13
16 th Dec 2009 Hilke Schlichting (CITA) Planetesimal Accretion & Collisions in the Kuiper Belt KIAA 16 th December 2009 Hilke E. Schlichting Canadian Institute for Theoretical Astrophysics

16 th Dec 2009 Hilke Schlichting (CITA) Planetesimal Accretion & Collisions in the Kuiper Belt KIAA 16 th December 2009 Hilke E. Schlichting Canadian Institute

Embed Size (px)

Citation preview

Page 1: 16 th Dec 2009 Hilke Schlichting (CITA) Planetesimal Accretion & Collisions in the Kuiper Belt KIAA 16 th December 2009 Hilke E. Schlichting Canadian Institute

16th Dec 2009 Hilke Schlichting (CITA)

Planetesimal Accretion & Collisions in the Kuiper Belt

KIAA16th December 2009

Hilke E. Schlichting

Canadian Institute for Theoretical Astrophysics

Page 2: 16 th Dec 2009 Hilke Schlichting (CITA) Planetesimal Accretion & Collisions in the Kuiper Belt KIAA 16 th December 2009 Hilke E. Schlichting Canadian Institute

16th Dec 2009 Hilke Schlichting (CITA)

Mass & Angular Momentum is delivered in 3 different phases:

Planetesimal

Accretion

Giant Impacts

Post Giant Impact

Accretion

Final Plane

t

Part1:

Planetesimal Accretion & its effect on Planetary Spins

Page 3: 16 th Dec 2009 Hilke Schlichting (CITA) Planetesimal Accretion & Collisions in the Kuiper Belt KIAA 16 th December 2009 Hilke E. Schlichting Canadian Institute

16th Dec 2009 Hilke Schlichting (CITA)

Collisionless accretion (e.g. Lissauer & Kary 91, Dones &

Tremaine 93 )

Hill Radius:

Earth-Moon distance=0.25 RH

P

Sun

PH

R

M

MaR

200

3

3/1

@ 1AU

- Collisionless accretion for planetesimal sizes > 10m- Semi-collisional accretion for planetesimal sizes < 10m

Schlichting & Sari 2007

Page 4: 16 th Dec 2009 Hilke Schlichting (CITA) Planetesimal Accretion & Collisions in the Kuiper Belt KIAA 16 th December 2009 Hilke E. Schlichting Canadian Institute

16th Dec 2009 Hilke Schlichting (CITA)

Pro

gra

de

Retr

og

rade

Mean specific angular momentum accreted

Schlichting & Sari 2007

Page 5: 16 th Dec 2009 Hilke Schlichting (CITA) Planetesimal Accretion & Collisions in the Kuiper Belt KIAA 16 th December 2009 Hilke E. Schlichting Canadian Institute

16th Dec 2009 Hilke Schlichting (CITA)

Implications for Planetary Spins

Planetesimal Accretion

Giant Impacts

Post Giant Impact

Accretion22/1

7

1MRNL crit

zrms

23/2

5

2MRNL crit

zSpin

Random Component of AM:

Systematic Component of AM:

prograde

Maximally spinning

protoplanets, prograde rotation

Lz

Significant amount of

mass accreted after giant

impactsSemi-collisional accretion of a

small fraction of the planet’s

mass sufficient to alter spin properties

Page 6: 16 th Dec 2009 Hilke Schlichting (CITA) Planetesimal Accretion & Collisions in the Kuiper Belt KIAA 16 th December 2009 Hilke E. Schlichting Canadian Institute

16th Dec 2009 Hilke Schlichting (CITA)

Semi-collisional accretion might dominate growth of protoplanets and post giant impact accretion.

Preference for prograde rotationSolar System Comparison- Terrestrial planets:

- consistent with spin properties of terrestrial planets

- Asteroid belt:-Two most massive Asteroids, Ceres (P~9.1h, (90-β) ~ 12º, Thomas et al. 05) and Vesta (P~5.3h, (90-β) ~ 40º, Drummond et al. 98), display prograde rotation. -Even smaller main-belt asteroids (r>150km) display a preference for prograde rotation

Johansen & Lacerda 2009

Page 7: 16 th Dec 2009 Hilke Schlichting (CITA) Planetesimal Accretion & Collisions in the Kuiper Belt KIAA 16 th December 2009 Hilke E. Schlichting Canadian Institute

16th Dec 2009 Hilke Schlichting (CITA)

Part2: The Kuiper Belt Size Distribution

• ~40 AU from the Sun• Source of the short period

comets• ~1000 detected objects

• Solar System debris disk• Size estimates based on

brightness– Typical radius

R=100km

Page 8: 16 th Dec 2009 Hilke Schlichting (CITA) Planetesimal Accretion & Collisions in the Kuiper Belt KIAA 16 th December 2009 Hilke E. Schlichting Canadian Institute

16th Dec 2009 Hilke Schlichting (CITA)

The Size Distribution give Information about:

- formation process (power law index above the break, q1)

- collisional history (location of break radius, rbreak)

- material properties of KBOs (power law index below the break, q2)

(Pan & Sari 2005)

(e.g. Stern 1996, Davis & Farinella 1997, Kenyon & Luu 1999, O’Brien & Greenberg 2003, Pan & Sari 2005)

7.4~1qrbreak ~ 45km

(Fuentes et al. 2008, Fraser & Kavelaars 2008)

Page 9: 16 th Dec 2009 Hilke Schlichting (CITA) Planetesimal Accretion & Collisions in the Kuiper Belt KIAA 16 th December 2009 Hilke E. Schlichting Canadian Institute

16th Dec 2009 Hilke Schlichting (CITA)

Transiting Kuiper Belt Objects

KBOs < 10km too small to be detected directly Observe indirectly

using stellar occultations

(Dyson 1992, Axelrod et al. 1992)

Occultation events produced by KBOs are rare & of short duration

Large number of star hours & high frequency

• FGS observations are ideal because of 1) high sampling frequency: 40 Hz2) long baseline: 14 years3) space based4) good control sample

• Expected number of events 0 (q~3.0) to > 130 (q>4.5)

• The Hubble Space Telescope has 3 Fine Guidance Sensors (FGSs)

Page 10: 16 th Dec 2009 Hilke Schlichting (CITA) Planetesimal Accretion & Collisions in the Kuiper Belt KIAA 16 th December 2009 Hilke E. Schlichting Canadian Institute

16th Dec 2009 Hilke Schlichting (CITA)

Transiting Kuiper Belt Objects

(Roques)

kma

3.12

scale Fresnel

for a=40 AU, λ=500nm

Fraunhofer Regime:

Shape of diffraction pattern does NOT depend on KBO shape and KBO size, Amplitude ~ r2

Page 11: 16 th Dec 2009 Hilke Schlichting (CITA) Planetesimal Accretion & Collisions in the Kuiper Belt KIAA 16 th December 2009 Hilke E. Schlichting Canadian Institute

16th Dec 2009 Hilke Schlichting (CITA)

Opposition

4 km/s30 km/s

7 km/s

Detection Method

1) Search for events by fitting Fraunhofer Light curve template (3 free parameters, velocity, amplitude, mean)

2) For significant events we check

- guide stars properties (position & subtend angular size)

- compare velocity of best fit with velocity for observation geometry (assuming e<<1)

3) Compare with event rate in control sample, check for instrumental artifacts

Page 12: 16 th Dec 2009 Hilke Schlichting (CITA) Planetesimal Accretion & Collisions in the Kuiper Belt KIAA 16 th December 2009 Hilke E. Schlichting Canadian Institute

16th Dec 2009 Hilke Schlichting (CITA)

From the observations we know:

• θStar /θFresnel~ 0.3

• Ecliptic latitude +14 deg

Best fit values: r ~ 520 m a ~ 45 AU

amplituder

Chi-squared fit: χ2 /dof=20.1/21

• Compared PMT readings• Checked second FGS• No correlated noise• Examined the engineering telemetry for HST• Less than 2% chance to be false-positive

(Schlichting et al. 2009, Nature)

Page 13: 16 th Dec 2009 Hilke Schlichting (CITA) Planetesimal Accretion & Collisions in the Kuiper Belt KIAA 16 th December 2009 Hilke E. Schlichting Canadian Institute

16th Dec 2009 Hilke Schlichting (CITA)

Cumulative KBO size distribution

Rule out inferred KBO surface densities from previous claimed detections (Roques 2006, Chang 2006, 2007) by more than

5σ!

278.47.1 deg 101.2)250(

3.09.3

mrN

q