56
Signal Recovery, 2017/2018 – BPF 3 Ivan Rech Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering: Band-Pass Filters 3 – BPF3 Sensors and associated electronics

17 BPF 03 - home.deib.polimi.ithome.deib.polimi.it/rech/Download/17_BPF_03.pdf · SignalRecovery, 2017/2018 –BPF 3 Ivan Rech Band-Pass Filtering 3 2 • Asynchronous Measurement

  • Upload
    vuliem

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Sensors, Signals and Noise 1

COURSEOUTLINE

• Introduction

• SignalsandNoise

• Filtering:Band-PassFilters3– BPF3

• Sensorsandassociatedelectronics

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Band-Pass Filtering 3 2

• AsynchronousMeasurementofSinusoidalSignals

• PrincipleofSynchronousMeasurements ofSinusoidalSignals

• NoiseFilteringinSynchronousMeasurements

• Lock-inAmplifierPrincipleandWeighting Function

• APPENDIX1:Stage-by-stageviewofSignalsintheLock-inAmplifier

• APPENDIX2:Stage-by-stageviewofNoise intheLock-inAmplifier

• APPENDIX3:Bandwidth,Response TimeandS/NoftheLock-inAmplifier

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Asynchronous Measurement of Sinusoidal Signals

3

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Asynchronous measurement of sinusoidal signals 4

• Asynchronous (orphase-insensitive) techniquesweredevisedformeasuringasinusoidal signalwithoutneedinganauxiliaryreference thatpointsoutthepeakingtime(i.e.thephaseofthesignal).

• TheyarecurrentlyemployedinACvoltmetersandamperometers.

• Thebasiccircuitsofsuchmetersarethemean-squaredetectorthehalf-waverectifierthefull-waverectifier

• Foracorrectmeasurementoftheamplitudeofthesinusoidal signal,itisnecessarytoavoidfeedingaDCcomponenttotheinputofanasynchronousmetercircuit.Therefore,themetermustbeprecededbyafilterthatcutsoffthelow-frequencies,thatis,aband-passorahigh-passfilter.

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Asynchronous measurement of sinusoidal signalswith Mean-Square Detector

5

Low-PassFilter

( ) ( )cosx t A tω ϑ= + ( ) ( ) ( )2 2

2 2cos cos 2 22 2A Ay t A t tω ϑ ω ϑ= + = + +

( )2

2Az t =

t

• Itisapower-meter:theoutputisameasureofthetotal inputmeanpower,sumofsignalpower(proportionaltothesquareofamplitudeA2)plusnoisepower.

• Thelow-passfilterhasNOEFFECTOFNOISEREDUCTION.Infact,itdoesnotaveragetheinput,itaveragesthesquareoftheinput.

• ForimprovingtheS/Nitisnecessarytoinsertafilterbefore theMean-SquareDetector

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Low-PassFilter

( ) Az tπ

=

Asynchronous measurement of sinusoidal signals with Rectifier

6

( ) ( )cosx t A tω=

Half-WaveRectifier(HWR)

Full-WaveRectifier(FWR)( ) ( )cosx t A tω=

t

Low-PassFilter

( ) 2Az tπ

=

t

( )4 2

4 2

1cos cos2

T

T

A Az t dt A dT

π

π

ω ϕ ϕπ π

− −

= = =∫ ∫

( )4 2

4 2

2 1 2cos 2 cos2

T

T

A Az t dt A dT

π

π

ω ϕ ϕπ π

− −

= = =∫ ∫

2T πω

=

2T πω

=

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Asynchronous measurement of sinusoidal signals with Rectifier

7

• Themeasurementwitharectifier isnotreallyasynchronous,itisself-synchronized.Thesinusoidal signalitselfdecideswhenithastobepassedwithpositivepolarityandwhenpassedwithnegativepolarity(inthefull-waverectifier)ornotpassedatall(inthehalf-waverectifier).

• In such operation, the LPF reduces the contribution of the wide-band noise,thus improving the output S/N. However, this is true only if the input signalis remarkably higher than the noise, i.e. if the input S/N is high.

• Astheinputsignalisreducedthenoisegainsincreasinginfluenceontheswitchingtimeoftherectifier,whichprogressivelylosessynchronismwiththesignalandtendstobesynchronizedwiththezero-crossingsofthenoise.

• ThelossofsynchronizationprogressivelydegradesthenoisereductionbytheLPF.WithmoderateS/NtheimprovementduetoLPFismodest;withlowS/Nitisveryweak.WithS/N< 1 thereisnoimprovement,there isnotevenameasureofthesignal:theoutputisameasureofthenoisemeanabsolutevalue.

• Inconclusion,metersbasedonrectifierscanjustimproveanalreadygoodS/N.Theycan’thelptoimproveamodestS/NanditisoutofthequestiontousethemwhenS/N<1.ForimprovingS/Nitisnecessarytoemployfiltersbeforethemeter.

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Synchronous (or Phase-Sensitive) Measurements of Sinusoidal Signals

8

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Out+

_

R2R4

R3 RT

VA

Signal and Reference for Synchronization 9

( ) ( )cos mx t A tω ϕ= +

( ) ( )cos mm t B tω=

ACvoltagesupply

REFERENCE

A tobemeasured

Showsthefrequencyandphaseofthesignali.e.pointsoutthepeakinstantsofthesignal

*inthisexample ϕ=0 sincethepreamppassbandlimitismuchhigherthanthesignalfrequencyfm

SIGNALOUT

ϕconstantandknown*

KEYEXAMPLEforthestudyofsynchronousmeasurements andnarrow-bandfiltering

VA

RT =RT(θ)resistancetracksavariableθ,(e.g.a temperatureorastrain);resistancesR2 ,R3 ,R4 areconstant

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Out+

_

R2R4

R3 RT

VA

Signal and Reference for Synchronization 10

( ) ( )cos mx t A tω ϕ= +

( ) ( )cos mm t B tω=

A tobemeasuredϕconstant

RT e.g.strainsensor,theresistancevariesfollowingamechanicalstrainθ

a)incaseswithconstant strainθconstant A à x(t)isapuresinusoidalsignal

b)incaseswithslowlyvariable strainθ =θ(t)variable A=A(t)à x(t) isamodulatedsinusoidalsignal

SLOWvariations=theFouriercomponentsofA(f)=F[A(t)] havefrequencies f<<fm

VA

KEYEXAMPLEforthestudyofsynchronousmeasurements andnarrow-bandfiltering

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Sample&Hold

outV A=inV A=

DCoutputsignal

Signal

δ(t)

Elementary synchronous measurement: peak sampling 11

fm-fm f

|X|

|W|

f

t

x(t)

t

w(t)=δ(t)

A

( )2 mA f fδ −( )

2 mA f fδ +

Timedomain Frequencydomain

Signal

Weighting

NOFILTERINGACTION:outputnoisepower=fullinputnoisepower

1

Reference

Samplingdriver

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Noise Filtering in Synchronous Measurements

12

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Synchronous measurement with averaging over many samples N >>1 of the peak

13

t

t

tT-T

rT(t)

t

w(t)

( ) ( ) ( )Tw t m t r t= ⋅

2 1mN f T= ?

( ) ( )cos 2 mx t A f tπ=

T T

m(t)

TotakeNsamplesisequivalenttogate

afree-runningsampler

x(t)

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Synchronous measurement with averaging over many samples N >>1 of the peak

14

fm-fm f

|X|

f

|RT|

f

t

t

tT-T

rT(t)

t

fm-fm f

fm-fm

-2fm 2fm

........m(t) |M|

2fm-2fm

FILTERING:narrowbandsatfrequencies0,fm,2fm,3fm ....

........

( ) ( ) ( )Tw t m t r t= ⋅ ( ) * TW f M R≈

12mf T

?

( ) ( )cos 2 mx t A f tπ=

12nf T

Δ =

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Poor Noise Filtering by Sample-Averaging 15

fm-fm

|X|

f

|W|2

fm-fm 2fm-2fm

........

3fm-3fm

f

f

Sn1/fnoise whitenoise

• Atfm useful band:itcollects thesignal andsomewhitenoisearoundit• atf=0VERYHARMFULband:itcollects1/fnoiseandnosignal• at2fm ,3fm ,.... harmful bands:theycollect justwhitenoisewithoutanysignal

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Synchronous measurement with DC suppression by summing positive peak and subtracting negative peak samples

16

t

x(t)

t

tT-T

rT(t)

t

m(t)

w(t)

T T( ) ( ) ( )Tw t m t r t= ⋅

Totake2Nsamplesisequivalenttogate

afree-runningsampler

NB:equalnumberofpositiveandnegativesamples(zeronetarea)

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Synchronous measurement with DC suppression by summing positive peak and subtracting negative peak samples

17

fm-fm f

|X|

f

|RT|

f

t

x(t)

t

tT-T

rT(t)

t

fm-fm f

fm-fm

-2fm 2fm

........m(t) |M|

2fm-2fm

FILTERING:narrowbandsatfm andatodd multiples3fm,5fm ....

........

( ) ( ) ( )Tw t m t r t= ⋅ ( ) * TW f M R≈

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Improved Filtering by Sample-Averaging with DC Suppression

18

fm-fm

|X|

ffm-fm 2fm-2fm

........

3fm-3fm

f

f

Sn 1/fnoisewhitenoise

• atfm useful bandthatcollectsthesignal andsomewhitenoisearoundit• Nomorebandatf=0,nomorecollectionof1/fnoise• at3fm ,5fm....residualharmful bandsthatcollect justwhitenoisewithoutanysignal:

howcanwegetridalsoofthem?

|W|2

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

-T T

Continuous sinusoidal weighting instead of peak sampling 19

fm-fm f

|X|

f

|RT|

f

t

t

tT-T

rT(t)

t

fm-fm f

fm-fm

|M|

TRULYEFFICIENTFILTERING:justonenarrowbandatfm

( ) ( ) ( )Tw t m t r t= ⋅( ) * TW f M R≈

( ) ( )cos mm t B tω=

( ) ( )cos mx t A tω=

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Optimized noise filtering in synchronous measurement 20

fm-fm

|X|

ffm-fm 2fm-2fm 3fm-3fm

f

f

Sn 1/fnoisewhitenoise

• atfm useful bandthatcollectsthesignal andsomewhitenoisearoundit• Nobandatf=0,nocollection of1/fnoise• Noresidualbandsat3fm ,5fm ...nomorecollectionofwhitenoisewithoutanysignal

Howtoimplementthisoptimizedsynchronousmeasurement?

|W|2

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Basic set-up for Synchronous Measurement with optimized noise filtering

21

Sy A∝A DCOutput

InputSignal

Reference

GatedIntegrator

2T

-T T ft fm-fm

( ) ( ) ( )Tw t m t r t= ⋅ ( ) * TW f M R≈Weighting intimedomain Weighting infrequencydomain

z(t)=x(t)·m(t)( ) ( )cos mx t A tω=

( ) ( )cos mm t B tω=

AnalogMultiplier

NB:Low-PassFilter(withswitchedparameters)

• NB thereferenceinputtothemultiplier isaSTANDARDwaveform,whichabsolutelydoes NOTdependonthesignal: itisthesameforanysignal!!

• Thereforetheset-up isaLINEAR filter(withtime-variantparameters)

12nf T

Δ =GIcutGIcut

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Main Advantages ofSynchronous Measurements with optimized noise filtering

22

Thislineartime-variantfiltercomposedbyAnalogMultiplier(Demodulator)andGatedIntegrator(Low-passfilterwithswitched-parameter)hasaweightingfunctionsimilartothatofatunedfilterwithconstant-parameter,buthasbasicadvantagesoverit:• Centerfrequencyfm andwidthΔfn areindependentlyset

• Thecenter frequencyissetbythereferencem(t) andlockedatthefrequencyfm

• Incaseswherefm hasnotaverystablevaluethefilterband-centertracksit:thesignal isthuskeptintheadmissionbandevenifthewidthΔfn isverynarrow.

• The width Δfn = 1/2T issetbytheGI,itisthe(bilateral)passbandoftheGI

• NarrowΔfn andhighqualityfactorQcanthusbeeasilyobtainedatanyfm

1m

n

fQf

?n mf fΔ =

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Intuitive Interpretation ofSynchronous Measurement with optimized noise filtering

23

Itis instructivetofollowtheactionofthefilterthroughthevariousstages,thatis• Multiplierstage,wherethereferencemodulatestheinputsignal,

thusshiftingthesignal infrequencydownby-fm andupby+fm• GatedIntegratorstage,whichintegratesover2Ttheoutputofthemultiplier

Bynotingthattheinputsignal isamodulatedsignalwithA(t)slowwithrespecttofm (i.e.withFouriercomponentsA(f) onlyatlowfrequencies f<<fm)

weunderstandthat

• themultiplier performsaDEMODULATION thata)shiftsx(t)infrequencydowntof=0,thatis,bringsA(t)backtoits«BASEBAND»b)shiftsx(t)alsouptothehigherfrequency2fm

• theGatedIntegrator1)performsameasurement ofA(t)averagedover2T2)cutsoffthecomponentswithfrequencyhigherthantheGIlow-passband-limit

( ) ( ) ( )cos 2 mx t A t f tπ=

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Lock-in AmplifierPrinciple and Weighting Function

24

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

From Discrete to Continuous Synchronous Measurements:principle of the Lock-in Amplifier (LIA)

25

Sy A∝

Aquasi-DC

Outputsignal

Inputsignal

Reference

z(t)=x(t)·m(t)( ) ( )cos mx t A tω=

( ) ( )cos mm t B tω=

AnalogMultiplier

R

C

wF(α)LPFweightingf.

Theconstant parameterLPFperformsarunningaverageoftheoutputz(t) ofthedemodulator.TheoutputiscontinouslyupdatedandtrackstheslowlyvaryingamplitudeA(t).Thisbasicset-up isdenotedPhase-Sensitive Detector(PSD)andisthecoreofthe instrumentcurrentlycalled Lock-inAmplifier.

FT RC=

Constant-param.Low-PassFilter

Withaveragingperformedbyagatedintegrator,theamplitudeAcanbemeasuredonlyatdiscretetimes (spacedbyatleasttheaveragingtime2T).However,byemployingaconstant-parameterlow-passfilterinsteadoftheGI,continuousmonitoringoftheslowlyvaryingamplitudeA(t)isobtained.

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Principle of the Lock-in Amplifier (LIA) 26

Sy A∝A

quasi-DCOutputsignal

Inputsignal

Reference

z(t)=x(t)·m(t)( ) ( )cos mx t A tω=

( ) ( )cos mm t B tω=

AnalogMultiplier

R

C

wF(α)LPFweightingf.

Theconstant parameterLPFperformsarunning averageofz(t) overafewTFthatcontinouslyupdatestheoutput

FT RC=

Constant-param.Low-PassFilter

( ) ( ) ( ) ( ) ( ) ( )0 0F Fy t z w d x m w dα α α α α α α∞ ∞

= =∫ ∫

( ) ( ) ( )0 Ly t x w dα α α∞

= ∫

BycomparisonwiththedefinitionoftheLIAweightingfunctionwL(α)

( ) ( ) ( )L Fw m wα α α= ⋅

weseehowthedemodulation andLPFarecombined intheLIA

( ) *L FW f M W≅

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Weighting Function wL of the Lock-in Amplifier 27

fm-fm f

|X|

f

f

t

t

t

t

fm-fm f

fm-fm

|M|

( ) ( ) ( )L Fw m wα α α= ⋅( )LW f

( ) ( )cos mm t B tω=

( ) ( )cos mx t A tω=

2A

2A

2B

2B

( )21

1 2F

F

WfTπ

=+

12 FT

LPFnoisebandwidth(bilateral)

α

α2B

LPFweightingfunctionwF 12n

F

fT

Δ =

( ) *L FW f M W≅

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

S/N of the Lock-in Amplifier 28

fm-fm

|X|

ffm-fm

f

f

Snb 1/fnoise

whitenoise

|W|2

2A

2A

2

2B⎛ ⎞

⎜ ⎟⎝ ⎠

12n

F

fT

Δ =

SBb

InputSignal(inphase)

Weighting

Noisedensity(bilateral)

22 2 2SA B By A= ⋅ =

2 22 2

2 2yL Bb n Bb nB Bn S f S f⎛ ⎞= ⋅ ⋅Δ = ⋅ ⋅Δ⎜ ⎟

⎝ ⎠

Outputsignal

OutputNoise2 2S

L Bb nyL

yS AN S fn

⎛ ⎞ = =⎜ ⎟Δ⎝ ⎠

( ) ( )cos 2 mx t A f tπ=

Bb Cnb Bb

S fS Sf

= +

BilateralnoisebandwidthoftheLPF

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

S/N of the Lock-in Amplifier 29

2L Bb n

S AN S f

⎛ ⎞ =⎜ ⎟Δ⎝ ⎠

S/Nequation intermsoftheunilateralparameters

Byintroducing

• fFn theLPFunilateralbandwidth(upperband-limit fornoise),i.e.

• Sbu theunilateralnoisedensity,i.e.

wecanwrite

2L Bu Fn

S AN S f

⎛ ⎞ =⎜ ⎟⎝ ⎠

2n Fnf fΔ =

2 Bb BuS S=

orinpowerterms2 2 2

L Bb n

S AN S f

⎛ ⎞ =⎜ ⎟ Δ⎝ ⎠ n

in phase signal powerhalf power of white noise in the band f

−=

Δ

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

OutputNoise(𝑆"#$ meandensity intheLPFband)

Case of DC signal with LPF compared to AC signal with LIA 30

Out+

_

R2R4

R3 RT

VA

( )x t A=DCvoltagesupplyVA

RC

FT RC=

LPF

Letusconsidertheset-upofthekeyexample(measurementwithresistivesensor)nowwithDCsupplyvoltageVA equaltotheamplitudeofthepreviousACsupply.ThesignalnowisaDCvoltageequaltotheamplitudeA ofthepreviousACsignal.WithaLPFequaltothatemployedinthepreviousLIAweobtain:

Cy A=∂2

yC nu Fnn S f= ⋅

Outputsignal

∂2

C

C nu FnyC

yS AN S fn

⎛ ⎞ = =⎜ ⎟⎝ ⎠

ThisS/Nmaylookbetterbythefactor 𝟐 thantheS/NobtainedwiththeLIA,butisthisconclusiontrue?NO,suchaconclusionisgrosslywrongbecause𝑺𝒏𝒖$ ≫ 𝑺𝑩𝒖 !!

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

DC signal and LPF compared to AC signal and LIA 31

fm-fm

ffm-fm

f

f

1/fnoise

whitenoise

|WF|2

2n F nf fΔ =

SBb

DCInputSignal

WeightingoftheLPF

Noisedensity(bilateral)

x A=

Bb Cnb Bb

S fS Sf

= +

nbS

1

( ) ( )X f A fδ= ⋅

𝑆"+$ meanspectraldensityintheLPFbandatf=0

𝑆,+ SpectraldensityintheLIAbandatf=fm

Apassbandatf=0 isarisk:1/fnoisegives𝑺𝒏𝒃$ ≫ 𝑺𝑩𝒃 !!

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Fake LIA passbands arise from imperfect modulation 32

• Ideally,thereferencewaveformshouldbeaperfectsinusoidatfrequencyfmwithamplitudeB1

• Inreality,deviationsfromtheidealcangeneratespuriousharmonicsatmultiples kfm(k=0,1,2...)withamplitudesBk (smallBk <<B1 incaseofsmalldeviations)

• Moreover,effectsequivalenttoanimperfectreferencewaveformcanbecausedbynon-idealoperation(non-linearity)ofthemultiplier

• Sinceitis

eachspuriousharmoniccomponentofM(f) addstotheLIAweightingfunctionWLaspuriouspassbandatfrequencykfm withamplitudeBk andshapegivenbytheLPF

• Afakepassbandatf=0is particularlydetrimentalevenwithsmallB0 <<B1because itcoversthehighspectraldensityof1/f noise ....

• ....andunluckilyanydeviationfromperfectbalanceofpositiveandnegativeareasofthereferenceproducesaDCcomponentwithassociatedpassbandatf=0 !!

( ) ( ) ( )*L FW f M f W f≅

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Theratiocanmatchorexceedtheamplituderatio

sothatthenoise inthefakepassband

canequalorexceedthatinthecorrectpassband

Fake LIA passband at f = 0 33

fm-fm

ffm-fm

f

f

|WL|2

SBb

ImperfectreferencewithDCcomponent

LIAweightingfunction

Noisedensity(bilateral)

Bb Cnb Bb

S fS Sf

= +

nbS

( )M f

( )0B fδ⋅ ( )1

2 mB f fδ⋅ −

2 22 1 11 2 2yL Bb n Bu FnB Bn S f S f= ⋅ ⋅Δ = ⋅ ⋅

20B

21

2B⎛ ⎞

⎜ ⎟⎝ ⎠

Cnb Bb Bb

fS S Sf

= +

2n F nf fΔ =

2 21 02B B

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

APPENDIX

34

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Appendix:About the «Gain» of the Lock-in Amplifier 35

Gisdifferentinprinciplefromthegainofanordinaryamplifier: itisaTransfer GainthatcharacterizestheINFORMATIONTRANSFERINFREQUENCYfromfm toDC.

Lock-inAmplifier

Reference

outV GA=inV A=

Output:DCvoltage

Input:ACsignal

2

2in

inVP =

2out outP V=out

Pin

Poutput powerGinput power P

= =

out

in

Voutput voltageGinput voltage V

= =

22

2 2

2

outP

in

VG GV

= =

Vout isaDC voltageVin istheamplitudeofanAC voltageLIAGain however

LIAPowerGain howeverPout isDCpower

Pin isACpower

Therefore anditisprecisely2PG G≠

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Appendix1:Stage-by-Stage view of the Signal

in the Lock-in Amplifier

36

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Processing Signals with f =fm in the Lock-in Amplifier (LIA) 37

A

quasi-DCOutput

Signal

Reference

z(t)=x(t)·m(t)( ) ( )cos 2 mx t A f tπ ϕ= +

( ) ( )cos 2 mm t B f tπ=

AnalogMultiplier

LPFBandlimit fFn

y(t)

Fn mf f=

• TheMultiplier translatesthesignalintworeplicasshifted infrequencydowntoω=0 anduptoω=2ωm

• TheLPF(thathascutofffFnmuchlowerthanthesignal frequencyfm)passes totheoutputpracticallyonlytheconstantcomponent

Wecangainabetterinsightbyconsideringthespecialcasesofsignalthatwithrespecttothereferenceareinphase [ϕ=0ork·π] andinquadrature [ϕ=π/2or(2k+1)· π/2]

( ) ( ) ( ) ( )cos cos cos cos 22 2m m mAB ABz t A t B t tω ϕ ω ϕ ω ϕ= + = + +

( ) cos2ABy t ϕ≈

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Processing Signals with f =fm in the Lock-in Amplifier (LIA) 38

( ) ( )cos mx t A tω=

( ) ( )cos mm t B tω=

( ) ( )cos sin2m mx t A t A tπ

ω ω⎛ ⎞= + =⎜ ⎟⎝ ⎠

Signalinphaseϕ=0 Signalinquadrature ϕ =π/2

( ) ( ) ( )z t m t x t= ⋅( ) ( ) ( )z t m t x t= ⋅

( ) ( )cos mm t B tω=

𝑥 𝑡 𝑥 𝑡

( )2ABy t ≈ ( ) 0y t ≈

2AB

t

t

t

t t

t

t

t

• Anysinusoidcanbeanalyzedassumofin-phaseandinquadraturecomponents

• PhaseselectionbytheLIA:thequadrature components donotcontribute totheoutput( ) ( ) ( ) ( )cos cos cos sin sinm m mx t A t A t A tω ϕ ϕ ω ϕ ω= + = ⋅ − ⋅

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Processing Signals with fs ≠ fm in the Lock-in Amplifier (LIA) 39

• Themultiplier convertsthesinusoidalsignaloffrequencyfs ≠fm in:ahigh-frequencycomponentatfh =fs +fmplusalow-frequencycomponentatfl=│fs – fm │

• Thehigh-frequencycomponent iscutoffbytheLPFwithbandlimit fFn<<fm< fs +fm

• Thelow-frequencycomponentisfirstsubjecttoselection infrequencyandisadmittedonlyiffl iswithintheLPFpassband(i.e.if 𝑓1 − 𝑓3 < 𝑓5"),otherwise itis(approximately)cut-off.

• Asignalwithfrequencyfs admittedbythefrequencyselection issubjectedtofurtherselectioninphase: onlyitsin-phasecomponent(ϕ=0)contributestotheoutput.

• Insummary:asinusoidalsignalatfrequencyfs ≠fm- iffs isintheadmissionbandwidthΔfn =2fFn centeredatfm (i.e. 𝑓1 − 𝑓3 < 𝑓5")thesignalisprocessedbytheLIAjustlikeasignalatfs= fm- iffs isoutoftheadmissionbandwidth,itiscutoff

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Appendix2:Stage-by-Stage view of Noise

in the Lock-in Amplifier

40

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

• Selectioninfrequency:noisecomponentsareadmittedonlyfrom(fm – fFn)to (fm +fFn),thatis,withinabandwidthΔfn =2fFn setbytheLPFandcenteredatfm .ThetotalmeanpoweroftheinputnoiseSnu(f) inthisadmissionbandis

• Selectioninphase:onlycomponents inphasewiththereferencecontributetotheoutput.Thenoisecomponentshaverandomphaseϕ ,withuniformprobabilityforallphasesfromϕ=0toϕ=2π.Intheensemblenophaseisfavouredandthemeanpowerisequallysplitbetween in-phaseandquadraturecomponents:onlythein-phase noisemeanpoweristransmittedtotheoutputandishalfofthetotal

Noise in the Lock-in Amplifier (LIA) 41

Lock-inAmplifier

Reference

Noise(unilateraldensity)Snu(f)

( ) ( )cos mm t B tω=

( ) ( )2 2nu m Bu m Fnn S f f S f f= Δ = ⋅

( )2

2 212 2o P Bu m Fn

Bn G n S f f= ⋅ ⋅ = ⋅

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

S/N of the Lock-in Amplifier (LIA) 42

Lock-inAmplifier

Reference

Noise(unilateraldensity)Snu(f)

( ) ( )cos mm t B tω=

( ) ( )cos mx t A tω ϕ= +Signal ( )cos2By A ϕ=

Outputsignalpower( )

( )2

22cos 1 cos

2 2 2y P

A BP G Aϕ

ϕ⎡ ⎤⎣ ⎦= = ⋅ ⎡ ⎤⎣ ⎦

( )( )

22 cos2 Bu m Fn

ASN S f f

ϕ⎛ ⎞ =⎜ ⎟⎝ ⎠

( ) ( )2

2

2o P nu m Fn Bu m FnBn G S f f S f f= ⋅ = ⋅Outputnoisepower

( )cos

2 Bu m Fn

S AN S f f

ϕ⎛ ⎞ =⎜ ⎟⎝ ⎠

Signal-to-NoiseRatio: itisconfirmedthat

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Notice about the noise transfer in frequency 43

AnalogMultiplier

LPFBandlimit fFn

Reference ( ) ( )cos 2 mm t B f tπ=

StationaryNoise nx(t)withspectrumSxb (bilateral)

nz(t) ny(t)

( ) ( )cos mm t B tω=

( )xn t

( ) ( ) ( )z xn t m t n t=

t

t

t

( ) ( )2 2 2 2cosz x mn t n B tω=

Referencewaveform

inputnoisewaveform

multiplieroutnoisewaveform

multiplieroutnoisepowert

We might think that the noise spectrum at the multiplier output is simply thesuperposition of two replicas of the input spectrum shifted up and down by fm ,but this is not exactly the case. The input noise nx(t) is stationary, whereas themultiplier output noise nz(t) is not stationary, it has cyclically varying intensity sothat it is denoted «cyclostationary» noise

However,wewillshowthattheLIAoutputnoisepower canbecomputedwithanequivalentstationary noise,namelywiththeaverageintime ofthecyclostationarynoise

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Notice about the noise transfer in frequency 44

Atthemultiplierout,thenoiseautocorrelationfunctionisnotstationary,butcyclic

Sincetheinputisstationary𝑅77(𝑡, 𝑡 + 𝛾) = 𝑅77(𝛾) ;with𝑚 𝑡 = 𝐵cos 𝜔3𝑡 weget

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,zz xxR t t z t z t m t m t x t x t m t m t R t tγ γ γ γ γ γ+ = + = + ⋅ + = + ⋅ +

TheLPFwith𝑓5" ≪ 𝑓3 performsthenanaverageoveratimemuchlongerthantheperiodoffm.Therefore,thenoisepowerattheoutputoftheLPFcanbecomputedemployingthetime-averageofthecyclostationarynoisenz .Wecanthusemployasequivalent stationaryautocorrelationRzz,eq(ϒ) thetime-averageofRzz(t,t+ϒ)

Inthefrequencydomain,theFouriertransformofRzz,eq(ϒ) canbeemployedasequivalentstationarynoisespectrum

(NB:thespectraldensitieshereareBILATERAL )

( ) ( ) ( )2

, cos cos 22zz m xxBR t t t Rγ γ ω γ γ+ = + + ⋅⎡ ⎤⎣ ⎦

( ) ( ) ( ) ( ) ( ) ( ) ( ), ,zz eq zz xx mm xxR R t t m t m t R K Rγ γ γ γ γ γ= + = + ⋅ = ⋅

( ) ( ) ( ),z eq m xbS f S f S f= ∗

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Notice about the noise transfer in frequency 45

Withsinusoidalreference

wehave

ThankstotheaveragingactionoftheLPF,theoutputpoweractuallycanbecomputedasifthemultiplieroutputwereastationaryspectrum,obtainedbyshiftinginfrequencyby-fmandby+fm theinput spectrumandbysuperposingthetworeplicas.Thisoperationisusuallydenoted«spectrumfolding».Notethatthespectrumfolding doublesthespectraldensityat f=0

sothat

or,withunilateralparameters

( ) ( )cos mm t B tω=

( ) ( )2

cos2mm mBK γ ω γ= ( ) ( ) ( )

2

4m m mBS f f f f fδ δ= − + +⎡ ⎤⎣ ⎦

( ) ( ) ( )2

, cos2zz eq m xxBR Rγ ω γ γ= ⋅ ( ) ( ) ( )

2

, 4z eq x m x mBS f S f f S f f= − + +⎡ ⎤⎣ ⎦

( )2

2, 0 2

4o Bz eq BbBn S f S f= Δ = ⋅ Δ

( ) ( ) ( )2 2

, 0 24 4z eq x m x m BbB BS S f S f S= − + + = ⋅⎡ ⎤⎣ ⎦

22

2o Bu FnBn S f= ⋅

Ä

Ä

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Appendix3:Bandwidth, Response Time and S/N

of the Lock-in Amplifier

46

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

ByprocessingasinusoidalsignalofamplitudeA inpresenceofnoiseSBu aLIAgives

• TheequationshowsthatS/NisimprovedbyreducingtheLPFbandlimitfFn .• Thisconclusion,however,isnotindefinitely validinrealcases:thereisalimit

bandwidth,belowwhichtheS/Nisdegraded.• Thereason isthatrealsignalsaremodulatedsinusoids, theyhaveamplitude thatvaries

withtimeA(t) (thoughveryslowlywithrespecttothesignalperiod1/fm )

• Let’sseehowandwhythisreasonlimits theS/Nimprovementobtainedbybandwidthreduction.Thestage-by-stageviewofsignalprocessingreadilyandintuitivelyclarifies it.

Limit to narrow bandwidth convenience 47

( )2 Bu m Fn

S AN S f f

⎛ ⎞ =⎜ ⎟⎝ ⎠

( ) ( ) ( )cos 2 mx t A t f tπ=

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Real Signals are Modulated Sinusoids 48

t

t2T

A(t)

( ) ( ) ( )cos mx t A t tω=t2T0

ε

vA

Out+

_

R2R4

R3 RT

VA

RT strainsensorsubjectedtovariablestrainε(t)

( ) ( )cosA A mv t V tω=

strainεà variationΔRT∝ ε à

à Bridgeunbalanceà signalA∝ ε

( ) ( ) ( )cos mx t A t tω=

0

Bridgesupplyvoltage

Bridgeoutputsignal

Amplitudemodulation=BaseBandsignal

TypicalexampleofBaseBandsignal(signaltoberecovered):

Strainε withfiniteduration2T

t

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

t

Real Signals are Modulated Sinusoids 49

t

ε

Bridgesupply

Strain(Base-Bandsignal)

Bridgeoutputsignal(modulatedsignal)

fm-fm f

f

|ε|

f

fm-fm

|X|

TIMEDOMAIN FREQUENCYDOMAIN

t

x

vA

2T

1. TheBase-bandsignalisnotconstant,itisslowlyvariable,hencethemodulatedsignalhasafinitebandwidthΔfS aroundfm

2. intheLIA,themodulatedsignal isde-modulatedbythemultiplier3. thedemodulatedsignal isthenfilteredbytheLPFintheLIA

ΔfS

ΔfS

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Signal de-modulation by the multiplier 50

LIAinput

ffm-fm

fm-fm f

|X|

ffm-fm

t

TIMEDOMAIN FREQUENCYDOMAIN

LIAReference

LIAmultiplieroutput

t

t

|M|

|Z|

x

m

z

-2fm 2fm

t

t

ffm-fm

|ZBB|ffm-fm

|ZUB|

-2fm 2fmzBB

zUBissumof

Upper-bandsignal

Base-bandsignal

plus

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Base-Band signal filtered by the LPF in LIA 51

• amplitudeAofBase-BandsignalzBB(t) ∝ areaof|ZBB(f)| ∝ itsbandwidthΔfS

• amplitudeAu ofLIAoutputsignaly(t) ∝ areaof|Y(f)| ∝ bandwidthof|Y(f)|

• LIAoutputsignaly(t) =Base-BandsignalzBB(t)filteredbyLPFintheLIA

• a)forLPFwithbandΔfn >>ΔfS :- bandwidthof|Y(f)|= bandwidthΔfS ofBBsignal- fulloutputsignalamplitudeAu =A- S/NisimprovedbyreducingΔfn becausesignalstaysconstantandrmsnoise isreduced

• b)forLPFwithbandΔfn <<ΔfS :- bandwidthof|Y(f)|= bandwidthΔfn ofLPF- reducedoutputsignalamplitudeAu ≈A·Δfn /ΔfS <<A- S/NisdegradedbyreducingΔfn :signaldecreasesasthebandwidthΔfn whereasrmsnoisedecreases onlyasthesquarerootofthebandwidth 𝛥𝑓"

TheLPF 1)cutsofftheUpper-Bandsignaland2)filterstheBase-Bandsignal.Wemaynotethat:

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Base-Band signal filtered by the LPF in LIA 52

TIMEDOMAIN FREQUENCYDOMAIN

tf

|ZBB|zBBBase-Bandsignal

Casea)LPFbandΔfn >>ΔfS BBsignalband

δ-response Transferfunction

A

A LIAoutput

|HF|

y

t

|Y|

hLPFfilter

f

f

-fm fm

Δfn

ΔfS

Au=A

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Base-Band signal filtered by the LPF in LIA 53

TIMEDOMAIN FREQUENCYDOMAIN

tf

|ZBB|zBB Base-Bandsignal

δ-response

Caseb)LPFbandΔfn <<ΔfS BBsignalband

Transferfunction

A

ALIAoutput

|HF|

t

t

y

LPFfilter

|Y|

Au<<A

f

f

-fm fm

ΔfS

Δfnh

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Time-domain study of the LIA response time 54

ThewaveformoftheoutputsignalofaLIAcanalsobecomputeddirectlyintime.With LIAinputsignal 𝑥 𝛼 = 𝑎 𝛼 ⋅ 𝑚 𝛼

LIAreference𝐵 ⋅𝑚 𝛼LPFinLIAweightingfunction𝑤5 𝛼

wehave

Inthesquareofreference𝑚K 𝛼 wecanseparatetheconstantaverageintime 𝑚K

andtheoscillatingcomponent 𝑚K 𝛼 − 𝑚K

andsincetheweighting𝑤5 𝛼 variesveryslowlywithrespecttotheoscillation(inaperioditisalmostconstant)itaveragestheoscillation,sothatwehave

Inotherwords,theoscillatingcomponentiscut-offbytheLPFasillustratedinslide49

( ) ( ) ( ) ( ) ( ) ( ) ( )2F Fy t x Bm w d B a m w dα α α α α α α α

∞ ∞

−∞ −∞= ⋅ = ⋅∫ ∫

( ) ( ) ( ) ( ) ( ) ( )2 2 2F Fy t B m a w d B a m m w dα α α α α α α

∞ ∞

−∞ −∞⎡ ⎤= ⋅ + ⋅ −⎣ ⎦∫ ∫

( ) ( ) ( )2 2 0Fa m m w dα α α α∞

−∞⎡ ⎤⋅ − ≅⎣ ⎦∫

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Therefore

theoutputissimplytheBase-BandsignalweightedbytheLPF.SincetheLPFisaconstant-parameterfilter,wecanuseitsδ-responseh(t)

andconfirmthattheoutputwaveformisthatoftheBase-BandsignalfilteredbytheLPF

Inthecaseofsinusoidalmodulationandsinusoidal de-modulationbyLIA

andwehave

Time-domain study of the LIA response time 55

( ) ( )cos mm t tω= 2 12

m = ( ) ( )2 2 1 cos 22 mm m tα ω⎡ ⎤− =⎣ ⎦

( ) ( ) ( )2Fy t B m a w dα α α

−∞≅ ⋅∫

( ) ( ) ( ) ( )2 2 *y t B m a h t d B m a hα α α∞

−∞≅ ⋅ − = ⋅∫

( ) ( )Fw h tα α= −

( ) ( ) ( ) *2 2B By t a h t d a hα α α

−∞≅ ⋅ − =∫

Signal Recovery, 2017/2018 – BPF 3 Ivan Rech

Time-domain study of the LIA response time 56

t

t

x

y

t

a(t)

t

( ) ( ) ( )1 exp Fh t t t T= ⋅ −

h

Base-Bandsignala(t)=1(t)

Modulatedsignalx(t)(LIAinput)

δ-responseofLPF

LIAoutput

( ) ( ) ( )1 1 exp2 FBy t t t T≅ − −⎡ ⎤⎣ ⎦

Example:stepstrainisappliedtothesensoratt=0andthenmaintainedLPFisasinglepole integratorwithRC=TF