123_125_smeng0000

Embed Size (px)

Citation preview

  • 8/13/2019 123_125_smeng0000

    1/96

    Fluke 123/124/125Industrial ScopeMeter

    Service Manual

    4822 872 05398March 2007 2007 Fluke Corporation, All rights reserved.All product names are trademarks of their respective companies.

  • 8/13/2019 123_125_smeng0000

    2/96

    Limited Warranty & Limitation of LiabilityEach Fluke product is warranted to be free from defects in material and workmanship under normal use and

    service. The warranty period is three years for the Analyzer and one year for its accessories. The warranty

    period begins on the date of shipment. Parts, product repairs and services are warranted for 90 days. This

    warranty extends only to the original buyer or end-user customer of a Fluke authorized reseller, and does not

    apply to fuses, disposable batteries or to any product which, in Fluke's opinion, has been misused, altered,neglected or damaged by accident or abnormal conditions of operation or handling. Fluke warrants that

    software will operate substantially in accordance with its functional specifications for 90 days and that it has

    been properly recorded on non-defective media. Fluke does not warrant that software will be error free or

    operate without interruption.

    Fluke authorized resellers shall extend this warranty on new and unused products to end-user customers only

    but have no authority to extend a greater or different warranty on behalf of Fluke. Warranty support is

    available if product is purchased through a Fluke authorized sales outlet or Buyer has paid the applicable

    international price. Fluke reserves the right to invoice Buyer for importation costs of repair/replacement parts

    when product purchased in one country is submitted for repair in another country.

    Fluke's warranty obligation is limited, at Fluke's option, to refund of the purchase price, free of charge repair,

    or replacement of a defective product which is returned to a Fluke authorized service center within the

    warranty period.

    To obtain warranty service, contact your nearest Fluke authorized service center or send the product, with a

    description of the difficulty, postage and insurance prepaid (FOB Destination), to the nearest Fluke

    authorized service center. Fluke assumes no risk for damage in transit. Following warranty repair, the product

    will be returned to Buyer, transportation prepaid (FOB Destination). If Fluke determines that the failure was

    caused by misuse, alteration, accident or abnormal condition of operation or handling, Fluke will provide an

    estimate of repair costs and obtain authorization before commencing the work. Following repair, the product

    will be returned to the Buyer transportation prepaid and the Buyer will be billed for the repair and return

    transportation charges (FOB Shipping Point).

    THIS WARRANTY IS BUYER'S SOLE AND EXCLUSIVE REMEDY AND IS IN LIEU OF ALL OTHER

    WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED

    WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FLUKE

    SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL

    DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, WHETHER ARISING FROM BREACH OF

    WARRANTY OR BASED ON CONTRACT, TORT, RELIANCE OR ANY OTHER THEORY.

    Since some countries or states do not allow limitation of the term of an implied warranty, or exclusion or limitationof incidental or consequential damages, the limitations and exclusions of this warranty may not apply to every

    buyer. If any provision of this Warranty is held invalid or unenforceable by a court of competent jurisdiction, suchholding will not affect the validity or enforceability of any other provision.Fluke Corporation, P.O. Box 9090, Everett, WA 98206-9090 USA, or

    Fluke Industrial B.V., P.O. Box 90, 7600 AB, Almelo, The Netherlands.

  • 8/13/2019 123_125_smeng0000

    3/96

    i

    Table of Contents

    Chapter Title Page

    Limited Warranty & Limitation of Liability........................................................ ii

    Introduction and Safety Instructions................................................................1-1

    1.1 Introduction to Service Manual ..................................................................... 1-31.2 Safety .............................................................................................................1-31.2.1 Introduction................................................................................................. 1-31.2.2 Safety Precautions....................................................................................... 1-31.2.3 Caution and Warning Statements................................................................ 1-31.2.4 Symbols used in this Manual and on Instrument ........................................ 1-41.2.5 Impaired Safety........................................................................................... 1-41.2.6 General Safety Information......................................................................... 1-4

    Characteristics ...................................................................................................2-1

    2.1 Introduction.................................................................................................... 2-32.2 Dual Input Oscilloscope................................................................................. 2-32.2.1 Vertical........................................................................................................ 2-32.2.2 Horizontal ................................................................................................... 2-42.2.3 Trigger ........................................................................................................ 2-42.2.4 Advanced Scope Functions......................................................................... 2-52.3 Dual Input Meter............................................................................................ 2-52.3.1 Input A and Input B .................................................................................... 2-52.3.2 Input A ........................................................................................................ 2-82.3.3 Advanced Meter Functions......................................................................... 2-92.4 Cursor Readout (Fluke 124, 125)................................................................... 2-10

    2.5 Harmonics Measurements (Fluke 125).......................................................... 2-102.6 Field Bus Measurements (Fluke 125) ............................................................ 2-112.7 Miscellaneous ................................................................................................ 2-112.8 Environmental................................................................................................ 2-122.9 Service and Maintenance ............................................................................... 2-132.10 Safety ...........................................................................................................2-132.11 EMC Immunity ............................................................................................ 2-15

  • 8/13/2019 123_125_smeng0000

    4/96

    Fluke 123/124/125Service Manual

    ii

    Performance Verification...................................................................................3-1

    3.1 Introduction.................................................................................................... 3-33.2 Equipment Required For Verification ........................................................... 3-33.3 How To Verify............................................................................................... 3-43.4 Display and Backlight Test............................................................................ 3-4

    3.5 Input A and Input B Tests.............................................................................. 3-53.5.1 Input A and B Base Line Jump Test ........................................................... 3-63.5.2 Input A Trigger Sensitivity Test ................................................................. 3-83.5.3 Input A Frequency Response Upper Transition Point Test ........................ 3-93.5.4 Input A Frequency Measurement Accuracy Test ....................................... 3-93.5.5 Input B Frequency Measurement Accuracy Test........................................ 3-103.5.6 Input B Frequency Response Upper Transition Point Test......................... 3-113.5.7 Input B Trigger Sensitivity Test ................................................................. 3-123.5.8 Input A and B Trigger Level and Trigger Slope Test................................. 3-133.5.9 Input A and B DC Voltage Accuracy Test ................................................. 3-163.5.10 Input A and B AC Voltage Accuracy Test ............................................... 3-183.5.11 Input A and B AC Input Coupling Test.................................................... 3-193.5.12 Input A and B Volts Peak Measurements Test ......................................... 3-20

    3.5.13 Input A and B Phase Measurements Test ................................................. 3-213.5.14 Harmonics (Fluke 125) ............................................................................. 3-213.5.15 Input A and B High Voltage AC/DC Accuracy Test................................ 3-223.5.16 Resistance Measurements Test ................................................................. 3-243.5.17 Continuity Function Test .......................................................................... 3-253.5.18 Diode Test Function Test.......................................................................... 3-263.5.19 Capacitance Measurements Test............................................................... 3-263.5.20 Video Trigger Test.................................................................................... 3-27

    Calibration Adjustment......................................................................................4-1

    4.1 General........................................................................................................... 4-34.1.1 Introduction................................................................................................. 4-3

    4.1.2 Calibration number and date....................................................................... 4-34.1.3 General Instructions.................................................................................... 4-34.2 Equipment Required For Calibration............................................................. 4-44.3 Starting Calibration Adjustment .................................................................... 4-44.4 Contrast Calibration Adjustment ................................................................... 4-64.5 Warming Up & Pre-Calibration..................................................................... 4-74.6 Final Calibration ............................................................................................ 4-74.6.1 HF Gain Input A&B ................................................................................... 4-74.6.2 Delta T Gain, Trigger Delay Time & Pulse Adjust Input A....................... 4-94.6.3 Pulse Adjust Input B ................................................................................... 4-104.6.4 Gain DMM (Gain Volt) .............................................................................. 4-104.6.5 Volt Zero..................................................................................................... 4-124.6.6 Zero Ohm.................................................................................................... 4-12

    4.6.7 Gain Ohm.................................................................................................... 4-134.6.8 Capacitance Gain Low and High ................................................................ 4-144.6.9 Capacitance Clamp & Zero......................................................................... 4-144.6.10 Capacitance Gain ...................................................................................... 4-154.7 Save Calibration Data and Exit...................................................................... 4-15

  • 8/13/2019 123_125_smeng0000

    5/96

    Contents (continued)

    iii

    Disassembling the Test Tool ............................................................................5-1

    5.1. Introduction................................................................................................... 5-35.2. Disassembling Procedures ............................................................................ 5-35.1.1 Required Tools............................................................................................ 5-35.2.2 Removing the Battery Pack ........................................................................ 5-3

    5.2.3 Removing the Bail ...................................................................................... 5-35.2.4 Opening the Test Tool ................................................................................ 5-35.2.5 Removing the Main PCA Unit.................................................................... 5-55.2.6 Removing the Display Assembly................................................................ 5-65.2.7 Removing the Keypad and Keypad Foil ..................................................... 5-65.3 Disassembling the Main PCA Unit................................................................ 5-65.4 Reassembling the Main PCA Unit................................................................. 5-85.5 Reassembling the Test Tool........................................................................... 5-8

    List of Replaceable Parts ..................................................................................6-1

    6.1 Introduction.................................................................................................... 6-36.2 How to Obtain Parts....................................................................................... 6-3

    6.3 Service Centers .............................................................................................. 6-36.4 Final Assembly Parts ..................................................................................... 6-46.5 Main PCA Unit Parts ..................................................................................... 6-66.6 Service Tools ................................................................................................. 6-76.7 Accessory Replacement Parts ........................................................................ 6-7

  • 8/13/2019 123_125_smeng0000

    6/96

  • 8/13/2019 123_125_smeng0000

    7/96

    v

    List of Tables

    Table Title Page

    2-1.No Visible Trace Disturbance .....................................................................2-15

    2-2.Trace Disturbance < 10% ............................................................................2-15

    2-3.Multimeter Disturbance < 1%......................................................................2-15

    3-1.Input A,B Frequency Measurement Accuracy Test ..................................3-10

    3-2.Volts DC Measurement Verification Points ...............................................3-17

    3-3.Volts AC Measurement Verification Points ...............................................3-19

    3-4.Input A and B AC Input Coupling Verification Points...............................3-20

    3-5.Volts Peak Measurement Verification Points ............................................3-21

    3-6.Phase Measurement Verification Points....................................................3-21

    3-7.V DC and V AC High Voltage Verification Tests........................................3-24

    3-8.Resistance Measurement Verification Points ...........................................3-25

    3-9.Capacitance Measurement Verification Points .........................................3-27

    4-1.HF Gain Calibration Points Fast .................................................................4-8

    4-2.HF Gain Calibration Points Slow ................................................................4-9

  • 8/13/2019 123_125_smeng0000

    8/96

    Fluke 123/124/125Service Manual

    vi

    4-3.Volt Gain Calibration Points

  • 8/13/2019 123_125_smeng0000

    9/96

    vii

    List of Figures

    Figure Title Page

    2-2.Max. Input Voltage v.s. Frequency for VP40 10:1 Voltage Probe ............2-14

    3-1.Display Pixel Test Pattern...........................................................................3-5

    3-2.Menu item selection.....................................................................................3-6

    3-3.Test Tool Input A to 5500A Scope Output 50 .........................................3-8

    3-4.Test Tool Input B to 5500A Scope Output 50 .........................................3-10

    3-5.Test Tool Input A-B to 5500A Normal Output............................................3-13

    3-6.Bargraph Harmonics Ampere.....................................................................3-22

    3-7.Bargraph Harmonics Volt............................................................................3-22

    3-8.Test Tool Input A-B to 5500A Normal Output for >300V ..........................3-23

    3-9.Test Tool Input A to 5500A Normal Output 4-Wire....................................3-24

    3-10.Test Tool Input A to TV Signal Generator................................................3-28

    3-11.Test Tool Screen for PAL/SECAM line 622 ..............................................3-29

    3-12.Test Tool Screen for NTSC line 525 .........................................................3-29

    3-13.Test Tool Screen for PAL/SECAM line 310 ..............................................3-30

  • 8/13/2019 123_125_smeng0000

    10/96

    Fluke 123/124/125Service Manual

    viii

    3-14.Test Tool Screen for NTSC line 262 .........................................................3-30

    3-15.Test Tool Input A to TV Signal Generator Inverted.................................3-30

    3-16.Test Tool Screen for PAL/SECAM line 310 Negative Video ...................3-31

    3-17.Test Tool Screen for NTSC line 262 Negative Video...............................3-31

    4-1.Version & Calibration Screen .....................................................................4-3

    4-2.Display Test Pattern ....................................................................................4-6

    4-3.HF Gain Calibration Input Connections.....................................................4-7

    4-4.5500A Scope Output to Input A ..................................................................4-9

    4-5.5500A Scope Output to Input B ..................................................................4-10

    4-6. Volt Gain Calibration Input Connections

  • 8/13/2019 123_125_smeng0000

    11/96

    1-1

    Chapter 1

    Introduction and Safety Instructions

    Title Page

    1.1 Introduction to Service Manual ..................................................................... 1-31.2 Safety .............................................................................................................1-31.2.1 Introduction................................................................................................. 1-31.2.2 Safety Precautions....................................................................................... 1-31.2.3 Caution and Warning Statements................................................................ 1-31.2.4 Symbols used in this Manual and on Instrument ........................................ 1-41.2.5 Impaired Safety........................................................................................... 1-41.2.6 General Safety Information......................................................................... 1-4

  • 8/13/2019 123_125_smeng0000

    12/96

  • 8/13/2019 123_125_smeng0000

    13/96

    Introduction and Safety Instructions1.1 Introduction to Service Manual 1

    1-3

    1.1 Introduction to Service ManualThe Fluke 123, 124, 125 Industrial Scopemeters (hereafter referred to as test tool) offersan extensive and powerful set of measurement capabilities.

    This Service Manual provides the information necessary to maintain the test tool at

    customer level.

    The following information is presented in this Service Manual:

    Chapter 1.Introduction and safety Instructions.Read carefully before using or servicingthe test tool.

    Chapter 2.Characteristics.A complete set of detailed specifications.

    Chapter 3.Performance Verification.

    Chapter 4.Calibration Adjustment.

    Chapter 5.Disassembling the test tool.

    Chapter 6.List of Replaceable Parts.

    Important.The Main PCA in this test tool is only available to Fluke Service Centers dueto the programming that is necessary after installation.

    1.2 Safety

    1.2.1 Introduction

    Read these pages carefully before beginning to install and use the instrument.

    The following paragraphs contain information, cautions and warnings which must befollowed to ensure safe operation and to keep the instrument in a safe condition.

    Warning

    Servicing described in this manual is to be done only byqualified service personnel. To avoid electrical shock, do notservice the instrument unless you are qualified to do so.

    1.2.2 Safety Precautions

    For the correct and safe use of this instrument it is essential that both operating andservice personnel follow generally accepted safety procedures in addition to the safetyprecautions specified in this manual. Specific warning and caution statements, where theyapply, will be found throughout the manual. Where necessary, the warning and cautionstatements and/or symbols are marked on the instrument.

    1.2.3 Caution and Warning StatementsCaution

    Used to indicate correct operating or maintenance proceduresto prevent damage to or destruction of the equipment or otherproperty.

    Warning

    Calls attention to a potential danger that requires correctprocedures or practices to prevent personal injury.

  • 8/13/2019 123_125_smeng0000

    14/96

    Fluke 123/124/125

    Service Manual

    1-4

    1.2.4 Symbols used in this Manual and on Instrument

    Read the safety information in the Users

    Manual

    DOUBLE INSULATION (Protection

    Class)

    Equal potential inputs, connected

    internally

    Static sensitive components

    (black/yellow).

    Live voltage Recycling information

    Earth Disposal information

    Conformit Europenne Do no dispose of this product as

    unsorted municipal waste. Go to Flukes

    website for recycling information

    1.2.5 Impaired Safety

    Whenever it is likely that safety has been impaired, the instrument must be turned off anddisconnected from line power. The matter should then be referred to qualifiedtechnicians. Safety is likely to be impaired if, for example, the instrument fails to performthe intended measurements or shows visible damage.

    1.2.6 General Safety Information

    Warning

    Removing the instrument covers or removing parts, exceptthose to which access can be gained by hand, is likely to

    expose live parts and accessible terminals which can bedangerous to life.

    The instrument shall be disconnected from all voltage sources before it is opened.

    Capacitors inside the instrument can hold their charge even if the instrument has beenseparated from all voltage sources.

    Components which are important for the safety of the instrument may only be replacedby components obtained through your local FLUKE organization. These parts areindicated with an asterisk (*) in the List of Replaceable Parts, Chapter 6.

  • 8/13/2019 123_125_smeng0000

    15/96

    2-1

    Chapter 2

    Characteristics

    Title Page

    "#$ %&'()*+,'-)################################################################################################### "./"#" 0+12 %&3+' 45,-22)5,)36################################################################################# "./"#"#$ 76('-,12######################################################################################################## "./"#"#" 8)(-9)&'12 ################################################################################################### ".:"#"#/ ;(--,6 1&* B1-&'6&1&,6 ############################################################################### ".$/"#$L ?1Q6'R ###########################################################################################################".$/"#$$ PBF %MM+&-'R ############################################################################################ ".$A

  • 8/13/2019 123_125_smeng0000

    16/96

  • 8/13/2019 123_125_smeng0000

    17/96

    Characteristics2.1 Introduction 2

    2-3

    2.1 IntroductionPerformance Characteristics

    @STUP -()&M6&'12 *1'1 M6&'-)&6* -& 'V-5 M1&+12 1(6 Y156* )& 'V6 (65+2'5 )Q 'V6M1&+Q1,'+(6(Z5 >6(-Q-,1'-)& 3(),6*+(65#

    Safety Characteristics

    ;V6 '65' '))2 V15 Y66& *65-12KJ ?1Q6'R G6^+-(6M6&'5 Q)( P26,'(-,12 P^+-3M6&' Q)( B615+(6M6&'J F)&'()2J 1&*S1Y)(1')(R T56#

    T56 )Q 'V-5 6^+-3M6&' -& 1 M1&&6( &)' 536,-Q-6* YR 'V6 M1&+Q1,'+(6( M1R -M31-(3()'6,'-)& 3()>-*6* YR 'V6 6^+-3M6&'#

    2.2 Dual Input Oscilloscope

    2.2.1 Vertical

    Frequency Response

    0F F)+326*]

    6W,2+*-&< 3()Y65 1&* '65' 261*5]@2+I6 $"/ H>-1 CC$"LK 0F ') "L B89 H./ *CK

    @2+I6 $":J $"A H>-1 CC$"LK 0F ') :L B89 H./ *CKX-'V ?;S$"L $]$ 5V-62*6* '65' 261*5: 0F ') $"#A B89 H./ *CK

    0F ') "L B89 H.N *CK

    X-'V 7_:L $L]$ 3()Y6]@2+I6 $"/ (optional accessory) 0F ') "L B89 H./ *CK@2+I6 $":J $"A (standard accessory) 0F ') :L B89 H./ *CK

    =F F)+326* HS@ ()22 )QQK]

    6W,2+*-&< 3()Y65 1&* '65' 261*5 `$L 89 H./ *CKX-'V ?;S$"L `$L 89 H./*CKX-'V $L]$ $LB_()Y6 `$ 89 H./ *CK

    Rise Time

    6W,2+*-&< 3()Y65 1&* '65' 261*5]@2+I6 $"/ `$O#A &5@2+I6 $":J $"A `D#OA &5

    Input Impedance

    6W,2+*-&< 3()Y65 1&* '65' 261*5 $ B\\$" 3@X-'V CC$"L $ B\\"L 3@X-'V ?;S$"L $ B\\""A 3@X-'V 7_:L $L]$ _()Y6 A B\\$A#A 3@

  • 8/13/2019 123_125_smeng0000

    18/96

    Fluke 123/124/125

    Service Manual

    2-4

    Sensitivity A M7 ') ALL 7\*->

    Display Modes =J .=J CJ .C

    Max. Input Voltage A and B

    0-(6,'J X-'V '65' 261*5J )( X-'V 7_:L _()Y6 NLL 7(M5

    X-'V CC$"L /LL 7(M5H@)( *6'1-26* 536,-Q-,1'-)&5 566 a"#D ?1Q6'RbK

    Max. Floating Voltage

    Q()M 1&R '6(M-&12 ') -5-)&5

    Max. Base Line Jump =Q'6( ,V1&-'R

    [)(M12 e ?-&-5-)&5 Hf $ 3-W62K

    2.2.2 Horizontal

    Scope Modes [)(M12J ?-&126&' 51M32-&< H@2+I6 $"/K "L &5 ') ALL &5\*->6^+->126&' 51M32-&< H@2+I6 $":J $"AK $L &5 ') ALL &5\*->(612 '-M6 51M32-&< $ 5 ') A 5\*->

    ?-&

    G)22 H(612 '-M6K $5 ') NL 5\*->

    Sampling Rate (for both channels simultaneously)

    P^+->126&' 51M32-&< H(636'-'->6 5- A B?\5

    Time Base Accuracy

    P^+->126&' 51M32-&< HL#:c dL#L: '-M6\*->KG612 '-M6 51M32-&< HL#$c dL#L: '-M6\*->K

    Glitch Detection :L &5 h "L &5 ') A M5\*->"LL &5 h $L M5 ') NL 5\*->

    g2-',V *6'6,'-)& -5 12X1R5 1,'->6#Horizontal Move $L *->-5-)&5

    ;(-

  • 8/13/2019 123_125_smeng0000

    19/96

    Characteristics2.3 Dual Input Meter 2

    2-5

    Source =J CJ Pi;Pi;6(&12 >-1 )3'-,122R -5)21'6* '(--5-)&5h :L B89 : *->-5-)&5

    Sensitivity A and B (Fluke 124, 125)

    h 0F ') A B89 L#A *->-5-)&5 )( A M7h :L B89 $#A *->-5-)&5h NL B89 : *->-5-)&5

    Voltage level error L#A *-># M1W#

    Slope _)5-'->6J [6-*6) 5-6J [6-'R L#N *->-5-)&5 5R&,#

    2.2.4 Advanced Scope Functions

    Display Modes[)(M12 F13'+(65 +3 ') :L &5 6Q)(M#?M))'V ?+33(65565 &)-56 Q()M 1 X1>6Q)(M#P&>62)36 G6,)(*5 1&* *-5321R5 'V6 M-&-M+M 1&* M1W-M+M )Q X1>6Q)(M5

    )>6( '-M6#

    Auto Set (Connect-and-ViewTM

    )F)&'-&+)+5 Q+22R 1+')M1'-, 1*j+5'M6&' )Q 1M32-'+*6J '-M6 Y156J '(-)2'1-5-Y26 )& 'V6 5,(66

    2.3.1 Input A and Input B

    DC Voltage (VDC)

    G1&

  • 8/13/2019 123_125_smeng0000

    20/96

    Fluke 123/124/125

    Service Manual

    2-6

    F)MM)& B)*6 G6j6,'-)& HFBGGK k$LL *C h 0FkNL *C h ALJ NLJ )( :LL 89

    @+22 ?,126 G61*-&< ALLL ,)+&'5

    B)>6 -&Q2+6&,6 N ,)+&'5 M1W#

    True RMS Voltages (VAC and VAC+DC)G1&

  • 8/13/2019 123_125_smeng0000

    21/96

    Characteristics2.3 Dual Input Meter 2

    2-7

    =,,+(1,R]

    h$89 ') $ B89 HL#Ac d" ,)+&'5Kh$ B89 ') $L B89 H$#Lc d" ,)+&'5Kh$L B89 ') AL B89 H@2+I6 $"/K H"#Ac d" ,)+&'5Kh$L B89 ') OL B89 H@2+I6 $":J $"AK H"#Ac d" ,)+&'5K

    HAL B89 -& =+')(1& H"LL @\*->K

    ?,126 @1,')( $ M7\F 1&* $ M7\@

    =,,+(1,R 15 70F H1** '6M36(1'+(6 3()Y6+&,6('1-&'RK

    Decibel (dB)

    L *C7 $7

    L *CM HNLL\ALK $ MlJ (6Q6(6&,6* ') NLL)( AL

    *C )& 70FJ 7=FJ )( 7=Fd0F

    @+22 ?,126 G61*-&< $LLL ,)+&'5

  • 8/13/2019 123_125_smeng0000

    22/96

    Fluke 123/124/125

    Service Manual

    2-8

    Crest Factor (CREST)

    G1&)2'5K1&* -&3+' C H1M36(65K

    @+22 ?,126 (61*-&< EEE ,)+&'5

    7= 7(M5 W =(M5@+22 ?,126 G61*-&< EEE ,)+&'5

    7= G61,'->6 H7=GK HH7=K".l"K@+22 ?,126 G61*-&< EEE ,)+&'5

    VPWM (Fluke 125)

    _+(3)56 ') M615+(6 )& 3+256 X-*'V M)*+21'6*5-)2'1

  • 8/13/2019 123_125_smeng0000

    23/96

    Characteristics2.3 Dual Input Meter 2

    2-9

    436& F-(,+-' 7)2'1B6'6( 56''2-&< '-M6 [)(M12 "5 h $5 ') $L M5\*->B6'6( 56''2-&< '-M6 ?M))'V $L5 h $5 ') $L M5\*->

    Touch Hold (on A) F13'+(65 1&* Q(66965 1 5'1Y26 M615+(6M6&'(65+2'# C6635 XV6& 5'1Y26# ;)+,V 8)2*X)(I5 )& 'V6 M1-& M6'6( (61*-&< J X-'V'V(65VV)2*5 )Q $ 733 Q)( =F 5- H$"L 56,)&*5K ') "*1R5\*-> H$N *1R5K X-'V '-M6 1&* *1'65'1M3# =+')M1'-, >6('-,12 5,12-&< 1&* '-M6,)M3(655-)-5321R5 'V6 1,'+12 1&* B-&-M+MJB1W-M+MJ )( 1>6(1

  • 8/13/2019 123_125_smeng0000

    24/96

    Fluke 123/124/125

    Service Manual

    2-10

    2.4 Cursor Readout (Fluke 124, 125)?)+(,65 =JC

    ?-&6(16(162-&< )&2R 3)55-Y26 -& ?-&

  • 8/13/2019 123_125_smeng0000

    25/96

    Characteristics2.6 Field Bus Measurements (Fluke 125) 2

    2-11

    2.6 Field Bus Measurements (Fluke 125)Type Subtype Protocol

    =?.- [P[.P[AL"EA

    F=[ %?4.$$DED

    %&'6(Y+5 ? G?.:"" P%=.:""

    F)&'()2[6' N$$AD 'R36 "

    B)*Y+5 G?."/"

    G?.:DA

    G?."/"\P%=."/"

    G?.:DA\P%=.:DA

    @)+&*1'-)&

    @-62*Y+5

    8$

    8"

    N$$AD 'R36 $J /$#"A IC-'

    N$$AD 'R36 $ $L BY-'_()Q-Y+5 0_

    _=

    P%=.:DA

    N$$AD 'R36 $

    P'V6(&6' F)1W

    ;_

    $LC156"

    $LC156;

    G?."/" P%=."/"

    G?.:DA P%=.:DA

    2.7 MiscellaneousDisplay

    ?-96 O" W O" MM H"#D/ W "#D/ -&K

    G65)2+'-)& ":L W ":L 3-W625

    l1>6Q)(M *-5321R]76('-,12 D *->-5-)&5 )Q "L 3-W6258)(-9)&'12 E#N *->-5-)&5 )Q "A 3-W625

    C1,I2--1 _)X6( =*13'6( _BDELO%&3+' 7)2'1

  • 8/13/2019 123_125_smeng0000

    26/96

    Fluke 123/124/125

    Service Manual

    2-12

    Memory

    [+MY6( )Q ?,(66& d ?6'+3 B6M)(-65@2+I6 $"/ $L@2+I6 $": "L

    [+MY6( )Q 01'1 ?6' M6M)(-65

    @2+I6 $"A "L

    Mechanical

    ?-96 "/" W $$A W AL MM HE#$ W :#A W " -&Kl6-

  • 8/13/2019 123_125_smeng0000

    27/96

    Characteristics2.9 Service and Maintenance 2

    2-13

    Salt Exposure B%S"DDLL@J F2155 "J /#D#D#" e :#A#N#"#"#?'(+,'+(12 31('5 M66' :D V)+(5 Ac 512'5)2+'-)& '65'#

    Electromagnetic Compatibility (EMC)

    PM-55-)& P[ ALLD$.$ H$EE"K] P[AAL"" 1&*

    P[NLAAA."

    %MM+&-'R P[ ALLD"."H$EE"K] %PF$LLL.:."J ./J .:J .A H566 125) ?6,'-)& "#EJ ;1Y265 ".$ ') "./K

    Enclosure Protection %_A$J (6Q] %PFA"E

    2.9 Service and MaintenanceCalibrationInterval $ q61(

    2.10 Safety065-

  • 8/13/2019 123_125_smeng0000

    28/96

    Fluke 123/124/125

    Service Manual

    2-14

    Figure 2-2. Max. Input Voltage v.s. Frequency for VP40 10:1 Voltage Probe

  • 8/13/2019 123_125_smeng0000

    29/96

    Characteristics2.11 EMC Immunity 2

    2-15

    2.11 EMC Immunity;V6 @2+I6 $"/\$":\$"AJ -&,2+*-&< 5'1&*1(* 1,,655)(-65J ,)&Q)(M5 X-'V 'V6 PPF *-(6,'->6DE\//N Q)( PBF -MM+&-'RJ 15 *6Q-&6* YR %PF$LLL.:./J X-'V 'V6 1**-'-)& )Q '1Y265 ".$ ')"./#

    Trace Disturbance with STL120 ?66 ;1Y26 ".$ 1&* ;1Y26 "."#

    Table 2-1. No Visible Trace Disturbance

    No visible disturbance E= 3 V/m E= 10 V/m

    Frequency range 10 kHz to 27 MHz

    Frequency range 27 MHz to 1 GHz

    100 mV/div to 500 V/div

    100 mV/div to 500 V/div

    500 mV/div to 500 V/div

    100 mV/div to 500 V/div

    Table 2-2. Trace Disturbance < 10%

    Disturbance less than 10% of full scale E= 3 V/m E= 10 V/m

    Frequency range 10 kHz to 27 MHzFrequency range 2 MHz to 1 GHz

    20 mV/div to 50 mV/div10 mV/div to 20 mV/div

    100 mV/div to 200 mV/div-

    (-): no visible disturbance

    Test tool ranges not specified in Table 2-1 and Table 2-2 may have a disturbance of more than 10% of full

    scale.

    Multimeter disturbance ?66 ;1Y26 "./#

    70FJ 7=FJ 1&* 7=Fd0F X-'V ?;S $"L 1&* 5V)('

  • 8/13/2019 123_125_smeng0000

    30/96

    Fluke 123/124/125

    Service Manual

    2-16

  • 8/13/2019 123_125_smeng0000

    31/96

  • 8/13/2019 123_125_smeng0000

    32/96

  • 8/13/2019 123_125_smeng0000

    33/96

    Performance Verification3.1 Introduction "

    "#"

    3.1 Introduction

    *(+,#,)

    '+-.&/0+&1 #, $2#1 .2(3$&+ 12-0%/ 4& 3&+5-+6&/ 47 80(%#5#&/1&+9#.& 3&+1-,,&% -,%7: "- (9-#/ &%&.$+#.(% 12-.;< /- ,-$ 3&+5-+6(,7 1&+9#.#,) 0,%&11 7-0 (+& 80(%#5#&/ $- /- 1-:

    The test tool should be calibrated and in operating condition when you receive it.

    The following performance tests are provided to ensure that the test tool is in a properoperating condition. If the test tool fails any of the performance tests, calibration adjustment(see Chapter 4) and/or repair (see Chapter 7) is necessary.

    The Performance Verification Procedure is based on the specifications, listed in Chapter 2 ofthis Service Manual. The values given here are valid for ambient temperatures between 18 Cand 28 C.

    The Performance Verification Procedure is a quick way to check most of the test tools

    specifications. Because of the highly integrated design of the test tool, it is not alwaysnecessary to check all features separately. For example: the duty cycle, pulse width, andfrequency measurement are based on the same measurement principles; so only one of thesefunctions needs to be verified.

    3.2 Equipment Required For VerificationThe primary source instrument used in the verification procedures is the Fluke 5500A. If a5500A is not available, you can substitute another calibrator as long as it meets the minimumtest requirements.

    Fluke 5500A Multi Product Calibrator, including 5500A-SC Oscilloscope CalibrationOption.

    Stackable Test Leads (4x), supplied with the 5500A.

    50Coax Cables (2x), Fluke PM9091 (1.5m) or PM9092 (0.5m).

    50feed through terminations (2x), Fluke PM9585.

    Fluke BB120 Shielded Banana to Female BNC adapters (2x), supplied with theFluke 123.

    Dual Banana Plug to Female BNC Adapter (1x), Fluke PM9081/001.

    Dual Banana Jack to Male BNC Adapter (1x), Fluke PM9082/001.

    TV Signal Generator, Philips PM5418.

    75Coax cable (1x), Fluke PM9075.

    75Feed through termination (1x), ITT-Pomona model 4119-75.

    PM9093/001 Male BNC to Dual Female BNC Adapter

    Note: if you have a Fluke 5500A with 600 MHz Oscilloscope Option, you do not require aseparate TV Signal Generator, a 75Coax cable, a 75Feed through termination, and aFluke PM9082/001 Adapter. Fluke 5500A with 600 MHz option can generate video signals.

  • 8/13/2019 123_125_smeng0000

    34/96

    Fluke 123/124/125

    Service Manual

    "#%

    These video signals must be applied to the test tool via a 50Coax Cable and terminatedwith a 50feed through termination.

    3.3 How To VerifyVerification procedures for the display function and measure functions follow. For each

    procedure the test requirements are listed. If the result of the test does not meet therequirements, the test tool should be recalibrated or repaired if necessary.Some of the tests are slightly different for Fluke 123, 124, and Fluke 125. This is caused bythe higher vertical and trigger bandwidth in Fluke 124 and 125. Moreover Fluke 125 hasextra measuring functions and a slightly different way of operation. Differences inrequirements for Fluke 123, 124, and 125 are clearly indicated.

    Follow these general instructions for all tests:

    For all tests, power the test tool with the PM8907 power adapter. A charged The batterypack must be installed.

    Allow the 5500A to satisfy its specified warm-up period.

    For each test point , wait for the 5500A to settle.

    Allow the test tool a minimum of 20 minutes to warm up.

    3.4 Display and Backlight TestProceed as follows to test the display and the backlight:

    1. Press to turn the Test tool on.

    2. Fluke 123: press and verify that the backlight is dimmed. Then select maximumbacklight brightness again.

    Fluke 124/125: press , then press . Verify that the test tool can be switched

    between dimmed backlight and maximum brightness with the keys. During the tests,

    use maximum brightness for the best visibility.

    3. Remove the adapter power, and verify that the backlight is dimmed.

    4. Apply the adapter power and verify that the backlight brightness is set to maximum.

    5. Press and hold .

    6. Press and release .

    7. Release .The test tool shows the calibration menu in the bottom of the display.

    Do not press now! If you did, turn the test tool off and on, and start at 5.

    8. Press (PREV) three times.The test tool shows =-,$+(1$ >=? @A@@BCDEFGE?

    9. Press (CAL) .The test tool shows a dark display; the test pattern as shown in Figure 3-1 may not be

  • 8/13/2019 123_125_smeng0000

    35/96

    Performance Verification3.5 Input A and Input B Tests "

    "#&

    visible or hardly visible.

    Observe the display closely, and verify that no light pixels are shown.

    H#)0+& IJA: K#13%(7 '#L&% "&1$ '($$&+,

    11.Press .The test pattern is removed; the test tool shows =-,$+(1$ >=? @AA@BCDEFGE?

    12.Press (CAL) .The test tool shows the display test pattern shown in Figure 3-1, at default contrast.

    Observe the test pattern closely, and verify that the no pixels with abnormal contrast are

    present in the display pattern squares. Also verify that the contrast of the upper left and

    upper right square of the test pattern are equal.

    13.Press .The test pattern is removed; the test tool shows =-,$+(1$ >=? @AM@BCDEFGE?

    14.Press (CAL) .The test tool shows a light display; the test pattern as shown in Figure 3-1 may not be

    visible or hardly visible.Observe the display closely, and verify that no dark pixels are shown.

    15.Turn the test tool OFF and ON to exit the calibration menu and to return to the normaloperating mode.

    3.5 Input A and Input B Tests

    During verification you must open menus, and to choose items from the menu.

    Proceed as follows to make choices in a menu (see Figure 3.2):

    Open the menu, for example press (new) or (old) . Press to highlight the item to be selected in a menu.

    Press to confirm the selection and to jump to the next item group (if present). Itemgroups in a menu are separated by a vertical line.

    After pressing in the last menu item group, the menu is closed.

  • 8/13/2019 123_125_smeng0000

    36/96

    Fluke 123/124/125

    Service Manual

    "#'

    ()*+',-./0

    H#)0+& IJM: D&,0 #$&6 1&%&.$#-,

    If an item is selected, it is marked by. Not selected items are marked by If a selecteditem is highlighted, an then is pressed, the item remains selected.

    You can also navigate through the menu using . To conform the highlighted item you

    must press .

    Before performing the Input A and Input B tests, the test tool must be set in a defined state,by performing a RESET.

    Proceed as follows to reset the test tool:

    Press to turn the test tool off.

    Press and hold .

    Press and release to turn the test tool on.

    Wait until the test tool has beeped twice, and then release . When the test tool has

    beeped twice, the RESET was successful.

    For most tests, you must turn Input B on. Input A is always on.

    Proceed as follows to turn Input B on:

    Press to open the Meter B menu.

    Using select NF'G" OC PF .

    Press to confirm the selection; the mark changes to . The active setting from

    the next item group will be highlighted (for exampleQ(.), and maintained after

    leaving the menu.

    Press to exit the menu.

    3.5.1 Input A and B Base Line Jump Test

    Proceed as follows to check the Input A and Input B base line jump:

  • 8/13/2019 123_125_smeng0000

    37/96

    Performance Verification3.5 Input A and Input B Tests "

    "#*

    1. Short circuit the Input A and the Input B shielded banana sockets of the test tool. Use theBB120 banana to BNC adapter, and a 50(or lower) BNC termination.

    2. Select the following test tool setup:

    Turn Input B on (if not already on).

    Press to select auto ranging (EG"Pin top of display).( toggles between EG"Pand DEFGE?ranging).

    Fluke 123/124: press / to open the SCOPE INPUTS menu.

    Fluke 123/124: press to open the SCOPE OPTIONS menu, and choose :

    R=P'S DPKSCFPTDE? U *EQSHPTD DPKSCRDPP"V

    Fluke 125: press to open MENU.

    Fluke 125: press to open the TRIGGER menu, and choose :

    G'KE"SCHTSS TGF

    Fluke 125: press to open the SMOOTH menu, and choose :

    *EQSHPTDCRDPP"V

    Press to leave the menus.

    3. Using toggle the time base between 10 ms/div and 5 ms/div.(the time base ranging is set to manual now, the input sensitivity is still automatic; no

    indication EG"Por DEFGE?is displayed).

    After changing the time base wait some seconds until the trace has settled.

    Observe the Input A trace, and check to see if it returns to the same position after

    changing the time base. The allowed difference is 0.04 division (= 1 pixel).

    Observe the Input B trace for the same conditions.

    4. Using toggle the time base between 1 s/div and 500 ns/div. After changing thetime base wait some seconds until the trace has settled.

    Observe the Input A trace, and check to see if it is set to the same position after changing

    the time base. The allowed difference is 0.04 division (= 1 pixel).

    Observe the Input B trace for the same conditions.

    5. Using set the time base to 10 ms/div.

    6. Using toggle the sensitivity of Input A between 5 and 10 mV/div. Afterchanging the sensitivity wait some seconds until the trace has settled.

    Observe the Input A trace, and check to see if it is set to the same position after changingthe sensitivity. The allowed difference is 0.04 division (= 1 pixel).

    7. Using toggle the sensitivity of Input B between 5 and 10 mV/div. Afterchanging the sensitivity wait some seconds until the trace has settled.

  • 8/13/2019 123_125_smeng0000

    38/96

    Fluke 123/124/125

    Service Manual

    "#,

    Observe the Input B trace, and check to see if it is set to the same position after changing

    the sensitivity. The allowed difference is 0.04 division (= 1 pixel).

    8. When you are finished, remove the Input A and Input B short.

    3.5.2 Input A Trigger Sensitivity Test

    Proceed as follows to test the Input A trigger sensitivity:

    1. Connect the test tool to the 5500A as shown in Figure 3-3.

    (),11%-./0

    H#)0+& IJI: "&1$ "--% N,30$ E $- WW@@E R.-3& P0$30$ W@

    2. Select the following test tool setup:

    Press to select auto ranging (EG"Pin top of display).

    Do not press anymore!

    Using change the sensitivity to select manual sensitivity ranging, and lock

    the Input A sensitivity on 200 mV/div.

    3. Set the 5500A to source a 5 MHz leveled sine wave of 100 mV peak-to-peak (SCOPEoutput, MODE levsine). Set the 5500A to Operate (OPR).

    4. Adjust the amplitude of the sine wave to 0.5 division on the display.

    5. Verify that the signal is well triggered.

    If it is not, press to enable the up/down arrow keys for Trigger Level adjustment;

    adjust the trigger level using and verify that the signal will be triggered now.

    The trigger level is indicated by the trigger icon ( ).

    6. Set the 5500A to source a 25 MHz (Fluke 123) or 40 MHz (Fluke 124/125) leveled sinewave of 400 mV peak-to-peak.

    7. Adjust the amplitude of the sine wave to 1.5 divisions on the test tool display.

    8. Verify that the signal is well triggered.

    If it is not, press to enable the up/down arrow keys for Trigger Level adjustment;

    adjust the trigger level and verify that the signal will be triggered now.

  • 8/13/2019 123_125_smeng0000

    39/96

    Performance Verification3.5 Input A and Input B Tests "

    "#+

    9. Set the 5500A to source a 40 MHz (Fluke 123) or 60 MHz (Fluke 124/125) leveled sinewave of 1.8V peak-to-peak.

    10.Adjust the amplitude of the sine wave to 4 divisions on the test tool display.

    11.Verify that the signal is well triggered.

    If it is not, press to enable the up/down arrow keys for Trigger Level adjustment;

    adjust the trigger level and verify that the signal will be triggered now.

    12.When you are finished, set the 5500A to Standby.

    3.5.3 Input A Frequency Response Upper Transition Point Test

    Proceed as follows to test the Input A frequency response upper transition point:

    1. Connect the test tool to the 5500A as for the previous test (see Figure 3-3).

    2. Select the following test tool setup:

    Press to select auto ranging (EG"Pin top of display).

    Do not press anymore!

    Using change the sensitivity to select manual sensitivity ranging, and lockthe Input A sensitivity on 200 mV/div.

    3. Set the 5500A to source a leveled sine wave of 1.2V peak-to-peak, 50 kHz (SCOPEoutput, MODE levsine). Set the 5500A to Operate (OPR).

    4. Adjust the amplitude of the sine wave to 6 divisions on the test tool display.

    5. Set the 5500A to 20 MHz (Fluke 123) or 40 MHz (Fluke 124/125), without changing theamplitude.

    6. Observe the Input A trace check to see if it is 4.2 divisions.

    7. When you are finished, set the 5500A to Standby.

    Note

    The lower transition point is tested in Section 3.5.11.

    3.5.4 Input A Frequency Measurement Accuracy Test

    Proceed as follows to test the Input A frequency measurement accuracy:

    1. Connect the test tool to the 5500A as for the previous test (see Figure 3-3).

    2. Select the following test tool setup:

    Press to select auto ranging (EG"Pin top of display).

    Press to open the INPUT A MEASUREMENTS menu, and choose:

    DSERGTS -, ECVX

    3. Set the 5500A to source a leveled sine wave of 600 mV peak-to-peak (SCOPE output,MODE levsine). Set the 5500A to Operate (OPR).

    4. Set the 5500A frequency according to the first test point in Table 3-1.

  • 8/13/2019 123_125_smeng0000

    40/96

    Fluke 123/124/125

    Service Manual

    "#$1

    5. Observe the Input A main reading on the test tool and check to see if it is within therange shown under the appropriate column.

    6. Continue through the test points.

    7. When you are finished, set the 5500A to Standby.

    "(4%& IJA: N,30$ E

  • 8/13/2019 123_125_smeng0000

    41/96

    Performance Verification3.5 Input A and Input B Tests "

    "#$$

    Fluke 123/124: press to open the TRIGGER menu, and choose:

    NF'G"CO U R=TSSF G'KE"SCHTSS TGF U EG"P TEF[SC\AWVX

    Fluke 125: press to open MENU.

    Fluke 125: press to open the TRIGGER menu, and choose :

    NF'G"CO U G'KE"SCHTSS TGF U EG"P TEF[SC\AWVX

    3. Set the 5500A to source a leveled sine wave of 600 mV peak-to-peak (SCOPE output,MODE levsine). Set the 5500A to Operate (OPR).

    4. Set the 5500A frequency according to the first test point in Table 3-1.

    5. Observe the Input B main reading on the test tool and check to see if it is within therange shown under the appropriate column.

    6. Continue through the test points.

    7. When you are finished, set the 5500A to Standby.

    3.5.6 Input B Frequency Response Upper Transition Point TestProceed as follows to test the Input B frequency response upper transition point:

    1. Connect the test tool to the 5500A as for the previous test (see Figure 3-4).

    2. Select the following test tool setup:

    Turn Input B on (if not already on).

    Press to select auto ranging (EG"Pin top of display).

    Do not press anymore!

    Using change the sensitivity to select manual sensitivity ranging, and lockthe Input B sensitivity on 200 mV/div.

    Fluke 123/124: press / to open the SCOPE INPUTS menu.

    Fluke 123/124: press to open the TRIGGER menu, and choose:

    NF'G"CO U R=TSSF G'KE"SCHTSS TGF U EG"P TEF[SC\AWVX

    Fluke 125: press to open MENU.

    Fluke 125: press to open the TRIGGER menu, and choose :

    NF'G"CO U G'KE"SCHTSS TGF U EG"P TEF[SC\AWVX

    3. Set the 5500A to source a leveled sine wave of 1.2V peak-to-peak, 50 kHz (SCOPEoutput, MODE levsine). Set the 5500Ato Operate (OPR).

    4. Adjust the amplitude of the sine wave to 6 divisions on the test tool display.5. Set the 5500A to 20 MHz (Fluke 123) or 40 MHz (Fluke 124/125), without changing the

    amplitude.

    6. Observe the Input B trace check to see if it is 4.2 divisions.

    7. When you are finished, set the 5500A to Standby.

  • 8/13/2019 123_125_smeng0000

    42/96

    Fluke 123/124/125

    Service Manual

    "#$6

    Note

    The lower transition point is tested in Section 3.5.11.

    3.5.7 Input B Trigger Sensitivity Test

    Proceed as follows to test the Input B trigger sensitivity:

    1. Connect the test tool to the 5500A as for the previous test (see Figure 3-4).

    2. Select the following test tool setup:

    Turn Input B on (if not already on).

    Press to select auto ranging (EG"Pin top of display).

    Do not press anymore!

    Using change the sensitivity to select manual sensitivity ranging, and lockthe Input B sensitivity on 200 mV/div.

    Fluke 123/124: press / to open the SCOPE INPUTS menu.

    Fluke 123/124: press to open the TRIGGER menu, and choose:

    NF'G"CO U R=TSSF G'KE"SCHTSS TGF U EG"P TEF[SC\AWVX

    Fluke 125: press to open MENU.

    Fluke 125: press to open the TRIGGER menu, and choose :

    NF'G"CO U G'KE"SCHTSS TGF U EG"P TEF[SC\AWVX

    3. Set the 5500A to source a 5 MHz leveled sine wave of 100 mV peak-to-peak (SCOPEoutput, MODE levsine). Set the 5500A to Operate (OPR).

    4. Adjust the amplitude of the sine wave to 0.5 division on the display.

    5. Verify that the signal is well triggered.

    If it is not, press to enable the up/down arrow keys for Trigger Level adjustment;

    adjust the trigger level and verify that the signal will be triggered now. The trigger level

    is indicated by the trigger icon ( ).

    6. Set the 5500A to source a 25 MHz (Fluke 123) or 40 MHz (Fluke 124/125) leveled sinewave of 400 mV peak-to-peak.

    7. Adjust the amplitude of the sine wave 1.5 divisions on the test tool display.

    8. Verify that the signal is well triggered.

    If it is not, press to enable the up/down arrow keys for Trigger Level adjustment;

    adjust the trigger level and verify that the signal will be triggered now.

    9. Set the 5500A to source a 40 MHz (Fluke 123) or 60 MHz (Fluke 124/125) leveled sine

    wave of 1.8V peak-to-peak.

    10.Adjust the amplitude of the sine wave to exactly 4 divisions on the test tool display.

    11.Verify that the signal is well triggered.

    If it is not, press to enable the up/down arrow keys for Trigger Level adjustment;

    adjust the trigger level and verify that the signal will be triggered now.

  • 8/13/2019 123_125_smeng0000

    43/96

    Performance Verification3.5 Input A and Input B Tests "

    "#$"

    12.When you are finished, set the 5500A to Standby.

    3.5.8 Input A and B Trigger Level and Trigger Slope Test

    Proceed as follows:

    1. Connect the test tool to the 5500A as shown in Figure 3-5.

    (),11$-./0

    H#)0+& IJW: "&1$ "--% N,30$ EJO $- WW@@E F-+6(% P0$30$

    2. Select the following test tool setup:

    Turn Input B on ( if not already on).

    Using change the sensitivity to select manual sensitivity ranging, and lockthe Input A and Input B sensitivity on 1V/div.

    Move the Input A and Input B ground level (indicated by zero icon ) to the centergrid line. Proceed as follows:

    Press to enable the arrow keys for moving the Input A ground level.

    Press to enable the arrow keys for moving the Input B ground level.

    Using the keys move the ground level.

    Using change the time base to select manual time base ranging, and lock thetime base on 10 ms/div.

    Fluke 123/124: press / to open the SCOPE INPUTS menu.

    Fluke 123/124: press to open the TRIGGER menu, and choose:

    NF'G"CE U R=TSSF G'KE"SCHTSS TGF U EG"P TEF[SC\AWVX

    Fluke 125: press to open MENU.

    Fluke 125: press to open the TRIGGER menu, and choose :

    NF'G"CE U G'KE"SCHTSS TGF U EG"P TEF[SC\AWVX

    Press to enable the arrow keys for Trigger Level and Slope adjustment.

  • 8/13/2019 123_125_smeng0000

    44/96

    Fluke 123/124/125

    Service Manual

    "#$%

    Using select positive slope triggering (trigger icon ).

    Using set the trigger level to +2 divisions from the screen center. Forpositive slopetriggering, the trigger level is the topof the trigger icon ( ).

    Fluke 123/124: press / to open the SCOPE INPUTS menu.

    Fluke 123/124: press to open the SCOPE OPTIONS menu, and choose :

    R=P'S DPKSCRNF[?S RVP" U *EQSHPTD DPKSCFPTDE?

    Fluke 125: press to open MENU.

    Fluke 125: press to open the TRIGGER menu, and choose :

    G'KE"SCRNF[?S

    Fluke 125: press to open the SMOOTH menu, and choose :

    *EQSHPTDCFPTDE?

    3. Set the 5500A to source 0.4V DC and to OPR.

    4. Verify that no trace is shown on the test tool display, and that the status line at thedisplay bottom shows *(#$CE . If the display shows the traces and status V-%/CE , then

    press to re-arm the test tool for a trigger.

    5. Increase the 5500A voltage slowly in 0.1V steps, using the 5500A EDIT FIELDfunction, until the test tool is triggered, and the traces are shown.

    6. Verify that the 5500A voltage is between +1.5V and +2.5Vwhen the test tool istriggered. To repeat the test, start at step 3.

    7. Set the 5500A to Standby.

    8. Press to clear the display.

    9. Press to enable the arrow keys for Trigger Level and Slope adjustment.

    10.Using select negative slope triggering ( ).

    11.Using set the trigger level to +2 divisions from the screen center. For negativeslopetriggering, the trigger level is the bottomof the trigger icon ( ).

    12.Set the 5500A to source +3V DC and to OPR.

    13.Verify that no trace is shown on the test tool display, and that the status line at thedisplay bottom shows *(#$CE . If the display shows the traces and status V-%/CE , then

    press to re-arm the test tool for a trigger.

    14.Decrease the 5500A voltage slowly in 0.1V steps, using the 5500A EDIT FIELDfunction, until the test tool is triggered, and the traces are shown.

    15.Verify that the 5500A voltage is between +1.5V and +2.5Vwhen the test tool istriggered. To repeat the test, start at step 12.

    16.Set the 5500A to Standby.

    17.Press to clear the display.

  • 8/13/2019 123_125_smeng0000

    45/96

    Performance Verification3.5 Input A and Input B Tests "

    "#$&

    18.Select the following test tool setup:

    Fluke 123/124: press / to open the SCOPE INPUTS menu.

    Fluke 123/124: press to open the TRIGGER menu, and choose:

    NF'G"C E U R=TSSF G'KE"SC HTSS TGF U EG"P TEF[SC \AWVX

    Fluke 125: press to open MENU.

    Fluke 125: press to open the TRIGGER menu, and choose :

    NF'G"C E U G'KE"SC HTSS TGF U EG"P TEF[SC \AWVX

    Press to enable the arrow keys for Trigger Level and Slope adjustment.

    Using select positive slope triggering (trigger icon ).

    Using set the trigger level to +2 divisions from the screen center. Forpositive slopetriggering, the trigger level is the topof the trigger icon ( ).

    19.Set the 5500A to source 0.4V DC and to OPR.

    20.Verify that no trace is shown on the test tool display, and that the status line at thedisplay bottom shows *(#$CO . If the display shows the traces and status V-%/CO , then

    press to re-arm the test tool for a trigger.

    21. Increase the 5500A voltage slowly in 0.1V steps, using the 5500A EDIT FIELDfunction, until the test tool is triggered, and the traces are shown.

    22.Verify that the 5500A voltage is between +1.5V and +2.5Vwhen the test tool istriggered.To repeat the test, start at step 19.

    23.Set the 5500A to Standby.

    24.Press to clear the display.

    25.Press to enable the arrow keys for Trigger Level and Slope adjustment.

    26.Using select negative slope triggering ( ).

    27.Using set the trigger level to +2 divisions from the screen center. For negativeslopetriggering, the trigger level is the bottomof the trigger icon ( ).

    28.Set the 5500A to source +3V DC and to OPR.

    29.Verify that no trace is shown on the test tool display, and that the status line at thedisplay bottom shows *(#$CO . If the display shows the traces and status V-%/CO , then

    press to re-arm the test tool for a trigger.

    30.Decrease the 5500A voltage in 0.1V steps, using the 5500A EDIT FIELD function, until

    the test tool is triggered, and the traces are shown.

    31.Verify that the 5500A voltage is between +1.5V and +2.5Vwhen the test tool istriggered. To repeat the test, start at step 28.

    32.When you are finished, set the 5500A to Standby.

  • 8/13/2019 123_125_smeng0000

    46/96

    Fluke 123/124/125

    Service Manual

    "#$'

    3.5.9 Input A and B DC Voltage Accuracy Test

    *ETFNF[

    K(,)&+-01 9-%$()&1 ]#%% 4& 3+&1&,$ -, $2& .(%#4+($#-, 1-0+.& (,/.-,,&.$#,) .(4%&1 /0+#,) $2& 5-%%-]#,) 1$&31: S,10+& $2($ $2&.(%#4+($-+ #1 #, 1$(,/47 6-/& 4&5-+& 6(;#,) (,7 .-,,&.$#-,

    4&$]&&, $2& .(%#4+($-+ (,/ $2& $&1$ $--%:

    Proceed as follows:

    1. Connect the test tool to the 5500A as for the previous test (see Figure 3-5).

    2. Select the following test tool setup:

    Press select auto ranging (EG"Pin top of display).

    Press to open the INPUT A MEASUREMENTS menu, and choose:

    DSERGTS -, ECQ/.

    Press to open the INPUT B MEASUREMENTS menu, and choose:

    NF'G" OCPF U DSERGTS -, OCQ/.

    Using change the time base to select manual time base ranging, and lock thetime base on 10 ms/div.

    Fluke 123/124: press / to open the SCOPE INPUTS menu.

    Fluke 123/124: press to open the SCOPE OPTIONS menu, and choose :

    R=P'S DPKSCFPTDE? U *EQSHPTD DPKSCRDPP"V

    Fluke 125: press to open MENU.

    Fluke 125: press to open the TRIGGER menu, and choose :

    G'KE"SCHTSS TGF

    Fluke 125: press to open the SMOOTH menu, and choose :

    *EQSHPTDCRDPP"V

    Move the Input A and Input B ground level (indicated by zero icon ) to the centergrid line. Proceed as follows:

    Press to enable the arrow keys for moving the Input A ground level.

    Press to enable the arrow keys for moving the Input B ground level.

    Using the keys move the ground level.

    3. Using set the Input A and B sensitivity to the first test point in Table 3-2.The corresponding range is shown in the second column of the table.

    4. Set the 5500A to source the appropriate DC voltage. Set the 5500A to Operate (OPR).

    5. Observe the main reading and check to see if it is within the range shown under theappropriate column.

  • 8/13/2019 123_125_smeng0000

    47/96

    Performance Verification3.5 Input A and Input B Tests "

    "#$*

    6. Continue through the test points.

    7. When you are finished, set the 5500A to 0 (zero) Volt, and to Standby.

    "(4%& IJM: Q-%$1 K= D&(10+&6&,$ Q&+#5#.($#-, '-#,$1

    R&,1#$#9#$7>P1.#%%-1.-3&B

    T(,)&AB

    >D&$&+BWW@@E -0$30$P1.#%%-1.-3&B

    T(,)&$?

    >D&$&+B

    WW@@E -0$30$

    Q-%$1 +61

    WW@@E

    H+&80&,.7

    T&(/#,) EJO

    611 AB

  • 8/13/2019 123_125_smeng0000

    50/96

    Fluke 123/124/125

    Service Manual

    "#61

    4. Observe the Input A and Input B main reading and check to see if it is within the rangeshown under the appropriate column.

    5. Continue through the test points.

    6. When you are finished, set the 5500A to Standby.

    "(4%& IJZ: N,30$ E (,/ O E= N,30$ =-03%#,) Q&+#5#.($#-, '-#,$1

    WW@@E -0$30$< Q +61 WW@@E H+&80&,.7 T&(/#,) EJO

    &11-1 AB $1 23 S "%%-1

    &11-1 AB "" 23 S %'+-1

    &11-1 AB '1 23 S %,'-&

    3.5.12 Input A and B Volts Peak Measurements Test

    *ETFNF[

    K(,)&+-01 9-%$()&1 ]#%% 4& 3+&1&,$ -, $2& .(%#4+($#-, 1-0+.& (,/.-,,&.$#,) .(4%&1 /0+#,) $2& 5-%%-]#,) 1$&31: S,10+& $2($ $2&.(%#4+($-+ #1 #, 1$(,/47 6-/& 4&5-+& 6(;#,) (,7 .-,,&.$#-,4&$]&&, $2& .(%#4+($-+ (,/ $2& $&1$ $--%:

    Proceed as follows to test the Volts Peak measurement function:

    1. Connect the test tool to the 5500A as for the previous test (see Figure 3-5).

    2. Select the following test tool setup:

    Fluke 123/124: press / to open the SCOPE INPUTS menu.

    Fluke 123/124: press to open the TRIGGER menu, and choose:

    NF'G"C E U R=TSSF G'KE"SC HTSS TGF U EG"P TEF[SC \ AWVX

    Fluke 125: press to open MENU.

    Fluke 125: press to open the TRIGGER menu, and choose :

    NF'G"C E U G'KE"SC HTSS TGF U EG"P TEF[SC \ AWVX

    Press to select auto ranging (EG"Pin top of display).

    Press to open the INPUT A MEASUREMENTS menu, and choose:

    DSERGTS -, EC'SE^

    From the INPUT A PEAK sub-menu choose:

    'SE^ "_'S C'SE^J'SE^

    Press to open the INPUT B MEASUREMENTS menu, and choose:

    NF'G" OCPF U DSERGTS -, OC'SE^

    From the INPUT B PEAK sub-menu choose:

  • 8/13/2019 123_125_smeng0000

    51/96

    Performance Verification3.5 Input A and Input B Tests "

    "#6$

    'SE^ "_'S C'SE^J'SE^

    Using select 1V/div for input A and B.

    3. Set the 5500A to source a sine wave, to the first test point in Table 4-5 (NORMALoutput, WAVE sine). Set the 5500A to Operate (OPR).

    4. Observe the Input A and Input B main reading and check to see if it is within the rangeshown under the appropriate column.

    5. Continue through the test points.

    6. When you are finished, set the 5500A to Standby.

    "(4%& IJW: Q-%$1 '&(; D&(10+&6&,$ Q&+#5#.($#-, '-#,$1

    WW@@E -0$30$< Q+61 >1#,&B WW@@E H+&80&,.7 T&(/#,) EJO

    $-*', 7&B @;H:? $ :23 %-&1 45 &-&1

    3.5.13 Input A and B Phase Measurements Test

    Proceed as follows:

    1. Connect the test tool to the 5500A as for the previous test (see Figure 3-5).

    2. Select the following test tool setup:

    Press to select auto ranging (EG"Pin top of display).

    Press to open the INPUT A MEASUREMENTS menu, and choose:

    DSERGTS -, EC'VERS

    Press to open the INPUT B MEASUREMENTS menu, and choose:

    NF'G" OCPF U DSERGTS -, OC'VERS

    Using select 1V/div for input A and B.

    3. Set the 5500A to source a sine wave, to the first test point in Table 3-6 (NORMALoutput, WAVE sine). Set the 5500A to Operate (OPR).

    4. Observe the Input A and Input B main reading and check to see if it is within the rangeshown under the appropriate column.

    5. Continue through the test points.

    6. When you are finished, set the 5500A to Standby.

    "(4%& IJY: '2(1& D&(10+&6&,$ Q&+#5#.($#-, '-#,$1

    WW@@E -0$30$< Q+61 >1#,&B WW@@E H+&80&,.7 T&(/#,) EJO

    $-&B $ :23 #6 45 F6 O;J

    3.5.14 Harmonics (Fluke 125)

    Proceed as follows:

  • 8/13/2019 123_125_smeng0000

    52/96

    Fluke 123/124/125

    Service Manual

    "#66

    1. Connect the test tool to the 5500A as for the previous test (see Figure 3-5).

    2. Press to open MENU.

    3. Operate the keys to highlight HARMONICS.

    4. Press to open the B AMPERE PROBE menu, and choose:

    RSFRN"NQN"_C A@ 6Q`E5. Press to open the HARMONICS AMP menu.

    6. Set the 5500A to source a square wave 2.5 Vpp, 60 Hz (NORMAL output, WAVEsquare). Set the 5500A to Operate (OPR).

    7. Check if the bargraphs of AMP HARMONICS look like the the ones in Figure 3-6.

    8. Press to two times to activate HARMONICS VOLT menu.

    9. Check if the bargraphs of VOLT HARMONICS look like the the ones in Figure 3-7.

    10.When you are finished, set the 5500A to Standby.

    H#)0+& IJY: O(+)+(32 V(+6-,#.1 E63&+& H#)0+& IJa: O(+)+(32 V(+6-,#.1 Q-%$

    3.5.15 Input A and B High Voltage AC/DC Accuracy Test

    *(+,#,)

    K(,)&+-01 9-%$()&1 ]#%% 4& 3+&1&,$ -, $2& .(%#4+($#-, 1-0+.& (,/.-,,&.$#,) .(4%&1 /0+#,) $2& 5-%%-]#,) 1$&31: S,10+& $2($ $2&.(%#4+($-+ #1 #, 1$(,/47 6-/& 4&5-+& 6(;#,) (,7 .-,,&.$#-,4&$]&&, $2& .(%#4+($-+ (,/ $2& $&1$ $--%:

    Proceed as follows to test the Input A&B High Voltage AC and DC Accuracy:

    1. Connect the test tool to the 5500A as shown in Figure 3-8.

  • 8/13/2019 123_125_smeng0000

    53/96

    Performance Verification3.5 Input A and Input B Tests "

    "#6"

    (),$6+-./0

    H#)0+& IJb: "&1$ "--% N,30$ EJO $- WW@@E F-+6(% P0$30$ 5-+ \I@@Q

    2. Select the following test tool setup:

    Press to select auto ranging (EG"Pin top of display).

    Do not press anymore!

    Press to open the INPUT A MEASUREMENTS menu, and choose:

    DSERGTS -, ECQ(.

    Press to open the INPUT A MEASUREMENTS menu, and choose:

    DSERGTS -, ECQ/. (Vdc becomes main reading, Vac secondary reading)

    Press to open the INPUT B MEASUREMENTS menu, and choose:

    NF'G" OCPF U DSERGTS -, OCQ(.

    Press to open the INPUT B MEASUREMENTS menu, and choose:

    NF'G" OCPF U DSERGTS -, OCQ/.

    Move the Input A and Input B ground level (indicated by zero icon ) to the centergrid line. Proceed as follows:

    Press to enable the arrow keys for moving the Input A ground level.

    Press to enable the arrow keys for moving the Input B ground level.

    Using the keys move the ground level.

    3. Using set the Input A and B sensitivity to the first test point in Table 3-7.The corresponding range is shown in the second column of the table.

    4. Set the 5500A to source the required AC voltage (NORMAL output, WAVE sine). Setthe 5500A to Operate (OPR).

    5. Observe the Input A and B main reading (V-dc) and secondary reading (V-ac) and checkto see if it is within the range shown under the appropriate column.

    6. Continue through the test points.

  • 8/13/2019 123_125_smeng0000

    54/96

    Fluke 123/124/125

    Service Manual

    "#6%

    7. When you are finished, set the 5500A to Standby

    "(4%& IJa: Q K= (,/ Q E= V#)2 Q-%$()& Q&+#5#.($#-, "&1$1

    R&,1#$#9#$7

    >R.-3&B

    T(,)&

    >D&$&+B

    WW@@E

    -0$30$ Q+61

    WW@@E

    H+&80&,.7

    D(#, >K=B

    T&(/#,) EJO

    R&.-,/(+7 >E=B

    T&(/#,) EJO

    611B

  • 8/13/2019 123_125_smeng0000

    55/96

    Performance Verification3.5 Input A and Input B Tests "

    "#6&

    Press to open the INPUT A MEASUREMENTS menu, and choose:

    DSERGTS -, ECPVD

    3. Set the 5500A to the first test point in Table 4-8. Set the 5500A to Operate (OPR).Use the 5500A COMP 2 wire mode for the verifications up to and including 50 k.For the higher values, the 5500A will turn off the COMP 2 wire mode.

    4. Observe the Input A main reading and check to see if it is within the range shown underthe appropriate column.

    5. Continue through the test points.

    6. When you are finished, set the 5500A to Standby.

    "(4%& IJb: T&1#1$(,.& D&(10+&6&,$ Q&+#5#.($#-, '-#,$1

    WW@@E -0$30$ T&(/#,)

    1 111-1 45 111-&

    %11 "+*-$ 45 %16-+% : "-+*$ 45 %-16+

    %1 : "+-*$ 45 %1-6+

    %11 : "+*-$ 45 %16-+

    % / "-+*$ 45 %-16+

    "1 / 6+-** 45 "1-6"

    3.5.17 Continuity Function Test

    Proceed as follows:

    1.

    Connect the test tool to the 5500A as for the previous test (see Figure 3-9).2. Select the following test tool setup:

    Press to select auto ranging (EG"Pin top of display).

    Press to open the INPUT A MEASUREMENTS menu, and choose:

    DSERGTS -, EC=PF" BBB

    3. Set the 5500A to 25. Use the 5500A COMP 2 wire mode. Set the 5500A to Operate(OPR).

    4. Listen to hear that the beeper sounds continuously.

    5. Set the 5500A to 35.

    6. Listen to hear that the beeper does not sound.

    7. When you are finished, set the 5500A to Standby.

  • 8/13/2019 123_125_smeng0000

    56/96

    Fluke 123/124/125

    Service Manual

    "#6'

    3.5.18 Diode Test Function Test

    Proceed as follows to test the Diode Test function :

    1. Connect the test tool to the 5500A as for the previous test (see Figure 3-9).

    2. Press to open the INPUT A MEASUREMENTS menu, and choose:DSERGTS -, ECKNPKS

    3. Set the 5500A to 1 k. Use the 5500A COMP 2 wire mode. Set the 5500A to Operate(OPR).

    4. Observe the main reading and check to see if it is within 0.425 and 0.575V.

    5. Set the 5500A to 1V DC.

    6. Observe the main reading and check to see if it is within 0.975 and 1.025V.

    7. When you are finished, set the 5500A to Standby.

    3.5.19 Capacitance Measurements Test

    Proceed as follows:

    1. Connect the test tool to the 5500A as for the previous test (see Figure 3-9).Ensure that the 5500A is in Standby.

    2. Select the following test tool setup:

    Press to open the INPUT A MEASUREMENTS menu, and choose:

    DSERGTS -, EC=E'

    Press to select auto ranging (EG"Pin top of display).

    Press to open the INPUT A MEASUREMENTS menu.

    Fluke 123/124: press to select the METER A OPTIONS MENU, and choose:

    RDPP"VNF[C FPTDE? U dSTP TSHC PF

    The ZERO REF function is used to eliminate the capacitance of the test leads.

    Fluke 125: press to select ZERO reference. This function is used to eliminatethe capacitance of the test leads.

    Fluke 125: press to select MENU

    Fluke 125: press to select:

    RDPP"VNF[ TSEKNF[ ECFPTDE?

    3. Set the 5500A to the first test point in Table 3-9. Use the 5500A COMP OFF mode.

    Set the 5500A to Operate (OPR).

    4. Observe the Input A main reading and check to see if it is within the range shown underthe appropriate column.

    5. Continue through the test points.

    6. When you are finished, set the 5500A to Standby.

  • 8/13/2019 123_125_smeng0000

    57/96

    Performance Verification3.5 Input A and Input B Tests "

    "#6*

    7. Remove all test leads from the test tool to check the zero point.

    8. Press to open the INPUT A MEASUREMENTS menu.

    9. Fluke 123/124: press the select the METER A OPTIONS MENU, and choose:

    RDPP"VNF[CFPTDE? U dSTP TSHCPHH

    10.Fluke 125: press to switch off ZERO reference.

    11.Observe the Input A reading and check to see if it is between 00.00 and 00.10 nF.

    "(4%& IJc: =(3(.#$(,.& D&(10+&6&,$ Q&+#5#.($#-, '-#,$1

    WW@@E -0$30$ T&(/#,)

    %1 =0 "+-$1 45 %1-+1

    "11 =0 6+"-1 45 "1*-1

    " 0 6-+"1 45 "-1*1

    "1 0 6+-"1 45 "1-*1

    "11 0 6+"-1 45 "1*-1

    1

    7I;A5E; 4;M4 4558 D=@94 N5==;N4D5=M ?

    11-11 45 11-$1

    7M;; M4;@M *---$1?

    3.5.20 Video Trigger Test

    This test is based upon use of a TV signal generator. If you have a Fluke 5500A Calibratorwith 600 MHz Oscilloscope Option, there is no need to use a separate TV signal generator.Fluke 5500A with 600 MHz option can generate video signals. These video signals must beapplied to the test tool via a 50Coax Cable and terminated with a 50feed through

    termination. The video signal is simpler than that from a TV signal generator. It consists ofsync pulses and one marker that can be adjusted to appear in the video line the test tooltriggers on.

    Only one of the systems NTSC, PAL, or SECAM has to be verified.

    Proceed as follows:

    1. Connect the test tool to the VIDEO output of the TV Signal Generator as shown inFigure 3-9.

  • 8/13/2019 123_125_smeng0000

    58/96

    Fluke 123/124/125

    Service Manual

    "#6,

    (),$%$-./0

    H#)0+& IJA@: "&1$ "--% N,30$ E $- "Q R#),(% [&,&+($-+

    2. Select the following test tool setup:

    Reset the test tool (power off and then on with ).

    Fluke 123/124: press / to open the SCOPE INPUTS menu.

    Fluke 123/124: Press to open the TRIGGER menu and choose:

    QNKSP -, E:::

    From the shown VIDEO TRIGGER menu choose:

    R_R"SDCF"R= or'E? or RS=ED

    ?NFSCRS?S="

    'P?ETN"_C'PRN"NQS

    Fluke 125: press to open MENU.

    Fluke 125: Press to open the TRIGGER menu and choose:

    QNKSP -, E:::

    From the shown VIDEO TRIGGER menu choose:

    R_R"SDCF"R= or'E? or RS=ED

    ?NFSCRS?S="

    'P?ETN"_C'PRN"NQS

    Using set the Input A sensitivity to 200 mV/div.

    Using select 20 s/div.

    Press to enable the arrow keys for selecting the video line number.

    Using select the line number:

    622 for PAL or SECAM

    525 for NTSC.

  • 8/13/2019 123_125_smeng0000

    59/96

    Performance Verification3.5 Input A and Input B Tests "

    "#6+

    3. Set the TV Signal Generator to source a signal with the following properties:

    the system selected in step 2

    gray scale

    video amplitude 1V (5 divisions on the test tool)

    chroma amplitude zero.

    4. Observe the trace, and check to see if the test tool triggers on line number:

    622 for PAL or SECAM, see Figure 3-11

    525 for NTSC, see Figure 3-12.

    Note

    Numerical readingsin the pictures shown below may deviate from those shownin the test tool display during verification.

    UVR'66-W/U

    H#)0+& IJAA: "&1$ "--% R.+&&, 5-+ 'E?`RS=ED

    %#,& YMM

    X)(T&6&-W/U

    H#)0+& IJAM: "&1$ "--% R.+&&, 5-+ F"R= %#,& WMW

    5. Using select the line number:

    310 for PAL or SECAM

    262 for NTSC

    6. Observe the trace, and check to see if the test tool triggers on:

    line number 310 for PAL or SECAM, see Figure 3-13.

    line number 262 for NTSC, see Figure 3-14.

  • 8/13/2019 123_125_smeng0000

    60/96

    Fluke 123/124/125

    Service Manual

    "#"1

    UVR"$1-W/U

    H#)0+& IJAI: "&1$ "--% R.+&&, 5-+ 'E?`RS=ED%#,& IA@

    X)(T6'6-W/U

    H#)0+& IJAZ: "&1$ "--% R.+&&, 5-+ F"R= %#,& MYM

    7. Apply the inverted TV Signal Generator signal to the test tool.You can invert the signal by using a Banana Plug to BNC adapter (Fluke PM9081/001)

    and a Banana Jack to BNC adapters (Fluke PM9082/001), as shown in Figure 3-15.

    (),$%6-./0

    H#)0+& IJAW: "&1$ "--% N,30$ E $- "Q R#),(% [&,&+($-+ N,9&+$&/

    8. Select the following test tool setup:

    Fluke 123/124: press / to open the SCOPE INPUTS menu.

    Fluke 123/124: press to open the TRIGGER menu and choose:

    QNKSP -, E

    The VIDEO TRIGGER sub-menu is shown now. From the VIDEO TRIGGER

    menu choose:

    R_R"SDCF"R= or'E? orRS=ED or'E?3%01 U

    ?NFSCRS?S=" U 'P?ETN"_CFS[E"NQS

    Fluke 125: press to open MENU.

  • 8/13/2019 123_125_smeng0000

    61/96

    Performance Verification3.5 Input A and Input B Tests "

    "#"$

    Fluke 125: press to open the TRIGGER menu and choose:

    QNKSP -, E

    The VIDEO TRIGGER sub-menu is shown now. From the VIDEO TRIGGER

    menu choose:

    R_R"SDCF"R= or'E? orRS=ED or'E?3%01 U

    ?NFSCRS?S=" U 'P?ETN"_CFS[E"NQS

    Using set the Input A sensitivity to 200 mV/div.

    Using select 20 s/div.

    9. Using select the line number:

    310 for PAL or SECAM

    262 for NTSC

    10.Observe the trace, and check to see if the test tool triggers on:

    line number 311 for PAL or SECAM, see Figure 3-16

    line number 262 for NTSC, see Figure 3-17.

    UVR"$1Y--W/U

    H#)0+& IJAY: "&1$ "--% R.+&&, 5-+ 'E?`RS=ED%#,& IA@ F&)($#9& Q#/&-

    X)(T6'6Y-W/U

    H#)0+& IJAa: "&1$ "--% R.+&&, 5-+ F"R= %#,& MYMF&)($#9& Q#/&-

    This is the end of the Performance Verification Procedure.

  • 8/13/2019 123_125_smeng0000

    62/96

  • 8/13/2019 123_125_smeng0000

    63/96

    4-1

    Chapter 4

    Calibration Adjustment

    Title Page

    4.1 General........................................................................................................... 4-34.1.1 Introduction................................................................................................. 4-34.1.2 Calibration number and date....................................................................... 4-34.1.3 General Instructions.................................................................................... 4-34.2 Equipment Required For Calibration............................................................. 4-44.3 Starting Calibration Adjustment .................................................................... 4-44.4 Contrast Calibration Adjustment ................................................................... 4-64.5 Warming Up & Pre-Calibration..................................................................... 4-74.6 Final Calibration ............................................................................................ 4-74.6.1 HF Gain Input A&B ................................................................................... 4-74.6.2 Delta T Gain, Trigger Delay Time & Pulse Adjust Input A....................... 4-9

    4.6.3 Pulse Adjust Input B ................................................................................... 4-104.6.4 Gain DMM (Gain Volt) .............................................................................. 4-104.6.5 Volt Zero..................................................................................................... 4-124.6.6 Zero Ohm.................................................................................................... 4-124.6.7 Gain Ohm.................................................................................................... 4-134.6.8 Capacitance Gain Low and High ................................................................ 4-144.6.9 Capacitance Clamp & Zero......................................................................... 4-144.6.10 Capacitance Gain ...................................................................................... 4-154.7 Save Calibration Data and Exit...................................................................... 4-15

  • 8/13/2019 123_125_smeng0000

    64/96

  • 8/13/2019 123_125_smeng0000

    65/96

    Calibration Adjustment4.1 General 4

    4-3

    4.1 General

    4.1.1 Introduction

    The following information, provides the complete Calibration Adjustment procedure for

    the test tools Fluke 123 and 124 with firmware V02.00and onwards and for Fluke 125.The test tool allows closed-case calibration using known reference sources. It measuresthe reference signals, calculates the correction factors, and stores the correction factors inRAM. After completing the calibration, the correction factors can be stored inFlashROM.

    The test tool should be calibrated after repair, or if it fails the performance test. The testtool has a normal calibration cycle of one year. The Calibration Adjustment procedure isidentical for Fluke 123, 124 and 125.

    4.1.2 Calibration number and date

    When storing valid calibration data in FlashROM after performing the calibrationadjustment procedure, the calibration date is set to the actual test tool date, and

    calibration number is raised by one. To display the calibration date and - number:

    1. Press to open the USER OPTIONS menu.

    2. Press to show the VERSION&CALIBRATION screen (see Figure 4.1).

    3. Press to return to normal mode.

    VERSION.BMP

    Figure 4-1. Version & Calibration Screen

    4.1.3 General Instructions

    Follow these general instructions for all calibration steps:

    Allow the 5500A to satisfy its specified warm-up period. For each calibration point ,wait for the 5500A to settle.

    The required warm up period for the test tool is included in the WarmingUp &PreCal calibration step.

    Ensure that the test tool battery is charged sufficiently.

  • 8/13/2019 123_125_smeng0000

    66/96

    Fluke 123/124/125

    Service Manual

    4-4

    4.2 Equipment Required For CalibrationThe primary source instrument used in the calibration procedures is the Fluke 5500A. Ifa 5500A is not available, you can substitute another calibrator as long as it meets theminimum test requirements.

    Fluke 5500A Multi Product Calibrator, including 5500A-SC Oscilloscope CalibrationOption.

    Stackable Test Leads (4x), supplied with the 5500A.

    50Coax Cables (2x), Fluke PM9091 or PM9092.

    50feed through terminations (2x), Fluke PM9585.

    Fluke BB120 Shielded Banana to Female BNC adapters (2x), supplied with the Fluke123/124/125.

    Dual Banana Plug to Female BNC Adapter (1x), Fluke PM9081/001.

    Male BNC to Dual Female BNC Adapter (1x), Fluke PM9093/001.

    4.3 Starting Calibration AdjustmentFollow the steps below to start calibration adjustments.

    1. Power the test tool via the power adapter input, using the PM8907 power adapter.

    2. Check the actual test tool date, and adjust the date if necessary:

    Press to open the USER OPTIONS menu

    Using select DATE ADJUST

    press to open the DATE ADJUST menu

    adjust the date if necessary.

    3. Select the Maintenance mode.

    The Calibration Adjustment Procedure uses built-in calibration setups, that can beaccessed in the Maintenance mode.

    To enter the Maintenance mode proceed as follows:

    Press and hold

    Press and release

    Release

    The display shows the Calibration Adjustment Screen.

    The display shows the first calibration step Warming Up (CL 0200), and the calibrationstatus :IDLE (valid) or:IDLE (invalid).

  • 8/13/2019 123_125_smeng0000

    67/96

    Calibration Adjustment4.3 Starting Calibration Adjustment 4

    4-5

    4. Continue with either a. or b. below:

    a. To calibrate the display contrast adjustment range and the default contrast, go toSection 4.4 Contrast Calibration Adjustment.This calibration step is only required if the display cannot made dark or lightenough, or if the display after a test tool reset is too light or too dark.

    b. To calibrate the test tool without calibrating the contrast , go to Section 4.5Warming Up & Pre-calibration.

    Explanation of screen messages and key functions.

    When the test tool is in the Maintenance Mode, only the F1 to F4 soft keys, the ON/OFFkey, and the backlight key can be operated, unless otherwise stated.

    The calibration adjustment screen shows the actual calibration step (name and number)and its status :

    Cal Name (CL nnnn) :Status Calibration step nnnn

    Statuscan be:

    IDLE (valid) After (re)entering this step, the calibration process is not started.The calibration data of this step are valid. This means that thelast time this step was done, the calibration process wassuccessful. It does not necessarily mean that the unit meets thespecifications related to this step!

    IDLE (invalid) After (re)entering this step, the calibration process is not started.The calibration data are invalid. This means that the unit will notmeet the specifications if the calibration data are saved.

    BUSY aaa% bbb% Calibration adjustment step in progress; progress % for Input Aand Input B.

    READY Calibration adjustment step finished.Error :xxxx Calibration adjustment failed, due to wrong input signal(s) or

    because the test tool is defective. The error codes xxxx areshown for production purposes only.

    Functions of the keys F1-F4 are:

    PREV select the previous step

    NEXT select the next step

    CAL start the calibration adjustment of the actual step

    EXIT leave the Maintenance mode

    Readings and traces

    After completing a calibration step, readings and traces are shown using the new

    calibration data.

  • 8/13/2019 123_125_smeng0000

    68/96

    Fluke 123/124/125

    Service Manual

    4-6

    4.4 Contrast Calibration AdjustmentAfter entering the Maintenance mode, the test tool display shows

    Warming Up (CL 0200):IDLE (valid).

    Do not press now! If you did, turn the test tool off and on, and enter the

    Maintenance mode again.

    Proceed as follows to adjust the maximum display darkness (CL0100), the defaultcontrast (CL0110) , and the maximum display brightness (CL0120).

    1. Press a three times to select the first calibration step. The display shows:

    Contrast (CL 0100) :MANUAL

    2. Press CAL. The display will show a dark test pattern, see Figure 4-2

    3. Using adjust the display to the maximum darkness, at which the test patternis only just visible.

    4. Press to select the default contrast calibration. The display shows:

    Contrast (CL 0110) :MANUAL

    5. Press CAL. The display shows the test pattern at default contrast.

    6. Using set the display to optimal (becomes default) contrast.

    7. Press to select maximum brightness calibration. The display shows:Contrast (CL 0120) :MANUAL

    8. Press CAL. The display shows a bright test pattern.

    9. Using adjust the display to the maximum brightness, at which the testpattern is only just visible.

    10.You can now :

    Exit, if only the Contrast had to be adjusted. Continue at Section 4.7.

    OR

    Do the complete calibration. Press to select the next step (Warming Up),and continue at Section 4.5.