17 ICE - A Practical Design Approach for Piles With Negative Friction

Embed Size (px)

Citation preview

  • 7/25/2019 17 ICE - A Practical Design Approach for Piles With Negative Friction

    1/11

  • 7/25/2019 17 ICE - A Practical Design Approach for Piles With Negative Friction

    2/11

  • 7/25/2019 17 ICE - A Practical Design Approach for Piles With Negative Friction

    3/11

  • 7/25/2019 17 ICE - A Practical Design Approach for Piles With Negative Friction

    4/11

  • 7/25/2019 17 ICE - A Practical Design Approach for Piles With Negative Friction

    5/11

  • 7/25/2019 17 ICE - A Practical Design Approach for Piles With Negative Friction

    6/11

  • 7/25/2019 17 ICE - A Practical Design Approach for Piles With Negative Friction

    7/11

  • 7/25/2019 17 ICE - A Practical Design Approach for Piles With Negative Friction

    8/11

  • 7/25/2019 17 ICE - A Practical Design Approach for Piles With Negative Friction

    9/11

    c o r r e s p o n d i n g r e l a t i o n s h i p f o r p i l e h e a d s e t t l e m e n t . T h e s e

    figures s h o w t h a t th e m a x i m u m l o a d i n t h e p i le a n d t h e pi le

    h e a d s e t t l e m e n t c o n t i n u e

    to

    increase w i th increas ing l ive load .

    W h e n

    t h e

    a p p l i e d

    l ive l o a d

    is

    a p p r o x i m a t e l y e q u a l

    t o t h e

    d e a d

    l o a d , th e m a x i m u m l o a d e q u a l s th e applied load:

    that

    i s , the

    d r a g

    force d u e t o t h e g r o u n d s e t t l e m e n t i s r e d u c e d s u c h t h a t

    t h e

    m a x i m u m

    l o a d

    i s now a t t he

    p i l e h e a d .

    T h e

    p i l e h e a d

    sett lement a lso becomes similar

    to the

    settlement thatwould

    h a v e

    occurred i f the grou nd se t t lement ha d not been imp osed.

    F r om

    a p r a c t i c a l v i e w p o i n t , i t w o u l d a p p e a r t h a t , a t l e a s t i n t h e

    e x a m p l e considered

    th e

    amount

    o f

    live

    load

    that

    w o u l d . n e e d

    to be a d d e d to rel ieve th e nega t ive f r ic t ion e f fec ts i s fa r

    g r e a t e r

    t h a n w o u l d n o r m a l l y

    be

    a l low ed. Thus

    i t may be

    c o n c l u d e d

    t h a t

    nega t ive f r ic t ion effects a re unl ike ly to be comple te ly

    r e m o v e d w h e n n o r m a l m a g n i t u d e s

    o f

    l i v e l o a d

    a re

    a p p l i e d .

    30

    25

    20

    15

    10

    5

    Applied load =

    1- 5

    MN

    Corner

    pile

    - group :

    - - Centre pile - group

    Single pile

    20

    40 60 80 100 120 140 160 180 200

    Ground

    surfacesettlement: mm

    Fg 18.Pile settlement against

    ground

    surface

    settlementfor

    various

    piles

    ingroup

    6.3.

    Group

    effects

    I t

    is

    b e c o m i n g r e c o g n i s e d t h a t g r o u p e f fe c t s

    m a y b e b e n e f i c i a l

    in r e l a t i o n t o t h e e f fects o f n e g a t i v e s k in f r i c t io n . T o e x a m i n e

    th e g e n e r a l n a t u r e

    o f

    g r o u p e f fects ,

    t h e

    p rogram PIES

    h a s

    been

    u sed to a n a l y s e a g r o u p o f n ine p i les , a s s h o w n in F i g . 17 , w i th

    t h e g r o u n d

    p r of i l e

    b e i n g t h a t o f t h e e n d b e a r i n g c a s e s h o w n in

    Fig.

    2 .

    E a c h p i l e

    is a s s u m e d to h a v e a l e n g t h of 25 m and to be

    su bjec t ed

    to a

    l o a d

    o f

    1 - 5

    M N , t hus g iv ing a n o v e r a l l f a c t o r o f

    sa fe t y

    o f a b o u t 2 a g a i n s t g e o t e c h n i c a l f a i l u r e . A g r o u n d s u r f a c e

    s e t t l e m e n t o f 200 mm is

    t h e n i m p o s e d

    o n t h e

    pi les, dec reasing

    f rom a

    m a x i m u m

    a t t h e

    s u r f a c e

    to

    zero

    a t 2 0 m

    d e p t h .

    T h e

    i n d u c e d

    p i l e

    l o a d s a n d s e t t l e m e n t a r e e x a m i n e d f o r t h e c o r n e r

    a nd

    cen t re p i les of the g roup, and a l so for a s ingle iso la ted p i le .

    F i g u r e

    1 8

    s h o w s

    t h e

    c o m p u t e d p i l e h e a d s e t t l ement

    a s a

    f u n c t i o n

    o f t h e

    g r o u n d s u r f a c e

    settlement. I t can be seen that

    a

    th e

    p i l e h e a d s e t t l e m e n t s i n c r e a s e (b u t

    a t a

    d i m i n i s h i n g

    r a te ) w i t h i n c r e a s i n g

    so i l

    s u r f a c e s e t t l e m e n t ;

    b

    t h e c e n t r e p i l e s e t t l e s m o r e t h a n th e c o r n e r p i l e

    c )

    b o t h

    p i l e s

    i n t h e

    g r o u p s e t tl e c o n s i d e r a b l y m o r e t h a n

    a

    s i ng l e i so l a t ed

    p i le .

    1-25 1- 2 5

    1-25

    @

    1-25

    A = 1- 5

    MN/pile

    Stable zone

    Ground settlement

    stiff clay) profile

    F i g u r e 1 9 sh o w s t h e c o m p u t e d r e l a t i o n s h i p b e t w e e n t h e

    m a x i m u m l o a d i n e a c h p i l e a n d t h e g r o u n d s u r f a c e s e t t l e m e n t .

    T h e m a x i m u m l o a d i n c r ea s e s w i th i n c r e a s i n g g r o u n d

    se t t lement , and i s

    less

    f o r t h e c e n t r e p i l e t h a n f o r th e c o r n e r

    p i le .

    T h e

    r a te

    o f

    increase

    fo r

    b o t h

    th e

    g r o u p p i l e s

    is ,

    h o w e v e r ,

    s i g n i f i c a n t l y l o w e r t h a n for a s i n g l e i s o l a t e d

    p i l e .

    I t is not

    u n t i l

    re l a t iv e ly l a r g e g r o u n d s e t t l e m e n t s o c c u r t h a t t h e l o a d s i n t h e

    g r o u p a n d s i n g l e p i l e s b e c o m e s i m i l a r . T h i s c h a r a c t e r i s t i c i s

    c o n s i s t e n t w i t h t h a t f o u n d b y K u w a b a r a a n d P o u l o s . 4

    It

    c a n

    t h e r e f o r e

    b e

    c o n c l u d e d t h a t g r o u p

    e f f e c ts m a y b e

    b e ne f ic i a l

    in

    t e r m s

    o f t h e

    i n d u c e d l o a d s

    i n t h e

    p i l e s , e s p e c i a l l y

    fo r

    relatively

    s m a l l m a g n i t u d e s o f g r o u n d m o v e m e n t . H o w e v e r ,

    a t

    n o r m a l w o r k i n g l o a d s

    t h e

    p i l e h e a d s e t t l e m e n t

    is

    s t i l l

    increased because of group ef fec ts .

    ON LUSIONS

    This paper h a s

    demonstrated that

    des igning p i les to a c c o u n t fo r

    nega t ive sk in

    f r i c t i on

    r e q u i r e s t h r e e c r i t e r i a t o b e s a t i s f i e d :

    o v e r a l l

    g e o t e c h n i c a l c a p a c i t y , s t r u c t u r a l c a p a c i t y

    o f t h e

    p i l e

    i tself , a n d

    settlement

    cont ro l . F o r this last cri terion, i t h a s been

    s h o w n that s e t t le m e n t s c a n b e l i m i t e d b y h a v i n g t h e l e n g t h o f

    p i le

    i n t h e s t a b l e ( n o n - s e t t l i n g ) z o n e s u c h t h a t t h e r e i s a

    f a c t o r

    o f

    safety o f

    about

    1-25 in

    that zone against

    th e combined

    effects

    o f a p p l i e d l o a d a n d d r a g l o a d d u e t o n e g a t i v e s k i n

    f r ic t ion . I f th i s con di t ion i s sa t i s f ied , then th e se t t lem ent

    Cornerpile- group

    Centrepile- group

    Single

    pile

    50 100 150

    Ground

    surface

    settlement:

    mm

    20 0

    Fig.

    17. Pile g roup example

    Fig.

    19.Maximum loadagainstground settlementfor various

    piles ingroup

  • 7/25/2019 17 ICE - A Practical Design Approach for Piles With Negative Friction

    10/11

    reachesa limiting value and does not continue to increase if

    theground continuestosettle.Asimple approachcan then

    givean adequate estimation of the pile head settlement.

    The

    influence

    of

    other

    factors on

    induced drag loads

    and

    drag

    settlements is also examined. It is found that the presence of

    residual

    stresses

    in a

    pile tends

    to

    reduce

    the

    drag settlement

    considerably,

    especially

    if the

    pile

    has a

    relatively large

    end

    bearing capacity and

    stiffness.This suggests that preloading

    a

    pilemay

    have

    a

    beneficialeffect

    in

    reducing drag settlements.

    The

    application

    of

    live load

    to a

    pile does

    no t

    reduce

    th e

    total

    load

    in the pile, but rather reduc es the relative contribution

    that

    t he

    drag load

    makes to the

    overall maxim um pile load.

    Group

    effects

    aregene rally beneficialandlead to a

    significantly lower rateo fdevelopmentofdragforce and drag

    settlement with increasing soil settlement than is the case for

    an isolated pile.

    ACKNOWLEDGEMENTS

    The

    author gratefully acknowledges

    th e

    valuable comments

    o f

    Patrick

    K .

    Wong

    of Coffey

    Geotechnics.

    REFERENCES

    1.

    F E L L E N I U S

    B. H.

    Recent advances

    in the

    design

    of

    piles

    for

    axial loads, dragloads, downdrag,

    and

    se ttlement. In

    Urban

    Geotechnology a n d

    Reha bi l ita t ion Seminar sponsored

    by

    ASCE MetropolitanG roup,New York,April 22-23, 1998.

    2. P O U L O S H. G.Piles subjected to negative friction:a

    procedure fordesign. Geotechnical Engineering 1997,28,

    No. 1, 23-44.

    3. F E U E N I U S

    B. H.Results

    from

    long-term measurements in

    pilesofdrag loadsand downdrag.Canadian G eo techn ica l

    Journa l

    2006,43, No. 4,409-430.

    4. S T A N D A R D S A U S T R A L I A .

    Piling-Design an d

    Ins ta l la t ion.

    Standards

    Australia

    Homebush, Australia, 199B,

    AS

    2159

    5.

    BOWIES

    J. Foundat ion

    Analysis

    and Design 4th edn.

    McGraw-Hill, NewYork, 1988.

    6.

    T O M L I N S O N

    M. J.

    Foundation

    Design

    an d Construc t ion

    7th

    edn. Pearson Education, Harlow,

    2001.

    7.

    LE E

    C. Y.Pile groups under negative friction.

    Journal of

    Geo techn ica l

    Engineer ing ASCE 1993, 119,

    No. 10,

    1 58

    1 6 0 0 .

    8. C O M O D R O M O S E. M. and B A R E K A S. V.Evaluationof

    negative skin friction

    effects in

    pile foundations using

    3D

    nonlinear analysis. Computers

    a n d

    Geotechnics

    2005,

    32,

    No.

    4,

    210-221 .

    9.

    P O U L O S

    H. G. and D A V I S E. H. Pile

    Foundation Analysis

    an

    Design.John Wiley,N ewYork, 1980.

    10. TEH C. I. and

    W O N G

    K. S.

    A nalysis

    of

    downdrag

    on

    pile

    groups. Geotechnique 1995, 45 No. 2 191-207.

    11.

    R A N D O L P H

    M. F. and

    W R O T H

    C. P.

    Analyses

    of deformatio

    ofverticallyloadedpiles. Journal of

    th e

    G eo techn ica l

    Engineering Division

    ASCE 1978, 104, No.GT1 2, 1465-

    1488.

    1 2. P O U L O S H. G.Piled raft and compensated piled raft

    foundations for soft soilsites.In Advancesin

    Design

    and

    Testing

    Deep

    Foundat ions

    V I P U L A N A N D A N

    C. and

    T O W N S E

    F. C .

    eds)). A merican Society

    of

    Civil E ngineers, Reston,

    VA ,

    USA , 2005, G eotechnical Special Publication 1 29,

    pp

    214-234.

    13.

    P O U L O S

    H. G.Analysiso fresidual stress effects inpiles.

    Journal of Geotechnical Engineering ASCE 1987,113 N

    3 216-229.

    14. K U W A B A R A H. G. and Poulos,H. G.Downdrag

    forces

    in

    group ofpiles. Journal of Geotechnical Engineering AS C

    1 9 8 9 ,

    115,

    No. 6,

    806-818.

    Whatdo you

    think

    To commenton

    this

    paper pleaseemail up to 500 words to the

    editor

    [email protected]

    roceedings

    journals

    rely

    entirely

    on

    contributions

    sent

    in by

    civil

    engineers and

    related

    professionals

    academics

    and students.

    aper

    shouldbe2000-5000words

    long

    withadequateillustrationsandreferences. leasevisitwww.thomastelford.com/journals for autho

    juidelinesand

    furtherdetails.

  • 7/25/2019 17 ICE - A Practical Design Approach for Piles With Negative Friction

    11/11