111

    52

    CHAPTER 5

    CONCLUSIONS

    I t i s d o u b t f u l t h a t D e f l e c t i o n T h e o r y a n a l y s i s of

    s u s p e n s i o n b r i d g e s b y h an d c a l c u l a t i o n s w i l l ever be a s imple

    p r o c e d u r e o r one t h a t t he s t r u c t u r a l e n g i ne e r w i l l a pp r oa c h

    e n t h u s i a s t i c a l l y . However , i t has been fo un d , t h a t E l a s t i c

    T h e o r y s o l u t i o n s a r e t oo i n a c c u r a t e ev e n f o r p r e l i m i n a r y d e s i g n

    i n many ca se s . Th er e f o re , t he need f o r D e f l e c t i o n Theory

    s o l u t i o n s does e x i s t . I t would be ex pe d i en t t o t u r n the t a sk

    over to a computer and a v o i d a l l hand c a l c u l a t i o n s , b ut t h a t i s

    n o t a l w a y s a p r a c t i c a l p r o c e d u r e . D u r i n g th e e a r l y s t ages o f

    a d e s i g n , t h e r e w i l l a lw ays be a n e c e s s i t y fo r some hand c a l c u l a

    t i o n s , and i t i s hoped tha t these w i l l be made somewhat e a s i e r

    w i t h t he methods p r es en te d he re .

    I t was ap pa re nt i n the c ha pt er on Th eo ry and R e f i n e

    ments t h a t t h e s i m p l e r D e f l e c t i o n T h e o r y r e p r e s e n t e d b y e q u a t i o n s

    (43) a nd ( l i b ) g i v e s r e s u l t s o f h i g h a c c u r a c y . I t i s q u e s t i o n

    a b l e w h et h er t he a d d i t i o n a l a c c u r a c y a t t a i n e d by f u r t h e r r e f i n e

    ment i s j u s t i f i e d i n h an d c a l c u l a t i o n s , a nd i t i s r ec om me nd ed

    t h a t t h e more r e f i n e d ve r s i o ns o f t he D e f l e c t i o n Theory be

    r e s e r v e d f o r c om pu te r a n a l y s i s . E q u a t i o n (43) i s r e l a t i v e l y

    a t t r a c t i v e f o r u se i n h an d c a l c u l a t i o n s s i n c e s o l u t i o n s a r e t o

    be f o u n d t a b u l a t e d i n S t e i n m a n ' s t e x t * on s u s p e n s i o n b r i d g e s .

    R e f e r e nc e ( l )

  • 8/10/2019 1963_A7 R35 S4

    76/111

    53

    Once t he c a b l e t e n s i o n f o r a t o t a l l o a d i n g case i s known i t i s

    p o s s i b l e t o s upe r i m p os e s o l u t i o n s f o r p a r t i a l l o a d i n g c o n d i t i o n s

    a s g i v e n i n S t e i n m a n ' s t e x t .

    Eq ua t i on s (43) and ( l i b ) fo r m the b a s i c t h eo ry f o r t he

    m et hod p r e s e n t e d o f de t e r m i n i n g t he t o t a l va l ue o f c a b l e t e n s i o n .

    No a p p r ox i m a t i o n no t i n he r e n t i n t he a bove e qu a t i o ns i s made f o r

    t he m et hod g i v e n a nd he nce t he va l u e o f c a b l e t e n s i o n c a l c u l a t e d

    by t h i s m eth od h as a r e l a t i v e l y h i g h a c c u r a c y .

    I t c a n be s e e n i n t he s a m pl e c a l c u l a t i o n s g i v e n i n

    A p p e n d i x 3 t h a t t h e m et ho d i s e x t r e m e l y e a s y t o a p p l y , e s p e c i a l l y

    i n the case o f a b r i dge w i t h g i r d e r s h i n g e d a t t h e s u p p o r t s . A

    c o n t i n u o u s g i r d e r p r e s e n t s some a d d i t i o n a l d i f f i c u l t y but no

    more t h a n s h o u l d be e x p e c t e d . C o n t i n u i t y i n a n y s t r u c t u r e i s

    p a r t l y p a i d f o r by e f f o r t i n . a n a l y s i s .

    The f i r s t s t e p t o w a r d a n a c c u r a t e , s i m p l i f i e d method

    o f a n a l y s i n g s u s p e n s i o n b r i d g e s mu st be a n a c c u r a t e , s i m p l e

    m et ho d o f d e t e r m i n i n g t h e c a b l e t e n s i o n . I t i s b e l i e v e d tha t

    t he m et hod de v e l o pe d i n C ha p t e r 3 a nd i l l u s t r a t e d i n s am p le

    c a l c u l a t i o n s i n A p p e n di x 3 meets t h e o b j e c t i v e s o f a c c u r a c y a nd

    s i m p l i c i t y . Th er e f or e , the method sh ou ld be u s e f u l a s p a r t o f

    a t o t a l m e t h o d o f a n a l y s i s .

    One ap pr oa ch to a s i m p l i f i e d me thod of a n a l y s i s migh t

    be a d e t e r m i n a t i o n and t a b u l a t i o n o f i n f o r m a t i o n on a m p l i f i c a t i o n

    f a c t o r s i n a manner s i m i l a r t o t h a t d e s c r i b e d by A . F r a n k l i n i n

    h i s t h e s i s on n o n - l i n e a r a r c h e s .

    wha tever methods a re used to comp le t e t he a n a l y s i s , i t

    i s i m p o r t a n t t o r e c o g n i z e t h a t me th od s o f s u p e r p o s i t i o n a r e v a l i d

    i n s u s p e n s i o n b r i d g e a n a l y s i s , d e s p i t e t he n o n - l i n e a r b e h a v i o r

    o f s u s p e n s i o n b r i d g e s . So l o n g a s t h e t o t a l . v a l u e o f t h e c a b l e

  • 8/10/2019 1963_A7 R35 S4

    77/111

    54

    tensionisknown andappliedin theequationsforthepartial

    loadings,thebendingmoments anddeflectionsforthepartial

    loadingcasesmay besuperimposedtogivethetotalvalues.The

    key, then,is thedeterminationof thetotalcable tension,and

    a simple, accuratemethodofdeterminingthecable tensionhas

    beenpresentedInthiswork.

  • 8/10/2019 1963_A7 R35 S4

    78/111

    55

    APPENDIX 1

    COMPUTER PROGRAM

    C KEN RICHMOND CIVIL ENGINEERING THESISC PROGRAM TO ANALYSE SUSPENSION BRIDGES AND COMPUTE MAGNIFICATIONC FACTORS.CC MAIN LINE PROGRAMC

    DIMENSION El(53) , P(53) , A B ( 1 3 , 5 3 ) ,A(53,5)DIMENSION E(53) , B (53) , BM(2,53)

    43 READ 1 , KODE , C , R , S1 FORMAT ( 12 / ( E l 4 .7))

    READ 2 , F , SIDE , RISE , T , SL IP2 FORMAT ( F 6.4 / F6.4 / F 6 . 4 / ( E 1 4 . 7 ) )

    PRINT 3 , KODE , R , S3 FORMAT(//6H KODE= 14 ,3H R= E1 4. 7 ,3H S= E1 4. 7 / )

    PRINT 4 , F , SIDE , RISE4 FORMAT ( 3H F= F7.4 , 6H SIDE= F1 1. 4 , 6H RISE= F l 1 . 4 / )

    PRINT 5 , T , SLIP5 FORMAT ( 3H T= El7.7 , 6H SLIP= El 7.7 )

    EIO =1.0 / (8.0 * F * C )IA= 17 .0 - SIDE * 20.0ID= 37 + 17 - IAIF ( KODE - 10 ) 8 , 8 , 6

    6 KODE = KODE - 10DO 7 I = IA , ID , 1

    7 E l ( I ) = EIOGO TO 11

    8 DO9 I = IA , ID, 1READ 10 , El(I )

    10 FORMAT ( F7 .4)9 El(I ) = EIO * El(I )

    11 PRINT 1212 FORMAT(/23H I P El / )

    DO 13 I = IA,ID,1READ 14 , P ( I )

    14 FORMAT ( F8 .4)13 PRINT 1 5 , 1 , P ( D , E l ( l )15 FORMAT ( 13 , F9.4 , E17.7 )

    DF = 0.0SF = 0. 0GO TO ( 1 6 , 1 7 , 1 8 , 1 9 , 1 6 , 1 7 , 1 8 , 1 9 ), KODE

  • 8/10/2019 1963_A7 R35 S4

    79/111

    56

    16 DF = 1.017 SF = 1.0

    GO TO 1918 DF =1.019 N2 = 1

    GO TO 20020 D = 0 .0HD = 0.125 / FHL = 0.1DO 36 N = 1,2K = 0

    21 HT = HL + HDIF (KODE - k ) 22,2 2 ,23

    22 Hk = 2I I = IAIE = IDGO TO 400

    23 Hk = 1N2 = 3GO TO 200

    2k ERROR = 0. 0N2 = 2GO TO 200

    25 ERROR = ERROR + SLIPPRINT 26 , HL , ERROR

    26 FORMAT ( A H HL= E1 7. 7 , 7H ERROR= El 7.7 )IF (K- I ) 27 ,28 ,27

    27 HL1 = HLERR = ERRORHL = HL + .1 * HDK = 1GO TO 21

    28 IF(AB S(ER R0R) -1.0E -5) 3 0,3 0,2 929 DELH = ERROR *(HL - HL1)/(ERROR - ERR)

    ERR = ERRORHL1 = HLHL = HL - DELHGO TO 21

    30 E( IA -1 ) = -E(IA+1)DO 31 l=IA,ID,1

    B M(N ,I ) = ( 400 . 0 * (2 .0 *E ( I ) -E ( I -1 ) -E ( I +1 ) ) ) * (1 . 0+D *H T * S M)31 BM(N,I) = (B M (N , I ) -S M* (P ( I )+1 .0+H T *D 2Y ) ) *E I ( I )BM(N,IA) = 0.0BM(N,ID) = 0.0IF ( KODE -k ) 33 ,33 ,32

    32 BM(N,17) = 0.0BM(N ,37) = 0.0

    33 SUM = 0Q = ID - IA + 1DO 3k I = IA,ID,1

    3k SUM = SUM + E l ( I )

  • 8/10/2019 1963_A7 R35 S4

    80/111

    57

    3536

    41

    39

    38

    37

    42

    CC

    c100

    AVG = SUM / Q

    CDL = HD / AVG

    CLL = HL / AVG

    CTOT = HT /AV G

    PRINT 35 , CDL , CLL , CTOT

    FORMAT (/ 5H CDL= El 7. 7 , 5H CLL= E l 7. 7 , 6H CTOT= El 7.7)D = 1.0

    PRINT 41

    F0RMAT(/48H I DEFLECTION BM ELASTIC BM PHI / )

    DO 37 I = IA,ID,1IF ( B M (1 ,U) 38,39,38

    PHI = 1.0

    GO TO 37

    PHI = BM(2,I) / BM(1,1 )

    PRINT 42 , I , B M ( 2 , I ) , B M ( 1 , I ) , P H I , E ( I )

    FORMAT( I3#F14 .8 ,F17 .8 ,F17 .8 ,E20 .7 )GO TO 43

    SUBROUTINE 1

    E I ( I A - I ) = EI(IA+1)EI(ID+1) = E l ( ID -1 )

    SM = S / EIO

    D2Y = - 8 . 0 * F

    RAE = R * R / EIO

    DO 101 I =1 I,IE,1

    DEI = 10.0 * ( E l O + 1)

    D2EI = 400.0

    X = I - I I

    X = .05 * XDY = 4 .0 * F

    DS = SQR(1.0

    AB(1,

    AB(3,

    101

    C

    C

    C

    200

    EK* ( E l ( 1 - 1 ) - 2,

    -1) )0 * El (I) + E l (1+1))

    AB(4,

    AB(5,

    AB(6,

    AB(7,

    AB(8,

    AB(9,

    AB(10,IAB(11,1

    AB(12,1

    AB(13,IGO TO

    * (AL - 2.0 * X ) - BL / AL

    + DY * DY )

    = 1.6E5 * E l ( I ) - 8 .0 E3 * DEI

    = - 6 . 4 E 5 * E l ( l ) + 1.6E4 * DEI + 400.0 * D2EI

    = SM*AB(3 ,D + 400.0* ( -1 .0-D F*DY*DY) +20.0*D F*DY*D2Y

    = 9.6E 5 * El ( I ) - 800.0 * D2EI

    = SM*AB(5 ,D + 800.0 * (1 .0 + DF*DY*DY )

    = - 6 . 4 E 5 * E l ( I ) - 1.6E4 * DEI + 400.0 * D2EI

    = SM* AB( 7,I ) + 400.0 * ( -1 ,0 -DF*DY*DY) -20 .0 *DF*DY*D2Y

    = 1.6E5 * El(I ) + 8.0E3 * DEI

    = ( P ( l ) + 1 . 0 ) * (1 .0 - SM * D2EI)= D2Y * (1 .0 - SM * D2EI)

    = -D F* T* D2 Y* ( 3.0* DY*D Y + 1.0 )

    = -DF*RAE*D2Y*DS*( 4 .0 *D Y* DY + 1.0 )

    201,202,203) ,N1

    SUBROUTINE 2

    II = IA

    IE = 17

    AL = SIDE

  • 8/10/2019 1963_A7 R35 S4

    81/111

    BL = RISE

    N1 = 1GO TO 204

    201 I I = 17IE = 37

    AL = 1.0BL = 0.0N1 = 2GO TO 204

    202 I I = 37IE = IDAL = SIDEBL = -RISEN1 = 3

    204 GO TO (1 00 ,3 00 ,4 00 ), N2

    203 GO TO (20 , 25 , 24 ), N2C

    C SUBROUTINE 3C

    300 DO 301 I = I I , IE , 1X = I - I I

    X = .05 * X

    DY = 4 .0 * F * (AL - 2 .0 * X ) - BL / ALDS = SQR(1.0 + DY * DY)RAE = R * R / EIO

    IF( I - I I ) 302 , 302 , 303

    302 DE = 20 .0 * E(l+1)

    GO TO 307

    303 IF (I - IE) 305 , 304 , 304

    304 DE = - 2 0 . 0 * E ( l - 1 )

    GO TO 307

    305 DE = 10. 0 * (E( l+1) - E ( l - 1 ) )

    307 B(I )=HL*RAE*SF*DS*DS*(DY*DE+.5*DE*DE)-.5*DE*DE301 B(l)= D*B(I)+RAE*HL*DS**3+T*DS*DS-DY*DE

    IS = IE - 2DO 306 I = I I , IS , 2

    306 ERROR = ERROR+(.05/3.0) * ( B ( l ) + 4. 0 * B(l+1) + B(l+2))GO TO ( 20 1 , 202 , 2 0 3 ) , N1

    C

    C SUBROUTINE 4C

    400 DO 401 I = I I , IE , 1A ( l , 1 ) = AB (1 , I ) * ( 1.0 + SM*D*HT )A ( l , 2 ) = AB(3,D + D * HT * AB( 4,1 )A ( l , 3 ) = AB(5,D + D * HT * A B ( 6 , I )A ( l , 4 ) = AB(7,D + D * HT * AB( 8,1 )A ( l , 5 ) = AB(9,D * ( 1. 0 + SM*D*HT )

    401 B( l ) =AB(10, I )+HT *AB(11,1)+D *HT*AB(12 ,1)+D*HT*HL *AB(13,1)IM = II -1

    IN = IE +1B(IM) = - ( P ( l l + 1 ) + 1.0 + HT *D2 Y) * ( SM / (1 .0 + HT * SM

  • 8/10/2019 1963_A7 R35 S4

    82/111

  • 8/10/2019 1963_A7 R35 S4

    83/111

    TO FOLLOW PAGE 59

    MAIN LINE PROGRAM

    \READ: KODE,

    C,R, S, F,

    SIDE,RISE,T,SLIP

    1

    READ: KODE,

    C,R, S, F,

    SIDE,RISE,T,SLIP

    PRINT:

    K(j)DE, R,S

    F, SIDE, RISE

    T, SLIP

    COMPUTE

    EIO, IA, ID

    K10 KODE

  • 8/10/2019 1963_A7 R35 S4

    84/111

    TO FOLLOW PAGE

  • 8/10/2019 1963_A7 R35 S4

    85/111

    TO F O L L O W PAGE

    ) INITIALIZE

    ERROR=0I

    INITIALIZE

    ERROR=0

    , \

    ERRORl < I O 5 L

    COMPUTE

    BM (N,IA)

    TO BM (N,ID)

    N2 = 2

    ,200)

    25

    ER RO R =

    ERROR +

    SLIP

    PRINT:

    HL,ERROR

    S W I T C H X K S / S W I T C H

    K y \ K= I

    V

    NEW ESTIMATE

    H

    L =

    H L +.1 H D

    INTERPOLATE

    NEW ESTIMATE

    H,

    COMPUTE

    A V E R A G E E I

    CDL.CLL.CTOT

    PRINT

    CDL,CL L,

    CT(|)T

    N= 1,2-

  • 8/10/2019 1963_A7 R35 S4

    86/111

    TO FOLLOW PAGE 59

    = IA , ID

    SUBROUTINE I.

    Compute and store

    constants AB(I , I )

    to AB( I3 , I )

    BM(I , I ) * 0

    PRINT 1,

    BM(I , I ) ,

    BM(2,I) ,PHI,

    E(I)

    COMPUTE

    SM, D2Y,

    RAE

    I = I I , IE

    COMPUTE

    AB ( 1,1) TO

    AB ( 13,1)

    S H E E T 4 OF 6

  • 8/10/2019 1963_A7 R35 S4

    87/111

    TO FOLLOW PAGE

    SUBROUTINE 2

    (200)

    SPECIFY

    II, I E , L , B

    L E F T SIDE

    SPAN

    SPECIFY

    I I , I E , L, B

    MAIN

    SPAN

    (202)

    SPECIFY

    I I , IE, L , B

    RIGHT SIDE

    SPAN

    SUBROUTINE 3

    Integrate cable equation

    by Simpson's Rule

  • 8/10/2019 1963_A7 R35 S4

    88/111

    TO FOLLOW PAGE 59

    SUBROUTINE 4

    Compute deflections

    at all points I I - l

    to IE + I and store

    in E(I)

    I = II , IE

    COMPUTE

    A (1,1) TO A(T,5)

    a B( I )

    COMPUTE

    BOUNDARY

    CONDITIONS

    I= I I-I,I E - I

    REDUC

    A ( I+1

    aA(1+

    TO Z

    :E

    ,2)

    2,1 )ERO

    A( I E+ 1,2)

    TO ZERO

    COMPUTE

    E ( I E +1),

    E ( I E )

    S H E E T 6 OF 6

  • 8/10/2019 1963_A7 R35 S4

    89/111

    6o

    APPENDIX2

    TABLES

    F-

    P.

    m

    TABLE1,

    v 2 + v 3

    T 2 + ~A~

    INPLUENCECURVES

    A-

    A

    rL -V]_dx

    Am

    L

    rx v 2dx

    'o X Q Lrx ^

    V o + V-:

    A 2 + A 3

    dx

    L

    HL2

    EIX

    LPl Ai As Am

    1. ."4843 . 0 5 . 0311 . 0 2 4 5 . 0 3 6 0 . 0 0 0 7 . 0 0 0 6 . 0 0 0 9. 1 0 . 0 6 1 3 . 0 4 8 7 .0681 . 0 0 3 0 . 0 0 2 4 . 0 0 3 5. 1 5 . 0 8 9 9 . 0 7 2 2 .0961 . 0 0 6 8 . 0 0 5 4 . 0 0 7 6. 2 0 . . 1 1 6 0 . 0 9 4 6 . 1 2 0 3 . 0 1 2 0 . 0 0 9 6 . 0 1 3 0

    . 2 5 .1391 . 1 1 5 6 . 1 4 0 7 . 0 1 8 4 . 0 1 4 9 . 0 1 9 6

    . 3 0 .. 1 5 8 8 . 1 3 4 8

    . 1 5 7 3 . 0 2 5 9.0211

    .0271. 3 5 . 1 7 4 4 . 1 5 1 9 . 1 7 0 2 . 0 3 4 2 . 0 2 8 3 . 0 3 5 3

    .40 . 1 8 5 9 .16 65 . 1 7 9 4 . 0 4 3 2 . 0 3 6 3 . 0 4 4 0

    . 4 5 ' . 1 9 2 8 . 1 7 8 2 .18 48 . 0 5 2 7 . 0 4 4 9 .053150 ' . 1 9 5 2 . 1 8 6 7 . 1 8 6 7 . 0 6 2 5 - .0541 . 0 6 2 5

    . 5 5 .19 28 . 1 9 1 5 . 1 8 4 8 . 0 7 2 2 . 0 6 3 5 . 0 7 1 8

    .60 . 1 8 5 9 . 1 9 2 2 . 1 7 9 4 . 0 8 1 7 . 0 7 3 2 . 0 8 0 9

    . 6 5 .17 44 . 1 8 8 4 . . 1 7 0 2 . 0 9 0 7 . 0 8 2 7 . 0 8 9 6

    . 7 0 . 1 5 8 8 . 1 7 9 8 . 1 5 7 3 . 0 9 9 0 . 0 9 1 9 . 0 9 7 8

    . 7 5 .1391 . . 1658 . 1 4 0 7 . 1 0 6 5 . 1 0 0 6 . 1 0 5 3

    . 8 0 . 1 1 6 0 . 1461 . 1 2 0 3 . 1 1 2 9 . 1 0 8 4 . . 1 1 1 9

    . 8 5 . 0 8 9 9 -.1201 . 0 9 6 1 . .1181 .1151 . 1 1 7 3

    . 9 0 . 0 6 1 3 . 0 8 7 5 .0681 . 1 2 1 9 . 1 2 0 3 . 1 2 1 4

    . 9 5 .0311 . 0 4 7 6 . 0 3 6 0 . 1 2 4 2 . 1 2 3 7 .124 0

  • 8/10/2019 1963_A7 R35 S4

    90/111

    6 1

    TABLE 1 (CONTINUED)

    H L 2 xEI A l L F l p

    sPm

    A lA

    2 . . 4 4 3 5 . 0 5 . 0 3 1 1 . 0 2 4 1 . 0 3 6 5 . 0 0 0 ? . 0 0 0 6 . 0 0 0 9. 1 0 . 0 6 l 4 . 0 4 7 9 . 0 6 8 7 . 0 0 3 1 . 0 0 2 4 . 0 0 3 5. 1 5 . 0 8 9 9 . 0 7 1 1 . 0 9 6 7 . 0 0 6 8 . 0 0 5 3 . 0 0 7 7

    .20 . 1 1 6 1 . 0 9 3 3 . 1 2 0 7 . 0 1 2 0 . 0 0 9 5 . 0 1 3 1. 2 5 . 1 3 9 2 . 1 1 4 1 .14 09 . 0 1 8 4 . 0 1 4 7 ' . 0 1 9 7. 3 0 . 1 5 8 8 . 1 3 3 3 . 1 5 7 2 . 0 2 5 9 . 0 2 0 9 . 0 2 7 2

    . 3 5 . 1 7 4 4 . 1 5 0 4 . 1 6 9 8 . 0 3 4 2 . 0 2 8 0 . 0 3 5 4

    . 4 0 . 1 8 5 8 . 1 6 5 2 . 1 7 8 8 . 0 4 3 2 . 0 3 5 9 . 0 4 4 1

    . 4 5 . 1 9 2 8 . 1 7 7 1 . 1 8 4 1 . 0 5 2 7 . 0 4 4 4 . 0 5 3 2

    . 5 0 . 1 9 5 1 . . 1 8 5 9 . 1 8 5 9 . 0 6 2 4 . 0 5 3 5 . 0 6 2 5

    . 5 5 . 1 9 2 8 . 1 9 1 2 . 1 8 4 1 . 0 7 2 2 . 0 6 3 0 . 0 7 1 7

    . 6 0 . 1 8 5 8 .19 24 . 1 7 8 8 . 0 8 1 7 . 0 7 2 6 . 0 8 0 8

    . 6 5 . 1 7 4 4 . 1 8 9 2 . 1 6 9 8 . 0 9 0 7 . 0 8 2 1 . 0 8 9 5 .70 . 1 5 8 8 . 1 8 1 1 . 1 5 7 2 . 0 9 9 0 . 0 9 1 4 . 0 9 7 7

    . 7 5 . . 1 3 9 2 . . 1 6 7 6 . 1 4 0 9 . 1 0 6 5 .10 02 . 1 0 5 2

    . 8 0 . 1 1 6 1 . 1 4 8 2 .12 07 . 1 1 2 9 . 1 0 8 1 . 1 1 1 8

    . 8 5 . 0 8 9 9 . 1 2 2 3 . 0 9 6 7 . 1 1 8 1 . 1 1 4 9 . 1 1 7 2

    . 9 0 . 0 6 l 4 . 0 8 9 4 . 0 6 8 7 . 1 2 1 8 . 1 2 0 2 .121 4

    95 . 0 3 1 1 . 0 4 8 8 . 0 3 6 5 .12 42. 1 2 3 7

    . 1 2 4 0

    3 . . 4 0 9 1 . 0 5 . 0 3 1 1 . 0 2 3 8 . 0 3 6 9 . 0 0 0 7 . 0 0 0 5 ' . 0 0 0 9. 1 0 . . 0 6 1 4 ^ . 0 4 7 3 . 0 6 9 2 . 0 0 3 1 . 0 0 2 3 . 0 0 3 6

    . 1 5 . 0 9 0 0 . 0 7 0 1 . 0 9 7 2 . 0 0 6 9 . 0 0 5 3 . 0 0 7 8

    . 2 0 . 1 1 6 1 . 0 9 2 1 . 1 2 1 1 . 0 1 2 0 . 0 0 9 3 . 0 1 3 2

    . 2 5 . 1 3 9 2 . 1 1 2 8 . l 4 i o . 0 1 8 4 . 0 1 4 5 . 0 1 9 8

    . 3 0 . 1 5 8 8 . 1 3 1 8 . 1 5 7 1 . 0 2 5 9 . 0 2 0 6 . 0 2 7 3

    . 3 5 . 1 7 4 4 . 1 4 9 0 . 1 6 9 4 . 0 3 4 2 . 0 2 7 6 . 0 3 5 4

    . 4 0 . 1 8 5 8 . 1 6 3 9 . 1 7 8 2 . 0 4 3 3 . 0 3 5 4 . 0 4 4 2

    . 4 5 . 1 9 2 7 . 1 7 6 1 . 1 8 3 5 . 0 5 2 7 . 0 4 4 0 . 0 5 3 2

    . 5 0 . 1 9 5 0 . 1 8 5 2 . 1 8 5 2 . 0 6 2 5 . 0 5 3 0 . 0 6 2 5

    . 5 5. 1 9 2 7

    . 1 9 0 8. 1 8 3 5

    . 0722 . 0 6 2 4. 0 7 1 7.60 . 1 8 5 8 . 1 9 2 6 .17 82 . 0 8 1 6 . 0 7 2 0 . 0 8 0 7

    . 6 5 . 1 7 4 4 . 1 8 9 9 . 1 6 9 4 . 0 9 0 7 . 0 8 1 6 . 0 8 9 5

    . 7 0 ; . 1 5 8 8 . 1 8 2 3 . 1 5 7 1 . 0 9 9 0 . 0 9 0 9 . 0 9 7 6

    . 7 5 . 1 3 9 2 . 1 6 9 2 .14 10 . 1 0 6 5 . 0 9 9 8 . 1 0 5 1

    . 8 0 . 1 1 6 1 .15 01 .12 11 . 1 1 2 9 . 1 0 7 8 . 1 1 1 7

    . 8 5 . 0 9 0 0 . 1 2 4 4 . 0 9 7 2 . 1 1 8 0 . 1 1 4 7 .11 71

    . 9 0 . 0 6 1 4 . 0 9 1 2 . 0 6 9 2 . 1 2 1 8 . 1 2 0 1 . 1 2 1 3

    . 9 5 . 0 3 1 1 . 0 5 0 0 . 0 3 6 9 .12 42 . 1 2 3 7 .1240

  • 8/10/2019 1963_A7 R35 S4

    91/111

  • 8/10/2019 1963_A7 R35 S4

    92/111

    6 3

    'TABLE 1 (CONTINUED)

    HL 2

    EI A lX

    Lp

    lx s F

    mA

    lAm

    1 0 . . . 2 6 5 2 . 0 5. 10

    . 1 5

    . 2 0

    . 2 5

    . 3 0

    . 3 5

    . 4 0

    . 4 5

    . 5 0

    . 55. 6 0. 6 5 . 7 0

    . 7 5

    . 8 0

    . 8 5

    . 9 0

    . 9 5

    . 0 3 1 4

    . 0 6 1 8

    . 0 9 0 4

    .11 64

    . 1 3 9 4

    . 1 5 8 7

    . 1 7 4 1

    . 1 8 5 4

    . 1 9 2 2

    . 1 9 4 4

    . 1 9 2 2- . 1 8 5 4

    . 1 7 4 1

    . 1 5 8 7

    . 1 3 9 4

    . 1 1 6 4

    . 0 9 0 4

    . 0 6 1 8

    . 0 3 1 4

    . 0 2 1 8. . 0 4 3 4

    . 0 6 4 5. 0 8 5 1. 1 0 4 8. 1 2 3 4. 1 4 0 6

    . 1 5 6 2

    . 1 6 9 6

    . 1 8 0 5

    . 1 8 8 6

    . 1 9 3 1

    . 1 9 3 4

    .18 89

    . 1 7 8 7

    . 1 6 1 8

    . 1 3 6 9

    . 1 0 2 8

    . 0 5 7 7

    . 0 3 9 7

    . 0 7 3 1

    . 1 0 0 7

    . 1 2 3 4

    . 1 4 1 8

    . 1 5 6 2

    . 1 6 7 0

    . 1 7 4 6

    . 1 7 9 1

    . 1 8 0 5

    . 1 7 9 1

    . 1 7 4 6

    . 1 6 7 0

    . 1 5 6 2

    . 1 4 1 8

    . 1 2 3 4

    . 1 0 0 7

    . 0 7 3 1

    . 0 3 9 7

    . 0 0 0 7

    . 0 0 3 1

    . 0 0 6 9

    . 0 1 2 1

    . 0 1 8 5

    . 0 2 6 0

    . 0 3 4 3

    . 0 4 3 3

    . 0 5 2 8

    . 0 6 2 5

    . 0 7 2 1

    . 0 8 1 6

    . 0 9 0 6

    . 0 9 8 9

    .10 64

    . 1 1 2 8

    . 1 1 8 0

    . 1 2 1 8

    . 1 2 4 2

    . 0 0 0 5

    . 0 0 2 1

    . 0 0 4 8

    . 0 0 8 6

    . 0 1 3 3

    . 0 1 9 0

    . 0 2 5 7

    . 0 3 3 1

    . 0 4 1 2

    . 0 5 0 0

    . 0 5 9 3

    . 0 6 8 8

    . 0 7 8 5' . 0 8 8 1

    . 0 9 7 3

    . 1 0 5 8

    . 1 1 3 3

    . 1 1 9 4

    . 1 2 3 4

    . 0 0 1 0

    . 0 0 3 8

    . 0 0 8 2

    . 0 1 3 8

    . 0 2 0 5

    . 0 2 7 9

    . 0 3 6 0

    . 0 4 4 6

    . 0 5 3 4

    . 0 6 2 5

    . 0 7 1 5

    . 0 8 0 3

    . 0 8 8 9

    . 0 9 7 0

    . 1 0 4 4

    . 1 1 1 1

    . 1 1 6 7

    . 1 2 1 1

    . 1 2 3 9

    2 0 . . 1 7 6 6

    f

    . 0 5

    . 1 0

    . 1 5

    . 20

    . 2 5

    . 30

    . 3 5

    . 4 0

    . 4 5' .50 . 55

    . 60

    . 6 5

    . 7 0

    . 7 5

    . 8 0

    . 8 5

    . 9 0

    . 9 5

    . 0 3 1 6

    . 0 6 2 2

    . 0 9 0 8

    . 1 1 6 8

    . 1 3 9 6

    . 1 5 8 7

    . 1 7 3 9

    . 1 8 4 9

    . 1 9 1 5

    . 1 9 3 8. 1 9 1 5

    . 1 8 4 9

    . 1 7 3 9

    . 1 5 8 7

    . 1 3 9 6

    . 1 1 6 8

    . 0 9 0 8

    . 0 6 2 2

    . 0 3 1 6

    . 0 1 9 9

    . 0 3 9 7

    . 0 5 9 2

    . 0 7 8 4

    . 0 9 7 1

    . 1 1 5 1

    . 1 3 2 2

    . 1 4 8 1

    .16 25

    . 1 7 5 1

    . 1 8 5 3

    . 1 9 2 5

    . 1 9 6 1

    . 1 9 4 9

    . 1 8 8 0

    . 1 7 3 8

    . 1 5 0 5

    . 1 1 5 7

    . 0 6 6 8

    . 0 4 3 3

    . 0 7 7 7

    . 1 0 4 9

    . 1 2 6 1

    . 1 4 2 6

    . 1 5 5 0

    . 1 6 4 1

    . 1 7 0 3

    . 1 7 3 9

    . 1 7 5 1

    . 1 7 3 9

    . 1 7 0 3

    . 1 6 4 1

    . 1 5 5 0

    . 1 4 2 6

    . 1 2 6 1

    . 1 0 4 9

    . 0 7 7 7

    . 0 4 3 3

    . 0 0 0 7

    . 0 0 3 1

    . 0 0 6 9

    . 0 1 2 1

    . 0 1 8 6

    . 0 2 6 0

    . 0 3 4 4

    . 0 4 3 4

    . 0 5 2 8

    . 0 6 2 5

    . 0 7 2 1

    . 0 8 1 5

    . 0 9 0 5

    . 0 9 8 9

    . 1063'

    . 1 1 2 8

    . 1 1 8 0

    . 1 2 1 8

    . 1 2 4 2

    , o o o 4. 0 0 1 9. 0 0 4 4

    . 0 0 7 9

    . 0 1 2 3

    . 0 1 7 6

    . 0 2 3 8

    . 0 3 0 8

    . 0 3 8 5

    . 0 4 7 0

    . 0 5 6 0

    . 0 6 5 5

    . 0 7 5 2

    . 0 8 5 0

    . 0 9 4 6

    . 1 0 3 7

    . 1 1 1 9

    . 1 1 8 6

    . 1 2 3 2

    . 0 0 1 1

    . o o 4 i

    . 0 0 8 7

    . 0 1 4 5

    . 0 2 1 3

    . 0 2 8 7

    . 0 3 6 7

    . 0 4 5 1

    . 0 5 3 7

    . 0 6 2 5

    . 0 7 1 2

    . 0 7 9 8

    . 0 8 8 2

    . 0 9 6 2

    . 1 0 3 6

    . 1 1 0 4

    . 1 1 6 2

    . 1 2 0 8

    . 1 2 3 8

  • 8/10/2019 1963_A7 R35 S4

    93/111

    64

    TABLE 1 (CONTINUED)

    HL 2

    EIX

    V;LF

    lp

    sPm

    A

    lAs

    A

    3 0 . . 1 3 2 4 . 0 5. 1 0

    . 1 5

    . 2 0

    . 2 5

    . 3 0

    . 3 5. 4 0

    . 4 5

    . 5 0

    . 5 5

    . 6 0

    . 6 5-.707 5. 8 0. 8 5. 9 0

    . 9 5

    -. 0 3 1 9. 0 6 2 6. 0 9 1 2. 1 1 7 1. 1 3 9 7. 1 5 8 6

    . 1 7 3 6. 1 8 4 5

    . 1 9 1 0

    . 1 9 3 2

    .19 10

    . 1 8 4 5

    . 1 7 3 6

    . 1 5 8 6

    . 1 3 9 7

    . 1 1 7 1

    . 0 9 1 2

    . 0 6 2 6

    . 0 3 1 9

    . 0 1 8 6

    . 0 3 7 3

    . 0 5 5 7

    . 0 7 4 0

    . 0 9 1 9

    . 1 0 9 4

    . 1 2 6 2. 1 4 2 2

    . 1 5 7 2

    . 1 7 0 7

    . 1 8 2 3

    . 1 9 1 3

    . 1 9 7 1

    . 1 9 8 5

    .19 43

    . 1 8 2 4

    . 1 6 0 8

    .12 61

    . 0 7 4 2

    . 0 4 6 4

    . 0 8 1 7

    . 1 0 8 2

    . 1 2 8 2

    . 1 4 3 1

    . 1 5 4 0

    . 1 6 1 7' . 1 6 6 8

    . 1 6 9 7

    . 1 7 0 7

    . 1 6 9 7

    . 1 6 6 8

    . 1 6 1 7

    . 1 5 4 0

    .14 31

    . 1 2 8 2

    . 1 0 8 2

    . 0 8 1 7

    . . 0 4 6 4

    . 0 0 0 8

    . 0 0 3 1

    . 0 0 7 0

    . 0 1 2 2

    . 0 1 8 6

    . 0 2 6 1

    . 0 3 4 4

    . 0 4 3 4 . 0 5 2 8' . 0 6 2 5

    . 0 7 2 1

    . 0 8 1 5

    . 0 9 0 5

    . 0 9 8 8

    . 1 0 6 3

    . 1 1 2 7

    . 1 1 7 9

    . 1 2 1 8

    . 1 2 4 1

    . o o o 4

    . 0 0 1 8

    . 0 0 4 1

    . 0 0 7 4

    . 0 1 1 5

    . 0 1 6 6

    . . 0 2 2 5. 0 2 9 2. 0 3 6 7. 0 4 4 9. 0 5 3 7. 0 6 3 1. 0 7 2 8. 0 8 2 7. 0 9 2 6. 1 0 2 0. 1 1 0 7. 1 1 7 9. 1 2 3 0

    . 0 0 1 2

    . 0 0 4 4

    . 0 0 9 2

    . 0 1 5 1

    . 0 2 1 9

    . 0 2 9 4

    . 0 3 7 3. 0 4 5 5

    . 0 5 3 9

    . 0 6 2 5

    . 0 7 1 0

    . 0 7 9 4

    . 0 8 7 6

    . 0 9 5 5

    . 1 0 3 0

    . 1 0 9 8

    . 1 1 5 7

    . 1 2 0 5

    . 1 2 3 7

    . 5 0 . . 0 8 8 2 . 0 5. 1 0

    . 1 5

    . 2 0

    . 2 5

    .30

    . 3 5

    .40

    . 4 5

    . 5 0

    . 5 5. 6 0

    . 65. 7 0. 7 5. 8 0

    . 8 5 .90

    . 9 5

    . 0 3 2 2

    . 0 6 3 2

    . 0 9 1 9

    . 1 1 7 6

    . i 4 o o

    . 1 5 8 6

    . 1 7 3 2

    . 1 8 3 8

    . 1 9 0 2

    . 1 9 2 3

    . 1 9 0 2. 1 8 3 8

    . 1 7 3 2

    . 1 5 8 6

    . i 4 o o

    . 1 1 7 6

    . 0 9 1 9

    . 0 6 3 2

    . 0 3 2 2

    . 0 1 7 2

    . 0 3 4 3

    . 0 5 1 5

    . 0 6 8 5

    . 0 8 5 4

    . 1 0 2 0

    . 1 1 8 4

    . 1 3 4 3

    . 1 4 9 6

    .l64o

    . 1 7 7 1. 1 8 8 4

    . 1 9 7 1

    . 2020

    . 2 0 1 8

    . 1 9 3 9

    . 1 7 5 4

    . 1 4 1 7

    . 0 8 6 3

    . 0 5 1 7

    . 0 8 8 0

    . 1 1 3 5

    . 1 3 1 2. . 1 4 3 6

    . 1 5 2 0

    . 1 5 7 7

    . 1 6 1 3

    . 1 6 3 3

    .16 40

    . 1 6 3 3

    .16 13

    . 1 5 7 7

    . 1 5 2 0

    . 1 4 3 6

    . 1 3 1 2

    . 1 1 3 5

    . 0 8 8 0

    . 0 5 1 7

    . 0 0 0 8

    . 0 0 3 2

    . 0 0 7 0

    . 0 1 2 3

    . 0 1 8 8. . 0 2 6 2

    . 0 3 4 5

    . 0 4 3 5

    . 0 5 2 9

    . 0 6 2 5

    . 0 7 2 0

    . 0 8 1 4

    . 0 9 0 4

    . 0 9 8 7

    . 1 0 6 1 -

    . 1 1 2 6

    . 1 1 7 9

    . 1 2 1 7

    . 1 2 4 1

    . 0 0 0 4

    . 0 0 1 7

    . 0 0 3 8

    . 0 0 6 8

    . 0 1 0 7

    . 0 1 5 4

    . 0 2 0 9

    . 0 2 7 2

    . 0 3 4 3

    . 0 4 2 1

    . 0 5 0 7. 0 5 9 8

    . 0 6 9 5

    . 0 7 9 5

    . 0 8 9 6

    . 0 9 9 5

    . 1 0 8 8

    . 1 1 6 8

    .12 26

    . 0 0 1 3

    . 0 0 4 9

    . 0 0 9 9

    . 0 1 6 1

    . 0 2 3 0

    . 0 3 0 4

    . 0 3 8 1

    . 0 4 6 1

    . 0 5 4 3

    . 0 6 2 5

    ' . 0 7 0 6. 0 7 8 8. 0 8 6 8. 0 9 4 5. 1 0 1 9. 1 0 8 8. 1 1 5 0.12 00. 1 2 3 6

  • 8/10/2019 1963_A7 R35 S4

    94/111

    6 5

    TABLE 1 (CONTINUED)

    HL 2 A-, X P P An A AEI a l L 1 s- m 1 s m

    7 0 . . 0 6 6 2 . 0 5 . 0 3 2 5 . 0 1 6 3 . 0 5 6 1 . . 0 0 0 8 . o o o 4 . 0 0 1 5. 1 0 . 0 6 3 6 . 0 3 2 7 . 0 9 3 0 . 0 0 3 2 . 0 0 1 6 . 0 0 5 2

    . 1 5 ' . . 0 9 2 3 . 0 4 9 0 .11 72 . 0 0 7 1 . . . 0036 . 0 1 0 5

    . 2 0 . 1 1 8 0 . 0 6 5 3 . 1 3 3 2 . 0 1 2 4 . 0 0 6 5 . 0 1 6 8

    . 2 5 . l 4 o i . 0 8 1 5 . 1 4 3 6 . 0 1 8 8 . 0 1 0 2 . 0 2 3 8

    .30 . 1 5 8 5 . . . 0 9 7 6 . 1 5 0 4 . 0 2 6 3 . 0 1 4 6 . 0 3 1 1

    . 3 5 . 1 7 3 0 . 1 1 3 5 . 1 5 4 7. 0 3 4 6

    . 0 1 9 9. 0 3 8 8

    . 4 0 . 1 8 3 3 . 1 2 9 2 . 1 5 7 3 . 0 4 3 6 . 0 2 6 0 . 0 4 6 6

    . 4 5 . 1 8 9 6 . 1 4 4 5 . 1 5 8 7 . 0 5 2 9 . 0 3 2 8 . 0 5 4 5

    . 5 0 . 1 9 1 7 . 1 5 9 2 . 1 5 9 2 . 0 6 2 5 . 0 4 0 4 - . 0 6 2 5 . 55 . 1 8 9 6 . 1 7 3 0 . 1 5 8 7 . 0 7 2 0 . 0 4 8 7 . 0 7 0 4

    . 6 0 . 1 8 3 3 . 1 8 5 5 . 1 5 7 3 . 0 8 1 3 . 0 5 7 7 . 0 7 8 3 . 65 . 1 7 3 0 . 1 9 5 9 . 1 5 4 7 . 0 9 0 3 . 0 6 7 3 . 0 8 6 1

    . 7 0 . 1 5 8 5 . 2 0 3 2 . 1 5 0 4 . 0 9 8 6 . 0 7 7 3 . 0 9 3 8

    . 7 5 . 1 4 0 1 . 2 0 5 8 . . 1 4 3 6 .10 61 . 0 8 7 5 ' . 1 0 1 1

    . 8 0 . 1 1 8 0 . 2 0 1 1 . 1 3 3 2 . 1 1 2 5 , . 0 9 7 7 .10 81

    . . 85 . 0 9 2 3 . 1 8 5 5 . 1 1 7 2 . 1 1 7 8 . 1 0 7 4 . 1 1 4 4.90 . 0 6 3 6 . 1 5 3 3 . 0 9 3 0 . 1 2 1 7 . 1 1 6 0 . 1 1 9 7

    . 9 5 . 0 3 2 5 . 0 9 5 8 . 0 5 6 1 : . 1 2 4 1 . 1 2 2 4 . 1 2 3 4

    1 0 0 . . 0 4 8 2 . 0 5 . 0 3 2 8 . 0 1 5 6 . 0 6 l 4 . 0 0 0 8 . 0 0 0 3 . 0 0 1 6. 1 0 .o64l . 0 3 1 2 . 0 9 8 7 . 0 0 3 2 . 0 0 1 5 . 0 0 5 7. 1 5 . 0 9 2 8 . 0 4 6 8 . 1 2 1 3 . 0 0 7 2 . 0 0 3 5 . 0 1 1 2

    2 0 . 1 1 8 4 . 0 6 2 3 . 1 3 5 0 . 0 1 2 4 . 0 0 6 2 . 0 1 7 7. 2 5 . 1 4 0 3 . 0 7 7 9 . 1 4 3 3 . 0 1 8 9 . 0 0 9 7 . 0 2 4 7. 3 0 . 1 5 8 4 . 0 9 3 4 . 1 4 8 3 . 0 2 6 4 . 0 1 4 0 . 0 3 2 0

    . 3 5 . 1 7 2 6 . 1 0 8 9 . 1 5 1 2 . 0 3 4 7 . 0 1 9 0 . 0 3 9 5

    . 4 0 . 1 8 2 8 . 1 2 4 2 . 1 5 2 9 . 0 4 3 6 . 0 2 4 9 . 0 4 7 1

    . 4 5 . 1 8 8 9 . 1 3 9 3 . 1 5 3 8 . 0 5 2 9 . 0 3 1 5 . 0 5 4 7

    . 5 0 . 1 9 1 0 . 1 5 4 1 . 1 5 4 1 . . 0 6 2 5 . 0 3 8 8 . 0 6 2 5

    . 5 5 . 1 8 8 9 . 1 6 8 3 . 1 5 3 8 . 0 7 2 0 . 0 4 6 9 . 0 7 0 2.60 . 1 8 2 8 . 1 8 1 7 . 1 5 2 9 . 0 8 1 3 . 0 5 5 6 . 0 7 7 8

    . 6 5 . 1 7 2 6 . 1 9 3 6 . 1 5 1 2 . 0 9 0 2 . 0 6 5 0 . 0 8 5 4

    . 7 0 . 1 5 8 4 . 2 0 3 1 . 1 4 8 3 . 0 9 8 5 . 0 7 5 0 . 0 9 2 9

    . 7 5 . 1 4 0 3 . 2 0 8 7 . 1 4 3 3 .106 0 . 0 8 5 3 .10 02. .80 . 1 1 8 4 . 2 0 7 7 . 1 3 5 0 . 1 1 2 5 . 0 9 5 7 . 1 0 7 2

    . 8 5 . 0 9 2 8 . 1 9 5 8 . 1 2 1 3 . 1 1 7 7 . 1 0 5 9 . 1 1 3 7

    . 9 0 . 0 6 4 1 . 1 6 6 2 . 0 9 8 7 . 1 2 1 7 . 1 1 5 0 . 1 1 9 2

    . 9 5 . 0 3 2 8 . 1 0 7 3 . 0 6 l 4 .12 41 .122 0 . 1 2 3 3

  • 8/10/2019 1963_A7 R35 S4

    95/111

    66

    ' TABLE 2 .b( L 1) a

    H L 2 -E I

    bH L 2 -E I . 0 5 .1 0 .1 5 .20 .2 5 .30 . 3 5 .40 . 4 5 .50

    1 .056 . 1 0 9 . 163 . 2 1 6 . 2 6 9 .3 2 1 .3 7 2 . 4 2 3 . 4 7 4 . 5 2 4

    2 . 0 6 0 . 1 1 8 . 1 7 5 . 2 3 1 . 2 8 6 . 3 4 0 . 3 9 3 . 4 4 5 . 4 9 6 .546

    3 . .064 . 1 2 7 . 1 8 7 .246 . 3 0 3 . 3 5 8 . 4 1 2 .465 .516 .566

    5 . 0 7 3 . 1 4 3 . 2 1 0 . 2 7 3 .3 3 4 . 3 9 2 .448 . 5 0 1 . 5 5 2 .6 0 1

    7 . 0 8 2 . 1 5 9 . 2 3 2 . 2 9 9 . 3 6 3 . 4 2 3 . 4 7 9 . 5 3 2 . 5 8 3 .6 3 1

    10 . 0 9 6 . 1 8 3 . 2 6 2 . 3 3 4 . 4 0 1 . 4 6 3 . 5 2 0 . 5 7 3 .6 2 2 . 6 6 8

    20 . 1 3 7 . 2 5 1 .348 . 4 3 0 . 5 0 1 . 5 6 4 . 6 1 9 . 6 6 8 . 7 1 2 . 7 5 1

    30 . 1 7 5 . 3 0 9 . 4 1 5 . 5 0 1 . 5 7 3 . 6 3 3 .684 . 7 2 8 .767 ' . 8 0 1

    50 . 2 4 1 . 4 o i . 5 1 5 .6 0 1 . 6 6 7 - .7 2 0 .7 6 4 . . 8 0 0 .8 3 1 . 8 5 7

    7 0 . 2 9 7 .4 7 1 .5 8 6 . . 6 6 7 . 7 2 7 . 7 7 4 . 8 1 1 . 8 4 2 . 8 6 7 ' . 8 8 8

    100 . 3 6 7 . 5 5 0 .6 6 0 . 7 3 3 . 7 8 5 . 8 2 4 . 8 5 4 . 8 7 9 . 8 9 9 . 9 1 6

    TABLE 3 ._ b( A 2 ) s

    H L2

    -E I

    bH L

    2

    -E I . 0 5 .1 0 .1 5 .20 .2 5 .30 .3 5 .40 .4 5 .50 1 .0 0

    1 . 0 3 4 . 0 6 8 . 1 0 2 . 1 3 5 . 1 6 8 . 2 0 0 . 2 3 3 . 2 6 5 . 2 9 6 . 3 2 7 . 6 2 6

    2 . 0 3 7 . 0 7 4 . 1 0 9 . 1 4 4 . 1 7 9 . 2 1 3 . 2 4 6 . 2 7 8 . 3 1 0 . 3 4 2 . 6 2 6

    3 . 0 4 0 . 0 7 9 . 1 1 7 . 1 5 4 . 1 8 9 .224 . 2 5 8 . 2 9 1 . 3 2 3 . 3 5 4 . 6 2 7

    5 .046 . 0 9 0 .1 3 1 .1 7 1 . 2 0 9 . 2 4 6 . 2 8 0 . 3 1 4 .346 . 3 7 7 . 6 2 9

    7 . 0 5 2 . 100 . 1 4 5 . 1 8 7 ' . 2 2 7 . 2 6 5 .3 0 0 . 3 3 4 . 3 6 6 . 3 9 6 . 6 3 0

    10 .060 .1 1 4 , . 1 6 4 . 2 1 0 . 2 5 1 .2 9 0 . 3 2 6 . 3 6 0 . 3 9 1 .4 2 0 .6 3 2

    20 .086 . 1 5 7 . 2 1 8 . 2 7 0 . 3 1 5 . 3 5 5 . 3 9 0 .4 2 1 . 4 4 9 . 4 7 4 .6 3 7

    30 . 1 0 9 . 1 9 4 .2 6 1 . 3 1 5 . 3 6 1 . 3 9 9 . 4 3 2 . 4 6 1 .486 . 5 0 8 . 6 4 2

    50 . 1 5 1 . 2 5 2 . 3 2 5 . 3 8 0 . 4 2 3 . 4 5 7 .486 . 5 1 0 . 5 3 1 .548 . 6 5 0

    7 0 . 1 8 7 . 2 9 7 .3 7 0 . 4 2 3 . 4 6 3 . 4 9 4 . 5 1 9 . 5 4 0 . 5 5 7 . 5 7 2 . 6 5 6

    100 .2 3 1 .348 . 4 1 9 . 4 6 7 . 5 0 2 . 5 2 9 . 5 5 1 . 5 6 8 . 5 8 3 . 5 9 5 .664

  • 8/10/2019 1963_A7 R35 S4

    96/111

    TABLE4. K = I}- TOWER MOMENTS

    HLEI

    a3 5 7 10 20 30 50 70 100

    .0

    .1

    .2

    3

    .5

    any

    .2

    .3

    .4

    .5

    .6

    .2

    .3

    .4

    .5

    .6

    .2

    .3.4

    .5

    .6

    .2

    .3

    .4

    .5

    .6

    .984

    .967

    .973

    .977

    .979

    .981

    .961

    .968

    .973-

    .977

    .980

    .958

    .966

    .971

    .975

    .979

    .960

    .966

    .970

    .974

    .978

    .937

    .948

    .955

    .960

    .964

    .925

    .939

    .948

    .955

    .961

    .921

    .935.945

    .953

    .960

    .924

    .935..944

    .951

    .957

    .953

    .910

    .925

    .934

    .941

    .947

    .893

    .912

    .925

    .935

    .944

    .888

    .907.921

    .932

    .941

    .892

    .907

    .920

    .930

    .938

    .926

    .860

    .882

    .897

    .908

    .916

    .837

    .864

    .884

    .899

    .911

    .832

    .858

    .878

    .894

    .908

    .838

    .860

    .877

    .891

    .904

    .900

    .817

    .845

    .864

    .878

    .790

    .824

    .848

    .867

    .883

    .784

    .816.841

    .862

    .879

    .793

    .819

    .840'

    .858

    .873

    ..865

    .762

    .796

    .820

    .838

    .852

    .732

    .772

    .802

    .825

    .845

    .727

    .765

    .794

    .819

    .840

    .739

    .769

    .794

    .815

    .833

    .773

    .632

    .678

    .712

    .737

    .759

    .602

    .652

    .691

    .723

    .750

    .600

    .646

    .684

    .716

    .743

    .617

    .653

    .683

    .709

    .731

    .705

    .550

    .601

    .638

    .668

    .693

    .524

    .576

    .618

    .653

    .684

    .524

    ..572

    .611

    .646

    .676

    .542

    .579

    .610

    .637

    .660

    .610

    .449

    .502

    .543

    .576

    .604

    .430

    .482

    .525

    .562

    .594

    .432

    .479

    .519

    .553

    .584

    .451

    .486

    .516

    .542

    .565

    .546

    .389

    .442

    .482

    .516

    .546

    .374

    .424

    .466

    .502

    .534

    .377

    .421

    .459

    .493

    .522

    .395

    .427

    .456

    .480

    .503

    .480

    .332

    .382

    .422

    .456

    .485

    .321

    .367

    .406

    .441

    .472

    .324

    .365

    .400

    .431

    .459

    .340

    .370

    .396

    .419

    .439

  • 8/10/2019 1963_A7 R35 S4

    97/111

    APPENDIX3

    NUMERICAL EXAMPLES

    Example1. SingleSpan

    D

    >I25*r.4 k/ft.f\ k/ft

    >

    f \ M

    .4 k/ft.

    f\ k/ftr> t\

  • 8/10/2019 1963_A7 R35 S4

    98/111

    69

    Step1. Compute anddesign constants.

    HD wL2 1.0(IOOO)2 1250K

    8f 8 (100)

    L2

    (1000)2

    .OO667

    EI 1.5 ( 1 0 8 )

    L e 1082 .0015

    AE 7 ( 1 0 5 )

    f 2L ( 1 0 0 ) 2 (IOOO) .0667

    EI 1.5(IO8)

    Step2. Compute H-1

    .Here,it is necessarytoestimateH inordertoselectan

    influence line. It issufficientlyaccurateto use

    H = HD. Then

    HL2 =1250(.00667)= 8.3'

    EI

    H ' isfound fromtheinfluencelinesplottedinFigure10.The influence lineordinateat thelocationof thepoint

    loadis.139L. Theareaunderthecurve from.25to.50

    is (.0625 -.Ol85)L. Thereforef

    HL' 25(.139) (1000) .4 (.0625 -.0185) (1000)2

    = H100 100

    = 35 + 176 = 211K

    Step3. Compute A '

    HT'L

    AE

    ='- .5 - 3.25( 1 0 - 4 ) (1054) - 211(.0015)

    = -1.17ft .

    A'=hB *hA " ft L t""L".e

  • 8/10/2019 1963_A7 R35 S4

    99/111

    70

    Step4. ComputeSH.

    Here,another estimateof H must bemadeinordertodeter

    mine . A - ^ . It issufficientlyaccuratetoestimate

    H = HD+ HL1. Then

    HL2 = (1250 + 211) .OO667 = 9.75

    EIH T 2

    Figure13isusedtodetermine A-,for =9.75and it is1 EI

    found that^ =.277. Then 8H can befoundfrom

    SH A

  • 8/10/2019 1963_A7 R35 S4

    100/111

    Example2. Three-Span Bridge with Hinged Supports

    Q

    25k

    fA k/ftf\ k/ft

    if\ k/ft

    1750'

    Given:

    MainspanlengthL =1000ft.

    Mainspan sag f =100ft .

    SidespanlengthL =500ft.

    EImainspan =5.0(lO?) Kft. 2/girder

    EI sidespan=2.5(10?)Kft. 2/girder

    AE ofcable=7.5(lO5) K

    Sidespanrise=112.1ft.

    L e = 2 l 8 l ft.

    L t=2116ft.

    Deadload1K/ft.

    Live load.4K/ft. onmainspan asshown

    + 25K onsidespanwhereshown

    et =3.25(IO-4)

    SupportdisplacementH B- hA=0

  • 8/10/2019 1963_A7 R35 S4

    101/111

    72

    Step 1. ComputeHDanddesign constants

    Promequation (39)

    HD 1 . 0 ( 1 0 0 0 ) 2 . 1250 K

    8 (100)

    L2 (1 0 0 0 ) 2 .0 20

    EI 5 . 0 -(10?)

    a 50 0 . 5

    1000

    b 500 2 5 . 0 (io?) . 5

    1000 2 . 5 ( 1 0 7 )

    f 2L ( 1 0 0 ) 2 (1000) ..2 0

    EI 5(lO7)

    Step 2 . ComputeH-'

    EstimateH = HD= 1250K

    HL2 = 1250 ( . 0 20 ) = 2 5 . 0

    EI

    Figure14(a)showsvaluesofb(A i ) splotted against MilEI

    A lforselected valuesof b. For HL> = 2 5 . 0and b = . 5 ,the

    , N EIordinate '-^^sis . 7 80 . Figure14(b)showsvaluesof

    "AlthemultipliersX and Xs plottedasabscissae againstthe

    ordinate

    10(A

    j)sforselected valuesof a. For a =

    . 5- . "A~l

    and b ( A i ) s = . 7 80 , themultipliersare:

    "Alx = .836

    x a = .0 82

    The mainspaninfluencelineareafrom . 00to . 7 5isfound2

    fromFigure 10to be.IO63 X. Thereforethecontribu-

    ftio'nto H-j 1fromthe mainspanis.

  • 8/10/2019 1963_A7 R35 S4

    102/111

    HL

  • 8/10/2019 1963_A7 R35 S4

    103/111

    74

    FromFigure 13, .A ^ =.130

    6H -1.72 -50K

    .130 (.20) + .0029

    .833

    H =1250 + 360 - 50 = 1560K

    Step7. Comparethe value ofHcomputedat the end of step6

    with the value estimated in step2. Repeatsteps2and5

    toconvergence.

    FromFigure14

    X = .833

    x s = .083

    H

  • 8/10/2019 1963_A7 R35 S4

    104/111

    E x a m p l e 3. C o n t i n u o u s S u s p e n s i o n B r i d g e

    100' 400 ' 250'

    750'>