45
Uncertainty Quantification of Velocity Models and Seismic Imaging Gregory Ely 1 , Alison Malcolm 2 , Oleg Poliannikov 1 , David P. Nicholls 3 Massachusetts Institute of Technology 1 Memorial University of Newfoundland 2 University of Illinois at Chicago 3 MIT Earth Resources Laboratory 2017 Annual Founding Members Meeting

16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Uncertainty  Quantificationof  Velocity  Models  and  Seismic  Imaging

Gregory  Ely1,  Alison  Malcolm2  ,  Oleg  Poliannikov1,  David  P.  Nicholls3

Massachusetts  Institute  of  Technology1Memorial  University  of  Newfoundland2University  of  Illinois  at  Chicago3

MIT  Earth  Resources  Laboratory2017  Annual  Founding  Members  Meeting

Page 2: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Seismic Inversion: Challenges

• Single image• Sensitive to initial model (non-convex, non-linear problem)• Expensive forward solves

– (finite difference, finite element)• No uncertainty quantification

– How large is the trap?

Reconstruction

2Example  From:http://pysit.readthedocs.org/en/release/0.5/quick_start/marmousi.html#details-­‐of-­‐parallelmarmousi-­‐py

Page 3: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Time (s)

rece

iver

inde

x

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

0

0.5

1

1.5

2

2.5

3

Bayesian Seismic Inversion

• Goal: Estimate distribution of velocity models given data.

• Challenges– Large dimensionality (128 X 384 pixels)

• Displaying & Interpreting error• Calculating or storing covariance

– Expensive forward solvers– Non-linear forward model

• Multimodal & non-Gaussian model distribution

• Solution: Markov-Chain Monte Carlo & fast forward model

3

Distance (m)

Dept

h (m

)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

500

1000

1500

2000

2500

3000

Velo

city

(m/s

)

1500

2000

2500

3000

3500

4000

4500

5000

5500

:  Observed  dataforward  model

:  Velocity  model

Page 4: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Outline

• Bayesian model Inversion– Bayesian inverse problem– MCMC Sampling

• Fast Forward Solver– Field Expansion Method– Gradient Adaptation

• Results– Simple synthetic– Marmousi based model

4

Page 5: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Bayesian Model Inversion

5

:  Observed  data:  wave  equation  forward  model

Likelihood  function

Gaussian  noise

Posterior  Distribution

Page 6: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

MCMC: Adaptive Metropolis-Hastings Summary

6

• Generates samples directly from posterior (m0,m2,….,mn)– Non parametric– ’Invaraint’ to starting model– Self tuning proposal distribution

• Requirements & Drawbacks– 100,000 evaluations of Likelihood– Requires 200< parameters

• Finite difference, finite element– Too slow– Large dimensionality

Haario,  H.,  E.  Saksman,  and  J.  Tamminen,  2001,  An  Adaptive  Metropolis  Algorithm:Bernoulli,  7,  223.

Page 7: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Outline

• Bayesian model Inversion– Bayesian inverse problem– MCMC Sampling

• Fast Forward Solver– Field Expansion Method– Gradient Adaptation

• Results– Simple synthetic– Marmousi based model

7

Page 8: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Fast Forward Solve: Field Expansion

• Reduced model space & fast– Discrete layers with perturbations (no pixels)– O(LPN2Log(P))– L: number of layers P: spatial modes N: Taylor series terms

• Acoustic Helmholtz solver (Frequency domain)– Parallelizable over shot

• Limited velocity models– Piecewise constant– Continuous layers

v1(x,y)

y=a1

y=a1+g1(x)

y=a2+g2(x)

y=a2

v2(x,y)

v3(x,y)

Region of interest

Domain size

8

(A) (B)

A. Malcolm and D. P. Nicholls, "A Field Expansions Method for Scattering by Periodic Multilayered Media," Journal of the Acoustical Society of America, Volume 129, Number 4, 1783-1793 (2011)

Page 9: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Field Expansion: Gradient Adaptation

• Algorithm scales as O(LPN2Log(P))– Linear in # of layers L

• Parameterize model to master layers with gradient– Low dimensionality & complex models

• Datta and Sen 2016: global velocity model estimation• Fraser and Sen 1985: synthetic seismograms• Zelt and Smith 1992: Tomography

9

2000 4000 6000 8000Depth (m)

0

500

1000

1500

2000

2500

3000

Offs

et (m

)

↑V4U ↓V5

D

↑V3U

↓V4D

↑V2U

↓V3D

↑V1U

↓V2D

↓VD1

2000 4000 6000 8000Depth (m)

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000Depth (m)

0

500

1000

1500

2000

2500

30002000

2500

3000

3500

4000

Velo

city

(m/s

)

Parameterization Interpolated  Layers Velocity  ModelDe

pth  (m

)

Offset  (m)Offset  (m)Offset  (m)

Page 10: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Field Expansion: Comparison

• Top: Marmousi Bottom: Foothills

• Field expansion: 5 master layers, 7 nodes per interface, 10 layers per gradient• Pixel Model: 46,848 parameters , Field Expansion: 41 parameters

10

1 km

A B C

2000

3000

4000

5000

Velo

city

(m/s

)

1 km1500

2000

2500

3000

3500

4000

4500

5000

5500

Vel

ocity

(m/s

)

1 km1500

2000

2500

3000

3500

4000

4500

5000

5500

Vel

ocity

(m/s

)

1 km1500

2000

2500

3000

3500

4000

4500

5000

5500

Vel

ocity

(m/s

)

Original   Gaussian  Smoothed Field  Expansion

Foothills model: Gray, S. H., and K. J. Marfurt, 1995, Migration from topography:Improving the near-surface image: Canadian Journalof Exploration Geophysics, 31, 18–24.

Page 11: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Outline

• Bayesian model Inversion– Bayesian inverse problem– MCMC Sampling

• Fast Forward Solver– Field Expansion Method– Gradient Adaptation

• Results– Simple synthetic– Marmousi based model

11

Page 12: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Simple Model

• Velocity: (1500, 2500, 3000) m/s• 5Hz, Single source, 256 receivers, Gaussian noise: SNR 1.2• MCMC Run: 100,000 iterations

– Migrate reflector for each velocity model

12

(A) (B)

Page 13: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Simple Model: Realizations from MCMC

• MCMC Run: 100,000 iterations, discard first 50,000• Showing every 100th sample• Layers compensate thickness for velocity

13

Page 14: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Simple Model: Visualizing Error

• Uncertainty increases with depth• Error bars (standard deviation) misrepresent uncertainty

– Stable shape– Depth more uncertain

14

1 km

A B C

D E F

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

Velo

city

(m/s

)

-1000 -500 0 500 1000Offset (m)

0

500

1000

1500

2000

2500

3000

Dep

th (m

)

2644 +/- 191 m/s

2050 +/- 186 m/s

1489 +/- 45 m/s

Models  from  chainError  Representation

Page 15: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Simple Model: Quantities of Interest

• Relative height more stable than depth ( 165 +/- 15m, 2200 +/- 135m)• Focusing on quantities of interests simplifies analysis

– Reduces dimensionality– Easy to interpret– Visualize non-Gaussian easily

15

0 200 400 600 800Relative Height (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2C

ount

s×104 Anticline Height

1800 2000 2200 2400 2600Depth (m)

0

500

1000

1500

2000

2500

3000

3500

4000

Cou

nts

Reflector depth

Page 16: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Marmousi Example

• 3Hz single shot, 256 receivers, SNR 0.75, 41 velocity model parameters• MCMC Run: 100,000 iterations, discard first 50,000

• Focus on stability of images (reflectors of interest)

16

1 km

A B C

2000

3000

4000

5000

Velo

city

(m/s

)

1 km

A B C

2000

3000

4000

5000

Velo

city

(m/s

)

1 km

A B C

2000

3000

4000

5000

Velo

city

(m/s

)

Original

Smoothed

Field  Expansion

Page 17: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Posterior Distribution: Velocity Models

• 50,000 models of 100,000 discarded, 6 models randomly selected• Shallow velocity structure better constrained than deeper• Too complex to show error bars

17

1 km

A B C

D E F

2000

2500

3000

3500

4000

4500

5000

Velo

city

(m/s

)

Page 18: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Posterior Distribution: Migrated Images

• Generated reflectivity model à travel times• Zero offset migrate travel times with each velocity model

• Upper structure more stable than lower• Red anticline shape poorly constrained• Salt flank/sill a trap? (D,F)

18

A B C

D E F

1 km

Page 19: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Posterior Distribution: Quantities of Interest

• Ran MCMC 50 times à 2.5 million posterior samples• Deeper red anticline area, poorly constrained

– Non-Gaussian distribution – Significant samples near zero area

19

2200 2300 2400 2500 2600 2700 2800 2900 3000Depth (m)

0

0.5

1

1.5

2

Cou

nts

×105 Red Depth: 2657 +/- 131 m

1700 1800 1900 2000 2100 2200 2300 2400 25000

0.5

1

1.5

2

2.5

3

Cou

nts

×105 Blue Depth: 2126 +/- 109 m

0 1 2 3 4 5 6 7 8×104

0

0.5

1

1.5

2

2.5

3 ×105 Blue Area: 2.192e+04 +/- 8225 m2

0 1 2 3 4 5 6 7 8Depth (m) ×104

0

2

4

6

8

10

12 ×104 Red Area: 3.001e+04 +/- 16718 m2

A B C

D E F

1 km

Area  (m2)

Blue

Red

Page 20: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Summary

• Presented framework for uncertainty quantification– Reduced dimensionality of forward solver– Adapted field expansion to model gradients– Combined field expansion with adaptive metropolis hasting algorithm

• Demonstrated algorithm on synthetic models– Simple & Marmousi velocity models– Showed methods to visualize error– Focused on quantities of interest

• Robustness of algorithm– Estimates of uncertainty from single MCMC run– Handles incorrect parameterization– Not truly invariant to starting models, tolerates 20% gradient perturbations

20

Page 21: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Initial Model Choice: Linear Gradient

• Re-ran MCMC inversion with linear gradient initial model 50 times– Linear Gradient: 1500 m/s – 4300 m/s

• Distributions for quantities of interest within 1 STD – Cross sectional area matches well

21

2200 2300 2400 2500 2600 2700 2800 2900 3000Depth (m)

0

0.5

1

1.5

2

Cou

nts

×105 Red Depth: 2592 +/- 147 m

1700 1800 1900 2000 2100 2200 2300 2400 25000

0.5

1

1.5

2

2.5

3

Cou

nts

×105 Blue Depth: 2050 +/- 143 m

0 1 2 3 4 5 6 7 8×104

0

0.5

1

1.5

2

2.5

3 ×105 Blue Area: 2.438e+04 +/- 9102 m2

0 1 2 3 4 5 6 7 8Depth (m) ×104

0

2

4

6

8

10

12 ×104 Red Area: 2.579e+04 +/- 17041 m2

True  initial

Linear  Model

Blue

Red

Page 22: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Initial Model Choice: Incorrect Linear Gradient

• Ran 20 chains for 8 linear gradients– Slowest: 1500-2900 m/s Fastest: 1500-5400 m/s

• Poor convergence with 25% gradient perturbation– MCMC didn’t find global minima– Quantities of interest biased

• Below 20% perturbation consistent quantities of interest

22

3000 3500 4000 4500 5000 55000

0.5

1

1.5

2

2.5

Cro

ss S

ectio

nal A

rea

(m2 ) ×104 Deep Anticline

3000 3500 4000 4500 5000 55000

2000

4000

6000

8000

10000 Shallow Anticline

3000 3500 4000 4500 5000 5500Bottom Velocity (m/s)

-535

-530

-525

-520

-515

-510

-505

-500 L

og L

ikel

ihoo

dProposal Liklihood

3000 3500 4000 4500 5000 5500Bottom Velocity (m/s)

0

50

100

150

200

250

Dep

th (m

)

3000 3500 4000 4500 5000 5500Bottom Velocity (m/s)

0

50

100

150

200

250

Page 23: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Initial Model Choice: Incorrect Parameterization

• 3 – 5 layers, 3 – 11 nodes• 10 trials per layer node combination

• Number of nodes significant impact.• Number of layers lesser impact.

23

2 4 6 8 10 12# of nodes

-512

-511

-510

-509

-508

-507

-506

-505

-504

-503

Log

Like

lihoo

d

3 layers4 layers5 layers

2 4 6 8 10 12# of nodes

2

2.2

2.4

2.6

2.8

3

3.2

Area

m2

×104 Shallow Mean

2 4 6 8 10 12# of nodes

3000

4000

5000

6000

7000

8000

Area

m2

Shallow Standard Deviation

2 4 6 8 10 12# of nodes

1

2

3

4

5

6

Area

m2

×104 Deep Mean

2 4 6 8 10 12# of nodes

0.6

0.8

1

1.2

1.4

1.6

Area

m2

×104 Deep Standard Deviation

proposal  likelihood

Page 24: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Convergence Results

• Dashed lines standard deviation from all 2.5 million samples (50 runs)• Good estimate of area standard deviation achieved within 50,000 sample (1 run)

– Both true and initial starting models

24

0.5 1 1.5 2 2.5samples ×105

0

2000

4000

6000

8000

10000

area

m2

anticline 1 area standard deviation

True ModelGradient

0.5 1 1.5 2 2.5samples ×105

0

1

2

3

4

5

area

m2

×104 anticline 2 area standard deviation

Blue  area  standard  deviation

Red  area  standard  deviation

Page 25: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Adaptive Metropolis-Hastings: Outline

25

• Select initial model m0

• Evaluate L0 = L(m0)

• For i = 1:100,000–

– With probability L(m*)/L(mi-1)• mi =m*

– Else• mi =mi-1

Haario,  H.,  E.  Saksman,  and  J.  Tamminen,  2001,  An  Adaptive  Metropolis  Algorithm:Bernoulli,  7,  223.

Page 26: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Outline

• Motivation

• Bayesian model Inversion– Bayesian inverse problem– MCMC Sampling

• Field expansion method

• Results– Simple synthetic– Marmousi based model

• Validation– Inaccurate starting models– Convergence

26

Page 27: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Distance (m)

Dep

th (m

)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

500

1000

1500

2000

2500

3000

Velo

city

(m/s

)

1500

2000

2500

3000

3500

4000

4500

5000

5500

Seismic Inversion: Overview

• Marmousi acoustic velocity model• 6 finite difference shots

27

ReceiverSource

Page 28: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Outline

• Bayesian model Inversion– Bayesian inverse problem– MCMC Sampling

• Fast Forward Solver– Field Expansion Method– Gradient Adaptation

• Results– Simple synthetic– Marmousi based model

28

Page 29: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Time (s)

rece

iver

inde

x

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

0

0.5

1

1.5

2

2.5

3

Seismic Inversion: Overview

• Record gathers• Estimate velocity model

29

Time  (s)

Receiver  Index

Page 30: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Distance (m)

Dep

th (m

)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

500

1000

1500

2000

2500

3000Time (s)

rece

iver

inde

x

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

0

0.5

1

1.5

2

2.5

3

Seismic Inversion: Overview

• Need accurate initial model • Local optimization

Measured

Distance (m)

Dep

th (m

)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

500

1000

1500

2000

2500

3000

Estimate

Time (s)

rece

iver

inde

x

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

0

0.5

1

1.5

2

2.5

3

Residual

Wave  Equation:Finite  Difference

30

Page 31: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Extra Slides

31

Page 32: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Field Expansion: Wood’s Anomalies

• Diffraction grating• Resonant mode• Energy trapped in top layer• Cannot be removed by large domain size

• Solution: Absorption

v1(x,y)

y=a1

y=a1+g1(x)

y=a2+g2(x)

y=a2

v2(x,y)

v3(x,y)

Region of interest

Domain size

32Malcolm,  Alison,  and  David  P.  Nicholls.  "A  field  expansions  method  for  scattering  by  periodic  multilayered  media.”The  Journal  of  the  Acoustical  Society  of  America 129.4  (2011):  1783-­‐1793.

Page 33: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

No Absorption

-2000 -1000 0 1000 20000

0.51

1.52

2.5

Freq

uenc

y (Hz

)

Absorption2468

101214

2468

101214

Tim

e (s)

Offset (m)-2000 -1000 0 1000 2000

Offset (m)-2000 -1000 0 1000 2000

-2000 -1000 0 1000 20000

0.51

1.52

2.5

Removing Wood’s Anomalies

• 3 layer velocity model (1500, 2500, 3500 m/s)• Solution: top layer absorptive

33

Page 34: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Depth (m)

No AbsorptionVe

locit

y (m

/s)

300 400 500 600 700

900

950

1000

1050

1100

1150

1200

1250

1300

Absorption

300 400 500 600 700

900

950

1000

1050

1100

1150

1200

1250

1300

Depth (m)

Wood’s Anomalies: Convexity & Cost Function

• 3 layer velocity model (Top Layer, depth: 500 m, Velocity 1100 m/s)• Anomalies create local minima

34

Top  layer

Top  layer

Page 35: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Finite Difference0

0.5

1

1.5

2

2.5

3

Field Expansion0

0.5

1

1.5

2

2.5

X Distance (m)

Dept

h (m

)

Velocity model

−2000 0 2000

0

100

200

300

400

500

600

700

800

900

1000 1100

1200

1300

1400

1500

1600

1700

Tim

e (s)

Velo

city (

m/s)

15001500 0Offset (m)

Comparison to Existing Methods

• 3 layer model sinusoidal perturbation• Seismic Unix finite difference solver

35

Page 36: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Comparison to Existing Methods: Frequency domain

• 3 Flat layer model, 3Hz (-3000,3000 m)• Pysit 4th order finite difference solver

Finite  Difference Field  Expansion

Receiver  Index Receiver  Index

Amplitu

de

RealImaginary

36

Page 37: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Field Expansion: Finite Domain

• Finite domain size– Energy bleeds across domains

• Solution: Increase domain size

v1(x,y)

y=a1

y=a1+g1(x)

y=a2+g2(x)

y=a2

v2(x,y)

v3(x,y)

Region of interest

Domain size

37

Page 38: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Bayesian Model Inversion

38

:  forward  model

Likelihood  function

Posterior  Distribution

:  Observed  data :  Gaussian  Noise

Page 39: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Field Expansion: Finite Domain

v1(x,y)

y=a1

y=a1+g1(x)

y=a2+g2(x)

y=a2

v2(x,y)

v3(x,y)

Region of interest

Domain size

• Finite domain size– Energy bleeds across domains

• Solution: Increase domain size

39

Page 40: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Fast Forward Solve: Field Expansion

• Discrete layers with perturbations (no pixels)– Reduced Model space & Fast

• Acoustic Helmholtz solver (Frequency domain)– Parallelizable over shot

• Diffraction theory: Spatial frequency domain & repeating domain size

v1(x,y)

y=a1

y=a1+g1(x)

y=a2+g2(x)

y=a2

v2(x,y)

v3(x,y)

Region of interest

Domain size

40

Page 41: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Field Expansion: Algorithm

• O(LPN2Log(P))

v1(x,y)

y=a1

y=a1+g1(x)

y=a2+g2(x)

y=a2

v2(x,y)

v3(x,y)

Region of interest

Domain size

41

Page 42: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Field Expansion: Flat Layered

• f frequency• Vm displacement (scattered field)• Cm layer velocity

• Vm Unknown

v1(x,y)

y=a1

y=a2

v2(x,y)

v3(x,y)

Region of interest

Domain size, d

Helmholtz  Equation

Expression  for  field

Boundary  Conditions

System  of  equations

42

Page 43: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Field Expansion: Flat Layered

• Ap penta-diagonal, O(L)• Solve for each p, O(PL)• Plug back into field expression O(P L Log(P))

v1(x,y)

y=a1

y=a2

v2(x,y)

v3(x,y)

Region of interest

Domain size, d

System  of  equations

Apply  Point  Source

43

Page 44: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Field Expansion: Perturbed Layers

• Solve for N = 0 à flat layer case• Solve N = 1,2,3,4, etc.

Flat  Field

v1(x,y)

y=a1

y=a1+g1(x)

y=a2+g2(x)

y=a2

v2(x,y)

v3(x,y)

Region of interest

Domain size

Perturbed  Field

Recursion  Relation

-1)

44

Page 45: 16 Greg Ely - MIT ERL Greg Ely.pdf · 2017-06-05 · – Self tuning proposal distribution • Requirements & Drawbacks – 100,000 evaluations of Likelihood – Requires 200< parameters

Uncertainty Quantification of Velocity Models and Seismic Imaging

Gregory Ely1, Alison Malcolm2 , Oleg Poliannikov1, David P. Nicholls3

Massachusetts Institute of Technology1

Memorial University of Newfoundland2

University of Illinois at Chicago3

45