19. Complex Numbers-1

Embed Size (px)

Citation preview

  • 7/28/2019 19. Complex Numbers-1

    1/55

    Mathematics

  • 7/28/2019 19. Complex Numbers-1

    2/55

    What is loge(-1) ?

    Not Defined

    Its a complexnumber

    One of its value is i

    loge(-1) is defined and is complex no.

    Session opener

  • 7/28/2019 19. Complex Numbers-1

    3/55

    Session Objectives

  • 7/28/2019 19. Complex Numbers-1

    4/55

    Session Objective

    1. Complex number - Definition

    2. Equality of complex number

    3. Algebra of complex number

    4. Geometrical representation

    5. Conjugate of complex number6. Properties of modules and

    arguments

    7. Equation involving variables andlocus

  • 7/28/2019 19. Complex Numbers-1

    5/55

    Solve x2

    + 1 = 0

    D = 4(

  • 7/28/2019 19. Complex Numbers-1

    6/55

    0

    i 1(as usual)1i i2i 1 3 2i i .i i 4 3

    i i .i i.i 1

    1

    2

    1 ii i

    i i

    2

    2

    1i 1

    i

    331 1i iii

    4

    4

    1i 1

    i

    Evaluate:33

    17 2ii

    3 3316

    3

    8 8i .i i i 8i

    ii

    Solution

    Ans: 343i

    Integral powers of i(iota)

  • 7/28/2019 19. Complex Numbers-1

    7/55

    If p,q,r, s are four consecutiveintegers, then ip + iq + ir + is =

    a)1 b) 2

    c) 4 d) None of these

    Solution:Note q = p + 1, r = p + 2, s = p + 3

    = ip(1 + i 1 i) = 0

    Given expression = ip(1 + i + i2 + i3)

    Remember this.

    Illustrative Problem

  • 7/28/2019 19. Complex Numbers-1

    8/55

    If un+1 = i un + 1, where

    u1 = i + 1, then u27 is

    a) i b) 1

    c) i + 1 d) 0

    Solution:

    u2 = iu1 + 1 = i(i+1) +1 = i2 + i + 1

    Hence un = in + in-1+ .. + i + 1

    u3 = iu2 + 1 = i(i2+i+1) +1 = i3 + i2 + i + 1

    2827 26

    27i 1

    u i i ..... i 1 0i 1

    Note by previousquestion:

    u27 = 0

    Illustrative Problem

  • 7/28/2019 19. Complex Numbers-1

    9/55

    z 4 5 4 i 5

    If a = 0 ?

    If b = 0 ?

    If a = 0, b = 0 ?

    Complex Numbers - Definition

    z = a + i b

    Mathematicalnotation

    re(z)= a

    im(z)=b

    a,bR

    Re(z) = 4, Im(z) = 5

    z is purely real

    z is purely imaginary

    z is purely real as well aspurely imaginary

  • 7/28/2019 19. Complex Numbers-1

    10/55

  • 7/28/2019 19. Complex Numbers-1

    11/55

    Find x and y if(2x 3iy)(-2+i)2 = 5(1-i)

    Hint: simplify and compare realand imaginary parts

    Solution:

    (2x 3iy)(4+i2-4i) = 5 -5i

    (2x 3iy)(3 4i) = 5 5i

    (6x 12y i(8x + 9y)) = 5 5i

    6x 12y = 5, 8x + 9y = 57 1

    x , y10 15

    Illustrative Problem

  • 7/28/2019 19. Complex Numbers-1

    12/55

  • 7/28/2019 19. Complex Numbers-1

    13/55

    (II) Subtraction of complex numbers

    z1 = a1 + ib1, z2 = a2 + ib2 then

    Properties:

    z1 - z2 = a1 - a2 + i(b1 - b2)

    1) Closure: z1 - z2 is a complex number

    Algebra of Complex Numbers- Subtraction

  • 7/28/2019 19. Complex Numbers-1

    14/55

    z1 = a1 + ib1, z2 = a2 + ib2 then

    Properties:

    z1 . z2 = a1a2 b1b2 + i(a1b2 + a2b1)

    1) Closure: z1.z2 is a complex number2) Commutative: z1.z2 = z2.z1

    3) Multiplicative identity 1: z.1 = 1.z = z

    4) Multiplicative inverse of z = a + ib (0):

    12 2

    1 1 a ib a ibz . (remember)a ib a ib a ib a b

    Algebra of Complex Numbers- Multiplication

    5) Distributivity:z1(z2 + z3) = z1z2 + z1z3

    (z1 + z2)z3 = z1z3 + z2z3

  • 7/28/2019 19. Complex Numbers-1

    15/55

    z1 = a1 + ib1, z2 = a2 + ib2 then

    1 1 1 1 1 2 2

    2 2 2 2 2 2 2

    z a ib a ib a ib.

    z a ib a ib a ib

    1 2 1 2 2 1 1 2

    2 2

    2 2

    a a b b i(a b a b )

    a b

    Algebra of Complex Numbers- Division

  • 7/28/2019 19. Complex Numbers-1

    16/55

    2(1 i)Sum of the roots is 2i 2

    i

    Solution:

    Illustrative Problem

    If one root of the equation

    is 2 i then the other root is

    (a) 2 + i (b) 2 i(c) i (d) -i

    2ix 2(i 1)x (2 i) 0

    (2 i) + = -2i +2

    = -2i +2-2 + i = -i

  • 7/28/2019 19. Complex Numbers-1

    17/55

    Representation of complex numbersas points on x-y plane is calledArgand Diagram.

    Representaion of z = a + ib

    O X

    Y

    Geometrical Representation

    Im (z)

    Re (z)a

    b

    P(z)

  • 7/28/2019 19. Complex Numbers-1

    18/55

    2 2OP z a b

    Modulus of z = a + i b

    1 btana

    Argument of z

    Arg(z) = Amp(z)

    Modulus and Argument

    O X

    YIm (z)

    Re (z)a

    b

    P(z)

    |z|

    Argument (-, ] is calledprincipal value of argument

  • 7/28/2019 19. Complex Numbers-1

    19/55

    Argument (-, ] is calledprincipal value of argument

    1 bStep1: Find tan for 0,a 2

    Step2: Identify in which quadrant (a,b) lies

    ( -,+) ( +,+)

    ( -,-) ( +,-)

    1+2i-1+2i

    -1-2i 1 -2i

    Principal Value of Argument

  • 7/28/2019 19. Complex Numbers-1

    20/55

    Step3: Use the adjoining diagramto find out the principal value ofargument

    Based on value of and quadrantfrom step 1 and step 2

    Principal Value of Argument

  • 7/28/2019 19. Complex Numbers-1

    21/55

    Let z x iy

    2 2x iy 2 (x 1) y i 0

    2 2x 2 (x 1) y 0 andy 1 0

    z 2 | z 1| i 0

    2 2x 2 (x 1) y i(1 y) 0

    The complex number which satisfies

    the equation(a) 2 i (b) 2 - i

    (c) 2 + i (d) -2 + i

    z 2 | z 1 | i 0 is

    Illustrative Problem

  • 7/28/2019 19. Complex Numbers-1

    22/55

    Solution Cont.

    2 2x 2 (x 1) y 0 and y 1 0

    y 1

    2x 2 (x 1) 1 0 2 2x 2(x 2x 2)

    2(x 2) 0

    x 2

  • 7/28/2019 19. Complex Numbers-1

    23/55

    Illustrative Problem Principal argument

    The principal value of

    4 2a) b) c) d)

    3 3 3 3

    argument in 2 2 3 i

    1 2 3tan2 3

    Step1:

    Step2: 3rd quadrant ( -,-)

    Solution

    2

    3

    Step3:

  • 7/28/2019 19. Complex Numbers-1

    24/55

    For z = a + ib,

    _3 iFor z , z ?

    2

    Conjugate of a Complex Number

    Conjugate of z is z a ib

    Q(z)

    -b

    -

    Image of z on x axis

    _ 3 iz

    2

    b

    a

    P (z)Y

    X

    _

    If z z a ib a ib

    b 0, z is puerly real

    z lies on x-axis_

    What if z z ?

  • 7/28/2019 19. Complex Numbers-1

    25/55

    z za Re(z)2

    z zb im(z)

    2i

    2 2z a ib a b z

    1 bArg(z) Arg(a ib) tan Arg(z)

    a

    Conjugate of a Complex Number

  • 7/28/2019 19. Complex Numbers-1

    26/55

    1 2 1 2z .z z . z nn

    z zz z

    2z.z z

    11

    2 2

    zz

    z z

    1 2 1 2z z z z 1 2 1 2z z z z

    1 2 1 2z z z z 1 2 1 2z z z z

    2 2 2 21 2 1 2 1 2z z z z 2 z z

    (Triangle inequality)

    22 2Pr oof :z a ib,zz (a ib)(a ib) a b z

    Properties of modulus

  • 7/28/2019 19. Complex Numbers-1

    27/55

    1 2 1 2Arg z .z Arg z Arg z

    1 1 22

    zArg Arg z Arg z

    z

    1 2 n 1 2 nArg z .z ....z Arg z Arg z .... Arg(z )

    1

    Arg z Arg z , Arg Arg zz

    Arg(purely real) = 0 or or 2n and vice versa

    Arg(purely imaginary) = or or 2n 12 2 2

    and vice

    versa

    Properties of Argument

  • 7/28/2019 19. Complex Numbers-1

    28/55

    z z

    1 2 1 2z z z z

    1 2 1 2z .z z .z

    1 12

    2 2

    z zprovided z 0

    z z

    Pr oof :z a ib,z a ib a ib z

    Conjugate Properties

  • 7/28/2019 19. Complex Numbers-1

    29/55

    1Conjugate of is2 i

    (a) (b)2 i

    5

    5

    2 i

    (c) (d)1

    2 i

    2 i

    5

    Illustrative Problem

    1 2 i 2 iz

    2 i 2 i 5

    2 i 2 iz ( )

    5 5

    Solution:

  • 7/28/2019 19. Complex Numbers-1

    30/55

    Find a ib

    Let x iy a ib

    x2 y2 + 2ixy = a + ib

    x2 y2 = a 2xy = b

    2

    2 2 2 2 2 2x y x y 4x y

    Find x2

    , take positivevalue of x

    Find y2, take value of ywhich satisfies 2xy = b

    Note if b > 0 x,y are ofsame sign, else if b < 0x,y are of opposite sign

    Square root will be x +iy

    Square Root of a ComplexNumber

    (Squaring)

    Other root will be (x+iy)

  • 7/28/2019 19. Complex Numbers-1

    31/55

    Find 8 15i

    Let x iy a ib

    x2

    y2

    + 2ixy = 8 15i

    x2 y2 = 8 2xy = -15 x,y are of opposite sign

    2 2x y 64 225 17

    Illustrative Problem

    Solution

    2 52x 8 17 x2

  • 7/28/2019 19. Complex Numbers-1

    32/55

    Find 8 15i

    5 3

    One of the square root i2 2

    Illustrative Problem

    Solution

    25 25 3

    For x , y 17 y22 2

    15 5 3As xy , for x y -

    2 2 2

    5x

    2

    5 3Other square root i

    2 2

  • 7/28/2019 19. Complex Numbers-1

    33/55

    CartesianSystem 2D

    Argand Diagram

    Point ( x,y) Complex No.( z)

    Locus of point Locus of complex

    no. ( point inargand diagram)

    Equation in x,ydefines shapes ascircle , parabola

    Equation in complex variable (z) definesshapes as circle , parabola etc.

    Distance betweenP(x1,y1) andQ(x2,y2) = PQ

    Distance between P(z1) and Q(z2) = |z1-z2|

    Equation involving complexvariables and locus

  • 7/28/2019 19. Complex Numbers-1

    34/55

    Illustrative Problem

    Let z x iy then

    2 2 2 2(x 1) y 2 (x 1) y

    2 23x 3y 10x 3 0

    If z is a complex number then

    |z+1| = 2|z-1| represents(a) Circle (b) Hyperbola

    (c) Ellipse (d) Straight Line

    Solution

  • 7/28/2019 19. Complex Numbers-1

    35/55

    If , then the locus of z

    is given by

    a) Circle with centre on y-axis and

    radius 5

    b) Circle with centre at the originand radius 5

    c) A straight line

    d) None of these

    z 5argz 5 2

    Illustrative Problem

  • 7/28/2019 19. Complex Numbers-1

    36/55

    Let z = x + iy, then

    x i y 5arg

    x iy 5 2

    2 2

    2 2

    x y 25 i10yarg

    2x 5 y

    As argument is complex number

    is purely imaginary2

    x2 + y2 = 25, circle with center (0,0) and radius 5

    Solution

  • 7/28/2019 19. Complex Numbers-1

    37/55

    Illustrative Problem

    | z 1 3| |z 1| 3

    |z 1| 3 | z 1 3|

    |z 1| 3 3

    As | z+4| 3

    |z 1| 6

    Least value = ?

    -7 -1

    Locus of z

    (a) 2 (b) 6 (c) 0 (d) -6

    If z is a complex no. such

    the maximum value of | z 1| is

    that | z 4 | 3

    Solution

  • 7/28/2019 19. Complex Numbers-1

    38/55

    Class Exercise

  • 7/28/2019 19. Complex Numbers-1

    39/55

    Class Exercise - 1

    The modulus and principal argument

    of1 i are respectively3

    (a) 4 and

    3

    2(b) 2 and

    3

    (c) 4 and 3

    2(d) 2 and 3

    Solution:

    The complex number lies in the third quadrant andprincipal argument satisfyingis given by .

  • 7/28/2019 19. Complex Numbers-1

    40/55

    Solution contd..

    arg(z) =

    1 3tan1 3

    2

    3 3

    is the principal argument.

    The modulus is =221 3 2

    Hence, answer is (d).

  • 7/28/2019 19. Complex Numbers-1

    41/55

  • 7/28/2019 19. Complex Numbers-1

    42/55

    Solution

    2

    2a 1

    x iy2a i

    Taking modulus of both sides,

    2

    2

    a 1 x iy2a i

    22

    2 2

    2

    a 1 x y

    4a 1

    42

    2 22

    a 1x y

    4a 1

    Hence, answer is (a).

  • 7/28/2019 19. Complex Numbers-1

    43/55

    Class Exercise - 3

    If |z 4| > |z 2|, then

    (a) Re z < 3 (b) Re z < 2(c) Re z > 2 (d) Re z > 3

    Solution:

    If z = x + iy, then |z 4| > |z 2|

    2 22 2x 4 y x 2 y

    |x 4| > |x 2|

    x < 3 satisfies the above inequality.

    Hence, answer is (a).

  • 7/28/2019 19. Complex Numbers-1

    44/55

    Class Exercise - 4

    For x1, x2 , y1, y2R, if

    0< x1 < x2, y1 = y2andz1 = x1 + iy1, z2 = x2 + iy2

    and z3 = , then

    z1, z2 and z3 satisfy

    (a) |z1| < |z3| < |z2| (b) |z1| > |z3| > |z2|

    (c) |z1| < |z2| < |z3| (d) |z1| = |z2| = |z3|

    1 2z z

    2

  • 7/28/2019 19. Complex Numbers-1

    45/55

    Solution

    y1 = y2 = y (Say)

    2 21 1z x y

    2 22 2

    z x y

    1 23

    x xz iy

    2

    221 2

    3

    x x

    z y2

    1 21 2

    x xx x

    2

    (As arithmetic mean of numbers)

    = |z1| < |z3| < |z2|

    Hence, answer is (a).

  • 7/28/2019 19. Complex Numbers-1

    46/55

    Class Exercise - 5

    If

    then value of z13 + z2

    3 3z1z2 is

    (a) 1 (b) 1 (c) 3 (d) 3

    1 21 3i 1 3i

    z and z ,

    2 2

    Solution:

    We find z1 + z2 = 1. Therefore,

    3 3 3 31 2 1 2 1 2 1 2 1 2z z 3 z z z z 3z z (z z )

    3 31 2(z z ) ( 1) 1.

    Hence, answer is (b).

  • 7/28/2019 19. Complex Numbers-1

    47/55

    Class Exercise - 6

    If one root of the equationix2 2(1 + i) x + (2 i) = 0 is2 i, then the other root is

    (a) 2 + i (b) 2 i (c) i (d) i

    Solution:

    Sum of the roots = = 2i + 2

    1 i

    2 2i 1 ii

    One root is 2 i.

    Another root = 2i + 2 (2 i) = 2i + 2 2 + i = i

    Hence, answer is (d).

  • 7/28/2019 19. Complex Numbers-1

    48/55

    Class Exercise - 7

    If z = x + iy and w = , then |w| = 1,

    in the complex plane

    (a)z lies on unit circle(b)z lies on imaginary axis(c) z lies on real axis

    (d)None of these

    1 iz

    z i

    Solution:

    1 izw 1 1

    z i

    1 iz z i

    Putting z = x + iy, we get

    1 i x iy x iy i 1 y ix x i (y 1)

  • 7/28/2019 19. Complex Numbers-1

    49/55

    Solution contd..

    2 2 2 21 y x x (y 1)

    1 + y2 + x2 + 2y = x2 + y2 2y + 1

    4y = 0

    y = 0 equation of real axis

    Hence, answer is (a).

  • 7/28/2019 19. Complex Numbers-1

    50/55

    Class Exercise - 8

    The points of z satisfying arg

    lies on

    (a)an arc of a circle (b) line joining (1, 0), (1, 0)

    (c) pair of lines (d) line joining (0, i) , (0,i)

    z 1

    z 1 4

    Solution:

    If we put z = x + iy, we get

    x 1 iyz 1

    z 1 x 1 iy

    By simplifying, we get

    2 2

    2 2

    x 1 y i 2yz 1

    z 1 x 1 y

  • 7/28/2019 19. Complex Numbers-1

    51/55

    Solution contd..

    Equation of a circle.

    Note: But all the points put togetherwould form only a part of the circle.

    Hence, answer is (a).

  • 7/28/2019 19. Complex Numbers-1

    52/55

    Class Exercise - 9

    The number of solutions of Z2 + 3 = 0 is

    (a) 2 (b) 3 (c) 4 (d) 5

    z

    Solution:

    Let z = x + iy(x + iy)2 + 3(x iy) = 0x2 y2 + 2ixy + 3x 3iy = 0x2 y2 + 3x + i(2xy 3y) = 0x2 y2 + 3x = 0, 2xy 3y = 0

    Consider y(2x 3) = 0

    Case 1: y = 0, then x2 + 3x = 0, i.e. x = 0 or 3i.e. two solutions given by 0, 3

  • 7/28/2019 19. Complex Numbers-1

    53/55

    Solution contd..

    Case 2: x = , then y2 + = 032

    94

    92

    i.e. two solutions given by 3 3 3 i

    2

    So in all four solutions.

    Hence, answer is (c).

  • 7/28/2019 19. Complex Numbers-1

    54/55

  • 7/28/2019 19. Complex Numbers-1

    55/55

    Thank you