1367-Minta Yuwana-Probability1

Embed Size (px)

Citation preview

  • 8/3/2019 1367-Minta Yuwana-Probability1

    1/87

    10/9/01 1

    Probabilitas dan Distribusi

    Densiti

  • 8/3/2019 1367-Minta Yuwana-Probability1

    2/87

    10/9/01 2

    PROBABILITAS

    SUMBER PROBABILITAS: Model

    Nilai ditaksir dari model (sederhana)

    Contoh: Coin simetri, diundi menghasilkan probabilitas

    Data Hasil experiment

    Contoh:

    John Kerrich mengundi coin 10000 kali, hasil ~

  • 8/3/2019 1367-Minta Yuwana-Probability1

    3/87

    10/9/01 3

    PROBABILITAS

    SUMBER PROBABILITAS:

    Subjective

    Perkiraan seseorang berdasar

    pengetahuan/pengalaman Contoh:

    Fatality rates of nuclear reactors accidents

    1 minggu: 1 dalam 300,000,000

    20 minggu: 1 dalam 16,000,000

    Dasar data tsb. chain mechanism + subjectiveestimate

  • 8/3/2019 1367-Minta Yuwana-Probability1

    4/87

    10/9/01 4

    PROBABILITAS

    MODEL PROBABILITAS SEDERHANA:

    Gambaran mekanisme suatuperistiwa/kejadian secara sederhana.

    Outcomes

    Sample Spaces

    Events

  • 8/3/2019 1367-Minta Yuwana-Probability1

    5/87

    10/9/01 5

    Outcomes

    Keluaran/hasil suatu peristiwa atau

    experiment Contoh:

    outcomes undian coin: Hatau T

    outcomes undian dadu: 1,2,3,4,5,6 outcomes WTC ditabrak pesawat: terbakar,

    roboh sebagian, runtuh total, .

    PROBABILITAS

    MODEL PROBABILITAS SEDERHANA:

  • 8/3/2019 1367-Minta Yuwana-Probability1

    6/87

    10/9/01 6

    PROBABILITAS

    MODEL PROBABILITAS SEDERHANA:

    Sample spaces (Ruang sample), S

    himpunan (set) seluruh keluaran yang

    mungkin (all possible outcomes) dariexperimen.

    Contoh: 2 coin diundi bersama

    1kali: S={HH,TH,HT,TT} 2 kali: S={HHHH, HHHT, HHTH, HTHH, THHH,

    HHTT, HTTH, TTHH, HTHT, THHT, THTH,HTTT, THTT, TTHT, TTTH, TTTT}

  • 8/3/2019 1367-Minta Yuwana-Probability1

    7/87

    10/9/01 7

    PROBABILITAS

    MODEL PROBABILITAS SEDERHANA:

    Events

    kumpulan keluaran (outcomes)

    terjadi bila keluaran (outcome) yangmendukung terjadi

    Contoh:

    Event A=satu Hkeluar dari undian sekali 2coin A={TH, HT}

    Event A terjadi bila outcome THatau HTterjadi

  • 8/3/2019 1367-Minta Yuwana-Probability1

    8/87

    10/9/01 8

    PROBABILITAS

    MODEL PROBABILITAS SEDERHANA:

    Sample space: event lengkap

    Event subset dari sample space.

    A

    Sample space, S

    Event, A

  • 8/3/2019 1367-Minta Yuwana-Probability1

    9/87

    10/9/01 9

    PROBABILITAS

    MODEL PROBABILITAS SEDERHANA:

    Sebuah event dapat hanya terdiri dari

    satu keluaran (outcome) Contoh:

    A={TT} B={HH}

  • 8/3/2019 1367-Minta Yuwana-Probability1

    10/87

    10/9/01 10

    PROBABILITAS

    MODEL PROBABILITAS SEDERHANA:

    Komplemen dari event A, dengan notasiA, terjadi bila A tidak terjadi

    S

    AA

  • 8/3/2019 1367-Minta Yuwana-Probability1

    11/87

    10/9/01 11

    PROBABILITAS

    MODEL PROBABILITAS SEDERHANA:

    Gabungan Event

    Union,

    AB

    A B

  • 8/3/2019 1367-Minta Yuwana-Probability1

    12/87

    10/9/01 12

    PROBABILITAS

    MODEL PROBABILITAS SEDERHANA:

    Gabungan event

    Intersection

    A B

    AB

  • 8/3/2019 1367-Minta Yuwana-Probability1

    13/87

    10/9/01 13

    PROBABILITAS

    MODEL PROBABILITAS SEDERHANA:

    Gabungan event

    Mutually exclusive

    A B

    Mutually exclusive

  • 8/3/2019 1367-Minta Yuwana-Probability1

    14/87

    10/9/01 14

    HUKUM PROBABILITAS

    AXIOMA:

    Probability sample space, S

    P[S] =1 pasti terjadi

    Probability event, A

    0 < P[A] < 1 mungkin terjadi

    Event kosong

    P[] = 0

  • 8/3/2019 1367-Minta Yuwana-Probability1

    15/87

  • 8/3/2019 1367-Minta Yuwana-Probability1

    16/87

    10/9/01 16

    Partisi

    Event C1, C2, C3, .., Ck membentuk

    partisi (pembagian) sample space bilaevent-event tersebut mutually exclusivedan menghabiskan seluruh sample space.

    C1C

    2C

    3...C

    k= S

    P[C1C2C3...Ck] = P[C1] + P[C2] +

    P[C3] + + P[Ck]

    HUKUM PROBABILITAS

    TEOREMA:

  • 8/3/2019 1367-Minta Yuwana-Probability1

    17/87

    10/9/01 17

    Partisi

    P[A] = P[AC1] + P[AC2] + + P[ACk]

    = P[ACi]

    HUKUM PROBABILITAS

    TEOREMA:

    C6

    C3C2

    C1

    C5C4

    Ci

    AC1

    C2 C3

    C4C5

    C6

    A Ci (diarsir gelap)

    i=1

    k

  • 8/3/2019 1367-Minta Yuwana-Probability1

    18/87

    10/9/01 18

    HUKUM PROBABILITAS

    TEOREMA: Probabilitas Bersyarat (Conditional

    Probability)

    Event A terjadi bila event B terjadi Probability-nya

    P[A|B] =

    P[AB]

    P[B] syarat P[B

    ]

    0

  • 8/3/2019 1367-Minta Yuwana-Probability1

    19/87

    10/9/01 19

    Example of Conditional Probability:Proportion of women with the given eyesight

    grades

    Grade of Left Eye

    GradeofRightEye

    Highest ThirdSecond Lowest

    Highest

    Third

    Second

    Lowest

    Total

    Total

    .237

    .058

    .017

    .024

    .027

    .010

    .009

    .112

    .066

    .328

    .301

    .265

    1

    .106

    .336

    .203

    .016

    .005

    .255

    .031

    .036

    .048

    .011

    .291

    .202

    Anggapan: sample cukup banyak dan mewakilipopulasi, proporsi mewakiliprobabilitas

  • 8/3/2019 1367-Minta Yuwana-Probability1

    20/87

    10/9/01 20

    What is the probability of women with righteye 2nd grade given her left eye highest

    grade ?

    P[right eye 2nd grade|left eye highest grade] =

    P[right eye 2nd grade left eye highest grade]

    P[left eye highest grade]

    Example of Conditional Probability:Proportion of women with the given eyesight

    grades

    0.0310.225

    = 0.1216

  • 8/3/2019 1367-Minta Yuwana-Probability1

    21/87

    10/9/01 21

    Consider 3 special cards below

    Example of Conditional Probability:3 Cards Trick

    Randomized& draw oneblue

    red

    blue

    blue

    red

    red

    blue

    ?

    Probability of blue bottom = ?

    Probability of red bottom = ?

  • 8/3/2019 1367-Minta Yuwana-Probability1

    22/87

    10/9/01 22

    Probability of blue top faces:

    P[blue top] = 3/4

    Probability of blue bottom:P[blue bottom] = 1/2

    Probability of a card having blue bottom face

    given blue top face:P[blue bottom|blue top] = (1/2)/(3/4) = 2/3

    Example of Conditional Probability:3 Cards Trick

  • 8/3/2019 1367-Minta Yuwana-Probability1

    23/87

    10/9/01 23

    Example of Conditional Probability:3 Cards Trick

    Top

    Bottom

    Blue Red

    Blue

    Red 1/6 2/6

    1/62/6 1/2

    1/2

    1/2 1/2 1total

    total

  • 8/3/2019 1367-Minta Yuwana-Probability1

    24/87

    10/9/01 24

    Example of Conditional Probability:3 Cards Trick

    blue top

    red top

    3/6

    3/6

    blue bottom

    blue bottom

    red bottom

    red bottom

    2/3

    1/3

    2/3

    1/3

    3/6 x 2/3 = 2/6

    3/6 x 1/3 = 1/6

    3/6 x 2/3 = 2/6

    3/6 x 1/3 = 1/6

    P[A] P[B|A] P[AB]

  • 8/3/2019 1367-Minta Yuwana-Probability1

    25/87

    10/9/01 25

    Independence and Multiplication

    Rule Independent Events

    Two events are independent if one may

    occur irrespective of the other

    Event A and B are independent if and

    only if P[AB] = P[A] P[B]

  • 8/3/2019 1367-Minta Yuwana-Probability1

    26/87

    10/9/01 26

    Example:

    A1 = sample contains Pb P[A1] = 0.32

    A2 = sample contains Hg P[A2] = 0.16 sample contains both P[A1A2] = 0.10

    What is the probability of a samplecontains Pb will also contains Hg?

    Independence and Multiplication Rule

  • 8/3/2019 1367-Minta Yuwana-Probability1

    27/87

    10/9/01 27

    Answer

    P[A2|A1] = P[A1A2] / P[A1]

    = 0.10/0.32 = 0.31

    P[A2] = 0.16

    A1 and A2 are not independent

    Independent if

    P[A2|A1] = P[A2]

    Independence and Multiplication Rule

  • 8/3/2019 1367-Minta Yuwana-Probability1

    28/87

    10/9/01 28

    Bayes Theorem

    Let A1, A2, A3, , Anbe a collection ofevents which partition S.

    Let B be event such that P[B] 0 For any events Aj, j= 1,2,3,,n then

    ni

    ii

    jjj

    APABP

    APABPBAP

    1

    ][]|[

    ][]|[]|[

  • 8/3/2019 1367-Minta Yuwana-Probability1

    29/87

    10/9/01 29

    Example Blood type distribution

    in a country is

    type A = 41%

    type B = 9%

    type AB = 4%

    type O = 46%

    Bayes Theorem

    Estimated that during handlingemergency there are

    probability of wrong blood typeidentification

    type O identified A = 4%

    type A identified A =

    88% type B identified A = 4%

    type AB identified A =10%

  • 8/3/2019 1367-Minta Yuwana-Probability1

    30/87

    10/9/01 30

    Someone having a traffic accident his/herblood identified as type A. What is the

    probability that this is a correct type? Let

    A : someone has type A blood

    B : someone has type B blood

    AB : someone has type AB bloodO : someone has type O blood

    TA : someone identified as type A blood

    Bayes Theorem

  • 8/3/2019 1367-Minta Yuwana-Probability1

    31/87

    10/9/01 31

    Bayes Theorem

    TA

    OABB

    A OTAABTA

    BTAATA

    TA = (ATA)(BTA)(ABTA )(OTA )

  • 8/3/2019 1367-Minta Yuwana-Probability1

    32/87

    10/9/01 32

    We want to find P[A|TA] =?

    Given

    P[A] = 0.41 P[TA|A] = 0.88P[B] = 0.09 P[TA|B] = 0.04

    P[AB] = 0.04 P[TA|AB] = 0.10

    P[O] = 0.46 P[TA|O] = 0.04

    Bayes Theorem

  • 8/3/2019 1367-Minta Yuwana-Probability1

    33/87

    10/9/01 33

    Lets try to use conditional probability

    Where are P[ATA] and P[TA] ??P[ATA] = P[TA|A] P[A]

    = (0.88)(0.41) = 0.36P[TA] = P[ATA] + P[BTA] + P[ABTA]

    + P[OTA]

    Bayes Theorem

    ][

    ][]|[

    TAP

    TAAPTAAP

  • 8/3/2019 1367-Minta Yuwana-Probability1

    34/87

    10/9/01 34

    P[TA] = P[ATA] + P[BTA] + P[ABTA]

    + P[OTA]

    = P[TA|A] P[A] + P[TA|B] P[B] +P[TA|AB] P[AB] + P[TA|O] P[O]

    = (0.88)(0.41) + (0.04)(0.09) + (0.10)(0.04)

    + (0.04)(0.46)

    = 0.39 Finally P[A|TA] = 0.36/0.39 = 0.92

    Bayes Theorem

  • 8/3/2019 1367-Minta Yuwana-Probability1

    35/87

    10/9/01 35

    DISTRIBUSI PROBABILITAS DISKRIT(Discrete Probability Distribution)

    DISKRIT

    VARIABLE & VALUE

    RANDOM VARIABLE & RANDOMVALUE

  • 8/3/2019 1367-Minta Yuwana-Probability1

    36/87

    10/9/01 36

    DISTRIBUSI PROBABILITAS DISKRIT(Discrete Probability Distribution)

    DISKRIT

    terpisah jelas satu dengan lainnya dapat dihitung/cacah (countable)

    masing-masing bernilai sendiri dan

    terpisah tidak dapat dipecah atau dibagi

  • 8/3/2019 1367-Minta Yuwana-Probability1

    37/87

    10/9/01 37

    DISTRIBUSI PROBABILITAS DISKRIT(Discrete Probability Distribution)

    VARIABLE & NILAI (VALUE)

    Variable: suatu kuantitas (event) yang

    mempunyai satu nilai tertentu daribanyak kemungkinan nilai

    Nilai (Value): ukuran yang dikaitkandengan variable

  • 8/3/2019 1367-Minta Yuwana-Probability1

    38/87

    10/9/01 38

    DISTRIBUSI PROBABILITAS DISKRIT(Discrete Probability Distribution)

    RANDOM VARIABLE & RANDOMVALUE

    Random variable: nilainya random

    Random value (nilai random):

    besar pastinya tidak diketahui kisaran nilainya diketahui dari sample

    spacenya

    terkait probabilitas

  • 8/3/2019 1367-Minta Yuwana-Probability1

    39/87

    10/9/01 39

    DISTRIBUSI PROBABILITAS DISKRIT(Discrete Probability Distribution)

    Cara penulisan

    Nilai: x

    Variabel: X Probabilitas variabel Xbernilai x:

    P[X=x]

    Probabilitas bila xbermacam-macam:f(x)= P[X=x] x= macam-macam

  • 8/3/2019 1367-Minta Yuwana-Probability1

    40/87

    10/9/01 40

    DISTRIBUSI PROBABILITAS DISKRIT(Discrete Probability Distribution)

    Distribusi Probabilitas (ProbabilityDistribution)

    gambaran/fungsi sebaran probabilitas adalah f(x)

    dinyatakan dalam bentuk

    distribusi densitas distribusi kumulatif

  • 8/3/2019 1367-Minta Yuwana-Probability1

    41/87

    10/9/01 41

    DISTRIBUSI PROBABILITAS DISKRIT(Discrete Probability Distribution)

    Distribusi Densitas Probabilitas

    menyatakan nilai probabilitas pada setiap

    nilai xf(x) =P[X=x]

    x

    f(x)

    Total probabilitas =

    f(x)= 1 utk seluruh xBila xkontinyuf(x)dx=1

  • 8/3/2019 1367-Minta Yuwana-Probability1

    42/87

    10/9/01 42

    Distribusi Kumulatif Probabilitas

    menyatakan nilai kumulatif probabilitas

    sampai dengan nilai x

    F(x) =P[X < x]

    limit F(x) = 1

    x

    F(x)

    DISTRIBUSI PROBABILITAS DISKRIT(Discrete Probability Distribution)

  • 8/3/2019 1367-Minta Yuwana-Probability1

    43/87

    10/9/01 43

    PARAMETER DISTRIBUSI:

    NILAI HARAPAN (Expected Value)

    Definisi Nilai Harapan (Expected Value),

    H(x) AndaikanX : variabel random diskrit

    dengan distribusi densiti f(x)

    AndaikanH(X) : variabel random (yanglain)

  • 8/3/2019 1367-Minta Yuwana-Probability1

    44/87

    10/9/01 44

    Nilai harapandari H(X), yi. E[H(X)]:

    xsemua

    H(x)f(x)E[H(X)]

    PARAMETER DISTRIBUSI:NILAI HARAPAN (Expected Value)

    semua xSyaratH(X)f(x) bernilai tertentu

    Perjumlahan untuk semua nilai x dengan P[X=x]0

    Statistik:nilai harapan = mean = matau

    mx

  • 8/3/2019 1367-Minta Yuwana-Probability1

    45/87

    10/9/01 45

    PARAMETER DISTRIBUSI:NILAI HARAPAN (Expected Value)

    TEOREMA AndaikanXdanYadalah variabel

    random

    Andaikancadalah sebarang bilanganreal E[X + Y] = E[X] + E[Y]

    E[cX ] = cE[X]

    E[c] = c

  • 8/3/2019 1367-Minta Yuwana-Probability1

    46/87

    10/9/01 46

    Definisi Variance

    Andaikan X adalah random variable

    denganMeanm Variance X

    Var X =s2 = E[(X-m)2] hitungmdulu

    ataus2 = E[X2] - (E[X])2 lebih praktis

    PARAMETER DISTRIBUSI:

    VARIANCE dan STANDARD DEVIASI

  • 8/3/2019 1367-Minta Yuwana-Probability1

    47/87

    10/9/01 47

    Defini Standard Deviasi, s Penyimpangan standar dari mean

    Akar dari variances=Var X =s2

    Derajad Kebebasan (Degrees of

    Freedom), nn= n - 1 n = banyaknya X

    PARAMETER DISTRIBUSI:

    VARIANCE dan STANDARD DEVIASI

  • 8/3/2019 1367-Minta Yuwana-Probability1

    48/87

    10/9/01 48

    AndaikanXdanYadalah variabelrandom dancadalah bilangan real

    Var c = 0Var cX = c2Var X

    Var(X + Y) = Var X + Var Yuntuk X dan Y tak saling terikat

    (independent)

    PARAMETER DISTRIBUSI:

    VARIANCE dan STANDARD DEVIASI

    TEOREMA

  • 8/3/2019 1367-Minta Yuwana-Probability1

    49/87

    10/9/01 49

    CIRI

    Outcomes: sukses dan gagal Undian identik dan independent

    Probabilitas sukses,p, tetappada setiap undian

    Undian Bernoulli

    (Bernoulli Trial)

  • 8/3/2019 1367-Minta Yuwana-Probability1

    50/87

    10/9/01 50

    Undian Bernoulli

    (Bernoulli Trial)

    Trial

    n kali trial hinggasukses pertama

    kali

    jml suksesdalam n kali

    trial

    DistribusiGeometrik

    DistribusiBinomial

  • 8/3/2019 1367-Minta Yuwana-Probability1

    51/87

    10/9/01 51

    Distribusi Geometrik

    Variabel random Xberdistribusigeometrik dengan parameterpapabila

    densitas probabilitasnya

    f(x) = (1- p)x-1puntuk 0

  • 8/3/2019 1367-Minta Yuwana-Probability1

    52/87

    10/9/01 52

    Berlaku Bernoulli trial

    Tiap trial identik dan independent Probability sukses ptetap

    Xmenyatakan jumlah trial sampai

    sukses yang pertama kali

    Distribusi Geometrik

    Ciri

  • 8/3/2019 1367-Minta Yuwana-Probability1

    53/87

    10/9/01 53

    Trial Geometrik:

    Coba terus sampai berhasil!!

    s

    p = 3/4 q = 1 - p = 1/4

    f

    f(1)=3/4

    s

    s

    s

    f

    f

    f(3)=1/4 x 1/4 x 3/4 = 3/64

    f(4)=1/4 x 1/4 x 1/4 x 3/4 = 3/256

    f(2)=1/4 x 3/4 = 3/16

    1x

    2x

    3x

    4x

    Probabilitas kumulatif s/d 4x =255/256 = 0.9961

  • 8/3/2019 1367-Minta Yuwana-Probability1

    54/87

    10/9/01 54

    Trial Geometrik:Coba terus sampai berhasil!!

    0.0000

    0.2000

    0.4000

    0.6000

    0.8000

    1.0000

    0 2 4 6

    trial

    probability

    density

    cuml

  • 8/3/2019 1367-Minta Yuwana-Probability1

    55/87

    10/9/01 55

    Distribusi Binomial

    Definisi Variabel random Xberdistribusi

    geometrik dengan parameterndanp

    apabila densitas probabilitasnyaf(x) = (1- p)n-xpx

    untuk 0

  • 8/3/2019 1367-Minta Yuwana-Probability1

    56/87

    10/9/01 56

    Kombinasi

    Distribusi Binomial

    Definisi

    nx = C(n,x) = n!x! (n-x)!

    C(7,3) = 7!3! (7-3)!

    = 7.6.53.2.1

    = 35

  • 8/3/2019 1367-Minta Yuwana-Probability1

    57/87

    10/9/01 57

    Andaikan Xvariabel random denganparameter ndan p, maka

    Expected Value, E(X)=m= np

    -Varian, s2(X)

    = npq q= 1 -p

    Distribusi Binomial

    Teorema

  • 8/3/2019 1367-Minta Yuwana-Probability1

    58/87

    10/9/01 58

    Berlaku Bernoulli trial

    Jumlah ntetap pada setiap trial

    Tiap trial identik dan independent

    Probability sukses ptetap

    Xmenyatakan jumlah sukses dalamsetiap trial n

    Distribusi Binomial

    Ciri

  • 8/3/2019 1367-Minta Yuwana-Probability1

    59/87

    10/9/01 59

    Anggap probabilitas hujan setiap hari, p

    Anggap ptetap = 0.15

    Berapa probabilitas 3 hari hujan dalamseminggu?

    n = 7 p = 0.15 q = 0.85

    x = 3

    P[3] = C(7,3)(0.85)4(0.15)3=0.062

    Distribusi Binomial

    Contoh

  • 8/3/2019 1367-Minta Yuwana-Probability1

    60/87

    10/9/01 60

    Sampling

    Sampling

    withreplacement

    withoutreplacement

    BinomialDistribution

    HypergeometricDistribution

  • 8/3/2019 1367-Minta Yuwana-Probability1

    61/87

    10/9/01 61

    draws or trials are not independent

    probability of success, p, is not constant

    variable X, the number of success in ntrials follows hypergeometric distribution

    Sampling without Replacement

  • 8/3/2019 1367-Minta Yuwana-Probability1

    62/87

    10/9/01 62

    A random variable Xhas a hypergeometricdistribution with parameters N, n, and rif itsdensity is given by

    Hypergeometric Distribution

    rx

    N

    n

    N - rn- xf(x) =

    max[0, n- (N - r)] < x< min(n, r)N, r, n positive integers

  • 8/3/2019 1367-Minta Yuwana-Probability1

    63/87

    10/9/01 63

    Example

    There are 20 small balls inside a bowl.

    12 of them are black and 8 are white All balls are well mixed inside the bowl

    5 balls are sampled from the bowl withoutreplacement

    Xrepresents the number of black balls in thesample

    Hypergeometric Distribution

  • 8/3/2019 1367-Minta Yuwana-Probability1

    64/87

    10/9/01 64

    What is the probability of X?

    N = 20, r = 12, n = 5

    P[X=0] = C(12,0)C(8,5)/C(20,5) = 0.0036P[X=1] = C(12,1)C(8,4)/C(20,5) = 0.0542

    P[X=2] = C(12,2)C(8,3)/C(20,5) = 0.2384

    P[X=3] = C(12,3)C(8,2)/C(20,5) = 0.3973P[X=4] = C(12,4)C(8,1)/C(20,5) = 0.2554

    P[X=5] = C(12,5)C(8,0)/C(20,5) = 0.0511

    Hypergeometric Distribution

  • 8/3/2019 1367-Minta Yuwana-Probability1

    65/87

    10/9/01 65

    Limiting case

    if n

  • 8/3/2019 1367-Minta Yuwana-Probability1

    66/87

    10/9/01 66

    Example of limiting case

    100 transistors are sampled from 5000

    the number of defective transistors are5%

    What is the probability of X, the number

    of defective transistors in the sample?

    Hypergeometric Distribution

  • 8/3/2019 1367-Minta Yuwana-Probability1

    67/87

    10/9/01 67

    Hypergeometric solution N = 5000 r = 250 n = 100

    P[X=0] = C(250,0)C(4750,100)/C(5000,100) = 0.0056P[X=1] =C(250,1)C(4750,99)/C(5000,100) = 0.0302

    P[X=2] = C(250,2)C(4750,98)/C(5000,100) = 0.0800

    P[X=3] =C(250,3)C(4750,97)/C(5000,100) = 0.1392

    P[X=4] = C(250,4)C(4750,96)/C(5000,100) = 0.1792

    P[X=5] =C(250,5)C(4750,95)/C(5000,100) = 0.1818

    Hypergeometric Distribution

  • 8/3/2019 1367-Minta Yuwana-Probability1

    68/87

    10/9/01 68

    Binomial solution

    n = 100, p = 0.05

    P[X=0] = C(100,0)(0.05)0(0.95)100= 0.0059P[X=1] =C(100,1)(0.05)1(0.95)99= 0.0312

    P[X=2] = C(100,2)(0.05)2(0.95)98= 0.0812

    P[X=3] =C(100,3)(0.05)3(0.95)97= 0.1396

    P[X=4] = C(100,4)(0.05)4(0.95)96= 0.1781

    P[X=5] =C(100,5)(0.05)5(0.95)95= 0.1800

    Hypergeometric Distribution

  • 8/3/2019 1367-Minta Yuwana-Probability1

    69/87

    10/9/01 69

    Hypergeometric

    P[X=0] = 0.0056

    P[X=1] = 0.0302

    P[X=2] = 0.0800

    P[X=3] = 0.1392

    P[X=4] = 0.1792P[X=5] = 0.1818

    Hypergeometric Distribution

    Limiting Case Comparison

    Binomial

    P[X=0] = 0.0059

    P[X=1] = 0.0312P[X=2] = 0.0812

    P[X=3] = 0.1396

    P[X=4] = 0.1781P[X=5] = 0.1800

  • 8/3/2019 1367-Minta Yuwana-Probability1

    70/87

    10/9/01 70

    Poisson Distribution

    Definition French mathematician: Simeon Denis

    Poisson (1781-1840)

    A random variable X has a Poissondistribution with parameter k if itsdensity is

    e-kkx

    f(x) = ------------x! x = 0,1,2,k > 0

  • 8/3/2019 1367-Minta Yuwana-Probability1

    71/87

    10/9/01 71

    Let Xbe a Poisson random variablewith parameter k

    E[X] = k

    Var[X] = k

    Poisson Distribution

    Theorem

  • 8/3/2019 1367-Minta Yuwana-Probability1

    72/87

    10/9/01 72

    Connected to Poisson processes

    Poisson process:

    observing discrete and infrequent eventsin a continuous interval of time, length,or space

    Xis the number of occurrences of theevent in the interval of sunits

    k= ls, l= rates of occurrence per

    units

    Poisson Distribution

    Features

  • 8/3/2019 1367-Minta Yuwana-Probability1

    73/87

    10/9/01 73

    Average white blood-cell count of a healthyperson = 6000/mm3 of blood.

    To detect white blood-cell deficiency, a 0.001mm3 of blood is taken and the number ofwhite cells Xis counted.

    How many white cells are expected in a

    healthy person? If at most 2 cells are found, is there evidence

    of white blood-cell deficiency?

    Poisson Distribution

    Example

  • 8/3/2019 1367-Minta Yuwana-Probability1

    74/87

    10/9/01 74

    Solutionunit = mm3 s= 0.001l= 6000 ls= (6000)(0.001) = 6

    Expected value, E[X]= ls= 6 (for a healthyperson)

    How rare is it to see at most two?P[X

  • 8/3/2019 1367-Minta Yuwana-Probability1

    75/87

    10/9/01 75

    Worksheet Functions

    BINOMIAL DISTRIBUTION

    BINOMDIST(number_s,trials,probability_s,cumulative)

    Returns the individual term binomial distribution

    probability.

    Number_s : the number of successes in trials.

    Trials : the number of independent trials.

    Probability_s : the probability of success oneach trial.

    Cumulative : a logical value. TRUE for thecumulative distribution function, FALSE for theprobability density/mass function.

  • 8/3/2019 1367-Minta Yuwana-Probability1

    76/87

    10/9/01 76

    Example

    The flip of a coin can only result in heads ortails. The probability of the first flip beingheads is 0.5, and the probability of exactly 6 of10 flips being heads is:

    BINOMDIST(6,10,0.5,FALSE) equals 0.205078

    Worksheet Functions

    BINOMIAL DISTRIBUTION

  • 8/3/2019 1367-Minta Yuwana-Probability1

    77/87

    10/9/01 77

    Remarks

    Number_s and trials are truncated to integers.

    If number_s, trials, or probability_s isnonnumeric, BINOMDIST returns the#VALUE! error value.

    If number_s < 0 or number_s > trials,BINOMDIST returns the #NUM! error value.

    If probability_s < 0 or probability_s > 1,BINOMDIST returns the #NUM! error value.

    Worksheet Functions

    BINOMIAL DISTRIBUTION

  • 8/3/2019 1367-Minta Yuwana-Probability1

    78/87

    10/9/01 78

    COMBIN(number,number_chosen) Returns the number of combinations for a given number

    of items.

    Number is the number of items. Number_chosen is the number of items in each

    combination.

    Example

    Suppose you want to form a two-person teamfrom eight candidates, and you want to knowhow many possible teams can be formed.COMBIN(8, 2) equals 28 teams.

    Worksheet Functions

    COMBINATION

  • 8/3/2019 1367-Minta Yuwana-Probability1

    79/87

    10/9/01 79

    Remarks

    Numeric arguments are truncated to integers.

    If either argument is nonnumeric, COMBINreturns the #NAME? error value.

    If number < 0, number_chosen < 0, or number

    number_population, HYPGEOMDIST returnsthe #NUM! error value.

    If population_s < 0 or population_s >number_population, HYPGEOMDIST returnsthe #NUM! error value.

    Worksheet Functions

    HYPERGEOMETRIC DISTRIBUTION

  • 8/3/2019 1367-Minta Yuwana-Probability1

    84/87

    10/9/01 84

    If number_population < 0, HYPGEOMDISTreturns the #NUM! error value.

    HYPGEOMDIST is used in sampling withoutreplacement from a finite population.

    Worksheet Functions

    HYPERGEOMETRIC DISTRIBUTION

  • 8/3/2019 1367-Minta Yuwana-Probability1

    85/87

    10/9/01 85

    POISSON(x,mean,cumulative) Returns the Poisson distribution.

    X is the number of events.

    Mean is the expected numeric value. Cumulative is a logical value. TRUE for

    cumulative Poisson probability and FALSE forprobability density/mass function

    Examples

    POISSON(2,5,FALSE) equals 0.084224

    POISSON(2,5,TRUE) equals 0.124652

    Worksheet Functions

    POISSON DISTRIBUTION

  • 8/3/2019 1367-Minta Yuwana-Probability1

    86/87

    10/9/01 86

    Remarks

    If x is not an integer, it is truncated.

    If x or mean is nonnumeric, POISSON returnsthe #VALUE! error value.

    If x 0, POISSON returns the #NUM! errorvalue.

    If mean 0, POISSON returns the #NUM!error value.

    Worksheet Functions

    POISSON DISTRIBUTION

  • 8/3/2019 1367-Minta Yuwana-Probability1

    87/87

    Continue to Probability2

    http://c/Kuliah/Statistik/Probability2.ppthttp://c/Kuliah/Statistik/Probability2.ppt