16 Suspension 2

Embed Size (px)

Citation preview

  • 8/3/2019 16 Suspension 2

    1/39

    1 of39

    Determinationofantipitchgeometry

    acceleration[1 3]

    Oppositedirectionof

    DAlembertsforces.

    FrontwheelforcesandeffectivepivotlocationsFigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    2/39

    2 of39

    Determinationofantipitchgeometry

    acceleration[2 3]

    is:

    wherekf =frontsuspensionstiffness.

  • 8/3/2019 16 Suspension 2

    3/39

    3 of39

    Determinationofantipitchgeometry

    acceleration[3 3]Pitchangle

    Zeropitchoccurswhen =0,i.e.whentheterminsquarebracketsiszero.

    properties suspensiongeometry,

    suspensionstiffnesses(frontandrear)and

    Tract ve orce str ut on.

    Forasolidaxlethedrivetorqueisreactedwithinthewheelassembly,i.e.itisaninternalmomentasfarasthefreebodyisconcerned. Inthiscase M=0ande uationsmodifiedb settin r=0forthea ro riate

    solidaxle(s)

  • 8/3/2019 16 Suspension 2

    4/39

    4 of39

    Notationandassumptionsintheanalysisare:

    Gisthesprungmasscentreofgravity;

    ThetransverseaccelerationatGdueto

    corneringisa;

    abouttherollaxis;

    Thecentrifugal(inertia)forceonthe

    sprungmassmsaactshorizontallythrough

    Thegravityforceonthesprungmassmsg

    actsverticallydownwardsthroughG;

    Theinertiaforcesmufaandmuraact

    directlyontheunsprungmassesatthefrontandrearaxles.Eachtransfersload

    onlybetweenitsownpairofwheels.Steadystatecorneringanalysis

    FigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    5/39

    5 of39

    Loadtransferduetotherollmoment

    [1 2]

    Re lace the two forces at G with the same forces at

    A plus a moment (the roll moment) Ms about theroll axis, i.e

    AssuminglinearrelationshipbetweenM and M =ks

    ks =totalrollstiffness

  • 8/3/2019 16 Suspension 2

    6/39

    6 of39

    Loadtransferduetotherollmoment

    [2 2]

    ksf +ksr =ks oa rans ers n woax esare

    TfandTr arethefrontandreartrackwidthsofthe

  • 8/3/2019 16 Suspension 2

    7/39

    7 of39

    Loadtransferduetosprungmass

    inertiaforce

    Thes run massis

    distributedtotherollcentersatfrontandrear.

    distributionis

    Correspondingloadtransfersare

  • 8/3/2019 16 Suspension 2

    8/39

    8 of39

    Loadtransferduetotheunsprung

    massinertiaforces

    Totalloadtransfer

  • 8/3/2019 16 Suspension 2

    9/39

    9 of39

    Needforcompliancebetweenunsprungandsprungmass.

    Requirements: Goodisolationofthebody(Goodride) Softresponse

    Rollstiffeningusingantrollbars

    Springcanhitlimits

    Preventhighfrequencyvibrationfrombeingtransmitted Userubberbushconnections

    oo roa gr p oo an ng ar response

  • 8/3/2019 16 Suspension 2

    10/39

    10 of39

    Semielliptic springs

    ear iest eve opments in

    motor vehicle Robust and simple used

    or eavy app cat ons

    Hotchkiss type to provide

    both vertical compliancean a era cons ra n orthe wheel travel

    change in length of the

    loading is accommodatedby the swinging shackle

    Leafspringdesign

    FigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    11/39

    11 of39

    Wheel load FW , is vertical.

    FC

    is parallel to the shackle

    Two load member

    spring is determined by thenumber, length, width andthickness of the leaves

    Angling of the shackle linkused to give a variable rate

    When the an le < 90 ,

    the spring rate will increase(i.e. rising rate) with bumploading

    FigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    12/39

    12 of39

    Lightandcompactformofcomplianceforweightand

    packagingconstraints

    Littlemaintenanceandprovides

    Variableratespringsproducedeitherbyvaryingthe

    coildiameterand/orpitchofthecoilsalongitslengthDisadvantages:

    Lowlevelsofstructuraldamping,thereisapossibility

    Springasawholedoesnotprovideanylateralsupportforguidingthewheelmotion.

  • 8/3/2019 16 Suspension 2

    13/39

    13 of39

    Very simple form of

    spring and consequentlyvery cheap

    The rinci le of o erationis to convert the appliedload FW into a torque FW R producing twist in thebar

    Stiffness related todiameter len th of the

    torsion bar and thetorsion modulus of thematerial

    FigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    14/39

    14 of39

    Spring is produced by a

    cons an mass o gas yp ca y

    nitrogen) in a variable volumeenclosure

    Basicdiaphragmaccumulatorspring

    ,the piston moves upwardstransmitting the motion to the

    fluid and compressing the gasv a e ex e ap ragm

    The gas pressure increases asits volume decreases to

    characteristic Systems are complex (and

    expensive) and maintenance

    Principlesofahydropneumatic

    suspensionspring

    FigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    15/39

    15 of39

    Reduce body roll

    Ends of the Ushaped barconnected to the wheelsu orts and

    Central length of bar

    attached to body of the

    Attachment points needto be selected to ensure

    Torsional loading withoutbending

    Antirollbarlayout

    FigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    16/39

    16 of39

    Conditions: Totalrollstiffnesskrs isequaltothesum

    Onewheelsisliftedrelativeto

    theother,halfthetotalantirollstiffnessactsdownwardsonthewheelandthereactiononthe

    suspensionspringskr,sus andthe

    roll

    stiffnessoftheantirollbarskr,ar,

    vehiclebodytendstoresistbodyroll.

    Ifbothwheelsliftbythesameamountthebarisnottwistedandthereisnotransferofloadtothevehiclebody.

    Ifthedisplacementsofthe

    (onewheelupandtheotherdownbythesameamount),thefulleffectoftheantirollstiffness Rollbarcontributiontototalrollstiffness

    .

    FigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    17/39

    17 of39

    absorbers Mainener dissi ators

    inavehiclesuspension

    Twotypes:dualtube,Monotube.

    Inmonotube

    Surplusfluid

    accommodatedbygasDampertypes,(a)dualtubedamper,

    reepistonmonotu e amper

    FigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    18/39

    18 of39

    In dealing with road surface

    un u ations in t e ump

    direction (damper beingcompressed) relatively low

    required compared with therebound motion (damperbein extended

    These requirements lead todamper characteristicswhich are as mmetrical

    when plotted on forcevelocity axes

    Ratios of 3:1 Dampercharacteristics

    FigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    19/39

    19 of39

    Damperdesignsare

    achievedbyacombinationoforificeflowandflowsthroughspring oa e onewayvalves Atlowspeedsorificesare Shapingofdampercharacteristics

    e ect ve

    Athigherpressurevalvesopenup

    o o scope ors ap ngandfinetuningofdampercharacteristics

    Typicalcurvesforathreeposition

    (electronically)adjustabledamperFigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    20/39

    20 of39

    Roadsurfaceroughnessandvehicle

    excitation

    deterministic.

    PowerspectraldensityS(n)oftheheightvariationsasa unctiono t espatia

    frequencyn

    =therou hnesscoefficient

  • 8/3/2019 16 Suspension 2

    21/39

    21 of39

    Roadsurfaceroughnessandvehicle

    excitation

    ThevariationofS(f)fora

    minorroadat20m/sis

    shown

    FigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    22/39

    22 of39

    Humanresponsetowholebody

    vibration

    Humanbod com lexassembla eoflinearandnon

    linearelements Rangeofbodyresonances 1to900Hz

    Foraseatedhuman

    12Hz(headneck)

    Perceptionofvibrationmotionsdiminishesabove25Hzandemergesasaudiblesound.

    Dualperception(vibrationandsound)uptoseveralhundredHzisrelatedtothetermharshness

  • 8/3/2019 16 Suspension 2

    23/39

    23 of39

    Humanresponsetowholebody

    vibration Motionsickness(kinetosis) lowfrequency,normallyin

    ships

    ISO2631(ISO,1978)andtheequivalentBritishStandardBS6841(BSI,1987)

    wholebodyvibrationfromasupportingsurfacetoeitherthefeetofastandingpersonorthebuttocksofaseated

    personThecriteriaarespecifiedintermsof

    Directionofvibrationinputtothehumantorso

    Frequencyofexcitation

    Exposureduration

  • 8/3/2019 16 Suspension 2

    24/39

    24 of39

    Humanresponsetowholebody

    vibration Most sensitive frequency range

    or ver ca v ra on s rom

    Hz corresponding to the thoraxabdomen resonance

    transverse vibration is from 1 to2 Hz corresponding to head

    neck resonance ISO 2631 discomfort boundaries

    0.1 to 0.63 Hz for motionsickness.

    RCB

    Reduced

    Comfort.

    to 0.315 Hz

    WholebodyRCBvibrationcriteria,(a)RCBfor

    vertical(zaxis)

    vibration

    (b)

    RCB

    for

    lateral (x

    andyaxisvibration)FigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    25/39

    25 of39

    Analysisofvehicleresponsetoroad

    excitation Most comprehensive of these

    as seven egrees o ree om

    Three degrees of freedom forthe vehicle body (pitch,

    Vertical degree of freedom ateach of the four unsprung

    masses. This model allows the pitch,

    bounce and roll

    The suspension stiffness and

    amp ng rates are er vefrom the individual spring anddamping units Fullvehiclemodel

    FigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    26/39

    26 of39

    Analysisofvehicleresponsetoroad

    excitation Muchusefulinformationcanbe

    models. Thetwomostoftenusedfor

    passengercarsarethehalfvehiclemodel andthequartervehiclemodel.

    Thesehavefourandtwodegreesoffreedomres ectivel .

    Reducednumberofdegreesoffreedom

    Inthecaseofthehalfvehicle Halfandquarter,

    forthequartervehiclemodelpitchinformationisalsolost

    ve c emo e s, a

    halfvehiclemodel,

    (b)quartervehicle

    model

    FigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    27/39

    27 of39

    Pitchandbouncecharacteristics

    Equivalentstiffnessis

    Generalizedcoordinatesarezand

    Notationforpitchbounceanalysis

    FigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    28/39

    28 of39

    IfB=0 theequationsareuncoupled

    Onabumponlypitchingoccurs notdesired

    ,n bounce =

    ,n pitch C =

  • 8/3/2019 16 Suspension 2

    29/39

    29 of39

    DistanceofO1 &O2 (Oscillationcentres)fromG

    FigurefromSmith,2002

  • 8/3/2019 16 Suspension 2

    30/39

    30 of39

    O1 andO2 areatsuspensioncenters

    (0.8forsportscars,1.2forsomefrontdrivecars)Ifwnf

    Tnr

    andonabump

    Nocouplingoffrontandrearsuspensions

    Twoequivalentmasses

    andminimalpitching

    betterride