1497-Chapter3

Embed Size (px)

Citation preview

  • 7/21/2019 1497-Chapter3

    1/25

    Chapter 3

    The z-Transform

    Der-Feng Tseng

    Department of Electrical EngineeringNational Taiwan University of Science and Technology

    (through the courtesy of Prof. Peng-Hua Wang of National Taipei University)

    February 19, 2015

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 1 / 25

    http://homepage.ntust.edu.tw/dtseng/http://www.ee.ntust.edu.tw/http://www.ntust.edu.tw/http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://www.ntust.edu.tw/http://www.ee.ntust.edu.tw/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    2/25

    Outline

    1 3.1 z-Transform

    2 3.2 Properties of the ROC

    3 3.3 The Inverse z-transform

    4 3.4 z-transform Properties

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 2 / 25

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/http://goback/
  • 7/21/2019 1497-Chapter3

    3/25

    3.1 z-Transform

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 3 / 25

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    4/25

    Definition

    Definition (z-transform) The z-transform ofx[n] is defined as

    Z{x[n]} =X(z)

    n=

    x[n]zn

    The z-transform evaluated on the unit circle corresponds to the

    Fourier transform. Letz=rej, we have

    X(rej) =

    n=

    (x[n]rn)ejn.

    Fourier transform ofx[n]rn.

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 4 / 25

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    5/25

    ROC

    Now we consider the region in which the z-transform is converge. It is

    calledregion of convergence (ROC).z-transform converges:

    |X(z)|= |X(rej)|

    n=|x[n]rn| < .

    Fourier transform converges:

    |X(ej)|

    n=

    |x[n]| < .

    It is possible that X(z) converges but X(ej) does not. For example,thez transform of the unit step function converges for |z| >1.

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 5 / 25

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://goforward/http://find/http://goback/
  • 7/21/2019 1497-Chapter3

    6/25

    Examples 3.1 3.6

    Example 3.1 x[n] =anu[n], X(z) = 11az1 ,|z| > |a|.

    Example 3.2 x[n] = anu[n 1], X(z) = 11az1

    ,|z| < |a|.

    Example 3.3 x[n] = (12)nu[n] + (13)

    nu[n],

    X(z) = 2z(z 112)

    (z 12)(z+ 13)

    , |z| > 12

    .

    Example 3.5 x[n] = (13)nu[n] (12 )

    nu[n 1]

    Example 3.6 x[n] =an(u[n] u[n N])

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 6 / 25

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    7/25

    3.2 Properties of the ROC

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 7 / 25

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    8/25

    Summary of Properties

    1 The ROC is a ring or disk centered at the origin;

    0 rR < |z| < rL 2 The Fourier transform ofx[n] exists if and only if the ROC includes

    the unit circle.

    3 The ROC cannot contain any poles.

    4

    Ifx[n] is a finite-duration sequence, then the ROC is the entirez-plane; except possible z= 0 or z = .

    5 Ifx[n] = 0, n < N1< is a right-side sequence, then the ROCextends outward from the outermost finite pole to z= .

    6 Ifx[n] = 0, N2 < n is a left-side sequence, then the ROC extendsinward from the innermost nonzero pole to z= 0.

    7 A two-side sequence is an infinite-duration sequence. The ROC of a

    two-side sequence will consist of a ring in the z-plane.

    8 The ROC must be a connected region.

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 8 / 25

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    9/25

    Properties 1 & 2

    Property 1. The ROC is a ring or disk centered at the origin.

    The convergence of

    X(z)

    n=

    x[n]zn

    depends on only |z|.

    Property 2. The Fourier transform ofx[n] exists if and only if the ROCincludes the unit circle.

    X(z) reduces to the Fourier transform when |z| = 1.

    System is stable. h[n] is absolutely summable. Fouriertransform exists. ROC includes the unit circle.

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 9 / 25

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    10/25

    Properties 3 & 4

    Property 3. The ROC cannot contain any poles.

    X(z) does not converge at poles.

    Property 4. Ifx[n] is a finite-duration sequence, then the ROC is theentirez-plane; except possible z = 0 orz = .

    Ifr= 0,,

    |X(z)|= |X(rej)| M2

    n=M1

    |x[n]rn| < .

    For example, let X1(z) = 1 + z1

    , X2(z) = 1 + z, andX3(z) =z + 1 + z1. We have ROC1 = Z {0}, ROC2= Z {},

    ROC3= Z {0,}.

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 10 / 25

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    11/25

    Property 5

    Property 5. Ifx[n] = 0 forn < N1 is a right-side sequence, then the

    ROC extends outward from the outermost finite pole to z= .Suppose x[n] =

    Nk=1 Akd

    nk , we need

    n=N1

    |x[n]rn| =

    n=N1

    N

    k=1

    Akdnkrn <

    or

    n=N1

    |dnkrn| <

    for k= 1, 2, . . . , N . Thus,|dkr1| |dk|

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 11 / 25

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    12/25

    Property 6

    Property 6. Ifx[n] = 0, N2 < n is a left-side sequence, then the ROC

    extends inward from the innermost nonzero pole to z= 0.Suppose x[n] =

    Nk=1 Akd

    nk , we need

    N2

    n=

    |x[n]rn| =N2

    n=

    N

    k=1

    Akdnkrn <

    orN2

    n=

    |dnkrn| <

    for k= 1, 2, . . . , N . Thus,|dkr1| >1, i.e., r < |dk|

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 12 / 25

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    13/25

    Example 3.7

    If a system has the zero-pole plot shown as follows. There are three

    possible ROCs.

    System 1: |z| >2: not stable!, causal!

    System 2: |z|

  • 7/21/2019 1497-Chapter3

    14/25

    3.3 The Inverse z-transform

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 14 / 25

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    15/25

    Method 1: Inspection Method

    Find the sequence x[n] with the following z-transform

    X(z) = 11 12z

    1, |z| > 1

    2.

    Solution:

    |z| > 12 X(z) =

    n=0

    12

    nzn x[n] =

    12

    nu[n]

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 15 / 25

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/http://goback/
  • 7/21/2019 1497-Chapter3

    16/25

    Method 2: Partial Fraction Expansion

    Let

    X(z) =

    Mk=0

    bkzk

    N

    k=0akz

    k

    Case 1. M < N. All poles are simple.

    X(z) =N

    k=1Ak

    1 dkz1, Ak = (1 dkz

    1)X(z)

    z=dk

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 16 / 25

    M h d 2 P i l F i E i

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    17/25

    Method 2: Partial Fraction Expansion

    Case 2. M N. All poles are simple.

    X(z) =MNr=0

    Brzr +

    Nk=1

    Ak1 dkz1

    Case 3. M N. X(z) has a s-order pole di

    X(z) =MNr=0

    Brzr +

    Nk=1k=i

    Ak1 dkz1

    +

    sm=1

    Cm(1 diz1)m

    [n r] zr

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 17 / 25

    E l 3 8

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    18/25

    Example 3.8

    Find the sequence x[n] with the following z-transform

    X(z) = 1(1 14z

    1)(1 12z1)

    , |z| > 12

    Solution:

    X(z) = A1

    1 1

    4z1

    + A2

    1 1

    2z1

    where A1= 1, A2= 2.

    x[n] = (2 2n 4n)u[n].

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 18 / 25

    E l 3 9

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    19/25

    Example 3.9

    Find the sequence x[n] with the following z-transform

    X(z) = (1 + z1)2

    (1 12z1)(1 z1)

    , |z| >1

    Solution:

    X(z) =B0+ A1

    1 12z1

    + A2

    1 z1

    where B0= 2, A1= 9, A2 = 8.

    x[n] = 2[n] (9 2n + 8)u[n].

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 19 / 25

    M th d 3 P S i E i

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    20/25

    Method 3: Power Series Expansion

    X(z) = + x[2]z2 + x[1]z+ x[0] + x[1]z1 + x[2]z2 +

    x[n] = + x[2][n+ 2] + x[1][n+ 1] + x[0][n]

    + x[1][n 1] + x[2][n 2] +

    Example 3.10

    X(z) =z2(11

    2z1)(1 + z1)(1 z1)

    =z2 1

    2

    z 1 +1

    2

    z1

    x[n] =[n+ 2] 1

    2[n+ 1] [n] +

    1

    2[n 1]

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 20 / 25

    M th d 3 P S i E i

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    21/25

    Method 3: Power Series Expansion

    Example 3.11

    X(z) = log(1 + az1) =n=1

    (1)n+1anzn

    n

    x[n] = (1)n+1zn

    n , n 1

    0, n 0.

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 21 / 25

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    22/25

    3.4 z-transform Properties

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 22 / 25

    Properties

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://goforward/http://find/http://goback/
  • 7/21/2019 1497-Chapter3

    23/25

    Properties

    Linearity.

    Z{ax1[n] + bx2[n]} =aZ{x1[n]} + bZ{x2[n]} ROC= Rx1Rx2

    Time-Shifting.

    Z{x[n n0]} =zn0Z{x[n]} ROC=Rx {z = or0}

    Multiplication. IfZ{x[n]} =X(z), then

    Z{zn0 x[n]} =X(z/z0)

    with ROC= |z0|Rx.

    Differentiation. IfZ{x[n]}=X(z), then

    Z{nx[n]} = z d

    dzX(z)

    with ROC= Rx.

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 23 / 25

    Properties

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/
  • 7/21/2019 1497-Chapter3

    24/25

    Properties

    Complex Conjugation. IfZ{x[n]} =X(z), then

    Z{x[n]} =X(z)

    with ROC= Rx.

    Time Reversal. IfZ{x[n]} =X(z), then

    Z{x[n]} =X(1/z)

    with ROC= 1/Rx.

    Time Reversal. Ifx[n] is real, then

    Z{x[n]} =X(1/z)

    with ROC= 1/Rx.

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 24 / 25

    Properties

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/http://goback/
  • 7/21/2019 1497-Chapter3

    25/25

    Properties

    Convolution.

    Z{x1[n] x2[n]} = Z{x1[n]}Z{x2[n]} ROC= Rx1Rx2

    Initial-Value Theorem. Ifx[n] is causal, then

    lim

    z

    X(z) =x[0]

    Der-Feng Tseng (NTUST) DSP Chapter 3 February 19, 2015 25 / 25

    http://homepage.ntust.edu.tw/dtseng/http://homepage.ntust.edu.tw/dtseng/http://find/