29
1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer layer Irina Stratocumulus Irina PBL evaluation Maike Exercises Irina & Maike

1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

Embed Size (px)

Citation preview

Page 1: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

1/29

Parametrization of the planetary boundary layer (PBL)

Irina Sandu & Anton Beljaars

Introduction Irina

Surface layer and surface fluxes Anton

Outer layer Irina

Stratocumulus Irina

PBL evaluation Maike

Exercises Irina & Maike

Page 2: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

2/29

Why studying the Planetary Boundary Layer ?

Natural environment for human activities

Understanding and predicting its structure Agriculture, aeronautics, telecommunications, Earth energetic budget

Weather forecast, pollutants dispersion, climate prediction

Page 3: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

3/29

Outline

Definition

Turbulence

Stability

Classification

Clear convective boundary layers

Cloudy boundary layers (stratocumulus and cumulus)

Summary

Page 4: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

4/29

PBL: Definitions

The layer where the flow is turbulent.

The fluxes of momentum, heat or matter are carried by turbulent motions on a scale of the order of the depth of the boundary layer or less.

The surface effects (friction, cooling, heating or moistening) are felt on times scales < 1 day.

Free troposphere

50 m

1 - 3 km

Mixed layer

surface layer

Composition

• atmospheric gases (N2, O2, water vapor, …)

• aerosol particles

• clouds (condensed water)

qv

The PBL is the layer close to the surface within which vertical transports by turbulence play dominant roles in the momentum, heat and moisture budgets.

Page 5: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

5/29

PBL: Turbulence

Characteristics of the flow

Rapid variation in time

Irregularity

Randomness

Properties

Diffusive

Dissipative

Irregular (butterfly effect)

Origin:

Hydrodynamic instability (wind shear) Reynolds number

Thermal instability Rayleigh number

UL

Re

Chaotic flow

Tgh

Ra

3

U

Page 6: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

6/29

heat (first principle of thermodynamics)

PBL: Governing equations for the mean state

AAA Reynolds averaging

gas law (equation of state)

momentum (Navier Stokes)

total water

continuity eq. (conservation of mass)

Simplifications

Boussinesq approximation (density fluctuations non-negligible only in buoyancy terms)

Hydrostatic approximation (balance of pressure gradient and gravity forces)

Incompressibility approximation (changes in density are negligible)

Averaging (overbar) is over grid box, i.e. sub-grid turbulent motion is averaged out.

Page 7: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

7/29

PBL: Governing equations for the mean state

AAA Reynolds averaging

gas lawp Rd Tv

virtual temperature

)61.01( lvv qqTT

Page 8: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

8/29

PBL: Governing equations for the mean state

AAA Reynolds averaging

gas lawp Rd Tv

virtual temperature

)61.01( lvv qqTT

j

ji

j

i

ijijci

j

ij

i

x

uu

x

u

x

Pufg

x

uu

t

u

)(1

2

2

33

meanadvection

gravity

momentum

Coriolis Pressure

gradientViscous stress

Turbulent transport

2nd order

Need to be parameterized !

Page 9: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

9/29

PBL: Governing equations for the mean state

AAA Reynolds averaging

gas lawp Rd Tv

virtual temperature

)61.01( lvv qqTT

j

ji

j

i

ijijci

j

ij

i

x

uu

x

u

x

Pufg

x

uu

t

u

)(1

2

2

33

meanadvection

gravity

momentum

Coriolis Pressure

gradientViscous stress

Turbulent transport

continuity eq. 0

j

i

x

u

2nd order

Page 10: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

10/29

radiation turbulent transport

meanadvection

heat

PBL: Governing equations for the mean state

AAA Reynolds averaging

gas lawp Rd Tv

virtual temperature

)61.01( lvv qqTT

j

j

j

j

pjj x

u

x

F

cxu

t

1

p

v

c

EL

Latent heat release

j

ji

j

i

ijijci

j

ij

i

x

uu

x

u

x

Pufg

x

uu

t

u

)(1

2

2

33

meanadvection

gravity

momentum

Coriolis Pressure gradient

Viscous stress

Turbulent transport

continuity eq. 0

j

i

x

u

2nd order

Page 11: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

11/29

radiation turbulent transport

meanadvection

heat

PBL: Governing equations for the mean state

AAA

precipitation turbulent transport

meanadvection

Total water

Reynolds averaging

gas lawp Rd Tv

virtual temperature

)61.01( lvv qqTT

j

j

j

j

pjj x

u

x

F

cxu

t

1

j

tjq

j

tj

t

x

quS

x

qu

t

qt

p

v

c

EL

Latent heat release

j

ji

j

i

ijijci

j

ij

i

x

uu

x

u

x

Pufg

x

uu

t

u

)(1

2

2

33

meanadvection

gravity

momentum

Coriolis Pressure gradient

Viscous stress

Turbulent transport

precipitation turbulent transport

meanadvection

total waterj

tjq

j

tj

t

x

quS

x

qu

t

qt

continuity eq. 0

j

i

x

u

2nd order

Page 12: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

12/29

TKE: a measure of the intensity of turbulent mixing

e

t u j

e

x j

g

0

w' v' ui ' u j'ui

x j

u j ' e

x j

1

ui ' p'

xi

turbulenttransport

pressure transport

buoyancyproduction

mechanicalshear

dissipation

PBL: Turbulent kinetic energy equation

An example :

v’ < 0 , w’ < 0 or v’ > 0 , w’ > 0 w’ v’ > 0 source

v’ < 0 , w’ > 0 or v’ > 0 , w’ < 0 w’ v’ < 0 sink

v

1 0 .61 qv

ql

virtual potentialtemperature

)(

2

1

)(2

1

222

222

wvue

wvue

Page 13: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

13/29

PBL: Stability (I)

Traditionally stability is defined using the temperature gradient

v gradient (local definition):

stable layer

unstable layer

neutral layer

How to determine the stability of the PBL taken as a whole ?

In a mixed layer the gradient of temperature is practically zero

Either v or w’ v’ profiles are needed to determine the PBL stability state

0zv

0zv

0zv

stable unstablez z

v v

Page 14: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

14/29

PBL: Stability (II)

Stable

Unstable

(Stull, 1988)

Page 15: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

15/29

PBL: Other ways to determine stability (III)

0vw

Bouyancy flux at the surface:

0vw

unstable PBL(convective)

stable PBL

0vw

Or dynamic production of TKE integrated over the PBL depth stronger than thermal production

neutral PBL

Monin-Obukhov length:

s

sv

vwuu

wkg

uL )(,

)(2*

3*

-105m L –100m unstable PBL

-100m < L < 0 strongly unstable PBL

0 < L < 10 strongly stable PBL

10m L 105m stable PBL

|L| > 105m neutral PBL

zv

wvzu

wu

wg

Rv

vf

Richardson flux number

Rf < 0 statically unstable flowRf > 0 statically stable flow

Rf < 1 dynamically unstable flowRf > 1 dynamically stable flow

Page 16: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

16/29

PBL: Classification and scaling

Neutral PBL : turbulence scale l ~ 0.07 H, H being the PBL depth

Quasi-isotropic turbulence

Scaling - adimensional parameters : z0, H, u*

Stable PBL: l << H (stability embeds turbulent motion)

Turbulence is local (no influence from surface), stronger on horizontal

Scaling : , , H

Unstable (convective) PBL l ~ H (large eddies)

Turbulence associated mostly to thermal production

Turbulence is non-homogeneous and asymmetric (top-down, bottom-up)

Scaling: H,

sw )( swu )(

3/1

* )(

Hw

gw sv

v

*

0*

*

0* ,,

w

Q

w

Eq

H

z

Page 17: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

17/29

PBL: Diurnal variation

Clear convective PBL

Cloudy convective PBL

Page 18: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

18/29

ql= qt-qsat

qsat

qsat

Cloud base

qt lqv l=

PBL: State variables

Clear PBL Cloudy PBL

T pp0

Rd / cpPotential temperature

l - Lv

cpq l

Specifichumidity

vd

vv mm

mq

Liquid water potential temperature

Total water content cvd

cvt mmm

mmq

Evaporationtemperature

Conserved variables

Page 19: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

19/29

Clear Convective PBL

qt qsatv Stephan de Roode, Ph.D thesis

Free atmosphere

Inversion layer

mixed layer

surface layer

Page 20: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

20/29

Clear Convective PBL

Buoyantly-driven from surface

0.7 H

inversion

level of neutral buoyancy

Main source of TKE production

Turbulent transport and pressure term

turbulent fluxes : a function of convective

scaling variables:

PBL height:

Entrainment rate:(a possible parameterization )

Fluxes at PBL top:

Key parameters:

*

0*

*

0* ,,

w

Q

w

Eq

H

z

0)(,,, vve wHw

edtdH ww

we A w*

3

g

0 H v

eH ww

Page 21: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

21/29

Clouds effects on climate

warming

Greenhouse effectInfrared radiation Solar radiation

Umbrella effect

cooling

Boundary layer clouds

Page 22: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

22/29

Cloudy marine boundary layers

Stratocumulus capped boundary layers Fair weather cumuli Trade wind cumuli

Page 23: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

23/29

Cloudy boundary layers

Stratocumulus topped PBL

Cumulus PBL

qt qsat v

qtqsat

v

Stephan de Roode, Ph.D thesis

Free atmosphere

Inversion layer

mixed layer

surface layer

Free atmosphere

Inversion layer

Conditionally unstable cloud

layer

surface layer

Subcloud mixed

Dry-adiabaticlapse rate

wet-adiabaticlapse rate

Page 24: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

24/29

Cloudy boundary layers

Stratocumulus topped PBL

Cumulus PBL

qt qsat v

qtqsat

v

Stephan de Roode, Ph.D thesis

Free atmosphere

Inversion layer

mixed layer

surface layer

Free atmosphere

Inversion layer

Conditionally unstable cloud

layer

surface layer

Subcloud mixed

Dry-adiabaticlapse rate

wet-adiabaticlapse rate

Page 25: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

25/29

Stratocumulus topped boundary layer

Complicated turbulence structureCloud top entrainment

condensation

Long-wave cooling

Long-wave warming

Buoyantly driven by radiative cooling at cloud top

Surface latent and heat flux play an important role

Cloud top entrainment an order of magnitude stronger than in clear PBL

Solar radiation transfer essential for the cloud evolution

Key parameters: 0)(,,, vve wHw

Fzqqw btv ,,,)( 0

Page 26: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

27/29

Cumulus capped boundary layers

Buoyancy is the main mechanism that forces cloud to rise

Active cloud

CAPE

Page 27: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

28/29

Cumulus capped boundary layers

Buoyancy is the main mechanism that forces cloud to rise

Represented by mass flux convective

schemes

Decomposition: cloud + environment

Lateral entrainment/detrainment rates prescribed

Key parameters: 00 )(,)(,, vvb qwwzH

wkM duc )(

..

,environ

v

environ

v

z

q

z

Page 28: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

29/29

PBL: Summary

Characteristics : several thousands of meters – 2-3 km above the surface turbulence, mixed layer convection Reynolds framework

Classification: neutral (extremely rare) stable (nocturnal) convective (mostly diurnal)

Clear convective

Cloudy (stratocumulus or cumulus) Importance of boundary layer clouds (Earth radiative budget) Small liquid water contents, difficult to measure

Page 29: 1/29 Parametrization of the planetary boundary layer (PBL) Irina Sandu & Anton Beljaars Introduction Irina Surface layer and surface fluxes Anton Outer

30/29

Bibliography

Deardorff, J.W. (1973) Three-dimensional numerical modeling of the planetary boundary layer, In Workshop on Micrometeorology, D.A. Haugen (Ed.), American Meteorological Society, Boston, 271-311

P. Bougeault, V. Masson, Processus dynamiques aux interfaces sol-atmosphere et ocean-atmosphere, cours ENM

Nieuwstad, F.T.M., Atmospheric boundary-layer processes and influence of inhomogeneos terrain. In Diffusion and transport of pollutants in atmospheric mesoscale flow fields (ed. by Gyr, A. and F.S. Rys), Kluwer Academic Publishers, Dordrecht, The Netherlands, 89-125, 1995.

Stull, R. B. (1988) An introduction to boundary layer meteorology, Kluwer Academic Publisher, Dordrecht, The Netherlands.

S. de Roode (1999), Cloudy Boundary Layers: Observations and Mass-Flux Parameterizations, Ph.D. Thesis

Wyngaard, J.C. (1992) Atmospheric turbulence, Annu. Rev. Fluid Mech. 24, 205-233