31
CHAPTER 10 OVERALL CONCLUSION As said earlier, a great deal of research is currently being directed toward the goal of accurate prediction of the vibrational spectra of the molecules. In principle, the stated goad can be reached by known theoretical methods. It would be obviously be desirable if the quantum mechanical calculation could be done. In line with the above statement, FT-IR and FT-Raman spectra of eight molecules were recorded and subjected to the new trends of theoretical methods based on quantum mechanical computations such as Ab initio HF, MP2 and DFT for the spectral analyses. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions, relative intensities, fundamentals, overtones and combination bands. The quantum mechanical computations were applied suitable computed aided software with appropriate basis sets. The difference between the corresponding wavenumbers (observed and calculated) is very small for most of the fundamentals. Therefore, the results presented in this work indicate that this level of theory is reliable for the prediction of both infrared and Raman spectra of the compounds. The molecular optimized geometrical parameters such as bond length, bond angle and dihedral angles were calculated and compared with the earlier experimental literatures. Moreover, thermodynamical parameters (entropy, enthalpy specific capacity etc), rotational constants, atomic charges and Non linear optical parameters (polarizabilty, anisotropy, first and second order hyper polarizabilites) were calculated for the molecules. UV-VIS analysis, Frontier Molecular orbitals (HOMO-LUMO) analysis and molecular electrostatic potential interpretation were carried out for pyridine and naphthalene derivatives. In order to investigate the energetic behavior and dipole moment of the compounds in the gas phase and in solvent full optimization have been carried out. In order to understand electronic transitions of the compound, TD-DFT calculations on electronic absorption spectra in gas phase and solvent (DMSO and Chloroform) were performed. In this research work, the analysis on various parameters such as bond length, bond angle, energy, vibrational frequencies, thermodyanamical parameters, other

17 Chapter 10

Embed Size (px)

DESCRIPTION

IL FINNAR

Citation preview

Page 1: 17 Chapter 10

CHAPTER – 10

OVERALL CONCLUSION

As said earlier, a great deal of research is currently being directed toward the

goal of accurate prediction of the vibrational spectra of the molecules. In principle,

the stated goad can be reached by known theoretical methods. It would be obviously

be desirable if the quantum mechanical calculation could be done.

In line with the above statement, FT-IR and FT-Raman spectra of eight

molecules were recorded and subjected to the new trends of theoretical methods based

on quantum mechanical computations such as Ab initio HF, MP2 and DFT for the

spectral analyses. A detailed vibrational spectral analysis has been carried out and

assignments of the observed fundamental bands have been proposed on the basis of

peak positions, relative intensities, fundamentals, overtones and combination bands.

The quantum mechanical computations were applied suitable computed aided

software with appropriate basis sets. The difference between the corresponding

wavenumbers (observed and calculated) is very small for most of the fundamentals.

Therefore, the results presented in this work indicate that this level of theory is

reliable for the prediction of both infrared and Raman spectra of the compounds.

The molecular optimized geometrical parameters such as bond length, bond

angle and dihedral angles were calculated and compared with the earlier experimental

literatures. Moreover, thermodynamical parameters (entropy, enthalpy specific

capacity etc), rotational constants, atomic charges and Non linear optical parameters

(polarizabilty, anisotropy, first and second order hyper polarizabilites) were calculated

for the molecules. UV-VIS analysis, Frontier Molecular orbitals (HOMO-LUMO)

analysis and molecular electrostatic potential interpretation were carried out for

pyridine and naphthalene derivatives. In order to investigate the energetic behavior

and dipole moment of the compounds in the gas phase and in solvent full optimization

have been carried out. In order to understand electronic transitions of the compound,

TD-DFT calculations on electronic absorption spectra in gas phase and solvent

(DMSO and Chloroform) were performed.

In this research work, the analysis on various parameters such as bond length,

bond angle, energy, vibrational frequencies, thermodyanamical parameters, other

Page 2: 17 Chapter 10

molecular properties based on the structure and substitution were elaborately

discussed and reported separately. The entire results obtained by this research work

on the basis of substitutions in different rings (benzene, pyridine and naphthalene),

theoretical methods etc., the comparative conclusions are listed below.

Structure of the skeleton in benzene, pyridine, as well as naphthalene is found

to be deformed due to the substitutions. Some bonds are found to be

elongated while some are shortened when compared to the experimental

values. The similar pattern is also obtained in bond angles too.

In the case of benzene derivatives, the bondlength between the C(aromatic)-

C(substitution) atom elongates or shortened depends on the nature of the

substituent. So, the presence of this substitution makes the benzene ring little

distorted from perfect hexagonal structure. The order of elongation of

bondlength between them is such as C(aromatic)-CH3> C(aromatic)-CHCl2>

C(aromatic)-CH2Cl> C(aromatic)-C≡N.

The analysis on Mulliken charges concludes that charge on the corresponding

aromatic carbon where the substitution pattern is connected in the order of C-

C≡N> C-CH2Cl>C-CHCl2>C-CH3 which is absolutely opposite that happened

in bond length variations in benzene.

In the case of naphthalene, the bond length between the ring carbon and the

carbon in the substitution (eg., CH3, CH2Cl), the Mulliken charge on the

corresponding ring carbon are comparatively higher than that in benzene.

All the aromatic CH stretching vibrations are found within the expected range

3000-3100 cm-1

. The methyl and methelene CH stretching vibrations are

observed within the expected range 3000-2800 cm-1

. In all these molecules

there are deviations in frequencies, intensities or in both with respect to the

above expected range, based on the other substitutions in the respective

molecules. The same trend has been observed for CH in-plane and CH out of

plane vibrations.

All the molecules exhibits C=C stretching frequencies between the range

1500-1600 cm-1 and C-C stretching frequency between the range 1500-1400

cm-1. However, there are variations in these values based on the group mass

of the substitutions

Page 3: 17 Chapter 10

The overall vibrational frequencies of different modes show that the

aromaticity of benzene is greater than pyridine than naphthalene.

Functional group vibrations such as OH, C≡N, C=O, COOH, ethyl and methyl

ester etc, are found to be influenced by the nature of the ring to which they are

attached. The other substitutions also influence the above said vibrations.

The HOMO-LUMO analysis in different molecules (pyridine and naphthalene

derivatives) predicted that the HOMO→LUMO transition implies an electron

density transfer. Moreover, lower in the HOMO and LUMO energy gap

explains the eventual charge transfer interactions taking place within the

molecule.

The accurate polarizability computations require usage of flexible basis sets

including polarized and diffused functions as well as of the introduction of

electron correlation methods and also, the electronic polarizability are

remarkably influenced by the presence and position of methyl substituents.

Theoretical calculations give the thermodynamic properties (heat capacity,

entropy and enthalpy) for the compound. It can be observed that these

thermodynamic functions are increasing with temperature ranging from 100 to

700 K due to the fact that the molecular vibrational intensities increase with

temperature.

Commonly, in all the molecules, the theoretically calculated optimized bond

lengths are comparatively larger than the experimental values indicates that

the theoretical calculation refer to isolated molecule in the gas phase while the

experimental results belongs to solid phase.

By analysing the overall results obtained in this research on different

parameters, among different methods, the results obtained by DFT show a

pleasing, accurate and precise qualitative agreement with the experimental

findings by applying suitable scaling factors.

Page 4: 17 Chapter 10

Chapter - 1

[1]. Herzberg G, Molecular Spectra & Molecular Structure, Vol-II, Von Nostrand

Reinhold Company, New York, (1945).

[2]. Sathyanaryana D.N, Vibrational Spectroscopy, New Age International (P) Ltd.,

Publishers, New Delhi, (1996).

[3]. Norman B.Colthup, Lawrence H. Daly and Stephen E. Wiberley, Introduction

to Infrared and Raman Spectroscopy, Academic Press, New York (1964).

[4]. P. Pulay, Mol. Phys. 17 (1969) 197.

[5]. J. Pople, R. Krishnan, H.B. Schlegel, J.S. Binkley, Int. J. Quantum Chem.,

Symp 13 (1979) 225.

[6]. P. Pulay, J. chem.. Phys. (1983) 334

[7]. G. Fogarasi, P. Pulay, Vibrational spectra and structure, 14 (1984) 125-219.

[8]. Gaussian 03, Revision A.1, M.J.Frisch, G.W.Trucks, H.B.Schlegel,

G.E.Scuseria, M.A.Robb, J.R.Cheeseman, J.A. Montgometry, Jr., T. Vreven,

K.N. Kudin, J.C. Burant, J.M. Milliam, S.S. Iyengar, J. Jomasi, V. Barone,

B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji,

M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,

T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li J.E. Knox,

H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts,

R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W.

Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J.

Dannenberg, V. G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O.

Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresamn, J.V.

Ortiz, A. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu,

A. Lashenko, P. Piskorz, I. Komaromi, R.I. Martin, D.J. Fox, T. Keith, M.A.

Al-Lham, C.Y, Peng, A. Nanayakkara, M. Challacombe, P.M. W. Gill, B.

Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussin, Ins.,

Pittsburgh PA, 2003.

[9]. A.Frisch, A.B.Nielson, A.J.Holder, GAUSSVIEW User Manual, Gaussian

Inc., Pittsburgh, PA, 2000.

[10]. P.S.Sindhu, Molecular spectroscopy, Tata McGraw-Hill Publishing Company

Ltd, New Delhi, I ed., (1990).

Page 5: 17 Chapter 10

[11]. E.B.Wilson, J.C.Decius, Molecular Vibrations, McGraw-Hill, New York,

(1955).

[12]. Bernhard Schrader, Infrared & Raman Spectroscopy, VCH publishers, Inc.,

New York, (1995).

[13]. Albert Cotton, Chemical Applications of Group Theory, Wiley eastern Ltd.,

New Delhi, II-Ed., (1986).

[14]. N.L. Alpert, W.E.Keiser, H.A.Szymanski, Theory and Practice of Infrared

Spectroscopy, Plenum/Rosetta Ed., (1973).

[15]. P.J.Hendra, Int.J.Vibr.Spec., 5 (2001) 2.

[16]. P.R. Griffiths, J.A. Haseth, Fourier Transform Infrared Spectroscopy, John

Wiley & Sons New York, (1986).

[17]. P. Jacquinot, J. Opt. Soc. Am., 44 (1954) 761.

[18]. George Socrates, Infrared and Raman Characteristic Group Frequencies –

Tables and Charts, 3rd

ed., John Wiley & Sons Ltd., England, (2001).

[19]. S.F.Parker, K.Williams, A.J.Turner, P.J. Hendra, Appl. Spectrosc., 42 (1988)

796.

[20]. D.J. Cutleer, Spectrochim Acta., 46A (1990) 123.

[21]. T.Hirschfeld, B. Chase, Appl. Spectrosc., 40 (1986) 133.

[22]. G. Aruldhas, Molecular structure and spectroscopy, 2nd

Ed., PHI learing

private limited, New Delhi (2008).

[23]. John Coates, Interpretation of Infrared Spectra, John Wiley & Sons Ltd,

Chichester, 2000, pp. 10815–10837.

[24]. Koenig L Jack, Spectroscopy of Polymers, II Ed., Elsevier, New York, (1999).

[25]. Peter Pulay, Geza Fogarasi, Gabor Pongor, James. E. Boggs, Anna Vargha, J.

Am. Che. Soc. 105 (1983) 7037-7047.

[26]. H. Fuhrer, V.B.Kartha, K.G.Kidd, P.J.Matsch, Computer Program for Infrared

Spectrometry-Normal Coordinate Analysis,Ottawa, national Research Council,

Canada,(1976).

[27]. T.Shimanouchi, I. Nakagawa, J. Hirishe, M. Ishii, J. Mol. Spectroscopy, 19

(1966) 78.

[28]. Eric Dowty, Vibratz, Version 1.0, (1998).

[29]. H. C. Urey, C. A. Bradley, Phys. Rev., 38 (1969) 1931.

Page 6: 17 Chapter 10

[30]. D. F. Heath, J. W. Linnett, Trans. Faraday Soc., 44, (1948) 556-873.

[31]. I.M. Mills, Spectrochimica Acta, 19 (1963) 1585-1591.

[32]. www.ch.ic.ac.uk/harrison/Teaching/DFT_NATO.pdf

[33]. L.Versluis, T.J. Siegier, Chem. Phys. 88 (1988) 322.

[34]. B.G. Johnson, M.J.Frisch, Chem. Phys. Lett. 216 (1993) 133.

[35]. A.D. Becke, J. Chem.Phys. 98 (1993) 1372, 5648.

[36]. F.J. Devlin, J.W. Finley, P.J. Stephens, M.J. Frisch, J. Phys. Chem. 99 (1995)

16883-16902

[37]. P. Hohenburg, W. Kohn, Phys. Rev. B864 (1964) 136.

[38]. W. Kohn and L. J. Sham, Phys. Rev. A1133 (1956) 140.

[39]. R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer

Verlag, Berlin, 1990)

[40]. J. P. Perdew and Y. Wang, Phys. Rev. B 33 (1986) 8800 ; Ibid. E 34 (1986)

7406

[41]. J. P. Perdew, Electronic Structure of Solids, Akademie Verlay, Berlin, 1991.

[42]. V. Tschinke, T. Zieglar, Can. J. Chem. 67 (1989) 460.

[43]. R. Neumann, N. C. Handy, Chem. Phys. Lett., 266 (1997) 16.

[44]. J.P. Perdew, S. Kurth, A. Zupan and P. Blaha, Phys. Rev. Lett,. 82 (1999) 2544

; Ibid E 82 (1999) 5179.

[45]. A. D. Becke, J. Chem. Phys., 98 (1993) 1372 ;

A.D. Becke, Ibid. 98 (1993) 5648.

[46] A. D. Becke, J. Chem. Phys., 88 (1988) 1053.

[47] J. P. Perdew and Y. Wang, Phys. Rev. B 45 (1992) 13244.

[48] C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37 (1988) 785.

[49]. The Schodor Education Foundation, Inc. (2010).

[50]. Gaussian 03, Revision A.1, M.J.Frisch, G.W.Trucks, H.B.Schlegel,

G.E.Scuseria, M.A.Robb, J.R.Cheeseman, J.A. Montgometry, Jr., T. Vreven,

K.N. Kudin, J.C. Burant, J.M. Milliam, S.S. Iyengar, J. Jomasi, V. Barone,

B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H.

Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.

Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li J.E.

Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E.

Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski,

Page 7: 17 Chapter 10

P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V. G.

Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick,

A.D. Rabuck, K. Raghavachari, J.B. Foresamn, J.V. Ortiz, A. Cui, A.G.

Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Lashenko, P.

Piskorz, I. Komaromi, R.I. Martin, D.J. Fox, T. Keith, M.A. Al-Lham, C.Y,

Peng, A. Nanayakkara, M. Challacombe, P.M. W. Gill, B. Johnson, W. Chen,

M.W. Wong, C. Gonzalez and J.A. Pople, Gaussin, Ins., Pittsburgh PA, 2003.

[51]. A. Frisch, A.B. Nielson, A.J. Holder, GAUSSVIEW User Manual ,Gaussian

Inc., Pittsburgh, PA, 2000.

[52]. http://www.gaussian.com

Page 8: 17 Chapter 10

Chapter - 2

[1]. Streicher H.Z, Gabow P.A, Moss A.H, Kono D, Kaehny W.D. (1981),

Syndromes of toluene sniffing in adults". Ann. Intern. Med., 94 (6): 758–62.

PMID 7235417.

[2]. Devathasan G, Low D, Teoh PC, Wan SH, Wong PK (1984)., Complications

of chronic glue (toluene) abuse in adolescents, Aust N Z J Med 14 (1 ): 39–43.

PMID 6087782.

[3]. B.S. Furnell et al., Vogel's Textbook of Practical Organic Chemistry, Fifth ed.,

Longman/Wiley, New York, 1989

[4]. L.G. Wade, Organic Chemistry, Fifth ed., Prentice Hall, Upper Saddle River,

New Jersey, 2003, pp. 871.

[5]. J. March, Advanced Organic Chemistry, Fourth ed., Wiley, New York, 1992,

pp. 723.

[6]. J.K. Wilmhurst, H.J. Bernstein, Can. J. Chem, 35 (1957) 911.

[7]. M.A. Kovener, A.M. Bogomolov, Spectrochimica Acta, 5 (1958) 134.

[8]. R.C. Fuson, C. Garrigou-Lagrange, M.L. Josie, Spectrochimica Acta 16 (1960)

106.

[9]. G. Herberich, Z.Naturforsch, Mol. Phys. 22A (1967) 761-764.

[10]. J.H.S. Green, D.J. Harison, Spectrochimica Acta Part A 26 (1970) 1925.

[11]. P. Diehl, P.M. Henriches, W. Niederberger, Mol. Phys. 20 (1971) 139-145.

[12]. N. Syam Sundar, Can.J.Chem. 62 (1984) 2238.

[13]. Yaoming Xie, James E. Boggs, Journal of Computational Chemistry, 7(2)

(1986) 158–164.

[14]. K.P.R. Nair, K. Epple, Chemical Physics Letters, 166(2)(1990)146-152.

[15]. K.P. Rajappan Nair, Journal of .Molecular Structure, 477 (1999) 251-254.

[16]. P. C. Chen, F. M. Chang, International Journal of Quantum Chemistry, 77(4)

(2000) 772–778.

[17]. Chika Minejima, Takayuki Ebata, Naohiko Mikami, Phys. Chem. Chem.

Phys., 4 (2002) 1537-1541.

[18]. Zhengyou Zhou, Hongwei Gao, Li Guo, Yuhui, Xueli Cheng, Spectrochimica

acta A 58 (2002) 1553-1558.

[19]. D.Gerhard, A. Hellweg, I. Merke, W. Stahl, M. Baudelet, D. Petitprez,

G. Wlodarczak, J. Mol. Spec. 220 (2003) 234 – 241.

Page 9: 17 Chapter 10

[20]. Jon Baker, Journal of Molecular Structure: Theochem, 865(1-3), (2008) 49-52.

[21]. M. Govindarajan, K.Ganasan, S.Periandy, M. Karabacak M, S. Mohan,

Spectrochim Acta A, 77(5) (2010) 1005 - 1013.

[22]. Wang J, Ren M, Wang S, Qu Y, Spectrochim. Acta A, 78(3) (2011) 1126-

1132.

[23]. P.M. Anbarasan, M.K. Subramanian, S. Manimegalai, K. Suguna, V.

Ilangovan, N. Sundaraganesan, J. Chem. Pharm. Res., 3(3) (2011) 123-136.

[24]. G. Fogarasi, P. Pulay, in :J.R.Durig (Eds.), Vibrational Spectra and Structure,

Vol.14, Elesevier, Amsterdam, 1985, pp. 125 ( Chapter 3 ).

[25]. Y.R. Sharma, Elementary Organic Spectrocopy- Principles and chemical

applications, S.Chande & Company Ltd., New Delhi, 1994, pp. 92-93.

[26]. Furnell B.S. Vogel, Text took of Practical Organic Chemistry, Fifth ed.,

Longman/Widely, New York, 1989.

[27]. Wade LG, Advanced Organic Chemistry, Fourth ed., Wiley, New York, 1992,

pp. 723.

[28]. Pagannone M, Formari.B and Mattel.G, Spectrochim. Acta A. Molecular

Spectroscopy, 43 (1986) 621.

[29]. Jag Mohan, Organic Spectroscopy – Principle and Applications, Second ed.,

Narosa Publishing House, New Delhi, pp. 30-32,

[30]. V. Krishnakumar, N. Surumbarkuzhali, S. Muthunatesan, Spectrochim. Acta

Part A 71 (2009) 1810-1813.

[31]. G. Socrates, Infrared and Raman characteristic frequencies, Third ed., John

Wiley & Sons Ltd., Chichester, 2001.

[32]. V.R. Dani, Organic Spectroscopy, Tata – MacGraw Hill publishing company,

New Delhi, 1995, pp. 139.

[33]. P.S. Kalsi, Spectroscopy of Organic Compounds, Wiley Eastern Limited, New

Delhi, 1993, pp. 84, 118,

[34]. Higuichi S.J., Spectrochim. Acta A 30 (1974) 463.

[35]. Wiffen D H., Spectrochim. Acta 7 (1955) 253.

[36]. Murto J, Spectrochim. Acta A 29 (1973) 1125.

[37]. Risgin J.H., Fluorocarbons and related compounds – Fluoro carbon chemistry,

Vol II., Academic Press, New York, 1954, P. 449.

[38]. Lian C.Y and Krimm S, J. Chem.Phys., 25 (1956) 563.

Page 10: 17 Chapter 10

[39]. A.W. Richardson, ―The infrared and Raman spectra of 3,4 Dichloro-1,2,5

thiadiazole‖, Can .J. Chem., 51 (1973) 680.

[40]. Prabakaran A.R, and Mohan S, Indian J. Phys. 63B (1989) 468-473.

Page 11: 17 Chapter 10

Chapter - 3

[1]. J. Susskind, J. Chem. Phys., 53 (1970) 2492-2501.

[2]. N. Abasbegović,L. Colombo,P. Bleckmann, Journal of Raman Spectroscopy,

6(2) (1977) 92–99.

[3]. A. Maiti, S. K. Sarkar ,G. S. Kastha, journal of chemical sciences, 93(1) (1977)

1-11.

[4]. Jing Chao, Kenneth R. Hall, Jian-Min Yao, Thermochimica Acta, Volume

72(3) (1984) 323-334.

[5]. Masaaki Fujii, Masayo Yamauchi, Ken Takazawa and Mitsuo Ito,

Spectrochimica acta A, 50(8-9) (1994) 1421-1433.

[6]. K. Lu, F. Weinhold, and J. Weisshaar, J. Chem. Phys. 102, 6787 (1995).

[7]. Todor Dudev, Petia Bobadova-Parvanova, Daniela Pencheva and Boris

Galabov, Journal of Molecular Structure, 436-437, 1997, 427-433.

[8]. AP. Kumar , GR. Rao, Spectrochimica Acta A 53A(12) (1997) 2049-2052.

[9]. A. Pavan Kumar, G. Ramana Rao, Spectrochimica acta A, 53(15) (1997)

2023 – 2032.

[10]. A.I. Jaman, S. Maiti, R.N. Nandi, Journal of molecular spectroscopy, 192

(1998) 148-151.

[11]. H. Nakai, M. Kawai, J. Chem. Phys, 113 (2000) 2168.

[12]. S. Shaji, , Shibu M. Eappen, K. P. R. Nair, T. M. A. Rasheed, Spectrochim Acta A,

60 (10) (2004) 2275 – 2281.

[13]. Kazunari Suzuki, Shun-ichi Ischiuschi, Makoto Sakai, Masaaki Fujii, Journal

of electron spectroscopy and related phenomena, 142 (2005) 215-221.

[14]. Y.R. Sharma, Elementary Organic Spectrocopy- Principles and chemical

applications, S.Chande & Company Ltd., New Delhi, 1994, pp. 92-93.

[15]. Furnell B.S. Vogel, Text took of Practical Organic Chemistry, Fifth ed.,

Longman/Widely, New York, 1989.

[16]. Wade LG, Advanced Organic Chemistry, Fourth ed., Wiley, New York, 1992,

pp. 723.

[17]. Pagannone M, Formari.B and Mattel.G, Spectrochim. Acta A. Molecular

Spectroscopy, 43 (1986) 621.

[18]. Prabakaran A.R, and Mohan S, Indian J. Phys. 63B (4) (1989) 468-473.

[19]. Jag Mohan, Organic Spectroscopy – Principle and Applications, Second ed.,

Page 12: 17 Chapter 10

Narosa Publishing House, New Delhi, pp. 30-32,

[20]. P.S. Kalsi, Spectroscopy of Organic Compounds, Wiley Eastern Limited, New

Delhi, 1993, pp.117

[21]. Srivastava M.P, Singh O.N., Singh I.N., Indian J. Pure Appl. Phys. 7 (1969)

504.

[22]. G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press,

New York, 1969.

[23]. D.A. Kleinaman, Phys. Rev. 126 (1962) 1977–1979.

[24]. B. Smith, Infrared Spectral Interpretation: A Systematic Approach, CRC Press,

Washington, DC, 1999.

[25]. Singh R.N and Prasad S.C, Spectrochim. Acta Part A 34 (1974) 39.

[26]. Singh S.J and Pandey S.J, Indian J. Pure Appl. Phys. 12 (1974) 300.

[27]. V. Krishnakumar, N. Surumbarkuzhali, S. Muthunatesan, Spectrochim. Acta

Part A 71 (2009) 1810-1813.

[28]. Y.R. Sharma, Elementary Organic Spectrocopy- Principles and chemical

applications, S.Chande & Company Ltd., New Delhi, 1994, pp. 124-125.

[29]. F.R. Dollish, W.G. Fateley, F.F. Bentley, Characteristic Raman frequencies of

organic compounds, Wiley, New York, 1974.

[30]. L.J. Bellamy, The Infrared Spectra of Complex molecules, Wiley, New York,

1975.

[31]. Alcolea palafox .M, Rastogi .V.K., Chatar Singh, Tanwar R.P. Spectrochimica

Acta Part A 57 (2001) 2373-2389.

[32]. Robert E. Kitson, Norman E. Griffith, Anal. Chem., 24 (2) (1952) 334–337.

[33]. Arjunan V., Puviarasan N, and Mohan S, Spectrochimica Acta Part A 64

(2006) 233-239.

Page 13: 17 Chapter 10

Chapter – 4

[1]. J.K. Wilmhurst, H.J. Bernstein, Can. J. Chem, 35 (1957) 911.

[2]. M.A. Kovener, A.M. Bogomolov, Spectrochimica Acta, 5 (1958) 134.

[3]. R.C. Fuson, C. Garrigou-Lagrange, M.L. Josie, Spectrochimica Acta 16 (1960)

106.

[4]. G. Herberich, Z.Naturforsch, Mol. Phys. 22A (1967) 761-764.

[5]. J.H.S. Green, D.J. Harison, Spectrochimica Acta Part A 26 (1970) 1925.

[6]. P. Diehl, P.M. Henriches, W. Niederberger, Mol. Phys. 20 (1971) 139-145.

[7]. G. Varsaniyi, Assignments of Vibrational Spectra of Seven Hundred Benzene

Derivatives, Vols. 1 and 2, Adam Higler, England, 1974.

[8]. A.K. Ansari, P.K. Verma, Ind. J. Pure Appl. Physics 16 (1978) 454.

[9]. N. Syam Sundar, Can.J.Chem. 62 (1984) 2238.

[10]. Yaoming Xie, James E. Boggs, Journal of Computational Chemistry, 7(2)

(1986) 158–164.

[11]. K.P.R. Nair, K. Epple, Chemical Physics Letters, 166(2)(1990)146-152.

[12]. K.P. Rajappan Nair, Journal of .Molecular Structure, 477 (1999) 251-254.

[13]. P. C. Chen, F. M. Chang, International Journal of Quantum Chemistry, 77(4)

(2000) 772–778.

[14]. Chika Minejima, Takayuki Ebata, Naohiko Mikami, Phys. Chem. Chem.

Phys., 4 (2002) 1537-1541.

[15]. Zhengyou Zhou, Hongwei Gao, Li Guo, Yuhui, Xueli Cheng, Spectrochimica

acta A 58 (2002) 1553-1558.

[16]. D.Gerhard, A. Hellweg, I. Merke, W. Stahl, M. Baudelet, D. Petitprez,

G. Wlodarczak, J. Mol. Spec. 220 (2003) 234 – 241.

[17]. Jon Baker, Journal of Molecular Structure: Theochem, 865(1-3), (2008) 49-52.

[18]. S.Ramalingam, S.Periandy, M.Govindarajan, S. Mohan, Spectrochim Acta A,

75(4) (2010) 1308-1314.

[19]. M. Govindarajan, K.Ganasan, S.Periandy, M. Karabacak M, S. Mohan,

Spectrochim Acta A, 77(5) (2010) 1005 - 1013.

[20]. Wang J, Ren M, Wang S, Qu Y, Spectrochim. Acta A, 78(3) (2011) 1126-

1132.

Page 14: 17 Chapter 10

[21]. P.M. Anbarasan, M.K. Subramanian, S. Manimegalai, K. Suguna, V.

Ilangovan, N. Sundaraganesan, J. Chem. Pharm. Res., 3(3) (2011) 123-136.

[22]. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58 (1980) 1200.

[23]. J.R. Durig, T.G.Costner, T.S.Little, Can. J. Chem. 71 (1993) 1751.

[24]. Q. Shen, J. Mol. Struc. 75 (1981) 303.

[25]. G.S. Jas, K.Kuezera, Chemical Physics, 214 (1997) 229-241.

[26]. Y.R. Sharma, Elementary Organic Spectrocopy- Principles and chemical

applications, S.Chande & Company Ltd., New Delhi, 1994, pp. 92-93.

[27]. Furnell B.S. Vogel, Text took of Practical Organic Chemistry, Fifth ed.,

Longman/Widely, New York, 1989.

[28]. Wade LG, Advanced Organic Chemistry, Fourth ed., Wiley, New York, 1992,

pp.723.

[29]. Pagannone M, Formari.B and Mattel.G, Spectrochim. Acta 43A (1986) 621.

[30]. Prabakaran A.R, and Mohan S, Indian J. Phys. 63B (1989) 468-473.

[31]. P.S. Kalsi, Spectroscopy of Organic Compounds, Wiley Eastern Limited, New

Delhi, 1993, pp.116-117.

[32]. Jag Mohan, Organic Spectroscopy – Principle and Applications, Second ed.,

Narosa Publishing House, New Delhi, pp. 30-32.

[33]. S.Gunasekaran, R. Arun Balaji, S. Kumaresan, G. Anand, S. Srinivasan,

Canadian Journal of Analytical Sciences and Spectroscopy, 53 (2008) 149-162.

[34]. G.Litivinov, Proceedings of the XIII International conference on Raman

Spectroscopy, Wurzburg, Germany, 1992.

[35]. K. Furie, V.Mohacek, M. Bonifacic, I. Stefanic, J. Mol. Struct., 39 (1992) 267.

[36]. G. Lau, H.Wang, Spectrochimica Acta 46 (1990) 1211.

[37]. L.J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall,

London, 1975.

[38]. F.R. Dollish, W.G. Fateley, F.F. Bentley, Characteristics Raman Frequencies

of Organic Compounds, John Wiley, New York, 1974, p.170.

[39]. K.B. Wiberg, A. Sharke, Spectrochimica Acta A 29 (1973) 583.

[40]. R. G. Snyder, J.H. Schachtschneider, Spectrochimica Acta 21 (1965) 169.

[41]. N. Sundaraganesan, B. Anand, C. Meganathan, B. Dominic Joshua, H. Saleem,

Spectrochimica Acta A 69(2008) 198-204.

Page 15: 17 Chapter 10

[42]. V. Krishnakumar, N. Surumbarkuzhali, S. Muthunatesan, Spectrochim. Acta

A 71(2009) 1810-1813.

[43]. G. Socrates, Infrared and Raman characteristic frequencies, Third ed., John

Wiley & Sons Ltd., Chichester, 2001.

[44]. V.R. Dani, Organic Spectroscopy, Tata – MacGraw Hill Publishing Company,

New Delhi, 1995, pp. 139.

[45]. John Coates, Interpretation of infrared spectra - A Practical approach,

Encyclopedia of Analytical Chemistry, (Eds: R.A. Meyers), John Wiley &

Sons Ltd., Chichester, 2000, pp. 10815-10837.

[46]. A.W. Richardson, Can. J. Chem, 51 (1973) 680.

Page 16: 17 Chapter 10

Chapter - 5

[1]. H. Weidel, Zur Kenntniss des Nicotins, Justus Liebig's Annalen der Chemie und

Pharmacie 165 (1873) 330.

[2]. Prakash Ravi, Sachin Gandotra, Lokesh Kumar Singh, Basudeb Das, Anuja

Lakr,. General Hospital Psychiatry 30 (2008) 581.

[3]. Keith Parker, Laurence Brunton, Goodman, Louis Sanford, Lazo, S. John

Gilman, Alfred, Goodman & Gilman's the pharmacological basis of

therapeutics, McGraw-Hill, New York, 2006.

[4]. W.B. Wright, G.S.D.King, Acta Cryst. 6 (1953) 305.

[5]. J.H.S. Green, W. Kynaston, H.M. Paisley, Spectrochimica acta. 19 (1963) 549-

564.

[6]. George ole Sorensen, Leo Mahler, Niels Rastrup Andersen, J. Mol. Struct, 20

(1974) 119-126.

[7]. F. Pang, P. Pulay, J.E. Boggs, J. Mol. Struct. (Theochem) 88 (1982) 79.

[8]. Gabor Pongor, Peter Pulay, Geze Fogarasi, James E. Boggs, J. Am. Chem. Soc.,

106 (1984) 2765-2769.

[9]. Kenneth B. Wiberg, Valerie A. Walters, Koon N. Wong, Steven D. Colson,

J. Phys. Chem. 88 (1984) 6067-6075.

[10]. O. Sala, N.S. Goncalves, L.K. Noda, J. Mol. Str 565-566 (2001) 411.

[11]. P. Koczon, J.C. Dobrowolski, W. Lewandowski, A.P. Mazurek, J. Mol. Struct.

655 (2003) 89-95.

[12]. M. Karabacak, M. Cinar, M. Kurt, J. Mol. Struct. 885 (2008) 28-35.

[13]. Matthew R. Hudson, Damian G. Allis, Bruce S. Hudson, Chemical physics

Letters 473 (2009) 81.

[14]. M. Kumar, S. Jaiswal, R. Singh, G. Srivastav, P. Singh, T.N. Yadav, R.A.

Yadav, Spectrochimica Acta Part A 75 (2010) 281–292.

[15]. Elsa M. Goncalves, Carlos E.S. Bernardes, Herminio P.Diogo, Manuel E. Minas

da Piedade, J. Phys. Chem. B 114 (2010) 5475.

[16]. Mehmet Karabacak, Mehmet Cinar, Sahin Ermeca, Mustafa Kurt J. Raman

Spectroscopy, 41 (2010) 98–105.

[17]. M. Kumar, R.A. Yadav, Spectrochimica Acta Part A 79 (2011) 1316–1325.

[18]. G. Fogarasi, P. Pulay, J.R.Durig (Eds.), Vibrational Spectra and Structure,

Page 17: 17 Chapter 10

Vol.14, Elesevier, Amsterdam, 1985.

[19]. A. Kutoglue, C. Scjeromger. Acta Crystallogr. C39 (1983) 232.

[20]. F.H. Allen, Acta Crystallogr. B58 (2002) 380.

[21]. F. Pang, P. Pulay, J.E. Boggs, J. Mol. Struct. (Theochem) 88 (1982) 79.

[22]. S. Long, M. Seigler, T.Li, Acta Cryst. E63 (2007) 6279

[23]. B.A. Hess, L.J. Schaad, P. Carsky, R. Zahradnik, Chem Rev., 86 (4) (1986) 709

– 730.

[24]. P.A. Scott, L. Random, J. Phys. Chem. 100 (1996) 16502.

[25]. M. Head-Gordon, E.F.C. Byrd, C.D. Sherrill, J. Phys. Chem. A 105 (42) (2001)

9736-9747.

[26]. H.B. Schlegel, J. Velkovski, M.D. Halls, Theor. Chem. Acc. 105 (2001) 413 –

421.

[27]. B. Galabov, Y. Yamaguchi, R.B. Remington, H.F. Schaefer, J. Phys. Chem. A

106 (5) (2002) 819 – 832.

[28]. M. Szafra, J. Koput, J. Mol. Struct. 565 (2001) 439-448.

[29]. M. Silverstein, G. Clayton Bassler, C. Morril, Spectroscopic Identification of

Organic Compounds, John Wiley, New York, 1981.

[30]. E.B. Wilson, J.C.Decius, P.C.Cross, Molecular Vibrations, Dover Publ. Inc.,

New York, 1980.

[31]. R.L. Peesole, L.D Shield, I.C. McWilliam, Modern Methods of chemical

analysis, Wiley, New York, 1976.

[32]. Y.R. Sharma, Elementary Organic Spectrocopy- Principles and chemical

applications, S.Chande & Company Ltd., New Delhi, 1994, pp. 92-93.

[33]. B.S. Furnell Vogel, Text took of Practical Organic Chemistry, fifth ed.,

Longman/Widely, New York, 1989.

[34]. L.G. Wade, Advanced Organic Chemistry, fourth ed., Wiley, New York, 1992,

pp.723.

[35]. G. Socrates, Infrared and Raman characteristic frequencies, third ed., John

Wiley & Sons Ltd., Chichester, 2001.

[36]. G. Varsanyi, Vibratinoal spectra of benzene derivatives, Academic press, New

York, (1996).

[37]. Jag Mohan, Organic Spectroscopy – Principle and Applications, second ed.,

Narosa Publishing House, New Delhi, pp. 52-53.

Page 18: 17 Chapter 10

[38]. R.A. Yadav, M. Kumar, R. Singh, P. Singh, S. Jaiswal, G. Srivastav, R.L.

Prasad, Spectrochim. Acta A 71 (2008) 1565-1570.

[39]. D.A. Kleinman, Phys.Rev.126 (1962) 1977.

Page 19: 17 Chapter 10

Chapter - 6

[1]. Gabor Pongor, Peter Pulay, Geze Fogarasi, James E. Boggs, J. Am. Chem.

Soc., 106 (1984) 2765-2769.

[2]. J.H.S. Green, W. Kynaston, H.M. Paisley, Spectrochimica acta. 19 (1963)

549-564.

[3]. De-Yin Wu, Bin Ren, Yu-Xiong Jiang, Xin Xu,, Zhong-Qun Tian, J. Phys.

Chem A 106 (2002) 9042-9052.

[4]. Kenneth B. Wiberg, Valerie A. Walters, Koon N. Wong, Steven D. Colson,

J. Phys. Chem. 88 (1984) 6067-6075.

[5]. W.B. Wright, G.S.D.King, Acta Cryst. 6 (1953) 305.

[6]. A. Kutoglu, C. Sheringer, Acta Cryst C39 (1983) 232.

[7]. R.F. Evnas, W.Kynaston, J. Chem. Soc. (1961) 1005.

[8]. A. Jart, Acta Polytech.Scand., Chem. Met. Ser. 42 (1965).

[9]. R. Prasad, N. Dube, Indian J. Pure Appl. Phys 25 (1987).

[10]. J.S. Loring, M. Karlsson, W.R. Fawcett, W.H. Casey, Geochim,

Cosmochim. Acta 64 (2000) 4115.

[11]. C.L. Broadhurst, W.F. Schmidt, J.B. Reeves, M.M. Polansky, K. Gautschi,

J. Inorg. Biochem. 66 (1997) 119.

[12]. N.K. Singh, D.K. Singh, Synth. React. Inorg. Met.orgchem. 32 (2002) 203.

[13]. P. Koczon, J.C. Dobrowolski, W. Lewandowski, A.P. Mazurek, J. Mol.

Struct. 655 (2003) 89-95.

[14]. Soo Min Park, Kwan Kim, Myung Soo Kim, Journal of Molecular Structure

344 (1995) 195-203.

[15]. F. Bardak, A. Atac, M. Kurt, Spectrochim Acta 71 (2009) 1896-1900.

[16]. N. Can, A. Atac, F. Bardak, S.E.S. Can, Turk. J. Chem. 29 (2005)

589 – 595.

[17]. A. Atac, F. Bardak, Turk. J. Chem. 30 (2006) 609-618.

[18]. Li-Ran Wang, Yan Fang Chem. Phys. 323 (2006) 376-382.

[19]. Elsa M. Goncalves, Carlos E.S. Bernardes, Herminio P.Diogo, Manuel E.

Minas da Piedade, J. Phys. Chem. B 114 (2010) 5475

[20]. Matthew R. Hudson, Damian G. Allis, Bruce S. Hudson, Chemical physics

Letters 473 (2009) 81.

Page 20: 17 Chapter 10

[21]. O. Sala, N.S. Goncalves, L.K. Noda, J. Mol. Str 565-566 (2001) 411.

[22]. M. Karabacak, M. Cinar, M. Kurt, J. Mol. Struct. 885 (2008) 28-35.

[23]. M. Karabacak, M. Kurt, Spectrochim. Acta A 71 (2008) 876-883.

[24]. M. Kumar, S. Jaiswal, R. Singh, G. Srivastav, P. Singh, T.N. Yadav, R.A.

Yadav, Spectrochimica Acta Part A 75 (2010) 281–292.

[25]. Wlodzimierz Lewandowski, Halina Baranska, Piotr Moscibroda, J. Raman

Spec., 24 (1993) 819-824.

[26]. J. Seliger, V. Zagar , A. Zidansek , R. Blinc, Chemical Physics 331 (2006)

131–136.

[27]. A. Atac, M. Karabacak, E. Kose, C. Karaca, Spectrochim. Acta A, 83 (2011)

250-258.

[28]. A. Atac, M. Karabacak, C. Karaca, E. Kose, Spectrochim. Acta A, 85 (2012)

145-154

[29]. G. Fogarasi, P. Pulay, J.R.Durig (Eds.), Vibrational Spectra and Structure,

Vol.14, Elesevier, Amsterdam, 1985.

[30]. G. Keresztury, S. Holly, G. Besenyei, J. Varga, A. Wang, J.R. Durig,

Spectrochim. Acta A 49 (1993), 2007–2017, 2019–2026.

[31]. G. Keresztury, Raman spectroscopy: theory, in: J.M. Chalmers, P.R. Griffith

(Eds.), Hand Book of Vibrational Spectroscopy, vol. 1, John Wiley & Sons

Ltd., New York, 2002.

[32]. F. Pang, P. Pulay, J.E. Boggs, J. Mol. Struct. (Theochem) 88 (1982) 79.

[33]. F.H. Allen, Acta Crystallogr. B58 (2002) 380.

[34]. F. Mata, M.J, Quintana, G.O. Sorensen, J. Mol. Struct., 48 (1977) 1-5.

[35]. S. Long, M. Sugler, T. Li, Acta Cryst. E 63 (2007) 6279.

[36]. D.C. Young, Computational Chemistry: A Practical Guide for Applying

Techniques to Real World Problems (Electronic), John Wiley & Sons Inc.,

New York, 2001., NIST Chemistry Webbook, IR database,

http://srdata.nist.gov/cccbdb.

[37]. Y.R. Sharma, Elementary Organic Spectrocopy- Principles and chemical

applications, S.Chande & Company Ltd., New Delhi, 1994, pp. 92-93.

[38]. M. Silverstein, G. Clayton Bassler, C. Morril, Spectroscopic Identification

of Organic Compounds, John Wiley, New York, 1981.

[39]. E.B. Wilson, J.C.Decius, P.C.Cross, Molecular Vibrations, Dover Publ. Inc.,

Page 21: 17 Chapter 10

New York, 1980.

[40]. P.S. Kalsi, Spectroscopy of Organic Compounds, Wiley Eastern Limited,

New Delhi, 1993.

[41]. J. Mohan, Organic Spectroscopy – Principle and Applications, 2nd

ed.,

Narosa Publishing House, New Delhi, pp. 30-32.

[42]. D.N. Sathyanarayana, Vibrational spectroscopy – Theory and Applications,,

second ed., New Age International (P) Ltd publishers, New Delhi, 2004.

[43]. G. Socrates, Infrared and Raman characteristic frequencies, third ed., John

Wiley & Sons Ltd., Chichester, 2001.

[44] D. Sajan, L. Joseph, N. Vijayan, M. Karabacak, Spectrochim. Acta A 81

(2011) 85–98

[45] A. Altun, K. Gölcük, M. Kumru, J. Mol. Struct. (Theochem) 625 (2003)

17–24.

[46] M. Karabacak, E. Sahin, M. Cinar,I. Erol, M. Kurt, J. Mol. Struct. 886

(2008) 148–157

[47] J.B. Ott, J. Boerio-Goates, Calculations from Statistical Thermodynamics,

Academic Press, 2000.

[48] S.I. Gorelsky, SWizard Program Revision 4.5., http://www.sg.chem.net/,

University of Ottawa, Ottawa, Canada, 2010.

[49] I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley

and Sons, New York, 1976, pp.5-27.

[50] J.S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and 399

Applications, Elsevier, Amsterdam, 1996

[51] E. Scrocco, J. Tomasi, in: P. Lowdin (Ed.), Advances in Quantum

Chemistry, Academic Press, New York, 1978.

[52]. Hakan Arslan, U. Florke, N. Kulcu, Spectrochimica acta part A 67 (2007)

936-943.

Page 22: 17 Chapter 10

Chapter - 7

[1]. V. Librando, D.S. Fazzino, Chemosphere, 27 (1993) 1649 - 1654.

[2]. F. Castelli, V. Librando, M.G.A. Sarpietro, Environ. Sci. Technol. 36 (2002)

2717 – 2723.

[3]. D. Hoffmann, E.L. Wynder, A.C. Stern (Eds.), Air Pollution, Academic Press,

New York, 1977, vol.2, pp. 361-455.

[4]. M. Nordquist, D.R. Thakker, H. Yagi, R.E. Lehr, A.W. Wood, W. Levin, A.H.

Conney, D.M. Jerina, R.S. Bhatnagar (Eds.), Molecular Basis of

Environmental Toxicity, Ann Arbor Science Publisher, Ann Arbor, MI, 1980,

pp. 329-357.

[5]. R.G. Harvey, Polycyclic Aromatic Hydrocarbons: Chemistry and

Carcinogenicity, Cambridge University Press, Cambridge, UK, 1991.

[6]. S. Motta, C. Federico, S. Saccone, V. Librando, P. Mossesso, Mutat. Res. 561

(2004) 45-52.

[7]. J.L. Puget, A. Leger, F. Boulanger, Astron. Astrophys. 142 (1985) L19-L22.

[8]. L.J. Allamandola, Topics Curr. Chem. 153 (1990) 1-25.

[9]. J. Szczepanski, M. Vala, Nature, 363 (1993) 699-701.

[10]. J.E.Amoore, E. Hautala E, J Appl Toxicology 3 (6) (1983) 272–290 (1983).

[11]. F. Warnia, D. Mackay, Environ. Sci. Technol. 30 (1996) 390.

[12]. P.T. Williams, K.D. Bartle, G.D. Andrews, Fuel 65 (1986) 1150.

[13]. J. Bundt, W. Herbel, H. Steinhart, S. Franke, W. Francke, High Resolut.

Chromatogr. 14 (1991) 91.

[14]. J.W. Childers, Environ Health Perspect, 108 (2000) 853-62.

[15]. G.C. Pimental, Abstracts of OSU International symposium on Molecular

Spectroscopy D7 (1951) 1946-1959.

[16]. Harrell Sellers, Peter Pulay, James E. Boggs, J. Am. Chem. Soc., 107 (1985)

6487-6494

[17]. Lester Andrews, Ronald S. Friedman, Benuel J. Keisall, J. Phys. Chem. 89

(1985), 4550-4553

[18]. Jonathan A. Warren, John M. Hayes, Gerald J. Small, Chemical Physics, 102 (3) (1986)

313-321

[19]. Petra Swiderek , Georg Hohlneicher, J. Chem. Phys. 98 (2) (1993) 974-987.

[20]. Jan M. L. Martin, Jamal El-Yazal, Jean-Pierre Francois, J. Phys. Chem, 100

Page 23: 17 Chapter 10

(1996) 15358 – 15367.

[21]. F. Ehland , S. Hassing, W. Dreybrodt, J. Raman Spec. 30 (1999) 573-579.

[22]. B. V. Lokshin, N. E. Borisova, B. M. Senyavin, M. D. Reshetova, Russian

Chemical Bull. 51 (2002) 1656-1666

[23]. Chick C. Wilson, Chemical Physics letters 362 (2002) 249-254.

[24]. Marina V. Zhigalko, Oleg V. Shishkin, Leonid Gorb, Jerzy, J. Mol. Struc 693

(2004) 153-159.

[25]. S. D. Christesen, C. S. Johnson Jr, J. Raman Spec. 14 (2005) 53-58.

[26]. G. Cardini, V. Schettino, J. Raman Spec. 15 (2005) 237-240.

[27]. N. A. Borisevich, G. G. D‘yachenko, V. A. Petukhov, M. A. Semenov, optics

and spectroscopy, 101 (5) (2006) 683-690.

[28]. Vito Librando, Andrea Alparone, Polycyclic aromatic compounds, 27(1)

(2007) 65-94.

[29]. G. G. D‘yachenko, V. A. Petukhov, M. A. Semenov, Journal of Applied

Spectroscopy, 74(3) (2007) 374-378.

[30]. Mohamad H. Kassaee, David J. Keffer, William V. Steele, J. Chem. Eng. Data

2007, 52, 1843-1850.

[31]. Prasanta Das, E. Arunan, Puspendu K. Das, Vibrational Spectroscopy 47

(2008) 1-9.

[32]. T.Prabhu, S. Periandy, S. Mohan, Spectrochimica Acta Part A 78 (2011) 566-

574.

[33]. Gouri S. Jas, Krzysztof Kuczera, Chem. Phys. 214 (1997) 229-241.

[34]. V. Krishnakumar, S. Seshadri, S. Muthunatesan, Spectrochim. Acta A 68

(2007) 811-816.

[35]. F. Pauzat, D. Talbi, M.D. Miller, J. Phys. Chem. 96 (1992) 7882.

[36]. I. Ponomarev, O.S. Filipenikin, L.O. Atovmyan, Kristallagrafiya 21 (1976)

392.

[37]. D.J. De Frees, M.D. Miller, D. Talbi, F. Pauzat, Y. Ellinger, Astrophys. J. 408

(1993) 530.

[38]. M. Pagannone, B. Formari, G.Mattel, Spectrochim. Acta A 43 (1986) 621.

[39]. P.S. Kalsi, Spectroscopy of Organic Compounds, Wiley Eastern Limited, New

Delhi, 1993.

[40]. Jag Mohan, Organic Spectroscopy – Principle and Applications, second ed.,

Page 24: 17 Chapter 10

Narosa Publishing House, New Delhi, pp. 30-32.

[41]. V. Krishnakumar, R. Mathammal, S. Muthunatesan, Spectrochim. Acta A 70

(2008) 210-216.

[42]. D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Hand Book of

Infrared and Raman Characteristic Frequencies of Organic Molecules,

Academic Press, Boston, 1991.

[43]. M. Dien, Introduction to Modern Vibrational Spectroscopy, Wiley, New

York, 1993.

[44]. P.B. Nagabalasubramanian, S. Periandy, S. Mohan, Spectrochim. Acta A 74

(2009) 1280-1287.

[45]. J.H.S. Green, D.J. Harison, W. Kynoston, Spectrochim. Acta A 27 (1971)

807.

[46]. K. Bahgat, N. Jasem, Talaat El-Emary, J. Serb. Chem. Soc. 74 (2009) 555-

571.

[47]. Vito Librando, Andrea Alparone, Environ. Sci. & Technol. (2007).

Page 25: 17 Chapter 10

Chapter - 8

[1]. J.L. Puget, A. Leger, F. Boulanger, Astron. Astrophys. 142 (1985) L19-L22.

[2]. L.J. Allamandola, Topics Curr. Chem. 153 (1990) 1-25.

[3]. J. Szczepanski, M. Vala, Nature, 363 (1993) 699-701.

[4]. Michael Duncan, Atrobiology Magazine 25 (2008).

[5]. J,E. Amoore, E. Hautala, J Appl Toxicology 3 (6) (1983) 272–290.

[6]. M. Govindarajan, K. Ganasan, S. Periandy, M. Karabacak, Spectrochim. Acta A 79

(2011) 646–653

[7]. R.L. Ward, Abstracts of OSU International symposium on Molecular Spectroscopy

B4 (1956) 1946-1959.

[8]. D.E. Freeman, I.G. Ross, Abstracts of OSU International symposium on Molecular

Spectroscopy C10 (1959) 1946-1959.

[9]. G.C. Pimental, Abstracts of OSU International symposium on Molecular

Spectroscopy D7 (1951) 1946-1959.

[10]. R. Shanker, R.A. Yadav, I.S. Singh, O.N. Singh, Pramana 24 (1985) 749-755.

[11]. M.V. Zhigalko, O.V. Shishkin, L. Gorb, Jerzy, J. Mol. Struc. 693 (2004) 153-159.

[12]. S.D. Christesen, C.S. Johnson Jr, J. Raman Spec. 14 (2005) 53-58.

[13]. G. Cardini, V. Schettino, J. Raman Spec. 15 (2005) 237-240.

[14]. A.V. Szeghalmi, V. Engel, M.Z. Zgierski, J. Popp, M. Schmitt, J. Raman Spec. 37

(2006) 148-160.

[15]. F. Ehland, S. Hassing, W. Dreybrodt, J. Raman Spec. 30 (1999) 573-579.

[16]. H. Torii, Y. Ueno, A. Sakamoto, M. Tasumi, Can.J. Chem 82 (2004) 951-963.

[17]. I.A. Zavodov, V.V. Zverev, L.I. Maklakov, J. Struc. Chem. 44 (2003) 388-396.

[18]. O. Scheneep, D.S. McClure, J. Chem. Phys. 20 (1952) 1375.

[19]. G.S. Jas, K. Kuczera, Chem. Phys. 214 (1997) 229-241.

[20]. A. Srivastava, V.B. Singh, Ind. J. Pure & App. Phys. 45 (2007) 714-720.

[21]. P.B. Nagabalasubramanian, M. Karabacak, S. Periandy, Spectrochim. Acta A

(2011) in press

[22]. P. Das, E. Arunan, P.K. Das, Vib. Spectros. 47 (2008) 1-9.

[23]. V. Librando, A. Alparone, Environ. Sci. & Technol. (2007).

[24]. V. Librando, A. Alparone, Polycyclic Aromatic Compounds, 27(1) (2007) 65-94.

[25]. P.B. Nagabalasubramanian, S. Periandy, Sepectrochim. Acta A 77 (2010) 1099-

1107.

Page 26: 17 Chapter 10

[26]. L. Andrews, R.S. Friedman, B.J. Kelsall, J. Phys. Chem. 89 (1985) 4550 – 4553

[27]. I. Mamedov, K. Nasibov, N. Niyazova, M. Khalilov, Zhurnal Prikladnoi

spektroskopii 15 (1) (1971) 51-54.

[28]. V.L. Furer, A.A. Bredikhin, A.M. Salikhova, A.N. Vereshchagin, Zhurnal

Prikladnoi spektroskopii 40 (4) (1984) 574-578.

[29]. J.R. Durig, D.T. Durig, J.B. Robb. G.A. Guirgis, M. Zhen, H.V. Phan, J. Raman

Spec. 31 (2000) 203–215.

[30]. V.F. Kalasinsky, C.J. Wurrey, J. Raman Spec. 9 (5) (1980) 315-323.

[31]. G.A. Crowder, Spec. Letters 19(7) (1986) 713-717.

[32]. A.D. Becke, J. Chem. Phys. 98 (1993) 5648

[33]. C.Lee, W. Yang, R.G. Parr, Physc. Rev. B37 (1988) 785.

[34]. J. Baker, A.A. Jarzecki, P. Pulay, J. Phys. Chem A102 (1998) 1412.

[35]. SQM version 1.0, Scaled Quantum Mechanical Force Field, 2013 Green Acres

Road,

Fayetteville, Arkansas 72703.

[36]. Gaussian 03, Revision A.1, M.J.Frisch, G.W.Trucks, H.B.Schlegel, G.E.Scuseria,

M.A.Robb, J.R.Cheeseman, J.A. Montgometry, Jr., T. Vreven, K.N. Kudin, J.C.

Burant, J.M. Milliam, S.S. Iyengar, J. Jomasi, V. Barone, B. Mennucci, M. Cossi,

G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.

Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.

Nakai, M. Klene, X. Li J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J.

Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.

Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J.

Dannenberg, V. G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas,

D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresamn, J.V. Ortiz, A. Cui,

A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Lashenko, P.

Piskorz, I. Komaromi, R.I. Martin, D.J. Fox, T. Keith, M.A. Al-Lham, C.Y, Peng,

A. Nanayakkara, M. Challacombe, P.M. W. Gill, B. Johnson, W. Chen, M.W.

Wong, C. Gonzalez and J.A. Pople, Gaussin, Ins., Pittsburgh PA, 2003.

[37]. A. Frisch, A.B. Nielson, A.J. Holder, GAUSSVIEW User Manual ,Gaussian Inc.,

Pittsburgh, PA, 2000.

[38]. N. Sundaraganesan, S.I. Ilakiamani, H. Saleem, P.M. Wojciechowski, D.

Michalska, Spectrochim. Acta A61 (2005) 2995.

Page 27: 17 Chapter 10

[39]. D.C. Young, Computational Chemistry: A practical guide for applying techniques

to real world problems (Electronic), John Wiley & Sons Ltd., New York, 2001.

[40]. NIST Chemistry Webbook, IR database, http://srdata.nist.gov/cccbdb.

[41]. G. Keresztury, S. Holly, J. Varga, G. Besenyei, A.Y. Wang, J.R. Durig,

Spectrochim. Acta 49A (1993) 2007.

[42]. G. Keresztury, in: J.M. Chalmers, P.R. Griffiths (Eds.), Raman Spectroscopy:

Theory in Handbook of Vibrational Spectroscopy, vol.1, John Wiley & Sons Ltd.,

2002.

[43]. F. Pauzat, D. Talbi, M.D. Miller, J. Phys. Chem. 96 (1992) 7882.

[44]. V.I. Ponomarev, O.S.Filipendo, L.O. Atovmyan, Kristallografiya, 21 (1976) 392.

[45]. D.W.J. Cruickshank , R.A. Sparks, Proc. R. Soc. London, 258 (1960) 270-285.

[46]. A. Almenningen, O. Bastiansen, F. Dyvik, Acta Crystallogr., 14 (1961) 1056-1065.

[47]. M. Silverstein, G. Clayton Bassler, C. Morril, Spectroscopic Identification of

Organic Compounds, John Wiley, New York, 1981.

[48]. E.B. Wilson, J.C. Decius, P.C. Cross, Molecular Vibrations, Dover Publ. Inc., New

York, 1980.

[49]. R.L. Peesole, L.D. Shield, I.C. McWilliam, Modern Methods of chemical analysis,

Wiley, New York, 1976.

[50]. Y.R. Sharma, Elementary Organic Spectrocopy- Principles and chemical

applications, S.Chande & Company Ltd., New Delhi, 1994.

[51]. B.S. Furnell Vogel, Text took of Practical Organic Chemistry, 5th

ed.,

Longman/Widely, New York, 1989.

[52]. L.G. Wade, Advanced Organic Chemistry, 4th ed., Wiley, New York, 1992.

[53]. M. Pagannone, B. Formari, G.Mattel, Spectrochim. Acta A 43 (1986) 621.

[54]. P.S. Kalsi, Spectroscopy of Organic Compounds, Wiley Eastern Limited, New

Delhi, 1993.

[55]. J. Mohan, Organic Spectroscopy – Principle and Applications, 2nd

ed., Narosa

Publishing House, New Delhi, pp. 30-32.

[56]. M. Karabacak, M. Cinar, Z. Unal, M. Kurt, J. Mol. Str. 982 (2010) 22–27

[57]. A. Altun, K. Golcuk, M. Kumru, J. Mol. Struct. (Theochem.) 637 (2003) 155–169.

[58]. A.J. Barnes, M.A. Majid, M.A. Stuckey, P. Gregory, C.V. Stead, Spectrochim. Acta

A41 (1985) 629.

[59]. M. Karabacak, M. Cinar, S. Ermec, M. Kurt, J. Raman Spectrosc. 41 (2010) 98–105

Page 28: 17 Chapter 10

[60]. A.U. Rani, N. Sundaraganesan, M. Kurt, M. Cinar, M. Karabacak, Spectrochim.

Acta A75 (2010) 1523–1529

[61]. J. Coates, Interpretation of Infrared Spectra—A Practical Approach, Encyclopedia

of Analytical Chemistry, John Wiley & Sons, Ltd., Chichester, 2000, pp. 0815–

10837.

[62]. P.B. Nagabalasubramanian, S. Periandy, S. Mohan, Spectrochim. Acta73A (2009)

277–280.

[63]. E.F. Mooney, Spectrochimica Acta 20 (1964) 1021.

[64]. D.A. Kleinman, Phys.Rev.126 (1962) 1977.

[65]. J. E. Rice, N. C. Handy, J. Chem. Phys. 94 (1991) 4959– 4971.

[66]. H. Sekino, R. J Bartlett, J. Chem. Phys. 98 (1993) 3022–3037.

[67]. S.A.C. McDowell, R. D. Amos, N. C. Handy, Chem. Phys. Lett. 235 ( 1995) 1–4.

[68]. C. Adamo, M. Cossi, G. Scalmani, V. Barone, Chem. Phys. Lett. 307 (1999) 265–

271.

[69]. S. Heitz, D. Weidauer, B. Rosenow, A. Hese, J. Chem. Phys. 96 (1992) 976-981.

[70]. J. Bevan Ott, J. Boerio-Goates, Calculations from Statistical Thermodynamics,

Academic Press, 2000.

[71]. S.I. Gorelsky, SWizard Program Revision 4.5., http://www.sg.chem.net/, University

of Ottawa, Ottawa, Canada, 2010.

Page 29: 17 Chapter 10

Chapter - 9

[1]. A. Goodman, Gilman (Ed.), Las Bases Famacolo‘s gicas de la Terapeutical,

vol. II, ninth ed., Mc Graw Hill, Intermedicana, Me‘jica, 1996.

[2]. E. Lippincott, R. O‘Reilly, J. Edward, Abstracts of OSU International

symposium on Molecular Spectroscopy Q3 (1954) 1946-1959.

[3]. D.E. Freeman, I.G. Ross, Abstracts of OSU International symposium on

Molecular Spectroscopy C10 (1959) 1946-1959.

[4]. H. Torii, Y. Ueno, A. Sakamoto, M. Tasumi, Can.J. Chem 82 (2004) 951-963.

[5]. A.V. Szeghalmi, V. Engel, M.Z. Zgierski, J. Popp, M. Schmitt, J. Raman Spec.

37 (2006) 148-160.

[6]. Alka Srivastava, V.B. Singh, Ind. J. Pure & App. Phys. 45 (2007) 714-720.

[7]. V. Krishnakumar, R. Mathammal, S. Muthunatesan, Spectrochim. Acta A 70

(2008) 210-216.

[8]. V. Krishnakumar, R. Mathammal, S. Muthunatesan, Spectrochim. Acta A 70

(2008) 201-209.

[9]. S. Chandra, H. Saleem, N. Sundaraganesan, S. Sebastian, Spectrochim. Acta A

74 (2009) 704.

[10]. C. Ravikumar, L. Padmaja, I. Hubert Joe, Spectrochim. Acta A 75(2) (2010) 859

– 866.

[11]. E. Kavitha, N. Sundaraganesan, S. Sebastian, M. Kurt, Spectrochim. Acta A

77(3) (2010) 612-619.

[12]. M. Govindarajan, K. Ganasan, S. Periandy, M. Karabacak, in press, (2011),

doi:10.1016/j.saa.2011.03.051

[13]. E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO verson, 3.1,

TCI, University of Wisconsin, Madison, 1998.

[14]. J. Baker, A.A. Jarzecki, P. Pulay, J. Phys. Chem A102 (1998) 1412.

[15]. SQM version 1.0, Scaled Quantum Mechanical Force Field, 2013 Green Acres

Road, Fayetteville, Arkansas 72703.

[16]. Gaussian 03, Revision A.1, M.J.Frisch, G.W.Trucks, H.B.Schlegel,

G.E.Scuseria, M.A.Robb, J.R.Cheeseman, J.A. Montgometry, Jr., T. Vreven,

K.N. Kudin, J.C. Burant, J.M. Milliam, S.S. Iyengar, J. Jomasi, V. Barone, B.

Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji,

Page 30: 17 Chapter 10

M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.

Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li J.E. Knox, H.P.

Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O.

Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.

Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V. G. Zakrzewski, S.

Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.

Raghavachari, J.B. Foresamn, J.V. Ortiz, A. Cui, A.G. Baboul, S. Clifford, J.

Cioslowski, B.B. Stefanov, G. Liu, A. Lashenko, P. Piskorz, I. Komaromi, R.I.

Martin, D.J. Fox, T. Keith, M.A. Al-Lham, C.Y, Peng, A. Nanayakkara, M.

Challacombe, P.M. W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez

and J.A. Pople, Gaussin, Ins., Pittsburgh PA, 2003.

[17]. A. Frisch, A.B. Nielson, A.J. Holder, GAUSSVIEW User Manual ,Gaussian

Inc., Pittsburgh, PA, 2000.

[18]. G. Keresztury, S. Holly, J. Varga, G. Besenyei, A.Y. Wang, J.R. Durig,

Spectrochim. Acta 49A (1993) 2007.

[19]. G. Keresztury, in: J.M. Chalmers, P.R. Griffiths (Eds.), Raman Spectroscopy:

Theory in Handbook of Vibrational Spectroscopy, vol.1, John Wiley & Sons

Ltd., 2002.

[20]. S.S.S. Rajan, Acta Cryst. 34B (1978) 998

[21]. Z.A. Li, D.Y. Chen, L.J. Liu, Acta Cryst E 64 (2008) 2310.

[22]. F.H. Allen, Acta Crystallogr. B 58 (2002) 380.

[23]. R.M. Kubba, Ph.D thesis, Baghdad University, 1997.

[24]. M. Karabacak, E. Kose, M. Kurt, J. Raman Spectrosc. 41 (2010) 1085–1097.

[25]. I. Ponomarev, O.S. Filipenikin, L.O. Atovmyan, Kristallagrafiya 21 (1996)

392.

[26]. R.L. Peesole, L.D. Shield, I.C. McWilliam, Modern Methods of chemical

analysis, Wiley, New York, 1976.

[27]. Y.R. Sharma, Elementary Organic Spectrocopy- Principles and chemical

applications, S.Chande & Company Ltd., New Delhi, 1994, pp. 92-93.

[28]. B.S. Furnell Vogel, Text took of Practical Organic Chemistry, 5th

ed.,

Longman/Widely, New York, 1989.

[29]. L.G. Wade, Advanced Organic Chemistry, 4th

ed., Wiley, New York, 1992,

pp.723.

Page 31: 17 Chapter 10

[30]. M. Pagannone, B. Formari, G.Mattel, Spectrochim. Acta A 43 (1986) 621.

[31]. P.S. Kalsi, Spectroscopy of Organic Compounds, Wiley Eastern Limited, New

Delhi, 1993.

[32]. J. Mohan, Organic Spectroscopy – Principle and Applications, 2nd

ed., Narosa

Publishing House, New Delhi, pp. 30-32.

[33]. D.N. Sathyanarayana, Vibrational spectroscopy – Theory and Applications,, 2nd

ed., New Age International (P) Ltd publishers, New Delhi, 2004.

[34]. G. Socrates, Infrared and Raman characteristic frequencies, third ed., John

Wiley & Sons Ltd., Chichester, 2001.

[35]. V.R. Dani, Organic Spectroscopy, Tata – MacGraw Hill Publishing Company,

New Delhi, 1995, pp. 139.

[36]. C. Surisseau, P. Marvel, J. Raman Spectrosc. 25 (1994) 447.

[37]. A.J. Barnes, M.A. Majid, M.A. Stuckey, P. Gregory, C.V. Stead, Spectrochim.

Acta A A41 (1985) 629.

[38]. D.L. Vein, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of

Infrared and Raman Characteristic Frequencies of Organic Molecules,

Academic Press, San Diego.

[39]. A. Altun, K. Gölcük, M. Kumru, J. Mol. Struct. (Theochem.) 637 (2003) 155.

[40]. J. Bevan Ott, J. Boerio-Goates, Calculations from Statistical Thermodynamics,

Academic Press, 2000.

[41]. S.I. Gorelsky, SWizard Program Revision 4.5., http://www.sg.chem.net/,

University of Ottawa, Ottawa, Canada, 2010.