28
17 Nonrenewable Energy CHAPTER

17 Nonrenewable Energy CHAPTER. Oil of Wilderness on Alaska’s North Slope? Oil has been extracted from parts of Alaska’s North Slope since 1977. The Arctic

Embed Size (px)

Citation preview

17 Nonrenewable EnergyC

HA

PT

ER

Oil of Wilderness on Alaska’s North Slope?Oil of Wilderness on Alaska’s North Slope?

•Oil has been extracted from parts of Alaska’s North Slope since 1977.

•The Arctic National Wildlife Refuge (ANWR) contains oil deposits but oil exploration has been forbidden.

•In 1980, a region called the 1002 Area was designated for future decision making. Today, a debate rages as to whether oil drilling should be allowed.

•Oil has been extracted from parts of Alaska’s North Slope since 1977.

•The Arctic National Wildlife Refuge (ANWR) contains oil deposits but oil exploration has been forbidden.

•In 1980, a region called the 1002 Area was designated for future decision making. Today, a debate rages as to whether oil drilling should be allowed.

Talk About It How might oil exploration in the 1002 Area affect the surrounding people and wilderness?

Talk About It How might oil exploration in the 1002 Area affect the surrounding people and wilderness?

Lesson 17.1 Energy: An OverviewLesson 17.1 Energy: An Overview

The United States has only 4.5% of the world’s population but uses 21.1% of the world’s energy.

The United States has only 4.5% of the world’s population but uses 21.1% of the world’s energy.

What Is Energy?What Is Energy?•The ability to do work or cause a change

•Kinetic energy: Due to motion (energy in action)

•Potential energy: Due to an object’s position or shape (stored energy)

•The ability to do work or cause a change

•Kinetic energy: Due to motion (energy in action)

•Potential energy: Due to an object’s position or shape (stored energy)

Lesson 17.1 Energy: An Overview

Forms of Energy IForms of Energy I•Mechanical: Associated with the motion and position

of an object; can be kinetic or potential

•Electrical: Associated with electric charges; can be kinetic or potential

•Thermal: Kinetic energy of atoms and molecules—the faster atoms and molecules move in an object, the warmer it becomes

•Mechanical: Associated with the motion and position of an object; can be kinetic or potential

•Electrical: Associated with electric charges; can be kinetic or potential

•Thermal: Kinetic energy of atoms and molecules—the faster atoms and molecules move in an object, the warmer it becomes

Lesson 17.1 Energy: An Overview

Overhead transmission lines carry electrical current.

Forms of Energy IIForms of Energy II•Electromagnetic: Kinetic energy that travels as waves

•Chemical: Potential energy stored in molecular bonds

•Nuclear: Potential energy stored by forces that hold atomic nuclei together

•Electromagnetic: Kinetic energy that travels as waves

•Chemical: Potential energy stored in molecular bonds

•Nuclear: Potential energy stored by forces that hold atomic nuclei together

Lesson 17.1 Energy: An Overview

Chemical energy is stored in food.

Energy Conversion and EfficiencyEnergy Conversion and Efficiency•Energy cannot be destroyed; it can only be converted, or

changed, from one form to another.

•Energy efficiency is an expression of how much of the energy put into a system actually does useful work.

•Energy cannot be destroyed; it can only be converted, or changed, from one form to another.

•Energy efficiency is an expression of how much of the energy put into a system actually does useful work.

Lesson 17.1 Energy: An Overview

First FlightThe combustion of gasoline powered the first airplane as it flew over the beach in Kitty Hawk, North Carolina, on December 17, 1903.

Energy Sources and UsesEnergy Sources and Uses•Energy Sources

•Renewable: Nearly always available or replaceable in a relatively short time; includes sunlight, wind, flowing water, heat from Earth

•Nonrenewable: Cannot be replaced in a reasonable time; includes fossil fuels and nuclear energy

•Energy Use•Four uses of energy: Industrial,

transportation, residential, commercial

•Developed nations tend to use more energy than developing nations.

•Energy Sources•Renewable: Nearly always available or

replaceable in a relatively short time; includes sunlight, wind, flowing water, heat from Earth

•Nonrenewable: Cannot be replaced in a reasonable time; includes fossil fuels and nuclear energy

•Energy Use•Four uses of energy: Industrial,

transportation, residential, commercial

•Developed nations tend to use more energy than developing nations.

Lesson 17.1 Energy: An Overview

Wind power is a renewable energy source.

Lesson 17.2 Fossil FuelsLesson 17.2 Fossil Fuels

One quarter of global coal reserves are found in the United States.One quarter of global coal reserves are found in the United States.

Fossil FuelsFossil Fuels

Lesson 17.2 Fossil Fuels

•Include coal, oil, and natural gas

•Formed from the remains of organisms over millions of years

•Different conditions produce different fossil fuels

A front loader piles coal at a steam station in Dunkirk,New York.

CoalCoal

Lesson 17.2 Fossil Fuels

•Formed from plant remains subjected to high heat and pressures over millions of years

•Provides 1/4 of the world’s energy

•Compared to other fossil fuels, coal is cheap, needs little processing, and is easy to transport.

Did You Know? Coal is the most abundant fossil fuel on Earth.

Did You Know? Coal is the most abundant fossil fuel on Earth.

How Coal Forms

Coal MiningCoal Mining

Lesson 17.2 Fossil Fuels

Strip mining: Overlying rock and soil are removed to access coal (safer for miners).

Subsurface mining: Underground shafts are dug to access coal under Earth’s surface.

OilOil

Lesson 17.2 Fossil Fuels

•Dark, liquid fossil fuel made up mostly of hydrocarbons

•Formed from the remains of ancient marine organisms and found in underground deposits

•Used in fuel for cars, trucks, planes, ships

•Used in chemical compounds (petrochemicals)

•Also know as petroleum

Drilling and Refining OilDrilling and Refining Oil

Lesson 17.2 Fossil Fuels

• Primary extraction: Oil flows out of the well, because it is already under pressure.

• Secondary extraction: Increased pressure or injections needed to remove oil

• After crude oil is extracted from the ground, it is separated into different fuels in a refinery.

Natural GasNatural Gas

Lesson 17.2 Fossil Fuels

•Primarily methane gas with small amounts of other gases mixed in

•Often found above oil or coal deposits

•Much less polluting than coal or oil and releases more energy when combusted

•Used for heating, appliances (stoves, dryers), and making electricity

Fossil Fuel SupplyFossil Fuel Supply

Lesson 17.2 Fossil Fuels

•Consumption is still rising, but new fossil fuels do not form on a human timescale.

•New oil sources—oil sands, oil shale, methane hydrates— are expensive, energy-intensive, and can be hazardous to obtain.

•Coal sources are still relatively abundant, but not infinite.

Did You Know? Some studies suggest we have extracted nearly half Earth’s oil, and that U.S. coal supplies may last just 130 years.

Did You Know? Some studies suggest we have extracted nearly half Earth’s oil, and that U.S. coal supplies may last just 130 years.

Lesson 17.3 Consequences of Fossil Fuel UseLesson 17.3 Consequences of Fossil Fuel Use

The United States imports two thirds of its crude oil.The United States imports two thirds of its crude oil.

Pollution, Climate Change, and Public Health

Pollution, Climate Change, and Public Health

Lesson 17.3 Consequences of Fossil Fuel Use

•Burning fossil fuels releases carbon dioxide, which contributes to global climate change.

•When coal and oil burn, sulfur dioxide and nitrogen oxides are released, which contribute to smog and acid deposition.

•Oil spills, equipment ruptures, and oil in runoff pollute waterways, oceans, and coastal areas.

•Coal-fired power plants release mercury, which harms human health. Crude oil contains trace amounts of lead and arsenic.

Did You Know? Coal-burning power plants cause 40% of mercury emissions due to human activity in the United States.

Did You Know? Coal-burning power plants cause 40% of mercury emissions due to human activity in the United States.

Gulf of Mexico Oil Well ExplosionsGulf of Mexico Oil Well Explosions

Lesson 17.3 Consequences of Fossil Fuel Use

• 1979: Ixtoc I exploratory oil well • 50 m below surface

• Released 126 million gal oil; containment efforts took 9 months

• What didn’t work: cap, siphoning, controlled burn, “top kill”

• What did work: relief wells

• 2010: Deepwater Horizon oil well • 1500 m below surface

• Largest U.S. offshore oil breach as of 2010—21.2–33.5 million gal oil released during first 6 weeks, based on USGS rough estimates

• Hundreds of miles of coastal habitats threatened

• Methods tried: dome, cap, siphoning, controlled burns, “top kill,” “junk shot,” and relief wells

Controlled burns attempt to contain oil pumping into the Gulf, one month after the 2010 well blow-out.

Damage Caused by Extracting FuelsDamage Caused by Extracting Fuels

Lesson 17.3 Consequences of Fossil Fuel Use

•Mining:

•Humans risk lives and respiratory health.

•Ecosystems are damaged by habitat destruction, extensive erosion, acid drainage, and heavy metal contamination downslope of mines.

•Oil and gas extraction:

•Roads and structures built to support drilling break up habitats and harm ecosystems.

•The longterm consequences of accidents can be uncertain or unpredictable

Acid drainage from a coal mine

Dependence on Foreign SourcesDependence on Foreign Sources

Lesson 17.3 Consequences of Fossil Fuel Use

•Fossil fuels are not evenly distributed over the globe, so some countries must import fuel sources.

•Nations that import fuel may be vulnerable to changes in fuel prices set by suppliers.

•Nations can import less fuel by developing domestic oil sources and renewable energy sources.

Energy ConservationEnergy Conservation

Lesson 17.3 Consequences of Fossil Fuel Use

•Practice of reducing energy use to make fossil fuels last and to prevent environmental damage

•Transportation: Gas-efficient cars and higher gas prices could help conserve energy in the U.S.

•Personal choices: Individuals can save energy by turning off lights, taking public transit, and buying energy-efficient appliances.

Did You Know? Transportation accounts for 2/3 of U.S. oil consumption.

Did You Know? Transportation accounts for 2/3 of U.S. oil consumption.

Lesson 17.4 Nuclear PowerLesson 17.4 Nuclear Power

Scientists estimate that nuclear power helps us avoid emitting 600 million metric tons of carbon each year worldwide.

Scientists estimate that nuclear power helps us avoid emitting 600 million metric tons of carbon each year worldwide.

Nuclear FissionNuclear Fission

Lesson 17.4 Nuclear Power

• Splits an atomic nucleus into two smaller nuclei

• Releases neutrons and large amounts of energy. If enough unstable nuclei are present, a nuclear chain reaction can occur.

Did You Know? About 20% of electricity produced in the United States comes from nuclear power.

Did You Know? About 20% of electricity produced in the United States comes from nuclear power.

Generating Electricity Using Nuclear Energy

Generating Electricity Using Nuclear Energy

Lesson 17.4 Nuclear Power

Benefits and Costs of Nuclear Power

Benefits and Costs of Nuclear Power

Lesson 17.4 Nuclear Power

Benefits Costs

No air pollution Expensive to build and maintain

Requires little uranium fuel and little mining

Catastrophic accidents are possible.

Under normal conditions, nuclear power plants are safer for workers than coal-burning power plants.

Nuclear waste must be stored for thousands of years.

Chernobyl

Nuclear WasteNuclear Waste

Lesson 17.4 Nuclear Power

• Waste is currently held at power plants as a stopgap, but a long-term storage location is needed.

• Long-term storage sites must be distant from population centers, protected from sabotage, have a deep water table, and be geologically stable.

• Yucca Mountain, Nevada, was chosen by the U.S. government in the 1980s, and a storage site was constructed there. But, as of 2010, the Yucca Mountain project is no longer under development.

Yucca Mountain storage site

Nuclear FusionNuclear Fusion

Lesson 17.4 Nuclear Power

• Joining two atomic nuclei to form one nucleus

• Releases much more energy than fission

• Currently impractical because very high temperatures are needed, but scientists continue exploring fusion for our future energy needs